Derivational order and ACGs

Gregory M. Kobele! Jens Michaelis®

LUniversity of Chicago, Chicago, USA
2Bijelefeld University, Bielefeld, Germany

ACGQO10, Bordeaux, December 7-9, 2011

Greg & Jens (Chicago & Bielefeld) Derivational order and ACGs ACG@10

What good are ACGs?

@ ACGs provide a way to understand MANY ideas from a uniform
perspective

o Architectures for grammar (SP)
@ Syntactico-centrism vs Parallelism (SP, PdG, & CP)
e Grammar formalisms
o CFHGs (MK)
e CFG, LCFTG, MCFG (PdG, SP)
o DTWT (SS)
o MG (SS)
e Distributional learning (RY)

@ We want to add to the list:
e Timing

Greg & Jens (Chicago & Bielefeld) Derivational order and ACGs ACG@10 2 /51

Chris Barker and a new approach to

The basic idea of using cosubstitution to handle scope is that we can build
the nuclear scope of a quantifier before the quantifier enters the derivation.

Greg & Jens (Chicago & Bielefeld) Derivational order and ACGs ACG@10 3/51

Chris Barker and a new approach to

The basic idea of using cosubstitution to handle scope is that we can build
the nuclear scope of a quantifier before the quantifier enters the derivation.

In other words, the nuclear scope of a quantifier is quite simply and quite
literally its syntactic and semantic argument.

Greg & Jens (Chicago & Bielefeld) Derivational order and ACGs

ACGQ10 3 /51

Chris Barker and a new approach to TAG semantics

The basic idea of using cosubstitution to handle scope is that we can build
the nuclear scope of a quantifier before the quantifier enters the derivation.

In other words, the nuclear scope of a quantifier is quite simply and quite
literally its syntactic and semantic argument.

Thus on the cosubstitution approach, quantifier scope ambiguity is a
matter of timing: quantifiers that enter later in the derivation take wider
scope.

Greg & Jens (Chicago & Bielefeld) Derivational order and ACGs ACG@10 3/51

Chris Barker and a new approach to TAG semantics

The basic idea of using cosubstitution to handle scope is that we can build
the nuclear scope of a quantifier before the quantifier enters the derivation.

In other words, the nuclear scope of a quantifier is quite simply and quite
literally its syntactic and semantic argument.

Thus on the cosubstitution approach, quantifier scope ambiguity is a
matter of timing: quantifiers that enter later in the derivation take wider
scope.

In other words, co-TAG has exactly the same weak and strong generative
capacity as TAG.

Greg & Jens (Chicago & Bielefeld) Derivational order and ACGs ACG@10 3/51

Actually, an old approach to semantics (and other things)

@ Montague Grammar
(Montague)

[...] ambiguity can arise even when there is no element of intensionality,
simply because quantifying terms may be introduced in more than one
order.

@ Minimalist Grammars
(Gartner & Michaelis; Kobele)

[...] an expression may bind only those expressions that it c-commands
when first merged

Greg & Jens (Chicago & Bielefeld) Derivational order and ACGs ACG@10 4 /51

What's behind this?

The problem:

Sometimes we have a semantic ambiguity without any obvious
corresponding difference in the derivation tree.

Enrich the derivation tree with information about order.
(not only did | apply this rule, but | applied this rule before that one)

Greg & Jens (Chicago & Bielefeld) Derivational order and ACGs ACG@10

A concrete example

S-AB
A — a

B—-b

S
PN
A B
| \
a b

Example

The representation of a CFG derivation as a tree equates sequences of
rewriting steps which rewrite nonterminal instances the same way.
(Leftmost, rightmost, etc)

(S= AB = aB = ab) = (S = AB = Ab = ab)

v

Greg & Jens (Chicago & Bielefeld) Derivational order and ACGs ACG@10 6 /51

What's to come

The goals:

@ Make sense of the idea of ‘timing’ in terms of derivations
@ Understand (in particular) co-substitution in TAGs in these terms
e If SGC/WGC unchanged, what is going on?

Our main claims are that:

@ Third order ACGs provide an elegant description of the derivations of
context-free formalisms.

e “Timing’ is not derivational order

Greg & Jens (Chicago & Bielefeld) Derivational order and ACGs ACG@10 7 /51

@ Everyone's favourite example (Montague)
@ 3" order ACGs and context-free derivations
© Cosubstitution in TAGs

Greg & Jens (Chicago & Bielefeld) Derivational order and ACGs ACG@10 8 /51

Frameworks which make use of ‘late’ operations
Montague Grammar
@ Quantifying In

Tree Adjoining Grammars

@ co-substitution

@ flexible composition

A,

Minimalist Grammars
@ Late adjunction

@ ‘hypothetical reasoning’

A,

Greg & Jens (Chicago & Bielefeld) Derivational order and ACGs ACG@10 9 /51

Montague Grammar (MG

@ MG has order sensitive rules in the form of Quantifying In (Ql),
namely, S14:

Rules of quantification

S14. If « € Py and ¢ € P, then Fyg (o, P) € P;, where either (i) « does not
have the form he;, and Fig (%, ¢) comes from ¢ by replacing the first
occurrence of he, or him, by o and all other occurrences of he, or

he him
him, by < she » or ¢ her respectively, according as the gender of the
it it
masc.
first Bon or Bp in o is ¢ fem. , or
neuter

(i) o« = heg, and Fip (2, ¢) comes from ¢ by replacing all occurrences of he,
or him,, by he; or him;, respectively.

S15. IfaePrand (€ Pcn, then F](),n(fx, é’) € Pen.

S16. If o € Pr and 6 € Py, then Fyy ,(o,) € Pry.

