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Introduction

Gereon (disappointedly)
everyone is moving to representations

What are representations?

• how should we think of them?

• what are the questions that we should ask?

• what is the trade-off with derivations?

What are derivations?
ibid.
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We should focus on
what information we need to support the interface maps

2



Representations of Derivations



A derivation

1. select every
every

2. select boy
boy

3. merge 1 and 2
[DP every [NP boy ]]

4. select laugh
laugh

5. merge 4 and 3
[VP laugh [DP every boy ]]

6. select will
will

7. merge 6 and 5
[IP will [VP laugh [DP every boy ]]]

8. move every boy
[IP [DP every boy ][I ′ will [VP laugh t]]]
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Derivations are processes

A derivation is the process
of constructing an expression

• derivations are important

• important things need to be thought about!

• it is helpful to be able to represent important things
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Recipes are representations of processes

• lexical items are ingredients

• merge and move instead of bake,
broil, whip, . . .
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Derivations as recipes

1. select every

2. select boy

3. merge 1 and 2

4. select laugh

5. merge 4 and 3

6. select will

7. merge 6 and 5

8. move 3 in 7
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Derivations are structured

Order is important

• Some things must happen before others

• Sometimes, it doesn’t matter

• merge det and noun

• before you merge the verb

• cream sugar and butter

• before you add the flour

Represent before-ness as dominance:
if A must happen before B, then B should be higher than A
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Representing derivations

1. select every

2. select boy

3. merge 1 and 2

4. select laugh

5. merge 4 and 3

6. select will

7. merge 6 and 5

8. move every boy

every
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Representing derivations

1. select every

2. select boy

3. merge 1 and 2

4. select laugh

5. merge 4 and 3

6. select will

7. merge 6 and 5

8. move every boy

move

merge

will merge

laugh merge

every boy

8



The structure of derivations

move

merge

will merge

laugh merge

every boy

subtrees: describe how to construct something

x dominates y: to build x, you first have to build y
x c-commands y: before x can be used, you first have to

build y
x and y are independent: they can be built in any order
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For comparison

1. cream sugar and
butter

2. add eggs to 1

3. beat 2

4. add flour to 3

5. beat 4

6. stir chocolate
chips into 5

7. bake 6

bake

stir

choc.
chips

beat

add

flour beat

add

eggs cream

butter sugar
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Infinite regress?

Do we have to build derivation trees?

NO!!!

• a recipe is a description of the process, not the process
itself

• a recipe is helpful to think about what you did/will do

You can make a cookie without writing down what
you did/are doing/will do

11



Properties of Derivations



Why do derivations look the way they do?

Why?

move

merge

will merge

laugh merge

every boy

12



Why do derivations look the way they do?

Why?
because every selects for a N, and boy is an N

move

merge

will merge

laugh merge

every boy

12



Why do derivations look the way they do?

Why?
because every selects for a N, and boy is an N

move

merge

will merge

laugh merge

every
=n

boy
n

12



Why do derivations look the way they do?

Why?
because laugh selects for an D, and every is a D

move

merge

will merge

laugh merge

every
=n

boy
n

12



Why do derivations look the way they do?

Why?
because laugh selects for an D, and every is a D

move

merge

will merge

laugh
=d

merge

every
=n
d

boy
n

12



Why do derivations look the way they do?

Why?
because will selects for a V, and laugh is a V

move

merge

will merge

laugh
=d

merge

every
=n
d

boy
n

12



Why do derivations look the way they do?

Why?
because will selects for a V, and laugh is a V

move

merge

will
=v

merge

laugh
=d
v

merge

every
=n
d

boy
n

12



Why do derivations look the way they do?

Why?
because every boy needs case, and will assigns case

move

merge

will
=v

merge

laugh
=d
v

merge

every
=n
d

boy
n

12



Why do derivations look the way they do?

