
Decomposing Montagovian Dynamics

Greg Kobele

May 5, 2016

1 Introduction
de Groote [2006] demonstrates how to give a dynamic interpretation to formulae in higher
order logic, not by, as is done in most works on dynamic semantics, giving a non-standard
model-theoretic interpretation of such formulae, but rather by giving a systematic syntactic
translation of these formulae into other formulae which, when interpreted in the standard
way, are equivalent to the dynamic interpretation of the original formulae. This is achieved
by lifting the types of expressions to be functions from left contexts (representing information
about already established discourse referents) to functions from right contexts (representing
discourse continuations) to truth values.

The goal of this short note is to show that the dynamic translation of de Groote [2006]
can be factored into the composition of two simpler parts; a left-context translation and a
right-context translation, or, more precisely, a semantics dealing with dynamism without
discourse referents, and a semantics dealing with discourse referents without dynamism.

This is a literate Coq document, with source code available on the web at https://
github.com/gkobele/decomposing-montague.

2 The formal language
I begin by defining the basic structures of the language. This will serve both as a metalan-
guage (the target language of the translations) and also as an object language (the source
languages of the translations).

The basic idea of a translation procedure is that an uninterpreted object language is
translated into a language that is already understand, the meta-language. The same syntactic
forms will be used (a simple fragment of the lambda calculus) for both. This offers a sort
of modularity of semantic description. From the semanticist’s perspective, this means that
certain aspects of meaning can be systematically ignored, knowing that the semantic terms
actually written down are (via the translation process) notational shorthands for richer
meaning representations. More speculatively, one might conjecture that each successive
translation might have some sort of deeper reality, perhaps recapitulating the stages of a

1

https://github.com/gkobele/decomposing-montague
https://github.com/gkobele/decomposing-montague

> true farmer p0
⊥ false donkey p1
¬ not laugh p2
∧ and bray p3
∨ or own r0
 imply beat r1

Figure 1: Abbreviations for constants

learner’s semantic language acquisition, or perhaps even as reflective of different levels of
deep semantic analysis of a sentence made as needed during language processing.

The language is typed, with two basic types; e and t. Nothing is assumed about ex-
pressions of type e; in particular, no expression of the language will have a type ending in
e. In contrast, the type t, is viewed as the type of complete propositions, is the locus of
recursion in this language. Thus, and is a binary term forming operator. There are infinitely
many inhabitants of type t, many of which are intuitively semantically equivalent. There
are constants true and false, boolean connectives and, or and not, term forming operators
p n and r n (the nth unary and binary relations respectively), and generalized quantifiers
some, all and pro (representing a pronoun). These provide the basic alphabet for build-
ing semantic terms (of type t). With the exception of pro, these can be interpreted in the
usual way in higher order models. pro is not (intended to be understood as) a term in the
meta-language, and will only be given a meaning during the translation process. de Groote
[2006] also has a constant who, which is however definable as usual in terms of property
conjunction: who P Q = λx.Px ∧Qx.
Inductive t : Set :=
| true : t
| false : t
| p : nat → e → t
| r : nat → e → e → t
| and : t → t → t
| or : t → t → t
| imply : t → t → t
| not : t → t
| some : (e → t) → t
| all : (e → t) → t
| pro : (e → t) → t.

To make terms more readable, I introduce familiar notation, as shown in figure 1.

Example Every donkey brayed : all (fun x ⇒ donkey x bray x) = all (fun x ⇒ (p 1 x)
 (p 3 x)).

The intended interpretation of terms of type t is of course in an algebra (boolean or
heyting) where> is understood as truth (the top element of the algebra), and⊥ as falsity (the

2

bottom element of the algebra). The connective symbols are to be understood as appropriate
operations in the algebra (meet, join, and complement if in a boolean algebra, and meet,
join and relative complement in a heyting algebra). Although this setup is independent of
one’s particular choice of logic (classical or intuitionistic), classical logic is more familiar in
linguistics, and generates a coarser equivalence relation over terms. I will write φ ≡ ψ to
indicate that φ is classically equivalent to ψ. The notation iˆˆn o abbreviates the type
i→ · · · → i︸ ︷︷ ︸

n times

→ o.

3 Dynamism
In this section, dynamism is introduced to the system above. Although the dynamic proper-
ties of connectives are typically argued for based on the behaviour of pronouns, the statement
of the dynamic properties of connectives needn’t make reference to pronouns, which is ex-
ploited here.