Greg & Jens (Chicago & Bielefeld) Derivational order and ACGs ACG@10

Montague Grammar (MG)

@ MG has order sensitive rules in the form of Quantifying In (Ql),
namely, S14:

@ QI has some complications we do not need to worry about right now:
multiple occurrences of he,, can be affected by rule Fig,,

@ QI is order sensitive in the sense that if we have a derivation
d=C[Fi,i(a,D[Fio,;(B,¢)])] then o takes semantic scope over 3

Greg & Jens (Chicago & Bielefeld) Derivational order and ACGs ACG@10 10 / 51

An Example - De Re vs De Dicto Readings

@ John seeks a unicorn.

De Re

There is a particular unicorn that John is looking for.
Jy[UNICORN(y) & TRY(FIND(y))(J)]

De Dicto
John will be satisfied with any unicorn.
TRY (Jy[UNICORN(y) & FIND(y)])(J)

| .

@ Can be represented in terms of operator scope:

TRY (FIND(y))(x)

Greg & Jens (Chicago & Bielefeld) Derivational order and ACGs ACG@10 11 /51

Derivations for De Re vs De Dicto Readings

John seeks a unicorn, 4

John seek a unicorn, 5

/\

seek a unicorn, 2

unicorn
John seeks a unicorn, 10, 0

a unicorn, 2 John seeks him,, 4
unicorn John seek him, 5
seek he,

Greg & Jens (Chicago & Bielefeld) Derivational order and ACGs ACG@10 12 / 51

An ACG implementation (following de Groote 2001)

o A faithful ACG implementation of the derivation structure of MG
might look as follows:

e to each n-ary predicate (seek, love, ...) we associate a function
symbol of type np" — s
e to each common noun (boy, unicorn, ...) we associate a function

symbol of type n

o to each determiner (some, every, ...) we associate a function symbol
of type n—> d

e we have a function symbol QI of type (np—>s) > (d—s)

@ This allows us to have abstract terms like the following:
o QI(\y™.QI(\z"?.seek(x)(y))(some(unicorn)))(every(boy))

Greg & Jens (Chicago & Bielefeld) Derivational order and ACGs ACG@10 13 / 51

An ACG implementation

@ The lexica are as follows:

e on the concrete phonology side, the symbol QI is interpreted as the
(forwards application) combinator Azy.z(y) (and everything else is
interpreted in the obvious way, given that all abstract types n, d, np
and s are interpreted as the object type o — o, the type of strings).

e on the concrete semantic side, the symbol QI is interpreted as the
(backwards application) combinator Azy.y(z).

Greg & Jens (Chicago & Bielefeld) Derivational order and ACGs ACG@10 14 / 51

An ACG implementation (alternative)

@ An alternative implementation substitutes for the type d the type
(np — s) — s, and eliminates the symbol QI. Then we have abstract
terms like:

o every(boy)(\y"P.some(unicorn)(Az"".seek(z)(y)))

@ Under this alternative, the lexica are as follows:

e The concrete phonological interpretation of a determiner every is as

the function Az f.f(every " z)
e The concrete semantic interpretation of a determiner every is as the

function Az f.V(2)(f)

Greg & Jens (Chicago & Bielefeld) Derivational order and ACGs ACG@10 15 / 51

@ The ACG implementation does currently not deal with the ignored
complexities of QI.

@ The straightforward implementation takes the abstract terms to be
pretty much isomorphic to the concrete semantic terms.

@ The big picture (that it admittedly seems is not very clear in this
presentation) is that:
o higher order constants mark scope positions, and apply to lambda
abstracts which make the variables in lower positions accessible.
@ In other words, ‘timing’ requires of an expression that it simultaneously
be connected to both an underlying (argument) position, and a
‘surface’ (timing) position.

Greg & Jens (Chicago & Bielefeld) Derivational order and ACGs ACG@10 16 / 51

Tree Adjoining Grammars

@ Strongly equivalent to monadic linear CFTGs
(Fujiyoshi & Kasai; Monnich; Kepser & Rogers)
o Weakly equivalent to 2-MCFL,,,
(Vijay-Shanker et al.; Seki et al.; Kanazawa)

@ A TAG consists of

initial trees a finite set of trees with leaves labelled by either
terminals or X|, where X is a nonterminal symbol
auxiliary trees as before, but with exactly one leaf node labelled by
X*, where X is the label of the root

Greg & Jens (Chicago & Bielefeld) Derivational order and ACGs ACG@10 17 / 51

Tree Adjoining Grammars - Substitution

Substitute (1st Order Substitution)

DP + S = S
/\ /\
John DP| VP DP VP
| | |
left John left

Greg & Jens (Chicago & Bielefeld) Derivational order and ACGs ACG@10 18 / 51

Tree Adjoining Grammars - Adjunction

Adjoin (2nd Order Substitution)

S + VP = S
D|P V|P quietly VP* DP VP
| P

John left John quictly VP
|

left

Greg & Jens (Chicago & Bielefeld) erivationa ACG@10 19 / 51

Barker's Innovation:
Unrestricted Derivation and Scope

Linear CFTGs derive the same tree languages under all (10, Ol,
unrestricted) derivation modes.

