
Representations in Syntax

Greg Kobele

Thomas Müntzer Lecture

Universität Leipzig

Introduction

Gereon (disappointedly)
everyone is moving to representations

What are representations?

• how should we think of them?

• what are the questions that we should ask?

• what is the trade-off with derivations?

What are derivations?
ibid.

1

Introduction

Gereon (disappointedly)
everyone is moving to representations

What are representations?

• how should we think of them?

• what are the questions that we should ask?

• what is the trade-off with derivations?

What are derivations?
ibid.

1

We should focus on
what information we need to support the interface maps

2

Representations of Derivations

A derivation

1. select every
every

2. select boy
boy

3. merge 1 and 2
[DP every [NP boy]]

4. select laugh
laugh

5. merge 4 and 3
[VP laugh [DP every boy]]

6. select will
will

7. merge 6 and 5
[IP will [VP laugh [DP every boy]]]

8. move every boy
[IP [DP every boy][I ′ will [VP laugh t]]]

3

A derivation

1. select every
every

2. select boy
boy

3. merge 1 and 2
[DP every [NP boy]]

4. select laugh
laugh

5. merge 4 and 3
[VP laugh [DP every boy]]

6. select will
will

7. merge 6 and 5
[IP will [VP laugh [DP every boy]]]

8. move every boy
[IP [DP every boy][I ′ will [VP laugh t]]]

3

A derivation

1. select every
every

2. select boy
boy

3. merge 1 and 2
[DP every [NP boy]]

4. select laugh
laugh

5. merge 4 and 3
[VP laugh [DP every boy]]

6. select will
will

7. merge 6 and 5
[IP will [VP laugh [DP every boy]]]

8. move every boy
[IP [DP every boy][I ′ will [VP laugh t]]]

3

A derivation

1. select every
every

2. select boy
boy

3. merge 1 and 2
[DP every [NP boy]]

4. select laugh
laugh

5. merge 4 and 3
[VP laugh [DP every boy]]

6. select will
will

7. merge 6 and 5
[IP will [VP laugh [DP every boy]]]

8. move every boy
[IP [DP every boy][I ′ will [VP laugh t]]]

3

A derivation

1. select every
every

2. select boy
boy

3. merge 1 and 2
[DP every [NP boy]]

4. select laugh
laugh

5. merge 4 and 3
[VP laugh [DP every boy]]

6. select will
will

7. merge 6 and 5
[IP will [VP laugh [DP every boy]]]

8. move every boy
[IP [DP every boy][I ′ will [VP laugh t]]]

3

A derivation

1. select every
every

2. select boy
boy

3. merge 1 and 2
[DP every [NP boy]]

4. select laugh
laugh

5. merge 4 and 3
[VP laugh [DP every boy]]

6. select will
will

7. merge 6 and 5
[IP will [VP laugh [DP every boy]]]

8. move every boy
[IP [DP every boy][I ′ will [VP laugh t]]]

3

A derivation

1. select every
every

2. select boy
boy

3. merge 1 and 2
[DP every [NP boy]]

4. select laugh
laugh

5. merge 4 and 3
[VP laugh [DP every boy]]

6. select will
will

7. merge 6 and 5
[IP will [VP laugh [DP every boy]]]

8. move every boy
[IP [DP every boy][I ′ will [VP laugh t]]]

3

A derivation

1. select every
every

2. select boy
boy

3. merge 1 and 2
[DP every [NP boy]]

4. select laugh
laugh

5. merge 4 and 3
[VP laugh [DP every boy]]

6. select will
will

7. merge 6 and 5
[IP will [VP laugh [DP every boy]]]

8. move every boy
[IP [DP every boy][I ′ will [VP laugh t]]]

3

A derivation

1. select every
every

2. select boy
boy

3. merge 1 and 2
[DP every [NP boy]]

4. select laugh
laugh

5. merge 4 and 3
[VP laugh [DP every boy]]

6. select will
will

7. merge 6 and 5
[IP will [VP laugh [DP every boy]]]

8. move every boy
[IP [DP every boy][I ′ will [VP laugh t]]]

3

Derivations are processes

A derivation is the process
of constructing an expression

• derivations are important

• important things need to be thought about!

• it is helpful to be able to represent important things

4

Recipes are representations of processes

• lexical items are ingredients

• merge and move instead of bake,
broil, whip, . . .

