Parsing Elliptical Structure*

Gregory M. Kobele
Institut fiir deutsche Sprache und Linguistik
Humboldt Universitat zu Berlin

November 28, 2007

1 Introduction

Elliptical sentences are those in which ‘a piece has gone missing’. Still, we
appear to find these elliptical sentences just as easy to understand as their
lengthy brethren.

(1) John wants to play doctor, but Mary doesn’t.
(2) John wants to play doctor, but Mary doesn’t want to play doctor.

The parsing problem posed by such sentences is that of recovering the
meaning of the ‘missing piece’. In the case above, we would want the parser
to provide us with a representation of 1 from which we would be in a position
to compute the meaning of 2 as one of its possible meanings. Whatever the
range of possible meanings returned by the parser might be, it must be
constrained enough to rule out a reconstruction synonymous with 3.

(3) John wants to play doctor, but Mary doesn’t have a fever.

There have been many different proposals in the linguistic literature as to
how best to delimit the range of possible meanings. A currently influential

*This work was completed while working in the group SIGNES at the laboratoire
bordelais de recherche en informatique (LaBRI) as a post-doc employed by INRTA Futurs.
My thanks go to all the members of the équipe, and especially Christian Retoré and
Sylvain Salvati. This work would have been much worse without Sylvain’s insight. I
would also like to thank John Hale and Jens Michaelis for comments on an earlier version.
As appealing as the alternative would be, the responsibility for any mistakes contained
herein rests solely with me.

account has it that the missing piece is syntactically present [4, 8, 19], which
reduces the problem of delimiting the range of meanings of elliptical sentences
to explaining the conditions under which syntactic structure might be ren-
dered phonologically inert. There are two main approaches to the licensing of
deletion. The first, championed recently by Merchant [19], proposes that the
phonological content of a phrase may be deleted just in case there is a differ-
ent, antecedent, phrase, such that the semantic denotations of both phrases
are identical.! The other option is to take the condition licensing phonolog-
ical deletion to be a syntactic identity; a subtree may undergo phonological
deletion just in case there is another, isomorphic, subtree, which does not
undergo phonological deletion. Assuming that syntactic structures are in a
functional correspondence with semantic values (as is common), this latter
condition is in fact a restricted case of the former.

Many theories of parsing elliptical structures proceed in two stages [4-
6,12, 17, 21, 26].? First, a syntactic representation is derived in which ellipsis
sites are marked as such, but no representation of their internal structure (or
meaning) is given. In order to ascertain whether the sentence is actually well-
formed (or whether there is a meaning associated with it), another step is
needed, one in which the internal structure (or meaning) of each ellipsis site is
reconstructed. In §4, we present a simple algorithm in this vein, and prove its
correctness. This two step approach, though correct, suffers from the defect
that the recognition problem, when construed as asking the question ‘is s
meaningful in G’, becomes complicated to solve.> Our precise presentation
of the algorithm makes clear the diagnosis of this problem; the constraints
on ellipsis licensing enforced by the first stage are not sufficient to rule out
all of the unwanted cases.

In the final section of the paper, §5, we pursue a direct characterization
of the well-formed elliptical sentences (in contrast to the two-step approach
pursued heretofore). Using context-free tree grammars (CFTGs) [9, 22] un-
der the inside-out (I0) mode of derivation [7] (for which the recognition
problem is known to be in LOGCFL [1]), we identify a hierarchy of succes-

'This is a slight simplification. The original proposal requires that the existential
closures of the respective phrases’ denotations be mutually entailing.

2Dalrymple et al. [5] and Chung et al. [4] present competence theories, which for present
purposes may be identified with extensional descriptions of the parsing algorithm, and not
a parsing algorithm in itself. However, their competence theories are couched in this ‘two
stage’ framework, and straightforward implementations would seem to yield algorithms of
this type.

3This somewhat non-standard formulation of the recognition problem (normally stated
as: ‘is s assigned a structure in G”) is formulated thusly to emphasize that this difficulty
is inherent to the two-step approach, and not just the present, syntactic, characterization
of it.

sively more complex elliptical dependencies (intuitively similar to the distinc-
tion between the ‘nested’ and ‘crossing’ dependencies familiar from work on
string languages). We show that monadic IO CFTGs are unable to describe
the full class of well-formed elliptical structures, and we conjecture that this
class is out of the range of IO CFTGs alltogether. Still, (monadic) CFTGs
provide a useful approximation of this set, and have several desirable proper-
ties, including being closed under intersection with recognizable sets, which
means that we can simply incorporate the regular structure of derivations
into the statement of the ellipsis licensing condition to obtain a direct, ‘one
stage’ representation of (an approximation of) the grammar. Recent work by
Kanazawa [13] has shown how parsing IO CFTGs can be reduced to query
evaluation in Datalog, for which there are a wide array of optimizations that
can be brought to bear on the problem.

The proofs and definitions presented here are couched in terms of context-
free grammars for convenience only. It is straightforward to extend the results
presented here to more sophisticated and linguistically informed theories of
natural langauge, such as minimalist grammars [25], which also have a regular
derivation structure [16]. In particular, although the sets of derivation trees
are no longer regular once deletion under identity is added to the CFG or
MG frameworks, in terms of the string languages generated, no additional
expressive power is gained.

2 Formal Preliminaries

The reader is assumed to be familiar with basic concepts of tree and formal
language theory. For completeness we recall a number of them here.

N is the set {0,1,2,...} of non-negative integers.

For any set X, we denote by >* the set of all finite strings over ¥. For
s € ¥*, |s| denotes the length of s, s;, where 0 < 4 < |s], is the i symbol
in s, starting counting at 0, and € is the empty string. A subset L C ¥* is a
(string) language over X.