Barker:
I' scopes over A iff I was substituted in after a tree containing A was

Greg & Jens (Chicago & Bielefeld) Derivational order and ACGs ACG@10 20 / 51

Linear CFTGs

Definition (repeated)
G =(N,T,P,s) a linear CFTG

@ N the ranked alphabet of nonterminals
@ T the ranked alphabet of terminals
@ s the start symbol of rank 0 from N

@ P the production rules each of which of the form
a(zy,...,Tn) =t

e a € N such that rank(a) =n
e Iy, ..., xp variables of rank 0

e ¢ alinear tree over NuT u{zy,...,z,}

@ For expository reasons we assume that the start symbol s € NV does
not appear on the righthand side of any rule

Greg & Jens (Chicago & Bielefeld) Derivational order and ACGs ACG@10 21 /51

Linear CFTGs as ACGs

Composition as second-order substitution (de Groote and Pogodalla 2004)

G =(N,T,P,s) a linear CFTG

Greg & Jens (Chicago & Bielefeld) Derivational order and ACGs ACG@10 22 /51

Linear CFTGs as ACGs

Composition as second-order substitution (de Groote and Pogodalla 2004)

G =(N,T,P,s) a linear CFTG

G =(Xg, 21, Lg, s) associated 2nd order ACG

o g =(N,{p|peP},7) higher-order linear signature

TP)=a1 > —>ap—>a
p € P with skeleton {(a, a1 an,)

Greg & Jens (Chicago & Bielefeld) Derivational order and ACGs ACG@10 22 /51

Linear CFTGs as ACGs

Composition as second-order substitution (de Groote and Pogodalla 2004)

G =(N,T,P,s) a linear CFTG

G =(Xg, 21, Lg, s) associated 2nd order ACG

o g =(N,{p|peP},7) higher-order linear signature

TP)=a1 > —>ap—>a
p € P with skeleton {(a, a1 an,)

e For p=a(xy,...,z,) >t € P with skeleton (a,a;---ap,)
by induction, linear \-term [p]:=Ay1- - Ym - Az1... 20 .| t]

Greg & Jens (Chicago & Bielefeld) Derivational order and ACGs ACG@10 22 /51

Linear CFTGs as ACGs

Composition as second-order substitution (de Groote and Pogodalla 2004)

G =(N,T,P,s) a linear CFTG

G =(Xg, 21, Lg, s) associated 2nd order ACG

o g =(N,{p|peP},7) higher-order linear signature

TP)=a1 > —>ap—>a
p € P with skeleton {(a, a1 an,)

e For p=a(xy,...,z,) >t € P with skeleton (a,a;---ap,)

by induction, linear \-term [p]:=Ay1- - Ym - Az1... 20 .| t]
lzi| = @
LfOI = Az (f=) feT
Lt ste) | = [t + o+ [t
la; ()| = yj aj from skeleton
laj(ta, .. te) | = gy [ta] - [tx]

Greg & Jens (Chicago & Bielefeld) Derivational order and ACGs ACG@10 22 /51

Linear CFTGs as ACGs

Composition as second-order substitution (de Groote and Pogodalla 2004)

G =(N,T,P,s) a linear CFTG

G =(Xg, 21, Lg, s) associated 2nd order ACG

o g =(N,{p|peP},7) higher-order linear signature

TP)=a1 > —>ap—>a
p € P with skeleton {(a, a1 an,)

e For p=a(xy,...,z,) >t € P with skeleton (a,a;---ap,)
by induction, linear \-term [P]:=Ay1.. . ym - Az1... 20 .||
o Lg:YXg—>Xr Lg(a)= string™™™ () string for a € N

La(p) =[p] for pe P

Greg & Jens (Chicago & Bielefeld) Derivational order and ACGs ACG@10 22 /51

Linear CFTGs as ACGs

Composition as second-order substitution (de Groote and Pogodalla 2004)

G =(N,T,P,s) a linear CFTG
G =(Xg, 21, Lg, s) associated 2nd order ACG

o Yg =(N,{p|peP}, 1) higher-order linear signature

TP)=a1 > —>ap—>a
p € P with skeleton {(a, a1 an,)

e For p=a(xy,...,z,) >t € P with skeleton (a,a;---ap,)
by induction, linear \-term [P]:=Ay1.. . ym - Az1... 20 .||
o Lg:YXg—>Xr Lg(a)= string™™™ () string for a € N

La()=[p] forpe P
o Xp =({o},T,7) higher-order linear signature

7(f) = string=0—-0 feT

Greg & Jens (Chicago & Bielefeld) Derivational order and ACGs ACG@10 22 /51

Linear CFTGs as ACGs

Composition as second-order substitution (de Groote and Pogodalla 2004)

G =(N,T,P,s) a linear CFTG

G =(Xg, 21, Lg, s) associated 2nd order ACG

o g =(N,{p|peP},7) higher-order linear signature

TP)=a1 > —>ap—>a

Greg & Jens (Chicago & Bielefeld) Derivational order and ACGs ACG@10 23 /51

Linear CFTGs as ACGs

Composition as third-order substitution (including derivation order)

G =(N,T,P,s) a linear CFTG

G =(Xg, 21, Lg, s) associated 2nd order ACG

@ X =(N,{p|peP}, 1) higher-order linear signature

T(P)=a1—> = an—a

Gi = (X6, X1, L, s) 3rd order ACG resulting from Gg

Greg & Jens (Chicago & Bielefeld) Derivational order and ACGs ACG@10 24 / 51

Linear CFTGs as ACGs

Composition as third-order substitution (including derivation order)

G =(N,T,P,s) a linear CFTG
G =(Xg, 21, Lg, s) associated 2nd order ACG
e Yo =(N,{p|peP}, 1) higher-order linear signature
T(P)=a1 > > am > a
G = (X6, X7, Lz, s) 3rd order ACG resulting from Gg

@ X, =(N,{p|peP},7") higher-order linear signature

7'(P) = trans(7(p)) = trans(ay = -+ > am — a)

trans(s) = s s the start symbol
trans(a) = (a—>s)—s aeN-{s}
trans(a = B) = a— trans(B)

Greg & Jens (Chicago & Bielefeld) Derivational order and ACGs ACG@10 24 / 51

Example grammar

CFTG
o= S - f(T(c),G(c))
p2 = T(z) > f(T(x),G(c))
ps = G(z) ~> h(z)
ps = T(z) > G(2)

