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What good are ACGs?

ACGs provide a way to understand many ideas from a uniform
perspective

Architectures for grammar (SP)

Syntactico-centrism vs Parallelism (SP, PdG, & CP)

Grammar formalisms

CFHGs (MK)
CFG, LCFTG, MCFG (PdG, SP)
DTWT (SS)
MG (SS)

⋮
Distributional learning (RY)

⋮
We want to add to the list:

Timing
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Chris Barker and a new approach to TAG semantics

The basic idea of using cosubstitution to handle scope is that we can build
the nuclear scope of a quantifier before the quantifier enters the derivation.

In other words, the nuclear scope of a quantifier is quite simply and quite
literally its syntactic and semantic argument.

Thus on the cosubstitution approach, quantifier scope ambiguity is a
matter of timing: quantifiers that enter later in the derivation take wider
scope.

In other words, co-TAG has exactly the same weak and strong generative
capacity as TAG.
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Actually, an old approach to semantics (and other things)

Montague Grammar
(Montague)

[ . . . ] ambiguity can arise even when there is no element of intensionality,
simply because quantifying terms may be introduced in more than one
order.

Minimalist Grammars
(Gärtner & Michaelis; Kobele)

[ . . . ] an expression may bind only those expressions that it c-commands
when first merged
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What’s behind this?

The problem:

Sometimes we have a semantic ambiguity without any obvious
corresponding difference in the derivation tree.

The idea:

Enrich the derivation tree with information about order.
(not only did I apply this rule, but I applied this rule before that one)
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A concrete example

S → A B
A → a
B → b

S

B

b

A

a

Example

The representation of a CFG derivation as a tree equates sequences of
rewriting steps which rewrite nonterminal instances the same way.
(Leftmost, rightmost, etc)

⟨S ⇒ AB ⇒ aB ⇒ ab⟩ ≡ ⟨S ⇒ AB ⇒ Ab⇒ ab⟩
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What’s to come

The goals:

Make sense of the idea of ‘timing’ in terms of derivations

Understand (in particular) co-substitution in TAGs in these terms

If SGC/WGC unchanged, what is going on?

Our main claims are that:

Third order ACGs provide an elegant description of the derivations of
context-free formalisms.

“Timing” is not derivational order
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Outline

1 Everyone’s favourite example (Montague)

2 3rd order ACGs and context-free derivations

3 Cosubstitution in TAGs
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Frameworks which make use of ‘late’ operations

Montague Grammar

Quantifying In

Tree Adjoining Grammars

co-substitution

flexible composition

Minimalist Grammars

Late adjunction

‘hypothetical reasoning’
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Montague Grammar (MG)

MG has order sensitive rules in the form of Quantifying In (QI),
namely, S14:

!"# $% ! ! &$'!( )*+ " ! &(, -./* !"0!, "1 ! &$', 2./3/ !"0!,"1 " !" 4% " +5/6 *5-
.)7/ -./ %538 !"! )*+ !"0!,!"!1 " ! !#$!#

!9# $% ! ! &$:'!( )*+ " ! &(, -./* !"0!,"1 ! &$:'#
!;# $% ! ! &$'!- )*+ " ! &-, -./* !90!,"1 ! &$', 2./3/ !90!, "1 " !"#
!<# $% ! ! &$'!!$' )*+ " ! &$', -./* !90!,"1 ! &$'#
!=# $% ! ! &-!- )*+ " ! &-, -./* !90!, "1 ! &-#

!>?# $% ! ! &$'!$' )*+ " ! &$', -./* !;0!, "1 ! &$', 2./3/ !;0!, "1 " "!#

"#$%& '( )'*+#*),-'* .*/ /-&+#*),-'*

!>># $% #,$ ! &-, -./* !<0#,$1,!=0#,$1 ! &-, 2./3/ !<0#,$1 " # %&' $,!=0#,$1
" # () $#

!>@# $% %, ! ! &$', -./* !<0%, !1,!=0%, !1 ! &$'#
!>A# $% &, " ! &(, -./* !=0&, "1 ! &(#

"#$%& '( 0#.*,-(-).,-'*

!>B# $% & ! &( )*+ # ! &-, -./* !>?, *0&,#1 ! &-, 2./3/ /4-./3 041 & +5/6 *5-
.)7/ -./ %538 !"1, )*+ !>?, *0&,#1 C58/6 %358 # DE 3/FG)C4*H -./ %436-
5CCI33/*C/ 5% !"! 53 !#$! DE & )*+ )GG 5-./3 5CCI33/*C/6 5% !"! 53

!#$! DE
!"
*!"
#+

!

