Representations in Syntax

Greg Kobele

Thomas Muntzer Lecture

Universitat Leipzig

Introduction

Gereon _ (disappointedly)
everyone Is moving to representations

Introduction
Gereon (disappointedly)
everyone is moving to representations
What are representations?

e how should we think of them?
e what are the questions that we should ask?

e what is the trade-off with derivations?

What are derivations?
ibid.

We should focus on
what information we need to support the interface maps

Representations of Derivations

A derivation

A derivation

1. select every

every

A derivation

1. select every

every

2. select boy
boy

A derivation

1. select every

every

2. select boy
boy

3. merge 1 and 2

[DP every [NP boy]]

A derivation

1. select every

every
2. select boy

boy
3. merge 1 and 2

[pp every [yp boy ||

4. select laugh
laugh

A derivation

1. select every

every
2. select boy
boy
3. merge 1 and 2
[pp every [yp boy ||
4. select laugh
laugh
5. merge 4 and 3
[ve laugh [pp every boy]

A derivation

1. select every

every
2. select boy

boy
3. merge 1 and 2

[op every [vp boy]]
4. select laugh

laugh
5. merge 4 and 3

[ve laugh [pp every boy]
6. select will

will

A derivation

1. select every 7. merge 6 and 5
every [ip will [vp laugh [pp every boy []]
2. select boy
boy
3. merge 1 and 2
[pp every [yp boy ||
4. select laugh
laugh
5. merge 4 and 3
[ve laugh [pp every boy]
6. select will

will

A derivation

1. select every 7. merge 6 and 5
every [ip will [vp laugh [pp every boy []]
2. select boy 8. move every boy
boy [ip[pp every boy |[; will [vp laugh t]]]

3. merge 1 and 2
[pp every [yp boy ||
4. select laugh
laugh
5. merge 4 and 3
[ve laugh [pp every boy]
6. select will

will

Derivations are processes

A derivation is the process
of constructing an expression

e derivations are important
e important things need to be thought about!

e it is helpful to be able to represent important things

Recipes are representations of processes

lexical items are ingredients

e merge and move instead of bake,

broil, whip, ...

Chocolate Chip Cookies

11/41sp nakmg soda
1 cup sngar 2 m eu
2 eqgs cup nuts (cptmna\)
1_cup brown sugar { larg! ackag
Totpvania - thacsee s O

. Proheat oven to 350° F.
g Croam sugars and butter. Add eggs and

cookis sheet. Bake 12 minutes or
until brown.

Derivations as recipes

@ N @ & H B =

select every
select boy

merge I and 2
select laugh
merge 4 and 3
select will

merge 6 and 5

move 3in 7

Derivations are structured

Order is important
e Some things must happen before others

e Sometimes, it doesn't matter

e cream sugar and butter

e merge det and noun
e before you add the flour

e before you merge the verb

Represent before-ness as dominance:
if A must happen before B, then B should be higher than A

Representing derivations

Representing derivations

1. select every

every

Representing derivations

1. select every

2. select boy

every boy

Representing derivations

1. select every
2. select boy
3. merge Iand 2

merge
N\
every boy

Representing derivations

= @ =

select every
select boy

merge I and 2
select laugh

laugh merge

/s
every

N

boy

Representing derivations

oogm @ =

select every
select boy
merge I and 2
select laugh
merge 4 and 3

merge

7N
laugh merge
RN

every boy

Representing derivations

@ o > @

select every
select boy
merge I and 2
select laugh
merge 4 and 3

select will

will

merge
7N

laugh merge

/s
every

N

boy

Representing derivations

N e &> W =

select every
select boy
merge I and 2
select laugh
merge 4 and 3
select will

merge 6 and 5

merge
VRN
will merge
7N
laugh merge
RN
every boy

Representing derivations

O N B B Ol A

select every
select boy
merge I and 2
select laugh
merge 4 and 3
select will
merge 6 and 5

move every boy

move
/
merge
VRN
will merge
7N
laugh merge
RN
every boy

The structure of derivations

subtrees:

move
/
merge
VRN
will merge
AN
laugh ~ merge
/N
every boy

describe how to construct something

The structure of derivations

move
/
merge
VRN
will merge
AN
laugh ~ merge
/N
every boy

subtrees: describe how to construct something
x dominates y: to build x, you first have to build y