2nd order ACG
p, : T'-G->S
Py : T'-G->T
ps + G

Py + G=T

Greg & Jens (Chicago & Bielefeld) Derivational order and ACGs ACG@10 25 /51

Example grammar

CFTG

o= S - f(T(c),G(c))

p2 = T(z) > f(T(z),G(c))

ps = G(z) - h(z)

ps = T(z) - G(x)

2nd order ACG 3rd order ACG

p, : T'-G->S P, : I'-G->S

Dy : T->G->T Dy : T-G->(T->8)->S
B, : G P ¢ (G-S5)-S

Py, + G-T Py : G(T'-S)-S

Greg & Jens (Chicago & Bielefeld) Derivational order and ACGs ACG@10

Example derivation — pq p4 p3 p3 left-to-right

P :T >G-S

—— (var,app)
t1:T +-pyt1: G- S
(var, app)
FP:Go(T—>8)—S 91:G,t1:T +Dpytig1:S
(var, app) (abs)
g2:G +-Dy92:(T—>S)—>S g1: G+~ At1.pyt1g1:T - S
(app)
91:G,92:G +Dyg2(At1.Prt1g1):S
(abs)
+P3:(G—->S)—>S g2: G+~ Ag1.DPg92(Mt1 . P1t191):G— S
(app)
92:G + P3(Ag1 . Py g2(At1 . Dy t1g1)): S
(abs)
=P3:(G—>S)—>S + Ag2.P3(Ag1-Pyg2(Mt1.P1t191)):G—>S
(app)

= P3(Ag2 - P3(Ag1 -Pg 92(At1 . D1 t191))): S

ens (Chicago & Bielefeld) Derivational order and ACGs ACG@10 26 / 51

Example derivation — pq p4 p3 p3 left-to-right

P :T >G-S

—— (var,app)
t1:T +-pyt1: G- S
(var, app)
FPy:Go(T—>8)—>S 91:G,t1:T +Dpytig1:S
(var, app) (abs)
g2:G +-Dy92:(T—>S)—>S g1: G+~ At1.pyt1g1:T - S
— — (app)
91:G,92:G +Dyg2(At1.Prt1g1):S
(abs)
+P3:(G—->S)—>S g2: G+~ Ag1.DPg92(Mt1 . P1t191):G— S
— — — (app)
92:G = p3(Ag1.Pyg2(At1.Prt1g1)): S
(abs) Ps
=P3:(G—>S)—=>S F Ag2.P3(Ag1-Pg92(At1.P1t191)):G—> S i
(app) 2
= P3(Ag2 - P3(Ag1 -Pg 92(At1 . D1 t191))): S |
Ps3
|
A
|
Py
T
g2 A
|
P1
PN
t1 g1

ens (Chicago & Bielefeld) Derivational order and ACGs ACG@10 26 / 51

Example derivation — p; p3 right-to-left

P :T >G-S

—— (var,app)
t1: T +-pit1: G- S

(var, app)
g1:G,t1:T +~Dpytig1:8S

(abs)
-p3:(G—>S)—>S t1:T + Ag1.P1t191:G— S

(var, app)
FP,:G—>(T—>8)—5 t1:T +P3(Ag1-Prt1g1):S

(var, app) (abs)
g2:G+Pygo:(T—>S)—>S = At1.P3(Ag1.P1t191): T > S

— — — (app)
92:G + pyga(At1.p3g(Ag1 . Py t191)): S

(abs)
=P3:(G—->S)—>8 = Ag2 Py 92(At1 . P3(Ag1-P1t191)): G~ S

(app)
= P3(Ag2 - Py 92(At1 -P3(Ag1-P1t191))): S

ens (Chicago & Bielefeld) Derivational order and ACGs ACG@10

Example derivation — p; p3

right-to-left

P :T >G-S

—_— (var,app)
t1: T +-pit1: G- S
(var, app)
91:G,t1:T - pytigr:sS
(abs)
-p3:(G—>S)—>S t1:T + Ag1.P1t191:G— S
(var, app)
FP,:G—>(T—>8)—5 t1:T +P3(Ag1-Prt1g1):S
(var, app) (abs)
g2:G+Pygo:(T—>S)—>S = At1.P3(Ag1.P1t191): T > S
— — — (app)
92:G + pyga(Mt1.P3(Ag1.Pyt1g1)): S
_ — — — (abs) ﬁ3
-P3:(G—>S)—>8 = Ag2 Py g2(Mt1.P3(Ng1-P1t191)):G— S]
(app) A
= P3(Ag2 -Pa 92(At1 - P3(Ag1 - D1 t191))): S |
Py
T
92 A
|
P3
|
A
|
P1
PN
t1 g1

ens (Chicago & Bielefeld)

Derivational order and ACGs

ACG@10 27

Back towards the object language

The transformation g which identifies ‘equivalent’ derivations:

p if pe P is a non-lifted rule

I

AY1 - Ym f-f(Py1- ym) otherwise

@ This actually maps a derivation with order information (qua third
order lambda term) to a derivation tree, i.e.

a representation which keeps track only of which rule was used to

rewrite which nonterminal, and not the relative order in which the
rules were used.

Greg & Jens (Chicago & Bielefeld) Derivational order and ACGs ACG@10 28 / 51

The transformation g which identifies ‘equivalent’ derivations:

p if pe P is a non-lifted rule

I

AY1 - Ym f-f(Py1- ym) otherwise

@ ps (Ago . D3 (Ag1 .D4 92 (A1 NURAN))) left-to-right

and

]_?3 ()\gg .ﬁ4 g2 ()\tl .ﬁg ()\gl 'ﬁl t1 g1))) right-to-left

both are identified as

D1 (134 D3)]_73 transformation under g

Greg & Jens (Chicago & Bielefeld) Derivational order and ACGs ACG@10 29 /

The object language

The object language of the new ACG is gotten by ‘composing’ the map g
which turns a new abstract term into the old ‘1O’ one, and the original
lexicon. (Note that this simply reuses the original ACG's lexicon — the
object language of the new ACG is obtained by first translating it back
into the old ACG, and then interpreting the old ACG as usual.)