"

#

$

%

&

53
!#$
!")
#+

!

"

#

$

%

&

3/6F/C-47/GE, )CC53+4*H )6 -./ H/*+/3 5% -./

%436- JKL 53 J( 4* & 46
8)6C"
%/8"
*/I-/3

!

"

#

$

%

&

, 53

0441 & " !"", )*+ !>?, *0&,#1 C58/6 %358 # DE 3/FG)C4*H )GG 5CCI33/*C/6 5% !"!
53 !#$! DE !"" 53 !#$" 3/6F/C-47/GE#

!>"# $% & ! &( )*+ ' ! &KL, -./* !>?, *0&, '1 ! &KL#
!>9# $% & ! &( )*+ ! ! &$', -./* !>?, *0&, !1 ! &$'#

"#$%& '( ,%*&% .*/ &-2*

!>;# $% & ! &( )*+ ! ! &$', -./* !>>0&, !1,!>@0&, !1,!>A0&, !1,!>B0&, !1,!>"0&, !1
! &-, 2./3/M
!>>0&, !1 " &!# )*+ !# 46 -./ 3/6IG- 5% 3/FG)C4*H -./ %436- 7/3D 4* ! DE 4-6 */H)-47/
-.43+ F/365* 64*HIG)3 F3/6/*-N
!>@0&, !1 " &!## )*+ !## 46 -./ 3/6IG- 5% 3/FG)C4*H -./ %436- 7/3D 4* ! DE 4-6 -.43+
F/365* 64*HIG)3 %I-I3/N
!>A0&, !1 " &!### )*+ !### 46 -./ 3/6IG- 5% 3/FG)C4*H -./ %436- 7/3D 4* ! DE 4-6
*/H)-47/ -.43+ F/365* 64*HIG)3 %I-I3/N
!>B0&, !1 " &!#### )*+ !#### 46 -./ 3/6IG- 5% 3/FG)C4*H -./ %436- 7/3D 4* ! DE 4-6 -.43+
F/365* 64*HIG)3 F3/6/*- F/3%/C-N )*+ %4*)GGE,
!>"0&, !1 " &!##### )*+ !##### 46 -./ 3/6IG- 5% 3/FG)C4*H -./ %436- 7/3D 4* ! DE 4-6
*/H)-47/ -.43+ F/365* 64*HIG)3 F3/6/*- F/3%/C-#

!" #$%&'() *+,-'./0

QI has some complications we do not need to worry about right now:
multiple occurrences of hen can be affected by rule F10,n

QI is order sensitive in the sense that if we have a derivation
d = C[F10,i(α,D[F10,j(β,φ)])], then α takes semantic scope over β
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An Example - De Re vs De Dicto Readings

John seeks a unicorn.

De Re

There is a particular unicorn that John is looking for.
∃y[unicorn(y) & try(find(y))(j)]

De Dicto

John will be satisfied with any unicorn.
try(∃y[unicorn(y) & find(y)])(j)

Can be represented in terms of operator scope:

x seeks y

try(find(y))(x)
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Derivations for De Re vs De Dicto Readings
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An ACG implementation (following de Groote 2001)

A faithful ACG implementation of the derivation structure of MG
might look as follows:

to each n-ary predicate (seek, love, . . . ) we associate a function
symbol of type npn → s
to each common noun (boy, unicorn, . . . ) we associate a function
symbol of type n
to each determiner (some, every, . . . ) we associate a function symbol
of type n→ d
we have a function symbol QI of type ( np→ s )→ ( d→ s )

This allows us to have abstract terms like the following:

QI(λynp.QI(λxnp.seek(x)(y))(some(unicorn)))(every(boy))

Greg & Jens (Chicago & Bielefeld) Derivational order and ACGs ACG@10 13 / 51



An ACG implementation

The lexica are as follows:

on the concrete phonology side, the symbol QI is interpreted as the
(forwards application) combinator λxy.x(y) (and everything else is
interpreted in the obvious way, given that all abstract types n, d, np
and s are interpreted as the object type o→ o, the type of strings).
on the concrete semantic side, the symbol QI is interpreted as the
(backwards application) combinator λxy.y(x).
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An ACG implementation (alternative)

An alternative implementation substitutes for the type d the type
(np→ s)→ s, and eliminates the symbol QI. Then we have abstract
terms like:

every(boy)(λynp.some(unicorn)(λxnp.seek(x)(y)))
Under this alternative, the lexica are as follows:

The concrete phonological interpretation of a determiner every is as
the function λxf.f(every ⌢ x)
The concrete semantic interpretation of a determiner every is as the
function λxf.∀(x)(f)
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Summary

The ACG implementation does currently not deal with the ignored
complexities of QI.