The structure of derivations

move
/
merge
VRN
will merge
AN
laugh ~ merge
/N
every boy

subtrees: describe how to construct something
x dominates y: to build x, you first have to build y

x c-commands y: before x can be used, you first have to
build y

The structure of derivations

move
/
merge
VRN
will merge
AN
laugh ~ merge
/N
every boy

subtrees: describe how to construct something
x dominates y: to build x, you first have to build y
x c-commands y: before x can be used, you first have to
build y
x and y are independent: they can be built in any order

For comparison

1. cream sugar and
butter

add eggs to 1
beat 2
add flour to 3
beat 4

o oA W N

stir chocolate
chips into 5

7. bake 6

bake
\

stir

/ N\

choc. beat

. \
chips add
/ AN

flour beat
\

add

7N\
eggs cream

VAN
butter sugar

10

Infinite regress?

Do we have to build derivation trees?

NO!!

e a recipe is a description of the process, not the process
itself
e a recipe is helpful to think about what you did/will do

You can make a cookie without writing down what
you did/are doing/will do

11

Properties of Derivations

Why do derivations look the way they do?

Why?
move
/
merge
AN
will merge
AN
laugh ~ M¢8€
/ \

every boy

12

Why do derivations look the way they do?

Why?
because every selects for a N, and boy is an N
move
/
merge
AN
will merge
AN
laugh Meree
/ \

every boy

12

Why do derivations look the way they do?

Why?
because every selects for a N, and boy is an N

move

/
merge
N
il merge

AN
merge

/ N\

every boy

laugh

12

Why do derivations look the way they do?

Why?
because laugh selects for an D, and every is a D

move

/
merge
N
il merge

N
merge

/ N\

every boy

=n n

laugh

12

Why do derivations look the way they do?

Why?
because laugh selects for an D, and every is a D
move
/
merge
AN
will’ merge
AN
laugh Meree
—q / N\
every boy
=n n

d

12

Why do derivations look the way they do?

Why?
because will selects for a V, and laugh is a V
move
/
merge
AN
will merge
AN
laugh Meree
SEN
every boy
=n n

d

12

Why do derivations look the way they do?

Why?
because will selects for a V, and laugh is a V
move
/
merge
AN
will merge
_ AN
= laugh merge
“q / N\
every boy
A\
=n n

d

12

Why do derivations look the way they do?

Why?
because every boy needs case, and will assigns case
move
/
merge
AN
will merge
- N
= laugh merge
ARVAN
every boy
v
=n n

d

12

Why do derivations look the way they do?

Why?
because every boy needs case, and will assigns case
move
/
merge
AN
will merge
laugh Meree
+k / \
=d
every boy
\%
=n n
d

12

Derivations are endocentric

move
/
merge
N
merge

 laugh MeES

+=d / \

every boy

will

\Y%

13

Derivations are endocentric

move

/

merge

N
merge

. AN
 laugh MeES

+=d / \

every boy

will

\Y%

13

Derivations are endocentric

move
/
merge
N
merge

 laugh MeES

+=d / \

every boy

will

\Y%

13

Derivations are endocentric

move
/
merge
N
merge

N

=v
e merge
+k

RAVAN

every boy

will

\Y%

13

Derivations are endocentric

move
/
merge
N
merge

 laugh MeEC

+=d / \

every boy

will

\Y%

13

Derivations are endocentric

|will| [merge]

laugh

|rnerge|

every boy

13

o0 N o o0 B~ W NN =

. select laugh

. select will

. merge 2 and 1

. select every

. select boy

. merge 4 and 5

. LATE merge 6to 1in 3

. move 6in7

. unless countercyclicity)

will

laugh

every

boy

14

Headedness

|will| [merge]

laugh

|rnerge|

every boy

15

Headedness

will

merge

laugh | merge |

every

boy

15

Headedness

will

laugh

merge

every

boy

15

Headedness

will

laugh

boy

15

Headedness

will

laugh

every

boy

15

Headedness

will

laugh

every

boy

15

Headedness

15

Headedness

15

The same recipe

|will | [merge]