5

Derivations as recipes

1. select every

2. select boy

3. merge 1 and 2

4. select laugh

5. merge 4 and 3

6. select will

7. merge 6 and 5

8. move 3 in 7

6

Derivations are structured

Order is important

• Some things must happen before others

• Sometimes, it doesn’t matter

• merge det and noun

• before you merge the verb

• cream sugar and butter

• before you add the flour

Represent before-ness as dominance:
if A must happen before B, then B should be higher than A

7

Representing derivations

1. select every

2. select boy

3. merge 1 and 2

4. select laugh

5. merge 4 and 3

6. select will

7. merge 6 and 5

8. move every boy

every

8

Representing derivations

1. select every

2. select boy

3. merge 1 and 2

4. select laugh

5. merge 4 and 3

6. select will

7. merge 6 and 5

8. move every boy

every

8

Representing derivations

1. select every

2. select boy

3. merge 1 and 2

4. select laugh

5. merge 4 and 3

6. select will

7. merge 6 and 5

8. move every boy

every boy

8

Representing derivations

1. select every

2. select boy

3. merge 1 and 2

4. select laugh

5. merge 4 and 3

6. select will

7. merge 6 and 5

8. move every boy

merge

every boy

8

Representing derivations

1. select every

2. select boy

3. merge 1 and 2

4. select laugh

5. merge 4 and 3

6. select will

7. merge 6 and 5

8. move every boy

laugh merge

every boy

8

Representing derivations

1. select every

2. select boy

3. merge 1 and 2

4. select laugh

5. merge 4 and 3

6. select will

7. merge 6 and 5

8. move every boy

merge

laugh merge

every boy

8

Representing derivations

1. select every

2. select boy

3. merge 1 and 2

4. select laugh

5. merge 4 and 3

6. select will

7. merge 6 and 5

8. move every boy

will merge

laugh merge

every boy

8

Representing derivations

1. select every

2. select boy

3. merge 1 and 2

4. select laugh

5. merge 4 and 3

6. select will

7. merge 6 and 5

8. move every boy

merge

will merge

laugh merge

every boy

8

Representing derivations

1. select every

2. select boy

3. merge 1 and 2

4. select laugh

5. merge 4 and 3

6. select will

7. merge 6 and 5

8. move every boy

move

merge

will merge

laugh merge

every boy

8

The structure of derivations

move

merge

will merge

laugh merge

every boy

subtrees: describe how to construct something

x dominates y: to build x, you first have to build y
x c-commands y: before x can be used, you first have to

build y
x and y are independent: they can be built in any order

9

The structure of derivations

move

merge

will merge

laugh merge

every boy

subtrees: describe how to construct something
x dominates y: to build x, you first have to build y

x c-commands y: before x can be used, you first have to
build y

x and y are independent: they can be built in any order

9

The structure of derivations

move

merge

will merge

laugh merge

every boy

subtrees: describe how to construct something
x dominates y: to build x, you first have to build y
x c-commands y: before x can be used, you first have to

build y

x and y are independent: they can be built in any order

9

The structure of derivations

move

merge

will merge

laugh merge

every boy

subtrees: describe how to construct something
x dominates y: to build x, you first have to build y
x c-commands y: before x can be used, you first have to

build y
x and y are independent: they can be built in any order

9

For comparison

1. cream sugar and
butter

2. add eggs to 1

3. beat 2

4. add flour to 3

5. beat 4

6. stir chocolate
chips into 5

7. bake 6

bake

stir

choc.
chips

beat

add

flour beat

add

eggs cream

butter sugar

10

Infinite regress?

Do we have to build derivation trees?

NO!!!

• a recipe is a description of the process, not the process
itself

• a recipe is helpful to think about what you did/will do

You can make a cookie without writing down what
you did/are doing/will do

11

Properties of Derivations

Why do derivations look the way they do?

Why?

move

merge

will merge

laugh merge

every boy

12

Why do derivations look the way they do?

Why?
because every selects for a N, and boy is an N

move

merge

will merge

laugh merge

every boy

12

Why do derivations look the way they do?

Why?
because every selects for a N, and boy is an N

move

merge

will merge

laugh merge

every
=n

boy
n

12

Why do derivations look the way they do?