Greg & Jens (Chicago & Bielefeld) Derivational order and ACGs ACG@10 30 /51

The object language

We need to prove that the translation trans over types engenders an ACG

whose abstract language exactly corresponds to the derivations of the
original linear context-free tree grammar.

@ One problem: the notion of derivation is not rich enough. We need to
enrich it with information about which nonterminal is being rewritten.
One way to do this is to redefine the notion of derivation:

=C (Ty x P x N) x Ty,

That is, the one step derivation relation is between a tree (a
sentential form), a rule, a natural number, and another tree:

C[A(tl,...,tk)] 3],:; C[t[tl,...,tk]]

if there are exactly n — 1 nonterminal symbols to the left of the bullet
in C[e], and if there is some rule p = A(x1,...,2) > t.

Greg & Jens (Chicago & Bielefeld)

Derivational order and ACGs ACG@10

31 /51

The object language

Now we want to say that each type derivation of an abstract term (a term
in the abstract language) can be put into correspondence with a unique
derivation in the CFTG, and what properties this correspondence should
have.

e We will be interested in canonical (/3-reduced, but n-long) terms.
That is, in terms where all argument positions are explicitly filled, but
where all applications have been computed.

@ Note that the abstract language is a subset of the following:
L:=6Y1Yy|pY1-Y,\Y.L

where § is a rule rewriting the start symbol, and p is not.

Greg & Jens (Chicago & Bielefeld) Derivational order and ACGs ACG@10 32 /51

The object language

@ To define a mapping (-)) from such terms to derivations in the
underlying CFTG, we first need to be able to turn a term into a
sentential form. We do this in the following way:

@ For each nonterminal T in the CFTG, there is a type T in the ACG.
We introduce a new zero-place constant T of type T for each
nonterminal 7. We define the lexicon £ to be the extension of L’
which maps each T to

E”(T) =)\ml “e xmnk(T) T Ty - xmnk(T)

For M e A(X(;) of atomic type with FV (M) = {y1,...,ym} we
define

[[M]] = E"(()\yl,...,ym.M) Tl Tm),

where y; : T;. Now [M] is simply the sentential form which M
represents.

Greg & Jens (Chicago & Bielefeld) Derivational order and ACGs ACG@10 33 /51

The object language

@ We can define the translation from terms to derivations after
introducing the following notation: Let |A\xz. M| denote the number of
free variables which occur to the left of the first occurrence of x in M.

@ Note, this definition treats the A-term as a syntactic object — it
distinguishes between terms which are (3,17-equivalent. This is why we
are working with the unique representative of a 3,1-equivalence class
which is B-reduced and 7-long.

e Formally, define for any set B, any a being a constant or variable, and any lambda
terms M and N:

e ifaeB
str(B,a) = a otherwise
str(B,Ax. M) = str(Bu{z}, M)
str(B,(MN)) = str(B,M) str(B,N)
Then set |\z. M| := |u|, where str(C, M[z — o]) =uew

Greg & Jens (Chicago & Bielefeld) Derivational order and ACGs ACG@10

The object language

@ The translation can be given as

S ={ [M] ifM =65y ym

(M) =1 () =0, [M] i M = pyi ym Ay.N
and if n = |Ay.N]|

For every term M of the abstract language A(G/,), (M) is a derivation in
G of [M].

ACGO@10 35 /51

Derivational order and ACGs

Greg & Jens (Chicago & Bielefeld)

Translating back to ACGs

o (S=3 D) =[D']1(\j.57)
o [¢ =L, D'I(M)=[D](A&iv.pirz.(Miiz0))

such that n=|Az.(M1izv)]

o [¢](M) =M

For every complete derivation D of t, [{D)~'] = t.
Moreover, (-)~! is the inverse of (-).

Greg & Jens (Chicago & Bielefeld) Derivational order and ACGs ACG@10 36 / 51

Third order lambda terms really are nicer

@ dequotienting of ‘equivalent’ derivations implicit in the use of
derivation trees

@ but easy to use because substitution is managed by S-reduction

@ canonical terms correspond exactly to derivations

Greg & Jens (Chicago & Bielefeld) Derivational order and ACGs ACG@10 37 /51

Barker's Analysis (qua CFTG)

@ Some person left.

S — s(DP,v)
DP - d(det, NP)
NP —n

@ Some person from Jamaica left.

DP — d(det,NP’(NP))
NP'(z) - NP'(np(x,pp(p, DP)))
NP'(z) >z

DP — name

Greg & Jens (Chicago & Bielefeld) Derivational order and ACGs ACG@10 38 /51

@ Some person from every city left.

S = s(DP,v)
= s(d(det, NP'(NP)),v)
= s(d(det, NP'(n)),v)
= s(d(det, NP'(np(n, pp(p, DP)))),v)
= s(d(det,np(n, pp(p, DP))),v)
= s(d(det,np(n, pp(p,d(det, NP'(NP))))),v)
= s(d(det,np(n, pp(p,d(det, NP)))),v)
= s(d(det,np(n,pp(p,d(det,n)))),v)

Greg & Jens (Chicago & Bielefeld) Derivational order and ACGs ACG@10 39 /51

@ Some person from every city left.

S = s(DP,v)
= s(d(det, NP'(NP)),v)
= s(d(det, NP'(n)),v)
= s(d(det, NP'(np(n, pp(p, DP)))),v)
= s(d(det,np(n, pp(p, DP))),v)
= s(d(det,np(n, pp(p,d(det, NP'(NP))))),v)
= s(d(det,np(n, pp(p,d(det, NP)))),v)
= s(d(det,np(n,pp(p,d(det,n)))),v)

Greg & Jens (Chicago & Bielefeld) Derivational order and ACGs ACG@10 39 /51

@ Some person from every city left.

