Higher Order Structures in Minimalist Derivations

Greg Kobele

TAG+13
Universität Leipzig

Intro

Intro

Grammar formalisms, like programming languages, are useful because
they allow us to factor our explanation of linguistic behaviour into a statement of abstract regularities (the grammar), and a description of how these are computed online (the parser/parser-generator)

Intro

Current MG parsing algorithms

- needlessly explode state space (making beam search implausible)
- are based on (exponentially less succinct) MCFGs
- have only extrema on GLC lattice (inherited from MCFG)

Intro

We exploit the structure of MGs to define a MG-specific TD parsing strategy

- structures search space by 'sharing' infinite classes of items
- bringing us closer to LC

This gives a formal (very literal) reconstruction of popular psycholinguistic ideas about the human sentence processing mechanism

MGs

Overview

a formalization of Chomsky's "minimalist program"

- I think they are an exact formalization
- I am interested in them because they are a bridge between linguistics and computer science

Properties

MGs belong to family of MCS grammar formalisms

- TAG is Monadic CFTG, and MG is (contained in) MRTG
- Share the regularity of derivation trees
- TALs are all well-nested MCFLs, but MLs are the non-well-nested MCFLs separation:
(Kanazawa \& Salvati, 2010)

$$
\{w \# w \mid w \in L, L \text { is in } C F L-E D T 0 L\}
$$

well-nested MCFLs can have crossing dependencies, but not between syntactically complicated objects

Minimalist Grammars

- To specify a grammar, we need to specify two things:

1. The features
(which features we will use in our grammar)
2. The lexicon
(which syntactic feature sequences are assigned to which words)

Features

Features come in pairs

- $=x$ and x
- +y and -y

Like in CG, categories are structured

- list of features
tradition calls categories: feature bundles

$$
=n . d .-\mathrm{k}
$$

Data structure

Binary branching trees

- internal node labels: > and <
- leaf labels: (w, δ) and t

Headed trees

```
head( >(u,v) ) = head( v )
head( < (u,v) ) = head( u )
head( l ) = l
```


Merge

Move

Move

SMC
No other possible mover

A working example

$$
\begin{array}{ll}
\text { boy } & \mathrm{n} \\
\text { every } & =\mathrm{n} . \mathrm{d} .-\mathrm{k} \\
\text { laugh } & =\mathrm{d} . \mathrm{v} \\
\text { will } & =\mathrm{v} .+\mathrm{k} . \mathrm{s}
\end{array}
$$

Representing derivations

Representing derivations

1. select every
every

Representing derivations

1. select every
2. select boy
every boy

Representing derivations

1. select every
2. select boy
3. merge 1 and 2

$$
\text { [DP every [} N P \text { boy]] }
$$

Representing derivations

1. select every
2. select boy
3. merge 1 and 2
[DP every [NP boy]]
4. select laugh

Representing derivations

1. select every
2. select boy
3. merge 1 and 2

$$
\text { [DP every [} N P \text { boy]] }
$$

4. select laugh
5. merge 4 and 3
[$v P$ laugh [DP every boy]]

Representing derivations

1. select every
2. select boy
3. merge 1 and 2
[DP every [NP boy]]
4. select laugh
5. merge 4 and 3
[vP laugh [DP every boy]]
6. select will

Representing derivations

1. select every
2. select boy
3. merge 1 and 2
[DP every [NP boy]]
4. select laugh
5. merge 4 and 3
[vp laugh [DP every boy]]
6. select will
7. merge 6 and 5
[IP will [VP laugh [DP every boy]]]

Representing derivations

1. select every
2. select boy
3. merge 1 and 2
[DP every [NP boy]]
4. select laugh
5. merge 4 and 3
[vp laugh [DP every boy]]
6. select will
7. merge 6 and 5
[IP will [VP laugh [DP every boy]]]
8. move every boy

$$
\left[I P[D P \text { every boy }]\left[\prime^{\prime} \text { will }[v P \text { laugh } t]\right]\right]
$$

The determinacy of movement

Attract Closest
Minimal Link

Shortest Move

SMC

can only be 1 thing moving for
a particular reason at any time

The determinacy of movement

Attract Closest
Minimal Link

Shortest Move

SMC

can only be 1 thing moving for
a particular reason at any time

The determinacy of movement

The proof objects of minimalism

- are first order (i.e. trees)

The determinacy of movement

The proof objects of minimalism

- are first order (i.e. trees)
- the proofs of any
proposition (e.g. S) form
a regular tree language

Towards MCFGs (I.)

- a categorized string is a pair $\phi=(u, \delta)$, where
\mathbf{u} is a string
δ is a feature bundle
- an expression is a finite sequence of categorized strings

$$
\phi_{0}, \ldots, \phi_{n}
$$

- each $\phi_{i}, 1 \leq i \leq n$ represents a moving subtree
- ϕ_{0} represents the rest of the tree

Towards MCFGs (II.)