Why?
because laugh selects for an D, and every is a D

move

merge

will merge

laugh merge

every
=n

boy
n

12

Why do derivations look the way they do?

Why?
because laugh selects for an D, and every is a D

move

merge

will merge

laugh
=d

merge

every
=n
d

boy
n

12

Why do derivations look the way they do?

Why?
because will selects for a V, and laugh is a V

move

merge

will merge

laugh
=d

merge

every
=n
d

boy
n

12

Why do derivations look the way they do?

Why?
because will selects for a V, and laugh is a V

move

merge

will
=v

merge

laugh
=d
v

merge

every
=n
d

boy
n

12

Why do derivations look the way they do?

Why?
because every boy needs case, and will assigns case

move

merge

will
=v

merge

laugh
=d
v

merge

every
=n
d

boy
n

12

Why do derivations look the way they do?

Why?
because every boy needs case, and will assigns case

move

merge

will
=v
+k

merge

laugh
=d
v

merge

every
=n
d
-k

boy
n

12

Derivations are endocentric

move

merge

will
=v
+k

merge

laugh
=d
v

merge

every
=n
d
-k

boy
n

13

Derivations are endocentric

move

merge

will
=v
+k

merge

laugh
=d
v

merge

every
=n
d
-k

boy
n

13

Derivations are endocentric

move

merge

will
=v
+k

merge

laugh
=d
v

merge

every
=n
d
-k

boy
n

13

Derivations are endocentric

move

merge

will
=v
+k

merge

laugh
=d
v

merge

every
=n
d
-k

boy
n

13

Derivations are endocentric

move

merge

will
=v
+k

merge

laugh
=d
v

merge

every
=n
d
-k

boy
n

13

Derivations are endocentric

move

merge

will merge

laugh merge

every boy

13

(. . . unless countercyclicity)

1. select laugh

2. select will

3. merge 2 and 1

4. select every

5. select boy

6. merge 4 and 5

7. LATE merge 6 to 1 in 3

8. move 6 in 7

move

merge

merge

will laugh

merge

every boy

14

Headedness

move

merge

will merge

laugh merge

every boy

15

Headedness

will

merge

laugh merge

every boy

15

Headedness

will

laugh

merge

every boy

15

Headedness

will

laugh

every

boy

15

Headedness

will

laugh

every

boy

15

Headedness

will

laugh

every boy

15

Headedness

will

laugh

boyevery

15

Headedness

will laughboyevery

15

The same recipe

move

merge

will merge

laugh merge

every boy

will laughboyevery

16

Derived structure

every every

17

Derived structure

every every

17

Derived structure

every boy every boy

17

Derived structure

merge

every boy

DP

every boy

17

Derived structure

laugh merge

every boy

laugh DP

every boy

17

Derived structure

merge

laugh merge

every boy

VP

laugh DP

every boy

17

Derived structure

will merge

laugh merge

every boy

will VP

laugh DP

every boy

17

Derived structure

merge

will merge

laugh merge

every boy

T’

will VP

laugh DP

every boy

17

Derived structure

move

merge

will merge

laugh merge

every boy

TP

T’

will VP

laugh DP

every boy

17

Derived structure (II)

every every

18

Derived structure (II)

every every

18

Derived structure (II)

every boy every boy

18

Derived structure (II)

merge

every boy

every

every boy

18

Derived structure (II)

laugh merge

every boy

laugh every

every boy

18

Derived structure (II)

merge

laugh merge

every boy

laugh

laugh every

every boy

18

Derived structure (II)

will merge

laugh merge

every boy

will laugh

laugh every

every boy

18

Derived structure (II)

merge

will merge

laugh merge

every boy

will

will laugh

laugh every

every boy

18

Derived structure (II)

move

merge

will merge

laugh merge

every boy

will

will

will laugh

laugh everyi

everyi boyj

everyi

everyi boyj

18

Derived structure (III)

every every

19

Derived structure (III)

every every

19

Derived structure (III)

every boy every boy

19

Derived structure (III)

merge

every boy

<

every boy

19

Derived structure (III)

laugh merge

every boy

laugh <

every boy

19

Derived structure (III)

merge

laugh merge

every boy

<

laugh <

every boy

19

Derived structure (III)

will merge

laugh merge

every boy

will <

laugh <

every boy

19

Derived structure (III)

merge

will merge

laugh merge

every boy

<

will <

laugh <

every boy

19

Derived structure (III)

move

merge

will merge

laugh merge

every boy

>

<i

every boy

<

will <

laugh ti

19

Same or Different?

move

merge

will merge

laugh merge

every boy

>

<i

every boy

<

will <

laugh ti

will

will

will laugh

laugh everyi

everyi boyj

everyi

everyi boyj

TP

T’

will VP

laugh DP

every boy

20

Comparing Derived and Derivational Structure

• easy identity conditions for derivational structure

• derived structure is a copy of the derivation

Can we replace derived structure
with derivational structure?