The intuitive understanding of the dynamic meaning of a sentence is as explicating its
contribution to the discourse; it specifies how the meaning of the upcoming discourse is
influenced by its own meaning. Accordingly the dynamic type Ω of a sentence is t → t ; a
function which modifies the meaning of an upcoming discourse. Dynamic translations of
terms of type t into terms of type Ω are now defined. These terms of type Ω are intended
to capture in an intuitive way the dynamic meaning of the original terms of type t.

Atomic sentences, qua n-ary predicates, are simply conjoined with the discourse contin-
uation. That is, the meaning of a discourse consisting of only atomic sentences is hereby
stipulated to be their conjunction.

Fixpoint atom d tr (n : nat) : (eˆˆn) t → (eˆˆn) Ω :=
match n with
| O ⇒ fun atom φ ⇒ atom ∧ φ
| S m ⇒ fun atom x ⇒ atom d tr m (atom x)
end.

Example dynamic beats : atom d tr 2 beat = fun x y φ ⇒ beat x y ∧ φ.
The atomic sentences > and ⊥, representing the always true and always false sentences,

obtain from the general treatment of atomic sentences above the meanings fun φ ⇒ > ∧ φ
and fun φ ⇒ ⊥ ∧ φ respectively, which are semantically equivalent to the identity function
and the constant false function respectively. To simplify the statement of the main result,
the translations of > and ⊥ are simply taken to be these simpler functions.

Definition true d tr : Ω := fun φ ⇒ φ.

Example true id : ∀ φ, atom d tr O > φ ≡ true d tr φ.

Definition false d tr : Ω := fun ⇒ ⊥.
Example false false : ∀ φ, atom d tr O ⊥ φ ≡ false d tr φ.

3

Connectives are classified as externally dynamic just in case a discourse referent intro-
duced internally to them is accessible externally. They are internally dynamic just in case a
discourse referent introduced inside of one conjunct is accessible in the other.

As conjunction is externally dynamic, the discourse continuation of a conjunction should
be in the scope of both conjuncts. As it is also internally dynamic, the second conjunct
should be in the scope of the first. The discoure continuation of the first conjunct P is thus
the result of continuing the second conjunct Q with the discourse continuation of the entire
coordination, φ. In other words, a discourse P ∧ Q. D is interpreted as P. Q. D.
Definition and d tr : Ω → Ω → Ω :=
fun (P Q : Ω) (φ : t) ⇒ P (Q φ).
Negation is externally static (i.e. not externally dynamic); so the discourse continuation

of a negated expression P must not be in its scope. Instead, the negated expression P is
given a trivial discourse continuation, >, and its negation is treated as an atomic proposition;
i.e. it is conjoined with the remainder of the discourse.
Definition not d tr : Ω → Ω :=
fun (P : Ω) ⇒ atom d tr 0 (¬ (P >)).

Example not d tr externally static :
∀ (P : Ω) (φ : t), not d tr P φ = ¬ (P >) ∧ φ.
The other dynamic connectives will be defined in terms of dynamic conjunction and dy-

namic negation. Dynamic behaviour, whether internal or external, will implicate a dynamic
conjunction, and static behaviour a dynamic negation.

Implication is externally static, but internally dynamic from antecedent P to consequent
Q. This is captured by its classically valid reformulation in terms of ∧ and ¬: P → Q ≡
¬(P ∧ ¬Q)

Definition imp d tr : Ω → Ω → Ω :=
fun (P Q : Ω) ⇒ not d tr (and d tr P (not d tr Q)).
The dynamic behaviour of disjunction is less clear [Groenendijk and Stokhof, 1991] .

Sentences like: “Either this house doesn’t have a bathroom, or it is hidden” suggest that
disjunction should be (at least) internally dynamic, however it is common to assume that
disjunction is in fact completely static. This is in fact predicted by its classical reformulation
in terms of negation and conjunction: P ∨Q ≡ ¬(¬P ∧ ¬Q)

Definition or d tr : Ω → Ω → Ω :=
fun (P Q : Ω) ⇒ not d tr (and d tr (not d tr P) (not d tr Q)).
The generic treatment of dynamic GQs has it that the discourse continuation of the entire

sentence is moved into the scope of the GQ.
Definition quant d tr (q : (e → t) → t) : (e → Ω) → Ω :=
fun (P : e → Ω) (φ : t) ⇒ q (fun x ⇒ P x φ).
Exceptionally, from this perspective, universal quantification is externally static, which

is captured by its de Morgan reformulation in terms of existential quantification: ∀x.Px ≡
¬∃x.¬Px

4

Definition all d tr : (e → Ω) → Ω :=
fun (P : e → Ω) ⇒ not d tr (quant d tr some (fun x ⇒ not d tr (P x))).