S = s(DP,v)
= s(d(det, NP'(NP)),v)
= s(d(det, NP'(n)),v)
= s(d(det, NP'(np(n, pp(p, DP)))),v)
= s(d(det,np(n, pp(p, DP))),v)
= s(d(det,np(n, pp(p,d(det, NP'(NP))))),v)
= s(d(det,np(n, pp(p,d(det, NP)))),v)
= s(d(det,np(n,pp(p,d(det,n)))),v)

Greg & Jens (Chicago & Bielefeld) Derivational order and ACGs ACG@10 39 /51

@ Some person from every city left.

S = s(DP,v)
= s(d(det, NP'(NP)),v)
= s(d(det, NP'(n)),v)
= s(d(det, N P'(np(n,pp(p, DP)))),v)
= s(d(det,np(n, pp(p, DP))),v)
= s(d(det,np(n, pp(p,d(det, NP'(NP))))),v)
= s(d(det,np(n, pp(p,d(det, NP)))),v)
= s(d(det,np(n,pp(p,d(det,n)))),v)

Greg & Jens (Chicago & Bielefeld) Derivational order and ACGs ACG@10 39 /51

@ Some person from every city left.

S = s(DP,v)
= s(d(det, NP'(NP)),v)
= s(d(det, NP'(n)),v)
= s(d(det, N P'(np(n, pp(p, DP)))),v)
= s(d(det,np(n, pp(p, DP))),v)
= s(d(det,np(n, pp(p,d(det, NP'(NP))))),v)
= s(d(det,np(n, pp(p,d(det, NP)))),v)
= s(d(det,np(n,pp(p,d(det,n)))),v)

Greg & Jens (Chicago & Bielefeld) Derivational order and ACGs ACG@10 39 /51

@ Some person from every city left.

S = s(DP,v)
= s(d(det, NP'(NP)),v)
= s(d(det, NP'(n)),v)
= s(d(det, NP'(np(n, pp(p, DP)))),v)
= s(d(det,np(n, pp(p, DP))),v)
= s(d(det,np(n,pp(p,d(det, NP'(NP))))),v)
= s(d(det,np(n, pp(p,d(det, NP)))),v)
= s(d(det,np(n,pp(p,d(det,n)))),v)

Greg & Jens (Chicago & Bielefeld) Derivational order and ACGs ACG@10 39 /51

@ Some person from every city left.

S = s(DP,v)
= s(d(det, NP'(NP)),v)
= s(d(det, NP'(n)),v)
= s(d(det, NP'(np(n, pp(p, DP)))),v)
= s(d(det,np(n, pp(p, DP))),v)
= s(d(det,np(n, pp(p,d(det, NP'(NP))))),v)
= s(d(det,np(n, pp(p,d(det, NP)))),v)
= s(d(det,np(n,pp(p,d(det,n)))),v)

Greg & Jens (Chicago & Bielefeld) Derivational order and ACGs ACG@10 39 /51

@ Some person from every city left.

S = s(DP,v)
= s(d(det, NP'(NP)),v)
= s(d(det, NP'(n)),v)
= s(d(det, NP'(np(n, pp(p, DP)))),v)
= s(d(det,np(n, pp(p, DP))),v)
= s(d(det,np(n, pp(p,d(det, NP'(NP))))),v)
= s(d(det,np(n, pp(p,d(det, NP)))),v)
= s(d(det,np(n,pp(p,d(det,n)))),v)

Greg & Jens (Chicago & Bielefeld) Derivational order and ACGs ACG@10 39 /51

The abstract language of Barker's TAG

@ Here are the rules, and their second-order types:

S — s(DP,v) (ps)

DP - d(det, NP'(N P)) (ppp)
NP >n (pn)
NP'(x) » NP'(np(z,pp(p, DP))) (o pr)
NP'(z) >z (onpr)

Greg & Jens (Chicago & Bielefeld) Derivational order and ACGs ACG@10 40 / 51

The abstract language of Barker's TAG

@ Here are the rules, and their second-order types:

S — s(DP,v) DP-> S (ps)

DP — d(det, NP'(N P)) (ppp)
NP -n (pn)
NP'(x) » NP'(np(z,pp(p, DP))) (o pr)
NP'(z) >z (onpr)

Greg & Jens (Chicago & Bielefeld) Derivational order and ACGs ACG@10 40 / 51

The abstract language of Barker's TAG

@ Here are the rules, and their second-order types:

S — s(DP,v) DP-> S (ps)

DP — d(det, NP'(N P)) NP' - NP - DP (ppp)
NP -n (pn)
NP'(x) » NP'(np(z,pp(p, DP))) (o pr)
NP'(z) >z (onpr)

Greg & Jens (Chicago & Bielefeld) Derivational order and ACGs ACG@10 40 / 51

The abstract language of Barker's TAG

@ Here are the rules, and their second-order types:

S — s(DP,v) DP-> S (ps)

DP d(det, NP'(NP)) NP' > NP - DP (ppp)
NP —>n NP (pn)
NP'(x) » NP'(np(z,pp(p, DP))) (o pr)
NP'(z) >z (onpr)

Greg & Jens (Chicago & Bielefeld) Derivational order and ACGs ACG@10 40 / 51

The abstract language of Barker's TAG

@ Here are the rules, and their second-order types:

S — s(DP,v) DP-> S (ps)

DP d(det, NP'(NP)) NP' > NP - DP (ppp)
NP —>n NP (pn)
NP'(z) » NP'(ap(e,pp(p, DP))) NP’ > DP = NP’ (pwp:)
NP'(z) >z (onpr)