• what is at issue here?

21

Processing

Is derivational structure real or not?

Previously:

Do we have to build derivation trees?

NO!!!
But now . . . ?

• am I proposing to replace derived trees w/ derivation
trees?

• does this change things?

22

A parser

must construct a

1. well-formed

2. structure

the derivation

1. determines whether an expression is well-formed

2. gives you all the information you could ever want

a parser

1. must reconstruct a derivation and
2. needn’t reconstruct anything else

23

A parser

must construct a

1. well-formed

2. structure

the derivation

1. determines whether an expression is well-formed

2. gives you all the information you could ever want

a parser 1. must reconstruct a derivation

and
2. needn’t reconstruct anything else

23

A parser

must construct a

1. well-formed

2. structure

the derivation

1. determines whether an expression is well-formed

2. gives you all the information you could ever want

a parser 1. must reconstruct a derivation and
2. needn’t reconstruct anything else

23

Parsing top down

�

24

Parsing top down

move

�

24

Parsing top down

move

merge

� �

24

Parsing top down

move

merge

every �

24

Parsing top down

move

merge

every boy

24

Parsing top down

move

merge

�

merge

every boy

24

Parsing top down

move

merge

will

merge

every boy

24

Parsing top down

move

merge

will merge

�

merge

every boy

24

Parsing top down

move

merge

will merge

laugh

merge

every boy

24

Parsing top down

move

merge

will merge

laugh merge

every boy

24

Looking at the parsing model

• parser must reconstruct the derivation

• so the derivation is a ’real’ level of structure?

25

Compositionality

Grammatical architecture

Derivations

Sound Meaning

The question
how do we go from derivations to sounds and meanings?

26

Interpreting derivations

Derivations

Sound Meaning

a canonical idea

1. start w/ derivation tree

2. do the derivation described

3. interpret the derived object

But step 2. is just building a copy of what we started with!

27

Globality vs Locality

What is agreed upon?
never need to see the whole previous structure to decide about
outcome of next step

’phases’

28

Ultra-locality

Compositionality
only use information about immediate arguments, and mode of
combination, to determine result

 merge

α β

 = fmerge [[α]] [[β]]

if interface maps are compositional

• then we never need to construct a derivation tree

• can interpret every step as we postulate it

(an example is coming)

29

Ultra-locality

Compositionality
only use information about immediate arguments, and mode of
combination, to determine result

 merge

α β

 = fmerge [[α]] [[β]]

if interface maps are compositional

• then we never need to construct a derivation tree

• can interpret every step as we postulate it

(an example is coming) 29

The meaning of partial parse trees

move

merge

every boy

= λf©.[[move]](f© ([[merge]] [[every]] [[boy]]))