The straightforward implementation takes the abstract terms to be
pretty much isomorphic to the concrete semantic terms.

The big picture (that it admittedly seems is not very clear in this
presentation) is that:

higher order constants mark scope positions, and apply to lambda
abstracts which make the variables in lower positions accessible.
In other words, ‘timing’ requires of an expression that it simultaneously
be connected to both an underlying (argument) position, and a
‘surface’ (timing) position.
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Tree Adjoining Grammars

Strongly equivalent to monadic linear CFTGs
(Fujiyoshi & Kasai; Mönnich; Kepser & Rogers)

Weakly equivalent to 2-MCFLwn
(Vijay-Shanker et al.; Seki et al.; Kanazawa)

A TAG consists of

initial trees a finite set of trees with leaves labelled by either
terminals or X↓, where X is a nonterminal symbol

auxiliary trees as before, but with exactly one leaf node labelled by
X∗, where X is the label of the root
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Tree Adjoining Grammars - Substitution

Substitute (1st Order Substitution)

the auxiliary tree projected by with, and then ad-
join the derived tree with no one at the VP node
dominating left. But we might just as well adjoin
the incomplete auxiliary tree first, resulting in the
(still incomplete) tree in (1b). The point of interest
is that this derivational constituent corresponds in a
natural way to the nuclear scope of no one: just ab-
stract over the substitution location to get the prop-
erty λx.John-left-with x.

Thus the reason that managing scope in TAG is a
challenge is that quantifiers and their scope domain
are not local in the usual TAG sense. That is, it is
not possible to factor out recursion in such a way
that the quantifier and its scope are safely included
within a single elementary tree. For instance, in (1),
the quantifier never shares an elementary tree with
the S node it take scope over.

Yet although quantifiers and their scope are not
elementary-tree local, quantifiers and their scope are
never discontinuous. At the end of a derivation, if
we shade in the portion of the tree that corresponds
to the material a quantifier takes scope over, it will
always be a contiguous portion of the tree, and in ad-
dition, it will also immediately dominate (in general,
surround) the quantifier.

Making sense out of the derivational approach
considered here requires rethinking the tree-merging
operation that combines the quantificational DP no

one with its nuclear scope. Instead of regarding the
quantifier DP as plugging a hole in the argument
structure of with, we would like to reverse the roles,
and think of the incomplete tree in (1b) as the se-
mantic argument of the quantifier. Call this desired
operation COSUBSTITUTION (details below).

If we allow cosubstitution as a basic TAG op-
eration, we recognize quantificational scope as
an example of a different kind of local depen-
dency, namely, the dependence of a functor on its
(co)substitution argument. The result is that we
need to recognize two kinds of locality: struc-
tural locality, i.e., sharing the same elementary tree,
and derivational locality, participating in the same
derivational step.

The late substitution contemplated in (1) would
not be innocent in a Multi-Component TAG. Allow-
ing one component of a tree set to substitute into the
lower DP position in (1) at the same time that an-
other element (think: the scope-taking part) adjoins

into the original initial tree is non-local, and allow-
ing such non-local operations in MC-TAG increases
its generative capacity. Therefore it’s important that
I’m considering ordinary TAG here, not MC-TAG.
In some sense, of course, all analyses of quantifier
scope are an attempt to simulate just this kind of
non-local operation, as discussed further below.

Treating scope-taking as cosubstitution is a ver-
sion of the continuation-based approaches to scope-
taking of Barker 2002, de Groote 2001, and Bernardi
and Moortgat 2010, among others. A continuation is
(a portion of) the computational future of an expres-
sion. In (1), the computational future of the quan-
tifier no one is that it will serve as the argument of
the preposition with, and the result of that computa-
tion will serve to modify the verb phrase left, and so
on. The central insight I’m aiming for in this paper
is that in TAG, the computational future of a DP can
be viewed as the same thing as its derivational past.

2 Preliminaries

2.1 Syntax

A Tree Adjoining Grammar is a finite set of elemen-
tary trees closed under two derivational operations:
substitution and adjunction.