laugh

|rnerge|

every boy

laugh

16

Derived structure

every

every

17

Derived structure

every

every

17

Derived structure

every

boy

every

boy

17

Derived structure

merge
/N
every

boy

DP
VRN
every

boy

17

Derived structure

laugh ~ merge laugh DP
SN /N
every boy every boy

Derived structure

merge VP
VAN 7N\
laugh ~ merge laugh DP
SN /N

every boy every boy

17

Derived structure

will merge
7N
laugh ~ merge
PN
every

boy

17

Derived structure

merge
VRN
will merge
7N
laugh ~ merge
RN
every boy

17

Derived structure

move
/
merge
VRN
will merge
7N
laugh ~ merge
RN
every boy

17

Derived structure (Il)

every

every

18

Derived structure (Il)

every

every

18

Derived structure (1)

every boy

every

boy

18

Derived structure (1)

merge
N\
every boy

every
/N
every

boy

18

Derived structure (1)

laugh ~ merge
RN
every boy

laugh every
PN
every

boy

18

Derived structure (1)

merge
7N
laugh ~ merge
RN
every boy

laugh

/N
laugh every
/N

every

boy

18

Derived structure (1)

will merge
7N
laugh ~ merge
N\
every boy

will

laugh

/N
laugh every
/N

every

boy

18

Derived structure (1)

merge
VRN
will merge
7N
laugh ~ merge
RN
every boy

will

/ N
will laugh
/N
laugh every
/N

every boy

18

Derived structure (1)

move
/
merge
VRN
will merge
7N
laugh ~ merge
RN
every boy

will
- ~
will every;
/N /N
will laugh every; boy;
/N
laugh every;
/N

every; boy;

18

Derived structure (111)

every

every

19

Derived structure (111)

every

every

19

Derived structure (111)

every boy

every

boy

19

Derived structure (111)

merge
N\
every boy

/N
every

boy

19

Derived structure (111)

laugh ~ merge
RN
every boy

laugh <

every

boy

19

Derived structure (111)

merge
7N
laugh ~ merge
RN
every boy

RN
laugh <

every

boy

19

Derived structure (111)

will merge
7N
laugh ~ merge
N\
every boy

will

laugh <

every

boy

19

Derived structure (111)

merge
VRN
will merge
7N
laugh ~ merge
RN
every boy

will

laugh <

every

boy

19

Derived structure (111)

move
. >
merge
VRN <./ \<
will Tergi P N AN
laugh merge every boy will <
7N
;o laugh t;

every boy

19

Same or Different?

move
/
merge
VAN
will merge
RN
laugh merge
/N
every boy
will
will every;
/N /N
will laugh every; boy;
7N
laugh every;
/N
every; boy;

/
every

<./>\

N /
boy will <
7/

laugh t;

20

Comparing Derived and Derivational Structure

e ecasy identity conditions for derivational structure

e derived structure is a copy of the derivation

Can we replace derived structure
with derivational structure?

e what is at issue here?

21

Processing

Is derivational structure real or not?

Previously:
Do we have to build derivation trees?
NOI!I

But now ...7?

e am | proposing to replace derived trees w/ derivation
trees?

e does this change things?

22

A parser

must construct a
1. well-formed
2. structure

the derivation

1. determines whether an expression is well-formed

2. gives you all the information you could ever want

a parser

23

A parser

must construct a
1. well-formed
2. structure

the derivation

1. determines whether an expression is well-formed

2. gives you all the information you could ever want

a parser 1. must reconstruct a derivation

23

A parser

must construct a

1. well-formed

2. structure

the derivation

1. determines whether an expression is well-formed

2. gives you all the information you could ever want

a parser 1. must reconstruct a derivation and
2. needn't reconstruct anything else

23

Parsing top down

24

Parsing top down

move

O—CO—

24

Parsing top down

move

merge
/N

24

Parsing top down

move

merge

VAN
every

24

Parsing top down

move

merge
/N
every boy

24

Parsing top down

move

merge

/
U
merge

/N
every boy

24

Parsing top down

move

merge

o

merge
/N
every boy

24

Parsing top down

move
|
merge
VAN
will merge
/
OJ
merge
/N

every boy

24

Parsing top down

move
|
merge
VRN
will merge
/
laugh \9
merge
RN

every boy

24

Parsing top down

move
me‘rge
VRN
will merge
RN
laugh ~ merge

/N
every boy

24

Looking at the parsing model

e parser must reconstruct the derivation

e so the derivation is a 'real’ level of structure?