We represent trees using ranked alphabets. A ranked alphabet is a pair
(3, rank), where X is a finite set (of node labels), and rank : ¥ — N is a
function assigning to each ¢ € ¥ a natural number (the number of children
had by a node labelled with o). We write X for the subset {c € ¥ :
rank(c) = n} C ¥ of symbols of rank n, and we write 0™ when referring
to o to indicate that ¢ € ™. When no confusion will arise, we identify a
ranked alphabet with its carrier set, writing 3 for (X, rank). If ¥ and A are
disjoint ranked alphabets, then their union (X U A) is the ranked alphabet
such that (XU A)™ .= X0y A,

The set of trees Ty, over a ranked alphabet X is the smallest set T' satis-
fying, for each n € N, the condition

if o € 2™ and ty,...,t, €T, then o(ty,...,t,) €T

In particular, if o € X, then () € T. Instead of o(), we will drop the
parentheses and write 0. A subset L C T% is a tree language over 2.

Let X = {z1,x,...} be a denumerably infinite set (of variables), and for
each n € N, let X,, = {x1,29,...,2,}. (So Xo = (.) An n-ary context over
Y is an element of 7%(X,,), which is defined to be the smallest set 17" such
that

1. X, CT
2. ifc € XM and ty,...,t, €T, then o(ty,...,t,) €T

In other words, 7% (X,,) is the closure of the set X, under the m-ary operation
of adding ¢™ as the root node, for each o € X. Note that Ty, = Tx(X,). We
write C™ to indicate that C' € Tx(X,,).

An n-ary context C™ can be interpreted as an n-ary function over k-
ary contexts in the following way. Given ty,...,t, € Tx(X}), we write
Clt1,...,t,] to indicate the simultaneous substitution of each variable x;
occuring in C with ¢; (for 1 < ¢ < n), which is defined as per the following.

Z’i[tl,...,tn] :tz
cOlty, ...t =0
oYty Ym)lte, - ta] = o(yafte, - ta)y oo Ymlte, - ta])

If every x;, 1 <1i < n, occurs at least once (at most once) in an n-ary context
C™ we say that C™ is non-deleting (linear).

Just as with string languages, sets of trees can be classified according to
the kinds of abstract computational resources required to recognize them. A
bottom-up tree automaton is a finite-state device which creeps up the tree
from children to parent, classifying parents in terms of its classification of
their children (the state the machine is in at a given node is that node’s
‘classification’). A tree is accepted by a bottom-up tree automaton just in
case the machine ends up at the root in an accepting state. A tree language
is regular iff it is the language accepted by a bottom-up tree automaton.
Formally, a bottom-up tree automaton is a quadruple A = (Q, %, Qy, A),
where

e () is a finite ranked set (of states), where each ¢ € @ has rank 0

e Y is a ranked alphabet (the vocabulary over which the trees to be
recognized are built)

e ; C (@ is the set of final states

o A C (Unen Y x Q") x @ is the transition relation, where given a
transition (™, q1, ..., qn,q) € A we write

o(q1,- - qn) = ¢

The move relation (—4C Txug X Txug) defined by a bottom-up tree au-
tomaton A is such that t — 4 ¢’ iff there is a transition o™ (qi,...,q,) =
q € A and a linear non-deleting context C' € Ty g(X;) such that t =
Clo™(q1,...,q,)] and t' = C[g]. We denote with —* the reflexive and tran-
sitive closure of — 4. The set of trees recognized (or accepted) by a bottom-up
tree automaton A is the set

LA)={teTy:3q€ Qs t =% q}

3 Ellipsis in CFGs

We begin by defining context-free grammars, and then extending them with
an operation of deletion, intended to model one of the basic operations pro-
posed by linguists to account for ellipsis. We then provide an extensional
characterization of well-formed derivations in context-free grammars with
deletion, which is intended to model one of the basic restrictions imposed
by linguists on the operation of deletion, namely, that the deleted material
be recoverable from the context of utterance. We conclude by demonstrat-
ing that the tree language determined by this property of derivations is not
recognized by any bottom-up tree automaton.

3.1 Context-free grammars

A context-free grammar is a quadruple G = (N, T, P,S), where N and T
are finite, disjoint sets of nmon-terminal and terminal symbols respectively,
S € N is the start symbol, and P C N x (NUT)* is a finite set of productions,
where for (A,v) € P we write A — v. Without loss of generality, we assume
all productions in P are in ‘Chomsky normal form’ (CNF).* A production

40ur use of the term here is non-standard, as we are allowing empty productions. It is
hoped this will not cause undue difficulty.

p is in CNF if it has either of the two forms below, for a € T'U {e} and
A B.DeN

A—a

A—BD

Given a CFG G, we define the set of derivation trees of type A, for A € N,
by mutual recursion.

e if p=A — ae€ P, pis a derivation tree of type A

o if p=A — A Ay € P, and 7; is a derivation tree of type A;, then
p(11,T2) is a derivation tree of type A

The set of derivation trees of type A is denoted Dg(A), and is a regular
subset of Tp. When G is clear from context, we leave it out and write D(A).
Given a derivation tree 7 € D¢ (A), it derives the string yield(7), where

yield(p) :=a where p=A — a

yield(p(my, 12)) = yield(m)yield(rs)
The strings of type A are defined to be

Lg(A) :={yield(T) : 7 € Dg(A)}

The language L(G) := L(S) of a context-free grammar G is the set of strings
of type S.

3.2 Introducing deletion

We take a first step toward modelling ellipsis by introducing context-free
grammars with deletion. A CFG with deletion (CFGF) is a structure of the
same type as a CFG, but with a modified notion of a derivation tree. Note
that given a CFG G = (N, T, P, S), we can thus speak of its elliptical variant
GP = (N,T,P,S). The definition of being a derivation tree of type A is
modified as follows®

e if p=A—ae€P,then pe Dge(A)
o if 7 € D(A), then DELETE(7) € Dgr(AY)

eifp=A— A Ay € P,and 7; € Dgu(A;) U Dge(AE), then p(1i,72) €
Dgr(A)

>The notation *-¥’ is intended to be reminiscient of Merchant’s ‘E-feature’ [19].