30

Deforestation of parsing

�

λx�.x�

31

Deforestation of parsing

move

�

λx�, f©.(f© x�)′

31

Deforestation of parsing

move

merge

� �

λx�, y�, f©.(f© (x� ⊕ y�))′

31

Deforestation of parsing

move

merge

every �

λy�, f©.(f© ([[every]]⊕ y�))′

31

Deforestation of parsing

move

merge

every boy

λf©.(f© ([[every]]⊕ [[boy]]))′

31

Deforestation of parsing

move

merge

�

merge

every boy

λx�, f©.(x� ⊕ (f© ([[every]]⊕ [[boy]])))′

31

Deforestation of parsing

move

merge

will

merge

every boy

λf©.([[will]]⊕ (f© ([[every]]⊕ [[boy]])))′

31

Deforestation of parsing

move

merge

will merge

�

merge

every boy

λx�, f©.([[will]]⊕ (x� ⊕ (f© ([[every]]⊕ [[boy]]))))′

31

Deforestation of parsing

move

merge

will merge

laugh

merge

every boy

λf©.([[will]]⊕ ([[laugh]]⊕ (f© ([[every]]⊕ [[boy]]))))′

31

Deforestation of parsing

move

merge

will merge

laugh merge

every boy

([[will]]⊕ ([[laugh]]⊕ ([[every]]⊕ [[boy]])))′

31

Dirty Tricks

A trick
add input structures to output domain

fmerge a b =
merge

α β

This is the point of derived structure

32

Dirty Tricks

A trick
add input structures to output domain

fmerge a b =
merge

α β

This is the point of derived structure

32

Compositionality

Compositionality is a restriction when (Kracht)

1. we limit what fmerge and fmove can do, and

2. we restrict what interpretations can be

What should interpretations be?

• whatever we need

• if we end up needing craziness, we should worry

33

Compositionality

Compositionality is a restriction when (Kracht)

1. we limit what fmerge and fmove can do, and

2. we restrict what interpretations can be

What should interpretations be?

• whatever we need

• if we end up needing craziness, we should worry

33

One man’s junk . . .

Computer scientists
usually are happy to attach extra information to
interpretations

• as long as it is finite

Example
add categorial information to strings

because we can think of this as being part of the operations
instead:

not just merge, but merge-D-NP, merge-V-DP,. . .

34

One man’s junk . . .

Computer scientists
usually are happy to attach extra information to
interpretations

• as long as it is finite

Example
add categorial information to strings

because we can think of this as being part of the operations
instead:

not just merge, but merge-D-NP, merge-V-DP,. . .

34

One man’s junk . . .

Computer scientists
usually are happy to attach extra information to
interpretations

• as long as it is finite

Example
add categorial information to strings

because we can think of this as being part of the operations
instead:

not just merge, but merge-D-NP, merge-V-DP,. . .

34

What do we need

keep track of the unchecked syntactic features
(I won’t talk about this here)

For PF
keep track of which phrases are still moving

but not of their internal structure

35

What do we need

keep track of the unchecked syntactic features
(I won’t talk about this here)

For PF
keep track of which phrases are still moving

but not of their internal structure

35

An example

every

36

An example

(every, =n.d.-k)

every

36

An example

(every, =n.d.-k) (boy, n)

every boy

36

An example

(every, =n.d.-k) (boy, n)

(every boy, d.-k)

merge

every boy

36

An example

(laugh, =d.v)

(every, =n.d.-k) (boy, n)

(every boy, d.-k)

laugh merge

every boy

36

An example

(laugh, =d.v)

(every, =n.d.-k) (boy, n)

(every boy, d.-k)

(laugh, v), (every boy, -k)

merge

laugh merge

every boy

36

An example

(will, =v.+k.s)

(laugh, =d.v)

(every, =n.d.-k) (boy, n)

(every boy, d.-k)

(laugh, v), (every boy, -k)

will merge

laugh merge

every boy

36

An example

(will, =v.+k.s)

(laugh, =d.v)

(every, =n.d.-k) (boy, n)

(every boy, d.-k)

(laugh, v), (every boy, -k)

(will laugh, +k.s), (every boy, -k)

merge

will merge

laugh merge

every boy

36

An example

(will, =v.+k.s)

(laugh, =d.v)

(every, =n.d.-k) (boy, n)

(every boy, d.-k)

(laugh, v), (every boy, -k)

(will laugh, +k.s), (every boy, -k)

(every boy will laugh, s)

move

merge

will merge

laugh merge

every boy

36

An example

(will, =v.+k.s)

(laugh, =d.v)

(every, =n.d.-k) (boy, n)

(every boy, d.-k)

(laugh, v), (every boy, -k)

(will laugh, +k.s), (every boy, -k)

(every boy will laugh, s)

move

merge

will merge

laugh merge

every boy

36

Semantics

What is necessary for semantics?

keep track of the unchecked syntactic features
(I won’t talk about this here)

For PF
keep track of which phrases are still moving

but not of their internal structure

For LF
???