Elementary trees are finite ordered labeled trees.
Nonterminals on the frontier of an elementary tree
are substitution targets, and are decorated with a
downarrow. Some elementary trees have a dis-
tinguished node on their frontiers called the FOOT
(marked with a star) that match the root node in syn-
tactic category. Such trees are auxiliary trees, and
participate in adjunction.
Substitution: Nodes with downarrows on their la-
bels can be replaced via substitution with any non-
auxiliary tree whose root node has a matching label.
The substitution operation amounts to replacing the
target node with the root of the substitution tree.

(2) DP

John

+ S

DP↓ VP

left

= S

DP

John

VP

left
Adjunction: Interior nodes whose labels match the
root label of an auxiliary tree can be adjunction tar-
gets. Adjunction is accomplished by replacing the
adjunction target node with the root of the auxiliaryGreg & Jens (Chicago & Bielefeld) Derivational order and ACGs ACG@10 18 / 51



Tree Adjoining Grammars - Adjunction

Adjoin (2nd Order Substitution)

tree, at the same time that the foot of the adjunction
tree is replaced by the subtree rooted in the adjunc-
tion target node. In effect, the auxiliary tree is in-
serted into the tree at the adjunction target node.
(3)

S

DP

John

VP

left

+ VP

quietly VP*

= S

DP

John

VP

quietly VP

left
This is the familiar TAG story, simple and elegant.
Technical details are available in may places, e.g.,
Joshi and Schabes 1997.

2.2 Semantics
I will use a Synchronous TAG (Shieber and Schabes
1990) to specify semantic representations. Instead
of elementary trees, STAG uses pairs of elementary
trees connected by a linking relation. Any operation
targeting a node in the left element of a pair must be
matched by a parallel operation targeting the linked
node in the right element of the pair.

In general, then, STAG is a tree transduction sys-
tem. Here, as in Nesson and Shieber 2006, each pair
will be interpreted as the syntax and the correspond-
ing semantics for an expression. The syntactic com-
ponent will use syntactic categories for labels, and
the semantic component will use semantic types for
labels.

So for [syntax, semantics] pairs we might have:

(4)




DP

John
,
e

j








VP

quietly VP*
,

�e,t�

quietly �e,t�









S

DP↓ VP

left

,

t

�e,t�

left

e









S

DP

John

VP

quietly VP

left

,

t

�e,t�

quietly �e,t�

left

e

j





Not much happens in this transduction, except that
the compositional order of the VP and the sub-

ject are reversed to conform to the conventions
for function/argument order in the lambda calcu-
lus. Throughout the paper, I’ve left the linking re-
lation between syntactic nodes and semantic nodes
implicit, since the intended relation is particularly
simple and, I hope, obvious.

3 Cosubstitution

The basic idea of using cosubstitution to handle
scope is that we can build the nuclear scope of a
quantifier before the quantifier enters the derivation.

In the normal substitution case, we have a tree
t1 containing a substitution target, that is, a node x
whose label B is decorated with a downarrow. We
also have a separate tree t2 whose root r has a match-
ing label, B. We replace x with r, and the tree rooted
in r becomes a subtree of t1 (first column of (5)).

In cosubstitution, we reverse the roles: now t2
contains the (co)substitution target, (which can only
be) the root node r. In recognition that the root is
now a cosubstitution target, we annotate its label
with an uparrow. As long as t1 contains a frontier
node x with a matching label (matching except that
it is still decorated with a downarrow rather than an
uparrow), cosubstitution may occur. Conceptually,
we replace (only!) the target node r with x, and
the tree footed in x becomes a supertree of t2. (So
the operation probably should be called “superstitu-
tion”.)
(5)
Substitution: Cosubstitution:



A

B↓
,

A

B









A

B↓
,

A

B







 B
,

B







B↑

,
B↑









A

B ,

A

B









A

B ,

A

B↑ �B, A�

λ B

x

A

B

x
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Barker’s Innovation:
Unrestricted Derivation and Scope

Fact

Linear CFTGs derive the same tree languages under all (IO, OI,
unrestricted) derivation modes.