The language generated by a CFG¥ is as before, but with the following case
added to the definition of yield

yield(DELETE(T)) := €

Given G¥ = (N,T,P,S) a CFGE, we construct an equivalent CFG
Tr(GF) = (NUNZF T,PUPF S) as follows:

NE .={AP . Aec N}

PE .= {AF = &)
U{A— A AP A — A A, € P}
U{A— AF Ay A — A Ay € P}
U{A— AF Ay A — A Ay € P}

Theorem 1 Given G¥ a CFGF,
L(G") = L(Tr(G"))

Proof: We show that for any A € N, Lge(A) = Lyygey(A). First note
that for any A € N, Lge(AF) = {e}. The same is true of Tr(GF), by
definition (the only rules with AP on the left hand side are of the form
AP — ¢€). The proof that Lge(A) = Lr.cr)(A) proceeds by induction on
the height of the derivation. We show the inclusion Lge(A) C Ly gey(A),
the other direction is similar. For the base case, note that P is included in
the productions of Tr(GF). Now assume that for all derivations 7 € Dgr(B)
of height less than n, there is 7/ € Dy, ey (B) such that yield(T) = yield(7').
Let 7 = (A — Ay Ay)(1,) € Dge(A) of height n. There are four cases,
as per whether 7; € Dgr(A;) or 7, € Dgr(AF). If 71 € Dge(A;) and 7 €
Der(AL), let 7], 75 be their Tr(GF) equivalents by the inductive hypothesis
(s = AY — €). Then 7" = (A — A; AE)(7{,75). The other cases are not
interestingly different. O

Letting Lorpg and Lcopge denote the languages of context-free grammars
and their elliptical variants respectively, the following is a corollary of theo-
rem 1.

Corollary 1
Lecrge € Lcra

3.3 Constraining deletion

As we have implemented it here, deletion is ‘free’; there are no constraints
on its application. In order to better approximate the situation in natural
language (i.e. to rule out the meaning of sentence 3 as a possible interpre-
tation of sentence 1), we need to be able to rule out those derivations in
which subderivations of type A” appear illegitimately. Assuming the sim-
pler syntactic identity theory of ellipsis licensing outlined in §1, the property
of being a derivation of type S in which a subderivation DELETE(T) occurs
only if there is a distinct subderivation 7 of the same type which is not
immediately dominated by DELETE is not a recognizable one (theorem 2).°

Let CON" C Tx(X,,) be the set of linear non-deleting n-ary contexts over
Y. Note that, given a linear non-deleting context C' € CoN' and a tree
7 € Ty, there at most one 7" € Ty such that C[r'] = 7. This allows us to
view the set of linear non-deleting contexts CON! as specifiying occurances
of subtrees in 7. Given a tree 7 € Tk, the set of linear non-deleting contexts
partition naturally according to whether they represent different occurances
of the same subtree, 7'

Cr,C'it 37 Cl7 | =C'["] =71

We define CON, to contain just those contexts C' in CON' for which there
exists a 7' € Ty, such that C[7'] = 7.

Now we can define the property of ‘deletion under identity with an overt
antecedent’, which holds of a tree 7 € Txyprirrey iff both of the following
conditions are satisfied.

1. For every C' € CON,, if the parent of x; in C[z] is DELETE, then there
is an equivalent (w.r.t. ;) C" € CON, such that C' # C".

2. For every C' € CON;, there is some equivalent C’ € CON, such that
the parent of z; in C'[x4] is not DELETE.

Condition 1 requires that deletion be under identity, and condition 2 that
it be recoverable from the context of speech (e.g. ruling out the case where
one ellipsis site serves as the antecedent for another, which reciprocates).
Let DELID C Txuqoeersy be the set of trees over ¥ U {DELETE} meeting
conditions 1 and 2.

Theorem 2 DELID is not recognizable.

6Moving to the semantic licensing theory only complicates matters.

Proof: By contradiction. Let ¥ = {f® ¢ 4} and let A be a regu-
lar tree automaton with n states, accepting exactly those trees which meet
conditions 1 and 2. Let ¢t € Tx. be the tree below

(n+1) times
——

9(.--(g(a))...)

The tree f(¢,DELETE(t)) meets 1 and 2, and so is by definition accepted by
A. By familiar arguments, there is some strictly larger ¢ € T%, such that A is
in the same state after processing t' as t. Therefore, f(t, DELETE(t)) € L(.A),
however it violates condition 1, contradicting our assumption that L(A) =
DELID. O]

4 Parsing CFGFs

The practical interest of theorem 2 is that is tells us that conventional CFG
parsing technology does not suffice to parse CFGFs (the derivation tree
sets of C'F'Gs are all recognizable), thus providing formal justification for
the two-step processes proposed previously. In this section we provide an
abstract characterization of these two-step parsing proposals. The first step
determines a set of underspecified trees, which represent where an ellipsis
site might be, and the type of the constituent elided, but not the identity of
elided constituents. This set, being regular, can be obtained using standard
CFG parsing algorithms (indeed, it is simply the set of parses of s in the
translated grammar, T7(GF), as shown in theorem 3). The next step decodes
each underspecified tree obtained in the first step into a set of parse trees
in the CFG¥ grammar. For each underspecified tree, there are a finite (and
exponentially bounded) number of fully specified trees that it encodes. This
ambiguity seems to represent a genuine feature of natural language; sentence
4 can be read as synonymous with either of 5 or 6. From our perspective,
this is due to the fact that there are two possible antecedent derivations of
the required type, and the grammar permits both.