37

Revisiting meaningless parts

merge

praise merge

every boy

⇓

V

V

praise

D

D
every

N

boy

What is the contribution of praise
every boy to expressions it is part of?

a quantifier part
every(boy)(λx

and a property part praise(x)

Let’s write instead:

[every(boy)]x ` praise(x)

38

Revisiting meaningless parts

merge

praise merge

every boy

⇓

V

V

praise

D

D
every

N

boy

What is the contribution of praise
every boy to expressions it is part of?

a quantifier part
every(boy)(λx

and a property part praise(x)

Let’s write instead:

[every(boy)]x ` praise(x)

38

Revisiting meaningless parts

merge

praise merge

every boy

⇓

V

V

praise

D

D
every

N

boy

What is the contribution of praise
every boy to expressions it is part of?

a quantifier part
every(boy)(λx

and a property part praise(x)

Let’s write instead:

[every(boy)]x ` praise(x)

38

Notation and Operations

[every(boy)]x ` praise(x)

The general case, with multiple stored quantifiers:

[Q1]x1 , . . . , [Qi]xi ` M

The entire point is to ignore what is stored

M ↑` M
Γ ` M ∆ ` N <*>

Γ,∆ ` M N

39

Notation and Operations

[every(boy)]x ` praise(x)

The general case, with multiple stored quantifiers:

[Q1]x1 , . . . , [Qi]xi ` M

The entire point is to ignore what is stored

M ↑` M
Γ ` M ∆ ` N <*>

Γ,∆ ` M N

39

Working with Storage

seem ↑` seem

Pass ↑` Pass

...
[every(boy)]x ` praise(x)

<*>
[every(boy)]x ` Pass(praise(x))

<*>
[every(boy)]x ` seem(Pass(praise(x)))

40

Building praise every boy

praise
↑

` praise

every
↑` every

boy
↑

` boy
<*>` every boy

<*>
type mismatch!

We want to ’insert a trace’

` M
�

[M]x ` x

41

Building praise every boy

praise
↑

` praise

every
↑` every

boy
↑

` boy
<*>` every boy

We want to ’insert a trace’

` M
�

[M]x ` x

41

Building praise every boy

praise
↑

` praise

every
↑` every

boy
↑

` boy
<*>` every boy
�

[every boy]x ` x

We want to ’insert a trace’

` M
�

[M]x ` x

41

Building praise every boy

praise
↑

` praise

every
↑` every

boy
↑

` boy
<*>` every boy
�

[every boy]x ` x
<*>

[every boy]x ` praise x

We want to ’insert a trace’

` M
�

[M]x ` x

41

Taking things out of storage

seem ↑` seem

Pass ↑` Pass

...
[every(boy)]x ` praise(x)

<*>
[every(boy)]x ` Pass(praise(x))

<*>
[every(boy)]x ` seem(Pass(praise(x)))

retrieval

Γ, [Mi]xi ,∆ ` N
〈·〉i⊕

Γ,∆ ` Mi ⊕ (λxi .N)

42

Taking things out of storage

seem ↑` seem

Pass ↑` Pass

...
[every(boy)]x ` praise(x)

<*>
[every(boy)]x ` Pass(praise(x))

<*>
[every(boy)]x ` seem(Pass(praise(x)))

retrieval

Γ, [Mi]xi ,∆ ` N
〈·〉i⊕

Γ,∆ ` Mi ⊕ (λxi .N)

42

Taking things out of storage

seem ↑` seem

Pass ↑` Pass

...
[every(boy)]x ` praise(x)

<*>
[every(boy)]x ` Pass(praise(x))

<*>
[every(boy)]x ` seem(Pass(praise(x)))

〈·〉1FA` every(boy)(λx .seem(Pass(praise(x))))

retrieval

Γ, [Mi]xi ,∆ ` N
〈·〉i⊕

Γ,∆ ` Mi ⊕ (λxi .N)

42

Manipulating Stores

pure

M ↑` M

apply

Γ ` M ∆ ` N <*>
Γ,∆ ` M N

retrieve

Γ, [Mi]xi ,∆ ` N
〈·〉i⊕

Γ,∆ ` Mi ⊕ (λxi .N)

store

` M
�

[M]x ` x

43

Understanding stores

[M1]x1 , . . . , [Mi]xi ` N

⇒ λk .k M1 . . . Mi (λx1, . . . , xi .N)

Example

[every boy]x ` praise x

⇒ λk .k (every boy) (λx .praise x)