Barker:

Γ scopes over ∆ iff Γ was substituted in after a tree containing ∆ was
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Linear CFTGs
Definition (repeated)

G = ⟨N,T,P, s⟩ a linear CFTG

N the ranked alphabet of nonterminals

T the ranked alphabet of terminals

s the start symbol of rank 0 from N

P the production rules each of which of the form

a(x1, . . . , xn)→ t

● a ∈ N such that rank(a) = n
● x1, . . . , xn variables of rank 0

● t a linear tree over N ∪ T ∪ {x1, . . . , xn}

For expository reasons we assume that the start symbol s ∈ N does
not appear on the righthand side of any rule
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Linear CFTGs as ACGs
Composition as second-order substitution (de Groote and Pogodalla 2004)

G = ⟨N,T,P, s⟩ a linear CFTG

GG = ⟨ΣG,ΣT ,LG, s⟩ associated 2nd order ACG

ΣG = ⟨N , {p ∣ p ∈ P } , τ ⟩ higher-order linear signature

τ(p) = a1 → ⋅ ⋅ ⋅→ am → a
p ∈ P with skeleton ⟨a, a1⋯am⟩

For p = a(x1, . . . , xn)→ t ∈ P with skeleton ⟨a, a1⋯am⟩
by induction, linear λ-term ⟦p⟧ ∶= λy1 . . . ym . λx1 . . . xn . ∣ t ∣
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∣xi ∣ = xi

∣ f( ) ∣ = λx . ( f x ) f ∈ T

∣ f(t1, . . . , tk) ∣ = ∣t1∣ + . . . + ∣tk ∣

∣aj( ) ∣ = yj aj from skeleton

∣aj(t1, . . . , tk) ∣ = yj ∣t1∣ ⋯ ∣tk ∣
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ΣT = ⟨ {o} , T , τ̃ ⟩ higher-order linear signature

τ̃(f) = string = o→ o f ∈ T
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Linear CFTGs as ACGs
Composition as third-order substitution (including derivation order)

G = ⟨N,T,P, s⟩ a linear CFTG

GG = ⟨ΣG,ΣT ,LG, s⟩ associated 2nd order ACG

ΣG = ⟨N , {p ∣ p ∈ P } , τ ⟩ higher-order linear signature

τ(p) = a1 → ⋅ ⋅ ⋅→ am → a

G′G = ⟨Σ′
G,ΣT ,L′G, s⟩ 3rd order ACG resulting from GG

Σ′
G = ⟨N , {p ∣ p ∈ P } , τ ′ ⟩ higher-order linear signature

τ ′(p) = trans(τ(p)) = trans(a1 → ⋅ ⋅ ⋅→ am → a)

trans(s) = s s the start symbol

trans(a) = (a→ s)→ s a ∈ N − {s}
trans(α → β ) = α → trans(β )
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Example grammar

CFTG

p1 = S → f(T (c) , G(c) )

p2 = T (x) → f(T (x) , G(c) )

p3 = G(x) → h(x)

p4 = T (x) → G(x)

2nd order ACG

p1 ∶ T → G→ S

p2 ∶ T → G→ T

p3 ∶ G

p4 ∶ G→ T

3rd order ACG

p1 ∶ T → G→ S

p2 ∶ T → G→ (T → S )→ S

p3 ∶ (G→ S )→ S

p4 ∶ G→ (T → S )→ S
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Example derivation — p1 p4 p3 p3 left-to-right

⊢ p3 ∶ (G→ S)→ S

⊢ p3 ∶ (G→ S)→ S

⊢ p4 ∶ G→ (T → S)→ S

g2 ∶ G ⊢ p4 g2 ∶ (T → S)→ S
(var , app)

⊢ p1 ∶ T → G→ S

t1 ∶ T ⊢ p1 t1 ∶ G→ S
(var , app)

g1 ∶ G, t1 ∶ T ⊢ p1 t1 g1 ∶ S
(var , app)

g1 ∶ G ⊢ λt1 . p1 t1 g1 ∶ T → S
(abs)

g1 ∶ G, g2 ∶ G ⊢ p4 g2(λt1 . p1 t1 g1) ∶ S
(app)

g2 ∶ G ⊢ λg1 . p4 g2(λt1 . p1 t1 g1) ∶ G→ S
(abs)

g2 ∶ G ⊢ p3(λg1 . p4 g2(λt1 . p1 t1 g1)) ∶ S
(app)

⊢ λg2 . p3(λg1 . p4 g2(λt1 . p1 t1 g1)) ∶ G→ S
(abs)

⊢ p3(λg2 . p3(λg1 . p4 g2(λt1 . p1 t1 g1))) ∶ S

(app)

p3

λ

p3

λ

p4

λ

p1

g1t1

g2
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Example derivation — p1 p3 p4 p3 right-to-left

⊢ p3 ∶ (G→ S)→ S

⊢ p4 ∶ G→ (T → S)→ S

g2 ∶ G ⊢ p4 g2 ∶ (T → S)→ S
(var , app)