Greg & Jens (Chicago & Bielefeld) Derivational order and ACGs ACG@10 40 / 51

The abstract language of Barker's TAG

@ Here are the rules, and their second-order types:

S — s(DP,v) DP-> S (ps)

DP d(det, NP'(NP)) NP' > NP - DP (ppp)
NP —>n NP (pn)
NP'(z) > NP'(np(z,pp(p, DP))) NP'>DP NP (pxp:)
NP/(2) 2 NP (o)

Greg & Jens (Chicago & Bielefeld) Derivational order and ACGs ACG@10 40 / 51

Lifting Barker's TAG

And here the types lifted over S:

ps:DP — S
ppp:NP' - NP - DP
pn:NP
pnp; i NP' - DP - NP’
pnpr: NP’

b

Greg & Jens (Chicago & Bielefeld) Derivational order and ACGs ACG@10

Lifting Barker's TAG

And here the types lifted over S:

ps:DP — S
ppp:NP' - NP - DP
pn:NP
pnp; i NP' - DP - NP’
pnpr: NP’

b

Greg & Jens (Chicago & Bielefeld) Derivational order and ACGs ACG@10

Lifting Barker's TAG

And here the types lifted over S:

ps:DP — S
ppp: NP' - NP - DP
pn:NP
PN P! :NP'-> DP —> NP’
pnpr: NP’

b

Greg & Jens (Chicago & Bielefeld) Derivational order and ACGs ACG@10

Lifting Barker's TAG

And here the types lifted over S:

ps:DP — S

ppp: NP> NP — (DP - 5) - S
pn:NP

pxp. i NP' = DP > NP'

pnpr: NP’

b

Greg & Jens (Chicago & Bielefeld) Derivational order and ACGs ACG@10

Lifting Barker's TAG

And here the types lifted over S:

ps:DP — S

ppp: NP> NP - (DP - 5) - S
pN:NP

pxp. i NP' = DP > NP'

pnpr: NP’

b

Greg & Jens (Chicago & Bielefeld) Derivational order and ACGs ACG@10

Lifting Barker's TAG

And here the types lifted over S:

ps:DP — S

ppp: NP> NP - (DP - 5) - S
pn:(NP—>S)—>S

pxp. i NP' = DP > NP'

pnpr: NP’

b

Greg & Jens (Chicago & Bielefeld) Derivational order and ACGs ACG@10 41 /51

Lifting Barker's TAG

And here the types lifted over S:

ps:DP — S

ppp: NP> NP - (DP - 5) - S
pn:(NP—>S)—>S

pnp, i NP > DP > NP

pnpr: NP’

b

Greg & Jens (Chicago & Bielefeld) Derivational order and ACGs ACG@10 41 /51

Lifting Barker's TAG

And here the types lifted over S:

ps:DP — S
ppp: NP> NP - (DP - 5) - S
pn: (NP —->S8)->S
pnp; i NP' - DP - (NP - S) > S
pnpr: NP’

b

Greg & Jens (Chicago & Bielefeld) Derivational order and ACGs ACG@10 41 /51

Lifting Barker's TAG

And here the types lifted over S:

ps:DP — S
ppp: NP> NP - (DP - 5) - S
pn: (NP —->S8)->S
pnp; i NP' - DP - (NP' - S)-> S
pnpr i NP’

b

Greg & Jens (Chicago & Bielefeld) Derivational order and ACGs ACG@10 41 /51

Lifting Barker's TAG

And here the types lifted over S:

ps:DP — S
ppp: NP> NP - (DP - 5) - S
pN:(NP—->S8)—> S
pnp; i NP' - DP - (NP' - S)-> S
pNP,;:(NP/%S)_)S

Greg & Jens (Chicago & Bielefeld) Derivational order and ACGs ACG@10 41/

Derivations

@ Some person left
basic (2nd order):
ps (pop (pnp; PNP))

lifted (3rd order):

pN(Azn . pnp; (Aznp.ppp (TNp TN ATp.psTD)))

@ Some person from every city left

basic:

ps (ppp (pnpe; (pnp; PP (PNP; PNP)) PNP))
lifted

np-PN P! Az, pD P (T Tnp (Amd-PNpé Azt o pt (@0 Td (A2 PN (AZnp-pD P (@ pr Tnp (ATa-ps Ta)))

Greg & Jens (Chicago & Bielefeld) Derivational order and ACGs ACG@10 42 /51

The Problem of Inverse Linking

Observation:

derivation order does not permit surface scope in:

@ every person from a city left.

Greg & Jens (Chicago & Bielefeld) Derivational order and ACGs ACG@10 43 / 51

The Problem of Inverse Linking

Observation:
derivation order does not permit surface scope in:

@ every person from a city left.

The problem:

the most deeply embedded quantifier cannot be introduced until after its
‘argument’ position is present, which is introduced only once its containing
DP is present

Greg & Jens (Chicago & Bielefeld) Derivational order and ACGs ACG@10 43 / 51

The Problem of Inverse Linking

Observation:
derivation order does not permit surface scope in:

@ every person from a city left.

The problem:

the most deeply embedded quantifier cannot be introduced until after its
‘argument’ position is present, which is introduced only once its containing
DP is present

Every derivation begins:
(S =s(DP,v))™" =

Azp.ps(zp)

Greg & Jens (Chicago & Bielefeld) Derivational order and ACGs ACG@10 43 / 51

The Problem of Inverse Linking

Observation:
derivation order does not permit surface scope in:

@ every person from a city left.

The problem:

the most deeply embedded quantifier cannot be introduced until after its
‘argument’ position is present, which is introduced only once its containing
DP is present

Every derivation begins:
(S = s(DP,v) = s(d(det, NP'(NP)),v)) ! =
Aenpr oy . ppp (NP 2N AZp.ps(ZD))

Greg & Jens (Chicago & Bielefeld) Derivational order and ACGs ACG@10 43 / 51

Constituency in derivations

A timing based approach to quantifier scope simply cannot derive surface

scope relations between embedded scope-takers: the scope relations
predicted are always inverted.