(4) John wants to be considered hip, but he isn’t.
(5) John wants to be considered hip, but he isn’t hip.
(6) John wants to be considered hip, but he isn’t considered hip.

As stated, the description of the parsing process proceeds in two stages.
We begin with a string s, and a grammar G¥. In the first stage, we specify
a set of trees L(As) by means of a regular tree automaton (which can be

9

thought of as specifying the chart constructed by a chart parser). In the
second step we specify, for each t € L(.Ay), a set L(A;) of derivation trees of
type S. The set PARSE(s, GF) = {7 € Dgr(S) : yield(t) = s} is the set of
all possible parses of s in G¥, and is related to A, and A; in the following
manner (theorem 4):

Parse(s,G") = |) L(A)
teL(As)

4.1 Constructing A,

Here we describe the result of the first stage of the parsing process, the
set of underspecified trees L(Ag). We define A, indirectly as the machine
recognizing L(AT") N L(AF) (as A" and A¥ are bottom-up tree automata,
A, is constructively determined from their presentation). Whereas A" will
recognize any parse of s with possible ellipsis sites underspecified, A” will
accept only those underspecified trees in which the postulated ellipsis sites are
licensed (by the presence of an antecedent which doesn’t contain the ellipsis
site so postulated). In other words, A recognizes only trees with licensed
ellipsis sites, irrespective of their yield, and A" recognizes only trees with
yield s, irrespective of their ellipsis sites.

Given a CFG? G¥ = (N, T, P,S), and a string s € T*, we construct the
bottom-up tree automaton A" = (Q,3, Qr, A), which we will present in
terms of the CKY parsing algorithm for simplicity.

e A state ¢ = (i,7, A) is a triple, where 0 < 4,7 < |s|, and A € N
Q:={(i,j,4): 0<i<j<[|s|nAe N}
e A state is final iff it of the form (0, |s|, S)
Qs :={(0,]s],5)}

e The output vocabulary X consists of the transitions P, as well as the
elements of the set {x4: A€ N}

e The transition relation A is the smallest set containing the transitions
— For every A € N, and every 0 < i < |s],

TA = <Zv 7;7 A)

10

— for every production p = A — € € P, and every 0 < i < |s]
p = (i,i, A)
— for every production p=A — a € P, witha =s;
p=(i,i+1,A)

— for every production p = A — B D € P, and every pair of states
dB = <i7j7 B> and dp = <.]7 k7D>7

p(q37 QD) = <Z7 ka A>

The automaton so constructed will recognize trees of the form in figure 1
given the obvious grammar on the input “Mary will not.”

(S,NP AuxP)
(NP, Mary) (AuxP, Aux VP)
(Aux, Aux NEG) Typ

(Aux,will) (NEgG, not)
Figure 1: A tree recognized by A" but not by A"

The trees in L(A,) are in fact isomorphic to the parses of s in Tr(GF).
Theorem 3 For GF € CFGE, and s € T*,
L(AT") = Parsg(s, Tr(GF))

Proof: It is straightforward to give a homomorphism h*~7" mapping trees
in L(AT") to those in PARSE(s, Tr(GF)), and in the other direction, the
two state transducer h’"~F with the following productions suffices, where
Al = AF if ¢; = ¢¥, and A; otherwise:
(A—a)=q(A—a)
(z4) = ¢%(A" — ¢
(A= A1 Ao)(q1(11), a2(72)) = q((A — A) Ay)(71, 7))

11

It is easy to verify that h¥ 7" is the inverse of hT"~¥. Constructing a tree
automaton Ag,gry for the set PARSE(s, Tr(G")) in the style of the CKY
algorithm yields an automaton nearly isomorphic with A": the states and
productions of Ay, ey reflect the fact that the nodes of the trees recognized
by Arp, ey are labelled by productions like AP — ¢ instead of x4 and by
eg. A — A AY instead of A — A; Ay. As the maps between trees are
symbol-to-symbol, verification that for ¢ € L(Ap.gry), 7" (t) € L(AL")
and vice versa can proceed by induction on the heights of the respective trees.
O

As shown by theorem 3, the trees accepted by AI" include those which
violate conditions 1 and 2. The automaton A” verifies that postulated el-
lipsis sites have antecedents (condition 1) which are not themselves deleted
(condition 2). Furthermore, anticipating the actions of the A;, A prohibits
postulated ellipsis sites taking as their licensing antecedents subtrees which
contain them. Given G¥, we define A¥ = (Q, %, Q;, A), where

o A state ¢ = (A, a,aF) is a triple, where A € N, and a,a” C N are
the sets of types of antecedents made available by the scanned subtree,
and the sets of types of antecedents required by the scanned subtree,
respectively.

Q:={(A a,a"): Ae NANa,a” C N}

e A state is final iff it of the form (S, o, (), for ¢ C N.