Why?
because every boy needs case, and will assigns case

move
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Derivations are endocentric
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(. . . unless countercyclicity)

1. select laugh

2. select will

3. merge 2 and 1

4. select every

5. select boy

6. merge 4 and 5

7. LATE merge 6 to 1 in 3

8. move 6 in 7

move

merge

merge

will laugh

merge

every boy
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Headedness

move

merge

will merge

laugh merge

every boy
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Headedness

will
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Headedness

will

laugh

boyevery
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Headedness

will laughboyevery
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The same recipe

move

merge

will merge

laugh merge

every boy

will laughboyevery
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Derived structure

every every

17



Derived structure

every every

17



Derived structure
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Derived structure

merge
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Derived structure

move

merge

will merge

laugh merge

every boy

TP

T’

will VP

laugh DP

every boy
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Derived structure (II)

every every
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Derived structure (II)
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Derived structure (II)

move

merge

will merge

laugh merge

every boy

will

will

will laugh

laugh everyi

everyi boyj

everyi

everyi boyj
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Derived structure (III)

every every
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Derived structure (III)
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Derived structure (III)

move

merge

will merge

laugh merge

every boy

>

<i

every boy

<

will <

laugh ti
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Same or Different?

move

merge

will merge

laugh merge

every boy

>

<i

every boy

<

will <

laugh ti

will

will

will laugh

laugh everyi

everyi boyj

everyi

everyi boyj

TP

T’

will VP

laugh DP

every boy
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Comparing Derived and Derivational Structure

• easy identity conditions for derivational structure

• derived structure is a copy of the derivation

Can we replace derived structure
with derivational structure?

• what is at issue here?

21



Processing



Is derivational structure real or not?

Previously:

Do we have to build derivation trees?

NO!!!
But now . . . ?

• am I proposing to replace derived trees w/ derivation
trees?

• does this change things?

22



A parser

must construct a

1. well-formed

2. structure

the derivation

1. determines whether an expression is well-formed

2. gives you all the information you could ever want

a parser

1. must reconstruct a derivation and
2. needn’t reconstruct anything else
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Parsing top down

�
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Looking at the parsing model

• parser must reconstruct the derivation

• so the derivation is a ’real’ level of structure?

25



Compositionality



Grammatical architecture

Derivations

Sound Meaning

The question
how do we go from derivations to sounds and meanings?

26



Interpreting derivations

Derivations

Sound Meaning

a canonical idea

1. start w/ derivation tree

2. do the derivation described

3. interpret the derived object

But step 2. is just building a copy of what we started with!

27



Globality vs Locality

What is agreed upon?
never need to see the whole previous structure to decide about
outcome of next step

’phases’

28



Ultra-locality

Compositionality
only use information about immediate arguments, and mode of
combination, to determine result

 merge

α β


 = fmerge [[α]] [[β]]

if interface maps are compositional

• then we never need to construct a derivation tree

• can interpret every step as we postulate it

(an example is coming)

29
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The meaning of partial parse trees





move

merge

every boy




= λf©.[[move]](f© ([[merge]] [[every ]] [[boy ]]))

30



Deforestation of parsing

�

λx�.x�
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Deforestation of parsing
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�
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every boy
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Deforestation of parsing

move

merge

will merge

laugh

merge

every boy

λf©.([[will ]]⊕ ([[laugh]]⊕ (f© ([[every ]]⊕ [[boy ]]))))′
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Deforestation of parsing

move

merge

will merge

laugh merge

every boy

([[will ]]⊕ ([[laugh]]⊕ ([[every ]]⊕ [[boy ]])))′
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Dirty Tricks

A trick
add input structures to output domain

fmerge a b =
merge

α β

This is the point of derived structure
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Compositionality

Compositionality is a restriction when (Kracht)

1. we limit what fmerge and fmove can do, and

2. we restrict what interpretations can be

What should interpretations be?

• whatever we need

• if we end up needing craziness, we should worry

33
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One man’s junk . . .

Computer scientists
usually are happy to attach extra information to
interpretations

• as long as it is finite

Example
add categorial information to strings

because we can think of this as being part of the operations
instead:

not just merge, but merge-D-NP, merge-V-DP,. . .
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What do we need

keep track of the unchecked syntactic features
(I won’t talk about this here)

For PF
keep track of which phrases are still moving

but not of their internal structure
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An example

every
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An example
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Semantics



What is necessary for semantics?

keep track of the unchecked syntactic features
(I won’t talk about this here)

For PF
keep track of which phrases are still moving

but not of their internal structure

For LF
???