The possible derivations for ¢ are given by h(t), where

h(o(ty,...,tn) =0 -LLKA(t1),...,h(t,)}
ps - (ppp - (pnp Wi (pnp; - (pnpy W (pop - (pnp; W pNP))))))

Greg & Jens (Chicago & Bielefeld)

Derivational order and ACGs

ACG@10

Timing # Derivation

@ Barker wants scope relations such that ppp < ppp
@ There is no derivation which provides this

@ No system which derives this can be expressed in terms of derivations

Whatever people mean by “timing”

it is not describable in terms of rewriting order

Greg & Jens (Chicago & Bielefeld) Derivational order and ACGs ACG@10 45 / 51

Back to Barker

@ We simply lifted all of our types
o because we wanted to look at every possible derivation order
@ Barker only allows for cosubstitution of certain initial trees (the DPs)

e this corresponds to us only lifting types ending in DP
e the resulting signature has nothing to do with derivations

Greg & Jens (Chicago & Bielefeld) Derivational order and ACGs ACG@10 46 / 51

Selectively Lifting Barker's TAG

Only types ending in DP:

ps:DP — S
ppp:NP' - NP - DP
pn:NP
pnp; i NP' - DP — NP’
pnpr: NP’

b

Greg & Jens (Chicago & Bielefeld) Derivational order and ACGs ACG@10

Selectively Lifting Barker's TAG

Only types ending in DP:

ps:DP — S
ppp:NP' - NP - DP
pn:NP
pnp; i NP' - DP — NP’
pnpr: NP’

b

Greg & Jens (Chicago & Bielefeld) Derivational order and ACGs ACG@10

Selectively Lifting Barker's TAG

Only types ending in DP:

ps:DP - S
ppp:NP' - NP - DP
pn:NP
PNP! :NP'-> DP > NP’
pnpr: NP’

b

Greg & Jens (Chicago & Bielefeld) Derivational order and ACGs ACG@10

Selectively Lifting Barker's TAG

Only types ending in DP:

ps:DP - S
ppp: NP> NP — (DP - 5) - S
pn:NP
pxp, i NP > DP > NP'
pnpr i NP’

b

Greg & Jens (Chicago & Bielefeld) Derivational order and ACGs ACG@10

Selectively Lifting Barker's TAG

Only types ending in DP:

ps:DP - S
ppp: NP> NP - (DP—S) - S
pN: NP
pxp, i NP > DP > NP'
pnpr i NP’

b

Greg & Jens (Chicago & Bielefeld) Derivational order and ACGs ACG@10

Selectively Lifting Barker's TAG

Only types ending in DP:

ps:DP - S
ppp: NP> NP - (DP—S) - S
pN: NP
pxp, i NP > DP > NP'
pnpr i NP’

b

Greg & Jens (Chicago & Bielefeld) Derivational order and ACGs ACG@10

Selectively Lifting Barker's TAG

Only types ending in DP:

ps:DP - S
ppp: NP> NP - (DP—S) - S
pn:NP
pxp, i NP > DP > NP
pnpr i NP’

b

Greg & Jens (Chicago & Bielefeld) Derivational order and ACGs ACG@10

Selectively Lifting Barker's TAG

Only types ending in DP:

ps:DP - S
ppp: NP> NP - (DP—S) - S
pn:NP
pxp, i NP > DP > NP
pnpr i NP’

b

Greg & Jens (Chicago & Bielefeld) Derivational order and ACGs ACG@10

Selectively Lifting Barker's TAG

Only types ending in DP:

ps:DP - S

ppp: NP> NP - (DP—S) - S
pn:NP

pxp, i NP > DP > NP'

pnpr: NP’

b

Greg & Jens (Chicago & Bielefeld) Derivational order and ACGs ACG@10

Selectively Lifting Barker's TAG

Only types ending in DP:

ps:DP - S
ppp: NP> NP - (DP—S) - S
pn:NP
pxp, i NP > DP > NP'
pnpr i NP’

b

Greg & Jens (Chicago & Bielefeld) Derivational order and ACGs ACG@10

We still don't get the surface reading!

@ but this time its easy to fix:

Barker's solution

allow a version of rule pyp: to directly select for a continuized DP:

p?\/P& =NP' - ((DP—-S)—-S)—> NP

A lexical solution
introduce new atomic type X P, and duplicate rules as appropriate:

XP — d(det, NP'(NP)) (pxp)
NP'(x) > NP'(np(x,pp(p, X P))) (pnpy)

lexically interpret L(XP)=L((DP - S) - S)

Greg & Jens (Chicago & Bielefeld) Derivational order and ACGs ACG@10 48 / 51

Conclusions

@ leave the realm of context-free grammar formalisms
o WGC and SGC preservation

e NOT because 10 and Ol coincide on linear CFTGs
e instead, because spellout involves going back through the 2" order
derivation term

o Complexity heuristics in ACG differ from those of TAG:

e ‘simpler’ to deal with in-situ readings by making lexicon higher order
than the abstract language ... (?77)

Greg & Jens (Chicago & Bielefeld) Derivational order and ACGs ACG@10 49 / 51

Conclusions

@ intuitive and oft-occuring

@ not related to rewriting strategies
(we may have been the only ones to have thought this. . .)

@ best seen as moving from trees to (3" order) terms

Greg & Jens (Chicago & Bielefeld) Derivational order and ACGs ACG@10 50 / 51

Thank you!

s (Chicago & Bielefeld) Derivational order and ACGs ACG@10

	Introduction
	Everyone's favourite example
	3rd order ACGs and context-free derivations