Qs :={(S,0,0): 0 C N}

e The output vocabulary X consists of the transitions P, as well as the
elements of the set {x4: A € N}

e The transition relation A is the smallest set containing the transitions

— For every A € N,
TA = <Aa ®a {A}>

— for every production p=A —a € P
p= (A, {A},0)

— for every production p = A — B D € P, and every pair of states
4dB = <BuﬂvﬁE> and qp = <D767 5E>7

plas,ap) = (A, (BUSU{A}), (8" —8) U (8" — B)))

12

(S, 8

(S,NP AuUxP) (S, ConJ S)

(NP/Bill) (AuxP,Aux VP) /\

/\ (CoN1, but) (S,NP AuxP)

(Aux,will) (VP,smile) /\

(NP, Mary) (AuxP, Aux VP)

/\

(Aux, Aux NEG)

TN

(Aux,will) (NEg, not)

Figure 2: A tree recognized both by AT™ and AF

The automaton so constructed will rule out trees as in figure 1, in which
the postulated ellipsis site does not have an antecedent. Note that it will
recognize trees of the form in figure 2. In the tree in figure 2, the automaton
will be in state ¢ after recognizing the left daughter of the root, and in state
r after recognizing the right daughter, where

q = (S,{NP, Aux, VP, AuxP}, 0)
r = (S',{NP, Aux, AuxP, Cony, S'}, {VP})

4.2 Constructing A,

The trees accepted by A, are possible parses of the input string s in GF,
in that they indicate all the non-elliptical structure of s, as well as where
ellipsis under identity with an overt antecedent has taken place, but they
do not represent the internal structure of these ellipsis sites. Given a tree
t € L(Ay), the automaton A; accepts all and only those derivations of type S
which ¢ can be instantiated by specifying the internal structure of its ellipsis
sites. Given t, let e be an enumeration of occurances of variables in t. We

construct A, = (Q, 3, Qr, A) as follows:

e Astate g = (A, [, v) is a triple, where A € N, [is an address of a node in
t, and v is an |e|-ary sequence consisting of occurances of subtrees in ¢

13

and a special symbol, L. The intuition behind v is that the i** variable
occurance e; is instantiated as the subtree occuring at v;, regardless
of how many times it is copied as part of the instantiation of other
variables.

Q:={(A,l,v): Ac N,l € Con,,v € (Con, U {L})}
e X=P
o A state ¢ € Q) is final iff [= x; the context for ¢ itself
Qs ={(A,z1,v) : A€ N,v € (Con, U {J-})‘e‘}

e The transition relation A is the smallest set containing the transitions

— For C' € Con, such that C[A — a] =t
(A—a)= (A C, J_|e|>

— For v; = if v, = L then v else if (U 1L Vol =) then v},
and for some ty,ts, C[(A — Ay As)(x1,t2)] = Cy and C[(A —
Ay Ag)(ty, 1)) = Cy

(A - Al A2)(<A17 Cla Ul)v <A27 027 U//>) = <A7 Cv U)
— For C" =¢;, v, = C, and either v; = C or v; = L
DELETE((A, C,v)) = (4, C",v")

The transition for the case of DELETE can be thought of in terms of
‘jumps’; the automaton starts out thinking it is recognizing a particular
subtree of t, but then, upon encountering a node labelled DELETE, realizes
that it was in fact recognizing an instance of one of the x4 in ¢. It then
‘jumps’ (by changing C' to C”) to the location of the x4 that it has decided
it was in fact recognizing, and continues.

Theorem 4 For any G¥ € CFGF and s € T*,

PARSE(s, G¥) = U L(A)
teL(As)

Proof: For the inclusion in the left-to-right direction, note that, for every
7 € PARSE(s, GF), the result of replacing each subtree rooted in a node
labeled DELETE by the appropriate x4 is a tree t € L(A,). Therefore, 7 €
L(A;). For the other direction, let ¢t € L(Ay), and 7 € L(A;). By the
correctness of the CKY algorithm, yield(T) = s. Furthermore, each subtree
rooted in a node labeled DELETE in 7 has an overt identical antecedent, and
therefore 7 € PARSE(s, GF). O

14

4.3 Discussion

Although correct, the two-step approach presented here relies on the second,
instantion, step, to rule out ‘erroneously accepted’ underspecified trees. In
particular, while the construction of A (correctly!) rules out cases in which a
variable is licensed by a subtree which contains it (which would yield infinite
regress, as much discussed in the linguistics literature [2, 10, 18, 23]), there
are other cases of bad antecedent choice which are not ruled out by A, but
are instead left to A; to deal with. Consider figure 3, which might be an
underspecified tree for a parse of, say, the empty string. This tree, t, is

S

A B
B TA

Figure 3: Infinite regress

accepted by A, (zp has an antecedent which does not contain it, as does
xa).” However, L(A;) =). This is problematic, as it entails that we cannot
answer the membership problem by determining whether L(A,) = 0, as is
standard. Instead, we need to evaluate A; for each t € L(A;), until we find
some t such that L(A;) # 0. In the next section, we explore how to give a
direct characterization of the well-formed parse trees for elliptical sentences;
in effect, deforesting the two-step procedure described here.

5 Towards a direct characterization of the li-
censing conditions on ellipsis

The problem unearthed in the previous section was that our regular char-
acterization of the relative positions of ellipsis sites and their antecedents
(embodied in A;) was not strong enough to correctly rule out unwanted
cases. Here we embark on the project of giving a direct characterization of

"Note that we cannot improve on this situation; even though there are only finitely
many ‘ellipsis types’ (x4’s), the problem is not that an x is instantiated as something
with an ellipsis site of type A, but rather that an x is instantiated as something which
itself gets instantiated as something that contains that very occurrance of xa. Thus we
need to keep track of tokens of variables, not of types. As there is no upper bound on the
number of variable tokens in a given sentence, our current finite-state model cannot rule
out infinite regress in the general case.