⊢ p3 ∶ (G→ S)→ S

⊢ p1 ∶ T → G→ S

t1 ∶ T ⊢ p1 t1 ∶ G→ S
(var , app)

g1 ∶ G, t1 ∶ T ⊢ p1 t1 g1 ∶ S
(var , app)

t1 ∶ T ⊢ λg1 . p1 t1 g1 ∶ G→ S
(abs)

t1 ∶ T ⊢ p3(λg1 . p1 t1 g1) ∶ S
(var , app)

⊢ λt1 . p3(λg1 . p1 t1 g1) ∶ T → S
(abs)

g2 ∶ G ⊢ p4 g2(λt1 . p3(λg1 . p1 t1 g1)) ∶ S
(app)

⊢ λg2 . p4 g2(λt1 . p3(λg1 . p1 t1 g1)) ∶ G→ S
(abs)

⊢ p3(λg2 . p4 g2(λt1 . p3(λg1 . p1 t1 g1))) ∶ S

(app)

p3

λ

p4

λ

p3

λ

p1

g1t1

g2

Greg & Jens (Chicago & Bielefeld) Derivational order and ACGs ACG@10 27 / 51



Example derivation — p1 p3 p4 p3 right-to-left

⊢ p3 ∶ (G→ S)→ S

⊢ p4 ∶ G→ (T → S)→ S

g2 ∶ G ⊢ p4 g2 ∶ (T → S)→ S
(var , app)

⊢ p3 ∶ (G→ S)→ S

⊢ p1 ∶ T → G→ S

t1 ∶ T ⊢ p1 t1 ∶ G→ S
(var , app)

g1 ∶ G, t1 ∶ T ⊢ p1 t1 g1 ∶ S
(var , app)

t1 ∶ T ⊢ λg1 . p1 t1 g1 ∶ G→ S
(abs)

t1 ∶ T ⊢ p3(λg1 . p1 t1 g1) ∶ S
(var , app)

⊢ λt1 . p3(λg1 . p1 t1 g1) ∶ T → S
(abs)

g2 ∶ G ⊢ p4 g2(λt1 . p3(λg1 . p1 t1 g1)) ∶ S
(app)

⊢ λg2 . p4 g2(λt1 . p3(λg1 . p1 t1 g1)) ∶ G→ S
(abs)

⊢ p3(λg2 . p4 g2(λt1 . p3(λg1 . p1 t1 g1))) ∶ S

(app)

p3

λ

p4

λ

p3

λ

p1

g1t1

g2

Greg & Jens (Chicago & Bielefeld) Derivational order and ACGs ACG@10 27 / 51



Back towards the object language

The transformation g which identifies ‘equivalent’ derivations:

p z→
⎧⎪⎪⎪⎨⎪⎪⎪⎩

p if p ∈ P is a non-lifted rule

λy1 . . . ym f . f (py1⋯ ym) otherwise

This actually maps a derivation with order information (qua third
order lambda term) to a derivation tree, i.e.

a representation which keeps track only of which rule was used to
rewrite which nonterminal, and not the relative order in which the
rules were used.
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Example

The transformation g which identifies ‘equivalent’ derivations:

p z→
⎧⎪⎪⎪⎨⎪⎪⎪⎩

p if p ∈ P is a non-lifted rule

λy1 . . . ym f . f (py1⋯ ym) otherwise

p3 (λg2 . p3 (λg1 . p4 g2 (λt1 . p1 t1 g1 ) ) ) left-to-right

and

p3 (λg2 . p4 g2 (λt1 . p3 (λg1 . p1 t1 g1 ) ) ) right-to-left

both are identified as

p1 (p4 p3 )p3 transformation under g
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The object language

The object language of the new ACG is gotten by ‘composing’ the map g
which turns a new abstract term into the old ‘IO’ one, and the original
lexicon. (Note that this simply reuses the original ACG’s lexicon — the
object language of the new ACG is obtained by first translating it back
into the old ACG, and then interpreting the old ACG as usual.)
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The object language

We need to prove that the translation trans over types engenders an ACG
whose abstract language exactly corresponds to the derivations of the
original linear context-free tree grammar.

One problem: the notion of derivation is not rich enough. We need to
enrich it with information about which nonterminal is being rewritten.
One way to do this is to redefine the notion of derivation:

⇒⊆ (TΣ × P × N) × TΣ

That is, the one step derivation relation is between a tree (a
sentential form), a rule, a natural number, and another tree:

C[A(t1, . . . , tk)] ⇒p
n C[ t [ t1, . . . , tk ] ]

if there are exactly n − 1 nonterminal symbols to the left of the bullet
in C[●], and if there is some rule p = A(x1, . . . , xk)→ t.
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The object language

Now we want to say that each type derivation of an abstract term (a term
in the abstract language) can be put into correspondence with a unique
derivation in the CFTG, and what properties this correspondence should
have.