25

Compositionality

Grammatical architecture

Sound Meaning

Derivations

The question
how do we go from derivations to sounds and meanings?

26

Interpreting derivations

Sound Meaning

Derivations

a canonical idea

1. start w/ derivation tree
2. do the derivation described

3. interpret the derived object

But step 2. is just building a copy of what we started with!

27

Globality vs Locality

What is agreed upon?
never need to see the whole previous structure to decide about

outcome of next step

'phases’

28

Ultra-locality

Compositionality
only use information about immediate arguments, and mode of

combination, to determine result

merge

/ \ — Frerge [0] [4]
« B

29

Ultra-locality

Compositionality
only use information about immediate arguments, and mode of

combination, to determine result

merge

/ \ — Frerge [0] [4]
« B

if interface maps are compositional
e then we never need to construct a derivation tree

e can interpret every step as we postulate it

(an example is coming) ”

The meaning of partial parse trees

move

merge

/N
every

boy

= Mo [move](fo ([merge] [every] [boy]))

30

Deforestation of parsing

/\XD XO

31

Deforestation of parsing

move

:

)\XD, fo.(fo XD),

31

Deforestation of parsing

move

0

merge
/N
OJ 0J

Axa, yo, fo-(fo (xa @ yo))’

31

Deforestation of parsing

move

merge
VAN
every 0

Mos fo - (fo ([every] @ yo))'

31

Deforestation of parsing

move

merge
/N
every boy

Mo (fo ([every] @ [boy]))'

31

Deforestation of parsing

move

merge

/
U
merge

/N
every boy

Ao, fo.(a & (fo ([every] & [boy])))

31

Deforestation of parsing

move

merge

o o

merge
RN
every boy

Moy ([will] & (fo ([every] @ [boy])))

31

Deforestation of parsing

move
|
merge
VRN
will merge
/
L]
merge
/N
every boy

A, oy ([will] ® (xa @ (fo ([every] @ [boy]))))’

Deforestation of parsing

move
|
merge
VRN
will merge
/
laugh \9
merge
e AN
every boy

Mo ([will] & ([laugh] & (fo ([every] & [boy]))))’

31

Deforestation of parsing

move
|
merge
VAN
will merge
7N
laugh ~ merge
VRN
every boy

([will] & ([laugh] & ([every] & [[boy])))’

31

Dirty Tricks

A trick

add input structures to output domain

merge

fmerge ab= / \
a B

32

Dirty Tricks

A trick
add input structures to output domain

merge

fmerge ab= /\
a B

This is the point of derived structure

32

Compositionality

Compositionality is a restriction when

1. we limit what fierge and frove can do, and

2. we restrict what interpretations can be

(Kracht)

33

Compositionality

Compositionality is a restriction when (Kracht)

1. we limit what fierge and frove can do, and

2. we restrict what interpretations can be

What should interpretations be?

e whatever we need

e if we end up needing craziness, we should worry

33

One man'’s junk ...

Computer scientists
usually are happy to attach extra information to

interpretations

e as long as it is finite

34

One man'’s junk ...

Computer scientists
usually are happy to attach extra information to

interpretations

e as long as it is finite

Example
add categorial information to strings

34

One man'’s junk ...

Computer scientists
usually are happy to attach extra information to

interpretations

e as long as it is finite

Example
add categorial information to strings

because we can think of this as being part of the operations
instead:

not just merge, but merge-D-NP, merge-V-DP,. ..

34

What do we need

keep track of the unchecked syntactic features
(I won't talk about this here)

35

What do we need

keep track of the unchecked syntactic features
(I won't talk about this here)

For PF
keep track of which phrases are still moving

but not of their internal structure

35

An example

36

An example

every

(every,=n.d.-k)

36

An example

every

(every,=n.d.-k)

boy

(boy,n)

36

An example

merge
e AN
every boy

(every,=n.d.-k) (boy, n)

(every boy, d.-k)

36

An example

(laugh, =d.v)

laugh ~ merge
/N
every boy

(every,=n.d.-k) (boy, n)

(every boy, d.-k)

36

An example

merge
7N
laugh merge
VRN
every boy

(every,=n.d.-k) (boy, n)

(laugh, =d.v) (every boy, d.-k)

(laugh, v), (every boy, -k)

36

An example

(will, =v.+k.s)

will merge
7N
laugh merge
VRN
every boy

(every,=n.d.-k) (boy, n)

