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Intro

Grammar formalisms, like programming languages, are useful
because

they allow us to factor our explanation of linguistic be-
haviour into a statement of abstract regularities (the
grammar), and a description of how these are com-
puted online (the parser/parser-generator)
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Intro

Current MG parsing algorithms

• needlessly explode state space (making beam search
implausible)

• are based on (exponentially less succinct) MCFGs

• have only extrema on GLC lattice (inherited from MCFG)
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Intro

We exploit the structure of MGs
to define a MG-specific TD parsing strategy

• structures search space by ’sharing’ infinite classes of
items

• bringing us closer to LC

This gives a formal (very literal) reconstruction of popular
psycholinguistic ideas about the human sentence processing
mechanism
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MGs



Overview

a formalization of Chomsky’s “minimalist program”

• I think they are an exact formalization

• I am interested in them because they are a bridge
between linguistics and computer science
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Properties

MGs belong to family of MCS grammar formalisms

• TAG is Monadic CFTG, and MG is (contained in) MRTG
• Share the regularity of derivation trees

• TALs are all well-nested MCFLs, but MLs are the
non-well-nested MCFLs
separation: (Kanazawa & Salvati, 2010)

{w#w | w ∈ L, L is in CFL− EDT0L}

well-nested MCFLs can have crossing dependencies,
but not between syntactically complicated objects
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Minimalist Grammars

• To specify a grammar, we need to specify two things:
1. The features

(which features we will use in our grammar)
2. The lexicon

(which syntactic feature sequences are assigned to which
words)
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Features

Features come in pairs

• =x and x

• +y and -y

Like in CG, categories are structured

• list of features

tradition calls categories: feature bundles

=n.d.-k
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Data structure

Binary branching trees

• internal node labels: > and <

• leaf labels: (w , δ) and t

Headed trees

head( >(u,v) ) = head( v )
head( <(u,v) ) = head( u )
head( l ) = l

�

1
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Merge

=x.� x.�

� �

+ )

<

1
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Move

+y.�

-y

�

)

>

1

SMC
No other possible mover
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Move

+y.�

-y

�

)

>

1

SMC
No other possible mover 8



A working example

boy n
every =n.d.-k
laugh =d.v
will =v.+k.s
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Representing derivations

1. select every

2. select boy

3. merge 1 and 2
[DP every [NP boy ]]

4. select laugh

5. merge 4 and 3
[VP laugh [DP every boy ]]

6. select will

7. merge 6 and 5
[IP will [VP laugh [DP every boy ]]]

8. move every boy
[IP [DP every boy ][I ′ will [VP laugh t]]]

every
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Representing derivations

1. select every

2. select boy

3. merge 1 and 2
[DP every [NP boy ]]
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every
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Representing derivations

1. select every

2. select boy

3. merge 1 and 2
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4. select laugh

5. merge 4 and 3
[VP laugh [DP every boy ]]
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7. merge 6 and 5
[IP will [VP laugh [DP every boy ]]]
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Representing derivations

1. select every

2. select boy

3. merge 1 and 2
[DP every [NP boy ]]

4. select laugh

5. merge 4 and 3
[VP laugh [DP every boy ]]

6. select will

7. merge 6 and 5
[IP will [VP laugh [DP every boy ]]]
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[IP [DP every boy ][I ′ will [VP laugh t]]]

merge
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Representing derivations

1. select every

2. select boy

3. merge 1 and 2
[DP every [NP boy ]]

4. select laugh

5. merge 4 and 3
[VP laugh [DP every boy ]]

6. select will

7. merge 6 and 5
[IP will [VP laugh [DP every boy ]]]

8. move every boy
[IP [DP every boy ][I ′ will [VP laugh t]]]

move

merge

will merge

laugh merge

every boy
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The determinacy of movement

move

merge

will merge

laugh merge

every boy

Attract Closest

Minimal Link

Shortest Move

SMC
can only be 1 thing moving for
a particular reason at any time
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The determinacy of movement

move

merge

will merge

laugh merge
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Attract Closest

Minimal Link

Shortest Move
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can only be 1 thing moving for
a particular reason at any time
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The determinacy of movement

move

merge

will merge

laugh merge

every boy

The proof objects of
minimalism

• are first order (i.e. trees)

• the proofs of any
proposition (e.g. S) form
a regular tree language
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• are first order (i.e. trees)

• the proofs of any
proposition (e.g. S) form
a regular tree language

11



Towards MCFGs (I.)

• a categorized string is a pair φ = (u, δ), where

u is a string
δ is a feature bundle

• an expression is a finite sequence of categorized strings

φ0, . . . , φn

• each φi , 1 ≤ i ≤ n represents a moving subtree
• φ0 represents the rest of the tree
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Towards MCFGs (II.)

=x.� x.�

� �

+ )

<

1

(u, =x.γ), φ1, . . . , φm (v , x.δ), ψ1, . . . , ψn

(u, γ), φ1, . . . , φm, (v , δ), ψ1, . . . , ψn
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Towards MCFGs (II.)