15

the licensing conditions on ellipsis, of the set DELID. We will use context-free
tree grammars [9, 22]. The appeal of using a CFTG to describe the distri-
bution of deleted structure is that CFTGs are closed under intersection with
regular tree languages (under both OI and IO derivation modes, as shown
in Fischer [9]). This entails that given a grammar G with regular derivation
structures (as have CFGs, LCFRSs, MGs, TAGs, etc [16, 27]), and a CFTG
G’ which enforces certain constraints on ellipsis, we can effectively construct
a CFTG with defines just those well-formed derivation structures in G that
meet the conditions on ellipsis licensing enforced by G'.
A context-free tree grammar G = (N, T, P, S) is a quadruple where

e N and T are ranked alphabets of non-terminal and terminal symbols
respectively. S € N© is the start symbol.

e P is a finite set of productions of the form
Alxy,...,x) = C
where A € N® | and C € Tyur(Xy)

A CFTG G is k-ary just in case N = @, for all n > k. Given trees
t,t" € Tur, t derives t' in one step just in case there is a linear non-deleting
context C' € Tnur(X1), a production A(xq,...,25) = D € P, and trees
t1,...,tx € Tyur such that t = C[A(ty,...,t)] and ' = C[Dlty,...,tk]]. A
tree t € Tur derives another ¢ € Tyyr in one step in inside-out derivation
mode just in case t derives t' in one step as above, and the ¢;,...,t; do not
contain any non-terminals (i.e. t1,...,tx € Tr).

We consider, as our first example, the 0-ary context-free tree grammar
Gr, = {SO} {f@ a®Y {S = a, S= f(S,9)},S), which derives the tree
language 7%, for ¥ = {f® a(®}. Writing — for the derives in one step
relation, we derive the tree f(f(a,a),a) as follows:

S — f(5,8) = f(S,a) = f(f(5,5),a) = f(f(S,a),a) — f(f(a,a),a)
It is well known that all and only recognizable tree languages are defined by
0-ary CFTGs (which are then called regular tree grammars).

Consider the unary CFTG G, = ({DW, SO} {2 6} P S) where
P contains the following productions

S=D(S) S=a
D(z1) = f(z1,21)

In inside-out derivation mode, G, derives the tree language BinTree C T
of complete and balanced binary trees.

S — D(S) — D(D(S)) — D(D(a)) = D(f(a,a)) — f(f(a,a), f(a,a))

16

We examine the step D(D(a)) — D(f(a,a)). Recall that a tree ¢ derives t’ in
one step just in case there is a linear non-deleting context C!, a production
p = A(zy,...,x,) = C', and trees t1,...,t; such that t = C[A(t1,...,t)]
and ¢ = C[C'[ty,...,t]]. In our example, C = D(z1), p = D(x1) =
f(z1,21), and t; = a. Then t = C[D(a)], and t' = C[f(x1,21)[a]] =
Cl[f(a,a)]. Note that, as we are in inside-out derivation mode, we could not
have chosen C' = xy, and ¢t; = D(a) (which would yield ¢t = C[D(D(a))] =
D(D(a)) — f(D(a), D(a) = Cf(D(a), D(a))] = Clf(zr,a1)[D(a)]), as
is not a tree over T'r, containing as it does the non-terminal D.

As a first attempt to directly characterizing the set DELID, of trees over
Txuoeersy Which satisfy conditions 1 and 2, we define the monadic CFTG
G1=(N,T, P,S), where

o N={50 A0 B pH}
e T'=3 U {DELETE}
e P contains the following productions:

- S=o0M(s, ..., 9)

- S= D(5)

— D(z1) = c™(S4,...,S,), where exactly one S; is A(x), at least
one is B(xy), and the rest are S

— A(l’l) = I

— A(x1) = 0™(Sy,...,S,), where exactly one S; is A(z;), and the
rest can be either S or B(xy)

— B(x;) = DELETE(x)

— B(xy) = o™(Sy,...,S,), where at least one S; is B(x), and the
rest are S

The inside-out derivations of Gy can be described in the following way:.
When a subtree of the shape D(t) appears, for t € Txy(ppierms}, it is rewritten
as, without loss of generality, f(A(t), B(t)). A subtree of the form A(t)
expands as the set of trees in which the subtree t occurs at least once (in
particular, A(t) = {C[t] : C € Con'}). A subtree of the form B(t), on
the other hand, expands as the set of trees in which the subtree ¢ occurs at
least once as the child of a node labeled DELETE. In other words, a subtree
of the shape D(t) will derive the minimal subtree containing all ellipsis sites
(generated by B(t) and A(t)) together with the occurance of ¢ serving as their
antecedent (generated by A(t)). It is clear that G only generates well-formed
(according to conditions 1 and 2) elliptical structures.

17

Theorem 5
L(Gy) ¢ DELID

Proof: To see the inclusion, let t € L(Gy). Clearly, t satisfies condition
1, as any subtree ' whose parent is DELETE must have been introduced
by a derivation step which rewrote B(t') into DELETE(t'), and B(z;) can
be initially introduced into a sentential form only with a D(z;) production
or an A(zy) production, both of which guarantee the existence of another
occurance of x;, one which is not dominated by DELETE (condition 2).

To see that the inclusion is proper, note that G; cannot generate trees in
which an elliptical constituent contains another ellipsis term’s antecedent, or
elided part, but not both (figure 4b). Consider a hypothetical derivation of
the structure in figure 4b:

§ — D(5) =" D(t) — a(A(t), B(t)) — o(t, B(t))
A a(t,D(t) — o(t,o(A(t)), B(t')) —* o(t,o(t, DELETE(Y)))

That B(t) /~* D(t') is immediate from the fact that all productions in G,
with left-hand side B(z) rewrite into trees whose roots are drawn from the
terminal vocabulary. 0

ag
a
DELETE
DELETE N

DELETE

D —
tt t _

t t

(a) Nested dependencies (b) Crossing dependencies

Figure 4: Types of identity dependencies

Although G, cannot describe ‘crossing’ identity dependencies, as in fig-
ure 4b, it is able to describe ‘nested’ identity dependencies, as in 4a, of
unbounded depth; a term of the form D(C[S]), where S in C[S] is accessible
in IO mode, may rewrite as D(C[D(95)]).

Given this state of affairs, we might ask as to whether this peculiar prop-
erty of (G; is mirrored in any straight-forward way the situation in natural

18

language, i.e. whether natural languages disallow elliptical dependencies from
having the form in figure 4b. However, it seems that such dependencies are
quite natural:®

(7) Although currently only John has run the marathon, Bill wants to,
and Mary says she does too.