(laugh, =d.v) (every boy, d.-k)

(laugh, v), (every boy, -k)

36

An example

merge
VAN
will merge
7N
laugh merge
VRN
every boy

(every,=n.d.-k) (boy, n)

(laugh, =d.v) (every boy, d.-k)
(will, =v.+k.s) (laugh, v), (every boy, -k)

(will laugh, +k.s), (every boy, -k)

36

An example

move
/
merge
VRN
will merge
7N
laugh merge
e AN
every boy

(every,=n.d.-k) (boy, n)

(laugh, =d.v) (every boy, d.-k)
(will, =v.+k.s) (laugh, v), (every boy, -k)

(will laugh, +k.s), (every boy, -k)

(every boy will laugh, s)

36

An example

move
/
merge
VRN
will merge
7N
laugh merge
e AN
every boy

(every,=n.d.-k) (boy, n)

(laugh, =d.v) (every boy, d.-k)
(will, =v.+k.s) (laugh, v), (every boy, -k)

(will laugh, +k.s), (every boy, -k)

(every boy will laugh, s)

36

Semantics

What is necessary for semantics?

keep track of the unchecked syntactic features
(I won't talk about this here)

For PF
keep track of which phrases are still moving

but not of their internal structure

For LF
777

37

Revisiting meaningless parts

merge
4 N
praise merge
ever}j boy
U
V
VAN
V D
) VAN
praise D N
|

every boy

What is the contribution of praise

every boy to expressions it is part of ?

38

Revisiting meaningless parts

merge
4 N
praise merge
ever}j boy
U
V
VAN
V D
) VAN
praise D N
|

every boy

What is the contribution of praise
every boy to expressions it is part of ?

a quantifier part
every(boy)(Ax. ...

and a property part praise(x)

38

Revisiting meaningless parts

merge
4 N
praise merge
/ N
every boy

\’
V
VRN
V D
‘ /N
praise D N
‘ I

every boy

What is the contribution of praise
every boy to expressions it is part of ?

a quantifier part
every(boy)(Ax. ...

and a property part praise(x)

Let's write instead:

[every(boy)], - praise(x)

38

Notation and Operations

[every(boy)], I praise(x)

The general case, with multiple stored quantifiers:

[Ql]x17 0009 [Qi]x; =M

39

Notation and Operations

[every(boy)], I praise(x)

The general case, with multiple stored quantifiers:
(@], [Q FM

The entire point is to ignore what is stored

N

<k >

M r=m
A

AF
- M LAFMN

39

Working with Storage

Pass " :
seem - Pass [every(boy)], I praise(x)
- seem [every(boy)], - Pass(praise(x))

[every(boy)], - seem(Pass(praise(x)))

<k >

<k>

40

Building praise every boy

every boy R
praise - every + boy s
I praise - every boy .

type mismatch!

41

Building praise every boy

every boy R
praise F every + boy s
I praise - every boy

We want to 'insert a trace’

FM

M, - x -

41

Building praise every boy

every boy
F every + boy I*>
praise - every boy
I praise [every boy| F x

We want to 'insert a trace’

FM

[M], - x

41

Building praise every boy

every boy
- every + boy I*>
praise - every boy
I praise [every boy] F x

<*k>

[every boy]|, F praise x
We want to ’'insert a trace’
FM

[M], - x

41

Taking things out of storage

Pass " :
seem - Pass [every(boy)], I praise(x)
- seem [every(boy)], - Pass(praise(x))

[every(boy)], - seem(Pass(praise(x)))

<k >

<k>

42

Taking things out of storage

Pass " :
seem - Pass [every(boy)], I praise(x) e
- seem [every(boy)], - Pass(praise(x))

<k >

[every(boy)], - seem(Pass(praise(x)))

retrieval

MM, AFN
CLAF M @ (Ox.N) Ve

42

Taking things out of storage

Pass " :
seem - Pass [every(boy)], I praise(x)
<k>
+ seem [every(boy)], - Pass(praise(x))
<*k>
[every(boy)], - seem(Pass(praise(x))) "
"/FA

- every(boy)(Ax.seem(Pass(praise(x))))

retrieval

MM, AFN
MLAF M@ (Ax.N) Ve

42

Manipulating Stores

pure
M1
retrieve
MM, AFN

[LAF M & (Ox.N)