Towards MCFGs (II.)

$$
\frac{(u,=\mathrm{x} \cdot \gamma), \phi_{1}, \ldots, \phi_{m} \quad(v, \mathrm{x}), \psi_{1}, \ldots, \psi_{n}}{(u v, \gamma), \phi_{1}, \ldots, \phi_{m}, \psi_{1}, \ldots, \psi_{n}}
$$

Towards MCFGs (III.)

$$
\frac{(u,+\mathrm{y} \cdot \gamma), \phi_{1}, \ldots, \phi_{j-1},(v,-\mathrm{y}), \phi_{j+1}, \ldots, \phi_{m}}{(v u, \gamma), \phi_{1}, \ldots, \phi_{j-1}, \phi_{j+1}, \ldots, \phi_{m}}
$$

Automata

An rule like:

$$
\frac{(u,+\mathrm{y} \cdot \gamma), \phi_{1}, \ldots, \phi_{j-1},(v,-\mathrm{y}), \phi_{j+1}, \ldots, \phi_{m}}{(v u, \gamma), \phi_{1}, \ldots, \phi_{j-1}, \phi_{j+1}, \ldots, \phi_{m}}
$$

gives us an Idmbutts (tree-to-string) production:

$$
\begin{aligned}
\operatorname{move}(q & \left.\left(u, v_{1}, \ldots, v_{j-1}, v, v_{j+1}, \ldots, v_{m}\right)\right) \\
& \rightarrow q^{\prime}\left(v u, v_{1}, \ldots, v_{j-1}, v_{j+1}, \ldots, v_{m}\right)
\end{aligned}
$$

where

$$
\begin{aligned}
q & =\left\langle+\mathrm{y} \cdot \gamma, \delta_{1}, \ldots, \delta_{j-1},-\mathrm{y}, \delta_{j}, \ldots, \delta_{m}\right\rangle \\
q^{\prime} & =\left\langle\gamma, \delta_{1}, \ldots, \delta_{j-1}, \delta_{j}, \ldots, \delta_{m}\right\rangle
\end{aligned}
$$

An example

An example

every
(every, =n.d.-k)

An example

every boy
(every, =n.d.-k) (boy, n)

An example

(every, =n.d.-k) (boy, n)
(every boy, d.-k)

An example

$($ laugh, $=$ d.v $) \frac{(\text { every, =n.d.-k) } \quad(\text { boy }, \mathrm{n})}{(\text { every boy, d.-k) }}$

An example

$\frac{(\text { laugh, =d.v }) \quad \frac{(\text { every, =n.d.-k) (boy, } \mathrm{n})}{(\text { every boy, d.-k) }}}{(\text { laugh, v) },(\text { every boy, }-\mathrm{k})}$

An example

An example

An example

(will, = v.+k.s)		(every, =n.d.-k)	(boy, n)
	(laugh, =d.v)	(every boy	
	(laugh	(every boy, -k)	
(will laugh, +k.s), (every boy, -k)			
(every boy will laugh, s)			

An example

(will, = v.+k.s)		(every, =n.d.-k)	(boy, n)
	(laugh, =d.v)	(every boy	
	(laugh	(every boy, -k)	
(will laugh, +k.s), (every boy, -k)			
(every boy will laugh, s)			

A slightly larger example

$$
\begin{array}{ll}
\text { boy } & \mathrm{n} \\
\text { every } & =\mathrm{n} . \mathrm{d} \cdot-\mathrm{k} \\
\text { laugh } & =\mathrm{d} \cdot \mathrm{v} \\
\text { will } & =\mathrm{v} \cdot+\mathrm{k} \cdot \mathrm{~s} \\
& \\
\text { to } & =\mathrm{v} \cdot \mathrm{i} \\
\text { seem } & =\mathrm{i} \cdot \mathrm{v}
\end{array}
$$

More derivations

Yoda

boy	n
every	$=\mathrm{n} . \mathrm{d} .-\mathrm{k}$
laugh	$=\mathrm{d} . \mathrm{v}$
will	$=\mathrm{v} .+\mathrm{k} . \mathrm{s}$
to	$=\mathrm{v} . \mathrm{i}$
seem	$=\mathrm{i} . \mathrm{v}$
ϵ	$=\mathrm{v} . \mathrm{v} .-\mathrm{top}$
ϵ	$=$ s.+top.c