37



Revisiting meaningless parts

merge

praise merge

every boy

⇓

V

V

praise

D

D
every

N

boy

What is the contribution of praise
every boy to expressions it is part of?

a quantifier part
every(boy)(λx . . . .

and a property part praise(x)

Let’s write instead:

[every(boy)]x ` praise(x)

38
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Notation and Operations

[every(boy)]x ` praise(x)

The general case, with multiple stored quantifiers:

[Q1]x1 , . . . , [Qi ]xi ` M

The entire point is to ignore what is stored

M ↑` M
Γ ` M ∆ ` N <*>

Γ,∆ ` M N

39
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[Q1]x1 , . . . , [Qi ]xi ` M

The entire point is to ignore what is stored

M ↑` M
Γ ` M ∆ ` N <*>

Γ,∆ ` M N

39



Working with Storage

seem ↑` seem

Pass ↑` Pass

...
[every(boy)]x ` praise(x)

<*>
[every(boy)]x ` Pass(praise(x))

<*>
[every(boy)]x ` seem(Pass(praise(x)))
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Building praise every boy

praise
↑

` praise

every
↑` every

boy
↑

` boy
<*>` every boy

<*>
type mismatch!

We want to ’insert a trace’

` M
�

[M]x ` x
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Building praise every boy

praise
↑

` praise

every
↑` every

boy
↑

` boy
<*>` every boy

We want to ’insert a trace’

` M
�

[M]x ` x
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Building praise every boy

praise
↑

` praise

every
↑` every

boy
↑

` boy
<*>` every boy
�

[every boy]x ` x

We want to ’insert a trace’

` M
�

[M]x ` x
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Building praise every boy

praise
↑

` praise

every
↑` every

boy
↑

` boy
<*>` every boy
�

[every boy]x ` x
<*>

[every boy]x ` praise x

We want to ’insert a trace’

` M
�

[M]x ` x

41



Taking things out of storage

seem ↑` seem

Pass ↑` Pass

...
[every(boy)]x ` praise(x)

<*>
[every(boy)]x ` Pass(praise(x))

<*>
[every(boy)]x ` seem(Pass(praise(x)))

retrieval

Γ, [Mi ]xi ,∆ ` N
〈·〉i⊕

Γ,∆ ` Mi ⊕ (λxi .N)

42



Taking things out of storage

seem ↑` seem

Pass ↑` Pass

...
[every(boy)]x ` praise(x)

<*>
[every(boy)]x ` Pass(praise(x))

<*>
[every(boy)]x ` seem(Pass(praise(x)))

retrieval

Γ, [Mi ]xi ,∆ ` N
〈·〉i⊕

Γ,∆ ` Mi ⊕ (λxi .N)
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Taking things out of storage

seem ↑` seem

Pass ↑` Pass

...
[every(boy)]x ` praise(x)

<*>
[every(boy)]x ` Pass(praise(x))

<*>
[every(boy)]x ` seem(Pass(praise(x)))

〈·〉1FA` every(boy)(λx .seem(Pass(praise(x))))

retrieval

Γ, [Mi ]xi ,∆ ` N
〈·〉i⊕

Γ,∆ ` Mi ⊕ (λxi .N)
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Manipulating Stores

pure

M ↑` M

apply

Γ ` M ∆ ` N <*>
Γ,∆ ` M N

retrieve

Γ, [Mi ]xi ,∆ ` N
〈·〉i⊕

Γ,∆ ` Mi ⊕ (λxi .N)

store

` M
�

[M]x ` x
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Understanding stores

[M1]x1 , . . . , [Mi ]xi ` N

⇒ λk .k M1 . . . Mi (λx1, . . . , xi .N)

Example

[every boy]x ` praise x

⇒ λk .k (every boy) (λx .praise x)
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Some examples

pure

M ↑` M

⇓

M ↑
λk .k M

M↑ ≡ λk .k M

storage

` M
�

[M]x ` x

⇓

λk .k M
�

λk .k M (λx .x)