These definitions allow for a concise statement of the translation d tr (mnemonic for
dynamic translation) from terms of type t, with their dynamic potential implicit into terms
of type Ω with their dynamic meanings made explicit. We see that the translation d tr is
just a homomorphism.

Fixpoint d tr (φ : t) : Ω :=
match φ with
| > ⇒ true d tr
| ⊥ ⇒ false d tr
| p n x ⇒ atom d tr 1 (p n) x
| r n x y ⇒ atom d tr 2 (r n) x y
| ¬ ψ ⇒ not d tr (d tr ψ)
| ψ ∧ χ ⇒ and d tr (d tr ψ) (d tr χ)
| ψ ∨ χ ⇒ or d tr (d tr ψ) (d tr χ)
| ψ χ ⇒ imp d tr (d tr ψ) (d tr χ)
| pro P ⇒ quant d tr pro (fun x ⇒ d tr (P x))
| some P ⇒ quant d tr some (fun x ⇒ d tr (P x))
| all P ⇒ all d tr (fun x ⇒ d tr (P x))

end.

This translation, as can be seen by the examples to follow, allows existentials to dynam-
ically extend their scope over upcoming sentences, while disallowing universals from doing
the same.

Example Some farmer laughed :
∀ φ : t,
d tr (some (fun x ⇒ farmer x ∧ laugh x)) φ
≡ some (fun x ⇒ farmer x ∧ laugh x ∧ φ).

Example Every farmer laughed :
∀ φ : t,

d tr (all (fun x ⇒ farmer x laugh x)) φ
≡ (all (fun x : e ⇒ farmer x laugh x)) ∧ φ.

4 Contexts
Here we present an interpretation of context-independent sentences into context dependent
ones. This does not presuppose (or introduce) dynamism.

Following de Groote [2006], we introduce a new type γ for contexts. This type is
abstract, in the sense that its properties will be given axiomatically; anything that satisfies
these properties may be used as a context. We require only that we can interact with objects

5

of type γ in two ways. First, that a context may be updated with an individual to obtain a
new context.

Variable update : e → γ → γ.

The notation x :: c will abbreviate the more cumbersome update x c.

And second, that salient individuals may be retrieved from a context.

Variable sel : γ → e.

In particular, sel should be thought of as a placeholder for one’s favourite pronoun
resolution algorithm; in this view, the job of semantics is to give the appropriate input to
the pronoun resolution algorithm, but the inner workings of this algorithm are semantically
opaque. de Groote [2006] takes for concreteness γ to be the type of lists of individuals,
updating to be achieved by adding an individual to a list, and selection to be retrieving
some element of a list.

Terms of type t will be viewed as having implicit contexts. We will define a translation
from terms of type t which makes their contexts, context updating, and context passing
explicit.

Contexts are incorporated by adding a context parameter to every atomic type.

Definition G := γ → t.

Definition E := γ → e.

Thus a term of type t will be translated into one of type G, and one of type e will be
translated into one of type E.

Inherently context insenstitive n-ary connectives, functions, and predicates can be lifted
to context sensitive ones by simply distributing the context to their context-sensitive argu-
ments.

Fixpoint distr g tr {A B : Type} (n : nat) : (γ → (A ˆˆ n) B) → ((γ → A) ˆˆ n) (γ →
B) :=
match n as n0 return (γ → (A ˆˆ n0) B) → ((γ → A) ˆˆ n0) (γ → B) with
| O ⇒ fun xx ⇒ xx
| S m ⇒ fun xx φ ⇒ distr g tr m (fun c : γ ⇒ xx c (φ c))
end.

Definition lift g tr {A B : Type} (n : nat) (m : (A ˆˆ n) B) : ((γ → A) ˆˆ n) (γ → B)
:=
@distr g tr A B n (fun ⇒ m).

Example contextual individual (j : e) : lift g tr (A := e) 0 j = (fun ⇒ j).

Example contextual beats : lift g tr 2 beat = fun x y c ⇒ beat (x c) (y c).

A pronoun pro is translated as a generalized quantifier generated from the (context-
sensitive) individual sel.

Definition pro g tr : (E → G) → G := fun P ⇒ P sel.

6

The individual argument to the property of a GQ is a lifted context-insensitive variable.
The context passed to this property is enriched with the unlifted variable.

Definition quant g tr (gq : (e → t) → t) : (E → G) → G :=
fun P (c : γ) ⇒ gq (fun x ⇒ P (lift g tr (A := e) 0 x) (x :: c)).

The function g tr (mnemonic for gamma translation) makes explicit the implicit context
manipulation in terms of type t.