@

apply
(FM__AEN
LAFMN
store
- M
— [
[M], = x

43

Understanding stores

(M., [M], +N

= A\k.k M]_ M,' ()\X]_,...,X,‘.N)

x17 "

Example

[every boy| F praise x

= M\k.k (every boy) (\x.praise x)

44

Some examples

pure

M = \k.k M

storage

M
[MIFx

Ak.k M
Ak.k M (Ax.x)

Om = Ak.m (AM.k M (Ax.x))

45

More notation

idiom brackets

write (f a; ... a)

for T <x> a; <x>

application

Forward f <<a:=f a
Backward a> f :=f a

L <k> g

46

Minimalist semantics

[merge] — Am, n.(m & n))

[merge] — Am, n.(m & On))

[move] — Am.m

[move] — Am.(m)X

[=z(0)"

for ® € {«,>}

47

Unpacking the notation

Recall that
Am, n.(m < n))

means
Am, n.(<)! <x> m <x> n

(m)

<
—1 (n)
F < FH\/I<*>

[FM< AEN

TAFM<N

>

48

Every boy laughs

[[m?veﬂ

e
[will] [merge]
Lovghl ~ [merge]
[[every]]/ \[[boy]]

49

Every boy laughs

[[m?veﬂ

[merge]
Z(will)? [merge]

Z(laugh)t [merge]
Z(every)' Z(boy)"

49

Every boy laughs

[[m?ve]]

[merge]
e ~
= will [merge]
- laugh [merge]
e N
- every F boy

49

Every boy laughs

[[m?ve]]

[merge]
e N
- will [merge]

= laugh Am, n.(m < n))

e N

- every F boy

49

Every boy laughs

[[m?ve]]

[merge]
e N
- will [merge]

- laugh F every boy

49

Every boy laughs

[[m?ve]]

[merge]
e ~
Fwill - Am, n.(m < On)

~N

- laugh F every boy

49

Every boy laughs

—~

= will

[[m?ve]]

[merge]
[every boy], F laugh x

49

Every boy laughs

Am,

—~

= will

[[m?ve]]

n.(m < n))

[every boy], F laugh x

49

Every boy laughs

[move]

[every boy], = will (laugh x)

49

Every boy laughs

Am.(m)L

[every boy], = will (laugh x)

49

Every boy laughs

F every boy (Ax.will (laugh x))

49

Compositional interfaces

... allow for elimination of representational structure
Performance systems can 'use’ the derivation in 'the wrong

order’ to construct the desired interface objects

50

Deforestation of parsing (Again)

/\XD XO

51

Deforestation of parsing (Again)

move

:

O

Ao, fo - (fo xa)&

51

Deforestation of parsing (Again)

move

0

merge
/N
OJ 0J

Mg, yo, fo-{fo (%o @ yal))s

51

Deforestation of parsing (Again)

move

0

merge
VAN
every 0

Ao, fo-(fo (((Az-every @ 2) ya)))&

51

Deforestation of parsing (Again)

move

0

merge
/N
every boy

Mo(fo (every boyT)>é<B

51

Deforestation of parsing (Again)

move

merge

/
U
merge

/N
every boy

Axo, f5.{(x0 @ (o (every boy"))))k

51

Deforestation of parsing (Again)

move

merge

o

merge
RN
every boy

Mo A{((Az.will & z)! (fo (every boyT))|)>g

51

Deforestation of parsing (Again)

move
\
merge
VRN
will merge
/
[
merge
RN
every boy

Mo, fo (((Az.will & z)T (x0 @ (fo (every boyT))|) |)>g

51

Deforestation of parsing (Again)

move
\
merge
VRN
will merge
/
laugh \9
merge
/N
every boy

Moy {((Az.will (laugh ® 2))T (fo (every boy™))))K

51

Deforestation of parsing (Again)

move
|
merge
VAN
will merge
7N
laugh ~ merge
VRN
every boy

every boy (\z.will (laugh z))"

51

Conclusions

Derivations have structure

e with clear identity conditions

e of just the kind we want to assign

Interface maps
focus our attention on what matters:

how much information (representation) we need to
compositionally interpret our derivations

Derived structure
is a familiar trick to circumvent compositionality

52

	Representations of Derivations
	Properties of Derivations
	Processing
	Compositionality
	Semantics