�m ≡ λk .m (λM .k M (λx .x))
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More notation

idiom brackets

write (|f a1 . . . ai |)
for f ↑ <*> a1 <*> . . . <*> ai

application

Forward f C a := f a

Backward a B f := f a
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Minimalist semantics

[[merge]] 7→ λm, n.(|m ⊕ n|)
[[merge]] 7→ λm, n.(|m ⊕�n|)

[[move]] 7→ λm.m

[[move]] 7→ λm.〈m〉k⊕

[[`]] = I(`)↑

for ⊕ ∈ {C,B}
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Unpacking the notation

Recall that

λm, n.(|m C n|)

means
λm, n.(C)↑ <*> m <*> n

C ↑` C

(m)

Γ ` M <*>
Γ ` M C

(n)

∆ ` N <*>
Γ,∆ ` M C N
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Every boy laughs

[[move]]

[[merge]]

[[will ]] [[merge]]

[[laugh]] [[merge]]

[[every ]] [[boy ]]
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Every boy laughs

[[move]]

[[merge]]

I(will)↑ [[merge]]

I(laugh)↑ [[merge]]

I(every)↑ I(boy)↑
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Every boy laughs

[[move]]

[[merge]]

` will [[merge]]

` laugh [[merge]]

` every ` boy
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Every boy laughs

[[move]]

[[merge]]

` will [[merge]]

` laugh λm, n.(|m C n|)

` every ` boy
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Every boy laughs

[[move]]

[[merge]]

` will [[merge]]

` laugh ` every boy
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Every boy laughs

[[move]]

[[merge]]

` will λm, n.(|m C �n|)

` laugh ` every boy

49



Every boy laughs

[[move]]

[[merge]]

` will [every boy]x ` laugh x
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Every boy laughs

[[move]]

λm, n.(|m C n|)

` will [every boy]x ` laugh x

49



Every boy laughs

[[move]]

[every boy]x ` will (laugh x)
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Every boy laughs

λm.〈m〉1B
[every boy]x ` will (laugh x)

49



Every boy laughs

` every boy (λx .will (laugh x))

49



Compositional interfaces

. . . allow for elimination of representational structure
Performance systems can ’use’ the derivation in ’the wrong
order’ to construct the desired interface objects
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Deforestation of parsing (Again)

�

λx�.x�
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Deforestation of parsing (Again)

move

�

λx�, f©.〈f© x�〉k⊕
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Deforestation of parsing (Again)

move

merge

� �

λx�, y�, f©.〈f© ((|x� ⊕ y�|))〉k⊕
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Deforestation of parsing (Again)

move

merge

every �

λy�, f©.〈f© ((|(λz .every ⊕ z)↑ y�|))〉k⊕
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Deforestation of parsing (Again)

move

merge

every boy

λf©.〈f© (every boy ↑)〉k⊕

51



Deforestation of parsing (Again)

move

merge

�

merge

every boy

λx�, f©.〈(|x� ⊕ (f© (every boy ↑))|)〉k⊕

51



Deforestation of parsing (Again)

move

merge

will

merge

every boy

λf©.〈(|(λz .will ⊕ z)↑ (f© (every boy ↑))|)〉k⊕
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Deforestation of parsing (Again)

move

merge

will merge

�

merge

every boy

λx�, f©.〈(|(λz .will ⊕ z)↑ (|x� ⊕ (f© (every boy ↑))|)|)〉k⊕

51



Deforestation of parsing (Again)

move

merge

will merge

laugh

merge

every boy

λf©.〈(|(λz .will (laugh ⊕ z))↑ (f© (every boy ↑))|)〉k⊕
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Deforestation of parsing (Again)

move

merge

will merge

laugh merge

every boy

every boy (λz .will (laugh z))↑
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Conclusions

Derivations have structure

• with clear identity conditions

• of just the kind we want to assign

Interface maps
focus our attention on what matters:

how much information (representation) we need to
compositionally interpret our derivations

Derived structure
is a familiar trick to circumvent compositionality
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