=x.� x

�

+ )

<

1

(u, =x.γ), φ1, . . . , φm (v , x), ψ1, . . . , ψn

(uv , γ), φ1, . . . , φm, ψ1, . . . , ψn
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Towards MCFGs (III.)

+y.�

-y

�

)

>

1

(u, +y.γ), φ1, . . . , φj−1, (v , -y), φj+1, . . . , φm

(vu, γ), φ1, . . . , φj−1, φj+1, . . . , φm
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Automata

An rule like:

(u, +y.γ), φ1, . . . , φj−1, (v , -y), φj+1, . . . , φm

(vu, γ), φ1, . . . , φj−1, φj+1, . . . , φm

gives us an ldmbutts (tree-to-string) production:

move(q(u, v1, . . . , vj−1, v , vj+1, . . . , vm))

→ q′(vu, v1, . . . , vj−1, vj+1, . . . , vm)

where

q = 〈+y.γ, δ1, . . . , δj−1, -y, δj , . . . , δm〉
q′ = 〈γ, δ1, . . . , δj−1, δj , . . . , δm〉
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An example

every
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An example

(every, =n.d.-k)

every
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An example

(every, =n.d.-k) (boy, n)

every boy
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An example

(every, =n.d.-k) (boy, n)

(every boy, d.-k)

merge

every boy
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An example

(laugh, =d.v)

(every, =n.d.-k) (boy, n)

(every boy, d.-k)

laugh merge

every boy
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An example

(laugh, =d.v)

(every, =n.d.-k) (boy, n)

(every boy, d.-k)

(laugh, v), (every boy, -k)

merge

laugh merge

every boy
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An example

(will, =v.+k.s)

(laugh, =d.v)

(every, =n.d.-k) (boy, n)

(every boy, d.-k)

(laugh, v), (every boy, -k)

will merge

laugh merge

every boy
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An example

(will, =v.+k.s)

(laugh, =d.v)

(every, =n.d.-k) (boy, n)

(every boy, d.-k)

(laugh, v), (every boy, -k)

(will laugh, +k.s), (every boy, -k)

merge

will merge

laugh merge

every boy
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An example

(will, =v.+k.s)

(laugh, =d.v)

(every, =n.d.-k) (boy, n)

(every boy, d.-k)

(laugh, v), (every boy, -k)

(will laugh, +k.s), (every boy, -k)

(every boy will laugh, s)

move

merge

will merge

laugh merge

every boy
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An example

(will, =v.+k.s)

(laugh, =d.v)

(every, =n.d.-k) (boy, n)

(every boy, d.-k)

(laugh, v), (every boy, -k)

(will laugh, +k.s), (every boy, -k)

(every boy will laugh, s)

move

merge

will merge

laugh merge

every boy
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A slightly larger example

boy n
every =n.d.-k
laugh =d.v
will =v.+k.s

to =v.i
seem =i.v
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More derivations

move

merge

will merge

laugh merge

every boy

merge

seem merge

to merge∗
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Yoda

boy n
every =n.d.-k
laugh =d.v
will =v.+k.s

to =v.i
seem =i.v

ε =v.v.-top
ε =s.+top.c
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Remnant movement

move

merge

ε move

merge

will merge

ε merge

laugh merge

every boy
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Parsing



Top-down parsing

Items represent cuts of derivation tree

�
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Top-down parsing
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Top-down parsing

Items represent cuts of derivation tree

move

merge
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laugh merge

every boy
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Local trees

this exploits:
MG derivation trees form a local set

s
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Local trees

this exploits:
MG derivation trees form a local set
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Local trees

this exploits:
MG derivation trees form a local set

move
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=v.+k.s v;-k
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Local trees

this exploits:
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=d.v d.-k
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=d.v merge

=n.d.-k n

22



Local trees

this exploits:
MG derivation trees form a local set

move

merge

=v.+k.s merge

=d.v merge

every n

22



Local trees

this exploits:
MG derivation trees form a local set

move

merge

=v.+k.s merge

=d.v merge

every boy

22



Local trees

this exploits:
MG derivation trees form a local set
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Local trees

this exploits:
MG derivation trees form a local set
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Undoing movement

• When we hypothesize a move node:
move

+k.s;-k

• We next must hypothesize where the mover is:

move

merge

� merge

� d.-k
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Appearances can be deceiving

Every boy will (seem to)∗ laugh

move

merge

⇤ merge

⇤ d.-k

move

merge

⇤ merge

⇤ merge

⇤ merge

⇤ d.-k

move

merge

⇤ merge

⇤ merge

⇤ merge

⇤ merge

⇤ merge

⇤ d.-k

1
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If only. . .

move

merge

� ©
merge

� d.-k

• Might work in this case,
• but is there a non-analysis specific principle?
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If only. . .

move

merge

� ©
merge

� d.-k

• Might work in this case,
• but is there a non-analysis specific principle?
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Structure in derivations

MG derivations are subregular (Graf)
(Tier-based) strictly local

strict locality conjunction of negative literals
(with immediate successor)

tier-based relativized successors
(CT , where T ⊆ Σ)

26



Example (strings)

Primary stress
C := Cσ́

Have primary stress ¬($ C $)

Have at most one stress ¬(σ́ C σ́)
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Example (trees)