Fixpoint g tr (φ : t) : G :=
match φ with
| > ⇒ lift g tr (A := t) 0 >
| ⊥ ⇒ lift g tr (A := t) 0 ⊥
| ¬ ψ ⇒ lift g tr 1 ¬ (g tr ψ)
| ψ ∧ χ ⇒ lift g tr 2 ∧ (g tr ψ) (g tr χ)
| ψ χ ⇒ lift g tr 2 (g tr ψ) (g tr χ)
| ψ ∨ χ ⇒ lift g tr 2 ∨ (g tr ψ) (g tr χ)
| p n a ⇒ lift g tr 1 (p n) (lift g tr (A := e) 0 a)
| r n a b ⇒ lift g tr 2 (r n) (lift g tr (A := e) 0 a) (lift g tr (A := e) 0 b)
| some P ⇒ quant g tr some (fun (x : E) (c : γ) ⇒ g tr (P (x c)) c)
| all P ⇒ quant g tr all (fun (x : E) (c : γ) ⇒ g tr (P (x c)) c)
| pro P ⇒ pro g tr (fun (x : E) (c : γ) ⇒ g tr (P (x c)) c)

end.

In the example below, which is the translation of the sentence he laughed into context-
sensitive terms, note that the referent of the pronoun he must be found in the context of
utterance c.

Example he laughed :
∀ (c : γ), g tr (pro laugh) c = laugh (sel c).

In the following example, the translation of the sentence some farmer owned it, note that
the referent of it is to be found in the context of utterance c which has been updated with
a discourse referent x which is a farmer. Of course, for multiple reasons (the pronoun is
incompatible with the animacy of the farmer, and the pronoun is syntactically too local) the
pronoun should not in this case be resolved to the discourse referent x.

Example some farmer owned it :
∀ (c : γ), g tr (some (fun x ⇒ farmer x ∧ (pro (fun y ⇒ own y x)))) c

= some (fun x : e ⇒ farmer x ∧ own (sel (x :: c)) x).

5 De Groote’s Montagovian Dynamics

The type of a sentence ω is defined to be γ → (γ → t) → t ; a function from a context γ to
the type (γ → t) → t of the continuation of a context.

7

Atomic predicates do not modify their context; they simply conjoin their static meaning
with the meaning of the discourse continuation in the context.

Definition pred dg tr (n : nat) : e → ω :=
fun (x : e) (c : γ) (φ : γ → t) ⇒ (p n x) ∧ (φ c).

Definition rel dg tr (n : nat) : e → e → ω :=
fun (x y : e) (c : γ) (φ : γ → t) ⇒ (r n x y) ∧ (φ c).

de Groote treats verbs as taking generalized quantifiers as arguments, as opposed to
individuals (in contrast to nouns). This decision is orthogonal to the question of interest
here, and requires a richer setup than present in his 2006 paper to treat the composition of
semantic translations.

While de Groote [2006] does not deal explicitly with sentential connectives, his later work
(as described by Lebedeva [2012]) does, and is as follows.

Definition and dg tr : ω → ω → ω :=
fun (P Q : ω) (c : γ) (φ : γ → t) ⇒ P c (fun d ⇒ Q d φ).

Definition not dg tr : ω → ω :=
fun (P : ω) (c : γ) (φ : γ → t) ⇒ (¬ (P c (fun ⇒ >))) ∧ (φ c).

Definition or dg tr : ω → ω → ω :=
fun (P Q : ω) ⇒ not dg tr (and dg tr (not dg tr P) (not dg tr Q)).

Definition imply dg tr : ω → ω → ω :=
fun (P Q : ω) ⇒ not dg tr (and dg tr P (not dg tr Q)).

Definition some dg tr : (e → ω) → ω :=
fun (P : e → ω) (c : γ) (φ : γ → t) ⇒ some (fun (x : e) ⇒ P x (x :: c) φ).

Definition every dg tr : (e → ω) → ω :=
fun (P : e → ω) ⇒ not dg tr (some dg tr (fun x ⇒ not dg tr (P x))).

Definition pro dg tr : (e → ω) → ω :=
fun (P : e → ω) (c : γ) (φ : γ → t) ⇒ P (sel c) c φ.

The function dg tr (short for ‘De Groote’ translation), makes the implicit dynamism and
context manipulation in terms explicit.