In sentence 7, “run the marathon” plays the role of the subtree ¢ in figure
4b, and “want to run—the-marathorn” plays the role of t'.

Given the naturalness of sentences like 7, which exhibit the kind of de-
pendency shown in figure 4b, it is reasonable to conclude that G; does not
provide an adequate model of the phenomenon of ellipsis in all of its gener-
ality. However, it is relatively straightforward to modify G so as to allow
generation of structures with a single level of crossing identity dependencies,
as in figure 4b and sentence 7.

Consider the ‘hypothetical’ derivation of figure 4b as given in the proof
of theorem 5, repeated here for convenience.

S — D(S) =" D(t) — a(A(t), B(t)) — o(t, B(t))
A% a(t, D(t') — olt,o(A(t), B(t')) —2 o(t,o(t, DELETE()))

In order to license the currently illegitimate portion of the derivation, we need
to pass B(t) as an argument to D(-). More generally, we define G, to be the
extension of G; with the rules A(xy) = D(A(z1)) and B(z1) = D(B(x1)).

S — D(S) =" D(t) — o(A(t), B(t)) — o(t, B(t))
— o(t, D(B(t))
—*o(t,D(t")) — o(t,c(A(t)), B(t'))) —* o(t,o(t', DELETE(t')))

Although more powerful than G, G}

o still generates only structures in
DELID.

Theorem 6
L(G,) C L(G},) € DELID

The proof of the non-trivial inclusion in theorem 6 is similar to that of
theorem 5. The demonstration of the properness of this inclusion convinces
us that the distinction made in figure 4 between nested and crossing identity
dependencies is a natural one. Grammar (; was unable to generate the

8The case of nested identity dependencies is also attested in natural language, witness:

Bill suspects that John will go after everyone that he does, and I do too.

19

structure shown in figure 4b because it didn’t pass any information into
elliptical structures (the only rule with non-terminal D™ on the right-hand
side was S — D(S)). This made elliptical structures islands for other ellipsis
sites or antecedents. Taking advantage of the fact that a single tree may be
passed on as an argument, G} allows A and BM to pass their arguments
into ‘elliptical islands’. Still, due to the fact that all non-terminals are at most
monadic, structures with more than a single crossing identity dependency,
as in figure 5, are out of reach of monadic CFTGs.

g
A 2
——— /\
A 2
—_———
t/ /\
DELETE
DELETE DELETE
DELETE DELETE
t t
t// _— ——
t t
t,/

Figure 5: A structure with 2 crossing identity dependencies

As before, we can ask whether natural language avails itself of more than
one crossing identity dependency.

(8) John wants to climb Mt. Kilimanjaro, and Susan wants to sail around
the world, and while I know that John will and Susan won’t, Bill
doesn’t.

In example 8, “climb Mt. Kilimanjaro” plays the role of ¢ in figure 5, “sail
around the world” the role of t', and “know that John will elimb Mt ilimaniare
and Susan won’t sei-erownd—the—world” the role of ¢”.

The natural generalization to three such crossing dependencies is obtained
by simply adding another conjunct to 8.

20

(9) John wants to climb Mt. Kilimanjaro, Susan wants to sail around the
world, and Mary wants to conquer the known universe, and while I
know that John will, Susan won’t, and Mary just might, Bill doesn’t.

Although sentences with multiple crossing identity dependencies grow long
quickly, there doesn’t seem to be an obvious ‘cut off point’ for grammat-
icality. Moreover, it seems that within a single language arbitrarily many
such crossing dependencies may obtain. This is unlike the case with other
long-distance dependencies in natural language, where grammar formalisms
like minimalist grammars [25] and (set local) multi-component tree adjoining
grammars [28] also partition their grammars into those which can handle n
such crossing dependencies at a time, but where any given language needs
only a fixed number of such.

6 Conclusions

In this paper, we have examined a simple algorithm for parsing elliptical
sentences. Although the ‘basic idea’ embodied in the algorithm appears
quite natural, extending throughout the computational [5, 12, 26], linguistic
[4], and psycholinguistic communities [11], our algorithm implements a quite
different computational theory of ellipsis than has been heretofore proposed.
The competence theory underlying the algorithm is most similar to those
which postulate that ellipsis is non-pronunciation of a syntactic structure |8,
14, 19] under ‘syntactic’ identity [3, 8, 20] with an antecedent. In distinction
to the theories mentioned above, the present underlying competence theory
takes identity to be computed over the derivation itself. This has a number of
conceptual and methodological advantages over the alternatives,’ which are
explored in future work (see e.g. [15]). For the present moment, we content
ourselves with the observation that, when syntactic structure is taken to be
the shape of the derivation itself, ‘copying’ and ‘deletion’ theories are clearly
notational variants (cf. [24]).

9For preciseness’ sake, both alternatives, whether ‘syntactic’ or ‘semantic’, take the
objects over which identity is computed to be trees, albeit over a different alphabet than
the derivation trees they are derived from. This has the consequence that the objects
which can be deleted are not (necessarily) objects in the derivation tree (this is particularly
clear in the literature on ‘antecedent contained deletion’ [18]). There is often no known
characterization of these trees other than as the image of the derivation trees under some
function (in the case of minimalist grammars a top-down tree transducer with regular look-
ahead). Note that the definition of and attempt to characterize DELID is independent of
whether deletion is taken to be over derivational, or other, constituents; all that changes
is the vocabulary over which the trees comprising DELID are built.