44

Some examples

pure

M ↑` M

⇓

M ↑
λk .k M

M↑ ≡ λk .k M

storage

` M
�

[M]x ` x

⇓

λk .k M
�

λk .k M (λx .x)

�m ≡ λk .m (λM .k M (λx .x))

45

More notation

idiom brackets

write (|f a1 . . . ai |)
for f ↑ <*> a1 <*> . . . <*> ai

application

Forward f C a := f a

Backward a B f := f a

46

Minimalist semantics

[[merge]] 7→ λm, n.(|m ⊕ n|)
[[merge]] 7→ λm, n.(|m ⊕�n|)

[[move]] 7→ λm.m

[[move]] 7→ λm.〈m〉k⊕

[[`]] = I(`)↑

for ⊕ ∈ {C,B}

47

Unpacking the notation

Recall that

λm, n.(|m C n|)

means
λm, n.(C)↑ <*> m <*> n

C ↑` C

(m)

Γ ` M <*>
Γ ` M C

(n)

∆ ` N <*>
Γ,∆ ` M C N

48

Every boy laughs

[[move]]

[[merge]]

[[will]] [[merge]]

[[laugh]] [[merge]]

[[every]] [[boy]]

49

Every boy laughs

[[move]]

[[merge]]

I(will)↑ [[merge]]

I(laugh)↑ [[merge]]

I(every)↑ I(boy)↑

49

Every boy laughs

[[move]]

[[merge]]

` will [[merge]]

` laugh [[merge]]

` every ` boy

49

Every boy laughs

[[move]]

[[merge]]

` will [[merge]]

` laugh λm, n.(|m C n|)

` every ` boy

49

Every boy laughs

[[move]]

[[merge]]

` will [[merge]]

` laugh ` every boy

49

Every boy laughs

[[move]]

[[merge]]

` will λm, n.(|m C �n|)

` laugh ` every boy

49

Every boy laughs

[[move]]

[[merge]]

` will [every boy]x ` laugh x

49

Every boy laughs

[[move]]

λm, n.(|m C n|)

` will [every boy]x ` laugh x

49

Every boy laughs

[[move]]

[every boy]x ` will (laugh x)

49

Every boy laughs

λm.〈m〉1B
[every boy]x ` will (laugh x)

49

Every boy laughs

` every boy (λx .will (laugh x))

49

Compositional interfaces

. . . allow for elimination of representational structure
Performance systems can ’use’ the derivation in ’the wrong
order’ to construct the desired interface objects

50

Deforestation of parsing (Again)

�

λx�.x�

51

Deforestation of parsing (Again)

move

�

λx�, f©.〈f© x�〉k⊕

51

Deforestation of parsing (Again)

move

merge

� �

λx�, y�, f©.〈f© ((|x� ⊕ y�|))〉k⊕

51

Deforestation of parsing (Again)

move

merge

every �

λy�, f©.〈f© ((|(λz .every ⊕ z)↑ y�|))〉k⊕

51

Deforestation of parsing (Again)

move

merge

every boy

λf©.〈f© (every boy ↑)〉k⊕

51

Deforestation of parsing (Again)

move

merge

�

merge

every boy

λx�, f©.〈(|x� ⊕ (f© (every boy ↑))|)〉k⊕

51

Deforestation of parsing (Again)

move

merge

will

merge

every boy

λf©.〈(|(λz .will ⊕ z)↑ (f© (every boy ↑))|)〉k⊕

51

Deforestation of parsing (Again)

move

merge

will merge

�

merge

every boy

λx�, f©.〈(|(λz .will ⊕ z)↑ (|x� ⊕ (f© (every boy ↑))|)|)〉k⊕

51

Deforestation of parsing (Again)

move

merge

will merge

laugh

merge

every boy

λf©.〈(|(λz .will (laugh ⊕ z))↑ (f© (every boy ↑))|)〉k⊕

51

Deforestation of parsing (Again)

move

merge

will merge

laugh merge

every boy

every boy (λz .will (laugh z))↑

51

Conclusions

Derivations have structure

• with clear identity conditions

• of just the kind we want to assign

Interface maps
focus our attention on what matters:

how much information (representation) we need to
compositionally interpret our derivations

Derived structure
is a familiar trick to circumvent compositionality

52

	Representations of Derivations
	Properties of Derivations
	Processing
	Compositionality
	Semantics