Fixpoint dg tr (f : t) : ω :=
match f with
| > ⇒ fun c φ ⇒ φ c
| ⊥ ⇒ fun ⇒ ⊥
| P ∧ Q ⇒ and dg tr (dg tr P) (dg tr Q)
| P ∨ Q ⇒ or dg tr (dg tr P) (dg tr Q)
| P Q ⇒ imply dg tr (dg tr P) (dg tr Q)
| ¬ P ⇒ not dg tr (dg tr P)
| some P ⇒ some dg tr (fun x ⇒ dg tr (P x))
| all P ⇒ every dg tr (fun x ⇒ dg tr (P x))
| p n x ⇒ pred dg tr n x

8

| r n x y ⇒ rel dg tr n x y
| pro P ⇒ pro dg tr (fun x ⇒ dg tr (P x))

end.
Example if a farmer owns a donkey he beats it : ∀ c φ,

dg tr ((some (fun x ⇒ farmer x ∧ some (fun y ⇒ donkey y ∧ own y x))) pro (fun
u ⇒ pro (fun v ⇒ beat v u))) c φ

≡
((all (fun x : e ⇒ farmer x

all (fun y : e ⇒ (donkey y ∧ own y x)
beat (sel (y :: x :: c)) (sel (y :: x :: c)))))

∧ φ c).

6 The equivalence
The translations must be restricted so as to use the same type γ and same accessor functions
update and sel.

Definition g trans := g tr γ update sel.
Definition dg trans := dg tr γ update sel.

In order to prove the equivalence between de Groote’s translation and the composition
of the gamma and dynamic translations, I assume that functions are extensional; that two
functions are identical iff they compute the same input-output relation.
Hypothesis fun ext : ∀ (A B : Set) (f g : A → B), (∀ x, f x = g x) → f = g.

The main theorem states that, for any formula φ of type t, the context-change poential
of the contextification of its dynamic translation is identical to the context-change potential
of de Groote’s translation of it.
Theorem dg g d :
∀ (φ ψ : t), g trans ((d tr φ) ψ) = fun c ⇒ (dg trans φ) c (g trans ψ).

Proof. This is proven by induction on φ, followed by simple but tedious case analysis.

One peculiarity about the statement of the theorem concerns the function g trans on
the right hand side of the equation. This is because the discourse context desired on the
left hand side (ψ) is of type t, whereas that desired on the right (g trans ψ) is of type γ
→ t. In order for the theorem to make sense, both sides must be given the same discourse
continuation. The term g trans on the right of the equation coerces a term of type t into
one of type γ → t. In essence, the theorem says only that g trans composed with d tr has
the same effect on a discourse configuration of type t that dg trans has on its image under
g trans.

In practice, this is not much of a restriction, as for any discourse φ, the theorem implies
that both left and right sides are interpreted identically in the empty discourse continuation.

9

Corollary dg g d true :
∀ (φ : t), g trans (d tr φ >) = fun c ⇒ dg trans φ c (fun ⇒ >).

7 Conclusion
The simple perspective offered by de Groote [2006] on dynamism and dynamic updating has
been shown to be decomposible into two simpler and logically independent parts. His 2006
system, modeled here, involves an mapping of second-order terms in a source language into
those in a target language. This amounts to a tree-to-term homomorphism, and allows de
Groote to avoid defining λ-homomorphisms. This has been improved upon in later work
[Lebedeva, 2012], where the source language is made higher order. In order to have a
simple statement of the two parts that De Groote’s system can be factored into (dynamism
and context-sensitivity), I have departed from his original presentation in some ways. In
particular, I have presented the source and target languages as one and the same, whereas
de Groote treats the source language as properly syntactic, and the target language as
properly semantic. Collapsing source and target languages has the aesthetically unpleasant
consequence of introducing a ‘meaningless’ term, pro, into the language. While the same
could have been done with the term who, I have chosen to leave it out of the language
altogether, as it plays no illustrative semantic role. The second difference concerns the type of
verbal elements in the source language, where, for de Groote, they take generalized quantifier
denoting expressions as arguments: [[beat]] := λX, Y.X(λx.Y (λy.beat x y)). This is made
very simple in his presentation by treating beat as a constant in a language different from that
of beat. This is not available to me, as both g tr and d tr should be defined independently
of each other, and therefore must operate on the same source language, whence at least d tr
must map one language to itself. While this is a salient theoretical decision regarding the
proper treatment of quantifier scope, it does not matter for the decomposition of de Groote’s
translation into the two simpler ones given here.

References
P. de Groote. Towards a montagovian account of dynamics. In M. Gibson and J. Howell,
editors, Proceedings of SALT 16, pages 1–16, 2006.

J. Groenendijk and M. Stokhof. Dynamic predicate logic. Linguistics and Philosophy, 14:
39–100, 1991.

E. Lebedeva. Expression de la dynamique du discours à l’aide de continuations. PhD thesis,
Université de Lorraine, 2012.

10

	Introduction
	The formal language
	Dynamism
	Contexts
	De Groote's Montagovian Dynamics
	The equivalence
	Conclusion