We will be interested in canonical (β-reduced, but η-long) terms.
That is, in terms where all argument positions are explicitly filled, but
where all applications have been computed.

Note that the abstract language is a subset of the following:

L ∶= δ Y1 ⋯ Ym ∣ ρ Y1 ⋯ Ym λY.L

where δ is a rule rewriting the start symbol, and ρ is not.
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The object language

To define a mapping ⟪⋅⟫ from such terms to derivations in the
underlying CFTG, we first need to be able to turn a term into a
sentential form. We do this in the following way:
For each nonterminal T in the CFTG, there is a type T in the ACG.
We introduce a new zero-place constant T of type T for each
nonterminal T . We define the lexicon L′′ to be the extension of L′
which maps each T to

L′′(T ) = λx1 . . . xrank(T ) . T x1 ⋯ xrank(T )

For M ∈ Λ(Σ′
G) of atomic type with FV (M) = {y1, . . . , ym} we

define

⟦M⟧ ∶= L′′((λy1, . . . , ym .M) T 1 ⋯ Tm ) ,

where yi ∶ Ti. Now ⟦M⟧ is simply the sentential form which M
represents.
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The object language

We can define the translation from terms to derivations after
introducing the following notation: Let ∣λx .M ∣ denote the number of
free variables which occur to the left of the first occurrence of x in M .

Note, this definition treats the λ-term as a syntactic object — it
distinguishes between terms which are β,η-equivalent. This is why we
are working with the unique representative of a β,η-equivalence class
which is β-reduced and η-long.

• Formally, define for any set B, any a being a constant or variable, and any lambda
terms M and N :

str(B,a) = {
ε if a ∈ B
a otherwise

str(B,λx .M) = str(B ∪ {x},M)

str(B, (MN)) = str(B,M)
⌢str(B,N)

Then set ∣λx .M ∣ ∶= ∣u∣, where str(C,M[x→ ●]) = u ●w

Greg & Jens (Chicago & Bielefeld) Derivational order and ACGs ACG@10 34 / 51



The object language

The translation can be given as

⟪M⟫ =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

S ⇒δ
1 ⟦M⟧ if M = δ y1 ⋯ ym

⟪N⟫ ⇒ρ
n+1 ⟦M⟧ if M = ρy1⋯ ym λy.N

and if n = ∣λy.N ∣

Claim

For every term M of the abstract language A(G′G), ⟪M⟫ is a derivation in
G of ⟦M⟧.
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Translating back to ACGs

⟪S ⇒δ
1 D

′⟫−1 = ⟦D′ ⟧ (λy⃗ . δ y⃗ )

⟦φ ⇒ρ
n+1 D

′ ⟧ (M ) = ⟦D′ ⟧ (λ x⃗ u⃗ v⃗ . ρ x⃗ λ z . (M u⃗z v⃗))

such that n = ∣λz . (M u⃗z v⃗ )∣

⟦φ ⟧ (M ) = M

Claim

For every complete derivation D of t, ⟦⟪D⟫−1⟧ = t.
Moreover, ⟪⋅⟫−1 is the inverse of ⟪⋅⟫.
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Third order lambda terms really are nicer

dequotienting of ‘equivalent’ derivations implicit in the use of
derivation trees

but easy to use because substitution is managed by β-reduction

canonical terms correspond exactly to derivations
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Barker’s Analysis (qua CFTG)

Some person left.

S → s(DP,v)
DP → d(det,NP )
NP → n

Some person from Jamaica left.

DP → d(det,NP ′(NP ))
NP ′(x)→ NP ′(np(x, pp(p,DP )))
NP ′(x)→ x

DP → name
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A Derivation

Some person from every city left.