Movement (Graf)
C := C+k,-k

Movers gonna move ¬($ C `)

No movement without movement ¬(move C $)

No competition ¬(move C `1, `2)
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Argument structure via n-grams

Every lexical item ` appears in a derivation with a unique local
context

• depends exclusively on positive feature sequence
(=x and +y)

(will, =v.+k.s)
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Exploiting regularities in derivations

• When we hypothesize a move node:
move

+k.s;-k

• We know it immediately dominates a mover (on the
relevant tier):

move

+k.s

d.-k
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A sketch

�
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A sketch

move

�
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� �
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A sketch

move

merge

will merge

laugh merge
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A basic ’hole’ data structure

α g

xs

• g is a gorn address
where we are in the derived tree

• xs is a (finite) list of

• derivations with holes
elements in separate tiers

• . . . paired with feature bundles
information about the occupied tier

data Hole t b x = Hole t [(b,x)]
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Unmerge1

• Given
α : g

xs

• merge could have applied
merge

=x.α : g0

us

x : g1

vs

xs = sort (us ++ vs)
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Unmerge1

• Given
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• merge could have applied
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vs
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Unmove

• Given
α : g

xs

• move could have applied
move

+y.α : g1

x.-y : g0

x.-y

xs
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Unmove

• Given
α : g

xs

• move could have applied
move

+y.α : g1

x.-y : g0

x.-y

xs
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Unmerge2

• Given
α g

xs

• merge could have applied to a mover
merge

=x.α g1

us

x.-y

vs

xs = sort (us ++ vs)
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Unmerge2
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Unmerge2
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• merge could have applied to a mover
merge
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x.-y

vs
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Completion (I)

• Given
x.-y
x.-y

• this is the tree you’re looking for
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Completion (I)

• Given
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• this is the tree you’re looking for
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ATNs and filling gaps

• Psycholinguists
• you process moved items (fillers)
• and then you try to find where they moved from (gap)

• TD MG parsing
to process filler, first find gap!

• Here
• unmove constructs a filler
• unmerge2 constructs a gap
• complete fills the gap
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Remnant movement

move

merge

ε move

merge

will merge

ε merge

laugh merge

every boy

boy n
every =n.d.-k
laugh =d.v
will =v.+k.s

ε =v.v.-top
ε =s.+top.s
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Remnant movement

s ε
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Remnant movement

move

+top.s 1

v.-top 0

v.-top
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Remnant movement
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=v.v.-top 00 v 01
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Remnant movement
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Remnant movement
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Remnant movement
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Remnant movement
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Remnant movement
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Remnant movement
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Enforcing the SMC

Recall:

1. Movers gonna move : ¬($ C `)

2. No movement without movement : ¬(move C $)

3. No competition : ¬(move C `1, `2)

How are these being enforced?

1. Two ways of generating a mover:

2. move nodes and movers postulated simultaneously

3. via restrictions

39
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2. No movement without movement : ¬(move C $)

3. No competition : ¬(move C `1, `2)

How are these being enforced?

1. Two ways of generating a mover:

• via unmerge2 (i.e. a gap)
must be filled

• via unmove (i.e. a filler)
born dominated

2. move nodes and movers postulated simultaneously

3. via restrictions
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Restricting Unmove

α : g

xs

⇒

move

+y.α : g1

x.-y : g0

x.-y

xs

As long as
nothing in xs is on the -y tier
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Restricting Unmerge2

α g

xs

⇒
merge

=z.α g1

us

z.-y

vs

If there is something on the -y tier in xs
it must complete this gap

in other words, the -y tier is hereby blocked!
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Completion (II)

A partial proof tree with an n-ary hole
is an operation of type

(α1 → · · · → αn → t)→ t

The ’α’s are the types of the arguments to the hole

Upper bounds on

1. number of holes

2. their arity

depending on number of -y feature types in lexicon
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Completion (III)

x.-y

∆

x.-y
xs

⇒ ∆[us1, . . . , usk ]

Conditions

xs = sort ( us1 ++ ... ++ usk )

each substitution path is free for the relevant tier
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A Note on Semantic Interpretation

[[merge]] 7→ λm, n.(|m ⊕ n|)
[[merge]] 7→ λm, n.(|m ⊕�n|)

[[move]] 7→ λm.m

[[move]] 7→ λm.〈m〉k⊕

[[`]] = I(`)↑

(| f m n |) = do
x <- m
y <- n
return (f x y)
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The meaning of partial parse trees





move

merge

every boy





= λf©.[[move]](f© ([[merge]] [[every ]] [[boy ]]))

= λf©.〈f© ([[every ]] [[boy ]])↑〉kFA
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Conclusion : Exploiting structure

• MGs have more structure in their derivations than is
being made use of

• how can we take advantage of it?
• Simple intersection w/ regular sets:

(will, =rvs.+pkq.pcs), where δ(q,will) = r

• how to do scheduling to obtain a version of the present
algorithm?

• Left-corner parsing (for CFGs) has similar looking partial
proof trees

• can we use these ideas to get a left-corner parser for MGs
and solve the problem of left branch movement?
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