21

We took some first steps toward a direct characterization of the licens-
ing conditions on ellipsis under derivational identity. Using context-free tree
grammars, we were led to a distinction between two sorts of identity depen-
dencies, nested and crossing, and saw that whereas both appeared amply
attested in natural language, only the nested ones were adequately described
by CFTGs, with crossing dependencies being approximable only up to a cer-
tain arbitrary cut-off point. Having seen where and why CFTGs are limited
in their application to this problem, we have taken the first steps toward an
exact characterization of the conditions on ellipsis licensing. We must leave it
to future work to give an intensional characterization of DELID, noting only
that Fischer [9] uses quoted macro grammars (IO grammars with controlled
OI capabilities) to define a simple programming language in which variables
must be declared before they are used, and shows that the languages of
quoted grammars include both the IO and the OI languages.

References

[1] P. R. J. Asveld. Time and space complexity of inside-out macro languages.
International Journal of Computer Mathematics, 10:3—14, 1981.

[2] L. F. Bouton. Antecedent contained pro-forms. In M. A. Campbell,
J. Lindholm, A. Davison, W. Fisher, L. Furbee, J. Lovins, E. Maxwell, and
S. Straight, editors, Papers from the Sizth Regional Meeting of the Chicago
Linguistics Society (CLS), volume 6, pages 154-167, Chicago, 1970.

[3] S. Chung. Sluicing and the lexicon: The point of no return. paper presented
at BLS, 2005.

[4] S. Chung, W. A. Ladusaw, and J. McCloskey. Sluicing and logical form.
Natural Language Semantics, 3(3):239-282, 1995.

[5] M. Dalrymple, S. M. Shieber, and F. C. N. Pereira. Ellipsis and higher-order
unification. Linguistics and Philosophy, 14(4):399-452, 1991.

[6] M. Egg and K. Erk. A compositional account of VP ellipsis. In F. Van Eynde,
L. Hellan, and D. Beermann, editors, Proceedings of the Sth International
Conference on Head-Driven Phrase Structure Grammar, pages 162-179. CSLI
Publications, 2002.

[7] J. Engelfriet and E. M. Schmidt. IO and OI. 1. Journal of Computer and
System Sciences, 15(3):328-353, 1977.

[8] R. Fiengo and R. May. Indices and Identity. MIT Press, Cambridge, Mas-
sachusetts, 1994.

22

[9]

[10]

[11]

[12]

[13]

[14]

M. J. Fischer. Grammars with Macro-like Productions. PhD thesis, Harvard,
1968.

D. Fox. Antecedent-contained deletion and the copy theory of movement.
Linguistic Inquiry, 33(1):63-96, Winter 2002.

L. Frazier and C. Clifton Jr. Parsing coordinates and ellipsis: Copy «. Syntaz,
4(1):1-22, Apr. 2001.

D. Hardt. Verb Phrase Ellipsis: Form, Meaning, and Processing. PhD thesis,
University of Pennsylvania, 1993.

M. Kanazawa. Parsing and generation as datalog queries. In Proceedings of the
45th Annual Meeting of the Association of Computational Linguistics (ACL),
pages 176-183, Prague, 2007. Association for Computational Linguistics.

C. Kennedy. Ellipsis and syntactic representation. In K. Schwabe and S. Win-
kler, editors, The Interfaces: Deriving and interpreting omitted structures,
volume 61 of Linguistik Aktuell/Linguistics Today, pages 29-53. John Ben-
jamins, Amsterdam/Philadelphia, 2003.

G. M. Kobele. Derivational structure and ellipsis. paper presented at the
ZAS Syntaxzirkel, June 2007.

G. M. Kobele, C. Retoré, and S. Salvati. An automata theoretic approach to
minimalism. ms., LaBRI.

S. Lappin and H.-H. Shih. A generalized reconstruction algorithm for ellipsis
resolution. In Proceedings of the 16th International Conference on Compu-
tational Linguistics (COLING), volume 2, pages 687-692, Copenhagen, Den-
mark, 1996.

R. May. Logical Form: Its Structure and Derivation. MIT Press, Cambridge,
Massachusetts, 1985.

J. Merchant. The Syntax of Silence: Sluicing, Islands, and the Theory of
Ellipsis, volume 1 of Ozford Studies in Theoretical Linguistics. Oxford Uni-
versity Press, New York, 2001.

J. Merchant. Voice and ellipsis. ms., University of Chicago, 2007.

E. Murguia. Syntactic Identity and Locality Restrictions on Verbal Ellipsis.
PhD thesis, University of Maryland, 2004.

W. C. Rounds. Mappings and grammars on trees. Mathematical Systems
Theory, 4(3):257-287, 1970.

23

[23]

[24]

[25]

[26]

I. A. Sag. Deletion and Logical Form. PhD thesis, Massachusetts Institute of
Technology, Cambridge, Massachusetts, 1976.

N. A. Smith. Ellipsis happens and deletion is how. In A. Gualmini, S.-M.
Hong, and M. Motomura, editors, University of Maryland Working Papers in
Linguistics, volume 11, pages 176-191, 2001.

E. P. Stabler. Derivational minimalism. In C. Retoré, editor, Logical Aspects
of Computational Linguistics, volume 1328 of Lecture Notes in Computer Sci-
ence, pages 68-95. Springer-Verlag, Berlin, 1997.

W. Thompson. Deriving syntactic structure inside ellipsis. In Proceedings of
the Seventh International Workshop on Tree Adjoining Grammar and Related
Formalisms (TAG+7), pages 204-210, Vancouver, 2004.

K. Vijay-Shanker, D. Weir, and A. Joshi. Characterizing structural descrip-
tions produced by various grammatical formalisms. In Proceedings of the
25th Meeting of the Association for Computational Linguistics, pages 104—
111, 1987.

D. J. Weir. Characterizing Mildly Context-Sensitive Grammar Formalisms.
PhD thesis, University of Pennsylvania, 1988.

24