S ⇒ s(DP,v)
⇒ s(d(det,NP ′(NP )), v)
⇒ s(d(det,NP ′(n)), v)
⇒ s(d(det,NP ′(np(n, pp(p,DP )))), v)
⇒ s(d(det, np(n, pp(p,DP ))), v)
⇒ s(d(det, np(n, pp(p, d(det,NP ′(NP ))))), v)
⇒ s(d(det, np(n, pp(p, d(det,NP )))), v)
⇒ s(d(det, np(n, pp(p, d(det, n)))), v)
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The abstract language of Barker’s TAG

Here are the rules, and their second-order types:

S → s(DP,v)

DP → S

(ρS)

DP → d(det,NP ′(NP ))

NP ′ → NP →DP

(ρDP )

NP → n

NP

(ρN )

NP ′(x)→ NP ′(np(x, pp(p,DP )))

NP ′ →DP → NP ′

(ρNP ′a)

NP ′(x)→ x

NP ′

(ρNP ′
b
)
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Lifting Barker’s TAG

And here the types lifted over S:

ρS ∶DP → S

ρDP ∶ NP ′ → NP →DP

ρN ∶ NP
ρNP ′a ∶ NP

′ →DP → NP ′

(NP ′ → S)→ S

ρNP ′
b
∶ NP ′
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Derivations

Some person left

basic (2nd order):
ρS (ρDP (ρNP ′

b
ρNP ) )

lifted (3rd order):

ρN(λxN . ρNP ′
b
(λxNP . ρDP (xNP xN λxD . ρS xD ) ) )

Some person from every city left

basic:

ρS (ρDP (ρNP ′a (ρNP ′b ρDP (ρNP ′
b
ρNP ) )ρNP ) )

lifted

ρN (λxnp.ρNP ′
b
(λxnp′ .ρDP (xnp′ xnp (λxd.ρNP ′

b
(λxnp′ .ρNP ′a

(xnp′ xd (λxnp′ .ρN (λxnp.ρDP (xnp′ xnp (λxd.ρS xd ))))))))))
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The Problem of Inverse Linking

Observation:

derivation order does not permit surface scope in:

every person from a city left.

The problem:

the most deeply embedded quantifier cannot be introduced until after its
‘argument’ position is present, which is introduced only once its containing
DP is present

Example

Every derivation begins:
⟪S ⇒ s(DP,v)

⇒ s(d(det,NP ′(NP )), v)⟫−1 =
λxNP ′ xN . ρDP (xNP ′ xN

λxD.ρS(xD)

)
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Constituency in derivations

A timing based approach to quantifier scope simply cannot derive surface
scope relations between embedded scope-takers: the scope relations
predicted are always inverted.

ρS

ρDP

ρNPρNP ′a

ρDP

ρNPρNP ′
b

ρNPb

The possible derivations for t are given by h(t), where
h(σ(t1, . . . , tn) ∶= σ ⋅⊔⊔{h(t1), . . . , h(tn)}
ρS ⋅ (ρDP ⋅ (ρNP ⊔⊔ (ρNP ′a ⋅ (ρNP ′b ⊔⊔ (ρDP ⋅ (ρNP ′

b
⊔⊔ ρNP ))))))
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Timing /= Derivation

Barker wants scope relations such that ρDP < ρDP
There is no derivation which provides this

No system which derives this can be expressed in terms of derivations

Whatever people mean by “timing”

it is not describable in terms of rewriting order
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Back to Barker

We simply lifted all of our types

because we wanted to look at every possible derivation order

Barker only allows for cosubstitution of certain initial trees (the DPs)

this corresponds to us only lifting types ending in DP
the resulting signature has nothing to do with derivations
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Selectively Lifting Barker’s TAG

Only types ending in DP :

ρS ∶DP → S

ρDP ∶ NP ′ → NP →DP

(DP → S)→ S

ρN ∶ NP
ρNP ′a ∶ NP

′ →DP → NP ′

ρNP ′
b
∶ NP ′
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We still don’t get the surface reading!

but this time its easy to fix:

Barker’s solution

allow a version of rule ρNP ′a to directly select for a continuized DP :

ρ′NP ′a ∶= NP
′ → ((DP → S)→ S)→ NP

A lexical solution

introduce new atomic type XP , and duplicate rules as appropriate:

XP → d(det,NP ′(NP )) (ρXP )

NP ′(x)→ NP ′(np(x, pp(p,XP ))) (ρNP ′c)

lexically interpret L(XP ) = L((DP → S)→ S)
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Conclusions

Cotags

leave the realm of context-free grammar formalisms

WGC and SGC preservation

NOT because IO and OI coincide on linear CFTGs
instead, because spellout involves going back through the 2nd order
derivation term

Complexity heuristics in ACG differ from those of TAG:

‘simpler’ to deal with in-situ readings by making lexicon higher order
than the abstract language . . . (??)
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Conclusions

Timing

intuitive and oft-occuring

not related to rewriting strategies
(we may have been the only ones to have thought this. . . )

best seen as moving from trees to (3rd order) terms
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Thank you!
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