Remnant movement

Parsing

Top-down parsing

Items represent cuts of derivation tree
\square

Top-down parsing

Items represent cuts of derivation tree
move

Top-down parsing

Items represent cuts of derivation tree
move
merge

Top-down parsing

Items represent cuts of derivation tree

Top-down parsing

Items represent cuts of derivation tree

Top-down parsing

Items represent cuts of derivation tree

Top-down parsing

Items represent cuts of derivation tree

Top-down parsing

Items represent cuts of derivation tree

Top-down parsing

Items represent cuts of derivation tree

Local trees

this exploits:
MG derivation trees form a local set
s

Local trees

this exploits:
MG derivation trees form a local set

\[

\]

Local trees

this exploits:
MG derivation trees form a local set

Local trees

this exploits:
MG derivation trees form a local set

Local trees

this exploits:
MG derivation trees form a local set

Local trees

this exploits:
MG derivation trees form a local set

Local trees

this exploits:
MG derivation trees form a local set

Local trees

this exploits:
MG derivation trees form a local set

Local trees

this exploits:
MG derivation trees form a local set

Undoing movement

- When we hypothesize a move node:

$$
\begin{gathered}
\substack{\text { move } \\
\text { । }} \\
+\mathrm{k} . \mathrm{s} ;-\mathrm{k}
\end{gathered}
$$

Undoing movement

- When we hypothesize a move node:

$$
\begin{gathered}
\text { move } \\
\text { । }+\mathrm{k} . \mathrm{s} ; \mathrm{k} \\
\hline
\end{gathered}
$$

- We next must hypothesize where the mover is:

Appearances can be deceiving

Every boy will (seem to)* laugh

If only...

If only...

- Might work in this case,
- but is there a non-analysis specific principle?

Structure in derivations

MG derivations are subregular (Tier-based) strictly local
strict locality conjunction of negative literals
(with immediate successor)
tier-based relativized successors
$\left(\triangleleft_{T}\right.$, where $\left.T \subseteq \Sigma\right)$

Example (strings)

Primary stress
$\triangleleft:=\triangleleft_{\dot{\sigma}}$

Have primary stress $\neg(\$ \triangleleft \$)$
Have at most one stress $\neg(\sigma \quad \triangleleft \sigma)$

Example (trees)

Movement

(Graf)
$\triangleleft:=\triangleleft_{+_{\mathrm{k},-\mathrm{k}}}$
Movers gonna move $\neg(\$ \triangleleft \ell)$
No movement without movement \neg (move $\triangleleft \$)$
No competition $\neg\left(\right.$ move $\left.\triangleleft \ell_{1}, \ell_{2}\right)$

Argument structure via n-grams

Every lexical item ℓ appears in a derivation with a unique local context

- depends exclusively on positive feature sequence ($=\mathrm{x}$ and +y)
(will, =v.+k.s)

Argument structure via n-grams

Every lexical item ℓ appears in a derivation with a unique local context

- depends exclusively on positive feature sequence ($=\mathrm{x}$ and +y)

$$
\begin{gathered}
\text { merge } \\
(\text { will, =v.+k.s) } \square
\end{gathered}
$$

Argument structure via n-grams

Every lexical item ℓ appears in a derivation with a unique local context

- depends exclusively on positive feature sequence ($=\mathrm{x}$ and +y)

Exploiting regularities in derivations

- When we hypothesize a move node:

$$
\begin{gathered}
\text { move } \\
\hline+\mathrm{k} . \mathrm{s} ;-\mathrm{k} \\
\hline
\end{gathered}
$$

Exploiting regularities in derivations

- When we hypothesize a move node:

- We know it immediately dominates a mover (on the relevant tier):
move
$+\mathrm{k} . \mathrm{s}$
d.-k

A sketch

\square

A sketch

move

A sketch

A basic 'hole' data structure

- g is a gorn address where we are in the derived tree
data Hole t b x = Hole t [(b, x)]

A basic 'hole' data structure

- g is a gorn address
where we are in the derived tree
- $x s$ is a (finite) list of
data Hole t b x = Hole t [(b, x)]

A basic 'hole' data structure

- g is a gorn address
where we are in the derived tree
- $x s$ is a (finite) list of
- derivations with holes elements in separate tiers
data Hole t b x = Hole t [(b, x)]

A basic 'hole' data structure

- g is a gorn address
where we are in the derived tree
- $x s$ is a (finite) list of
- derivations with holes
elements in separate tiers
- ... paired with feature bundles
information about the occupied tier
data Hole t b x = Hole t [(b, x)]

Unmerge1

- Given

Unmerge1

- Given

- merge could have applied

Unmerge1

- Given

- merge could have applied

Unmerge1

- Given

- merge could have applied

xs = sort (us ++ vs)

Unmove

- Given

Unmove

- Given

- move could have applied

Unmerge2

- Given

$$
\begin{gathered}
\alpha^{g} \\
{ }_{\mid}^{g s}
\end{gathered}
$$

Unmerge2

- Given

- merge could have applied to a mover
merge

Unmerge2

- Given

- merge could have applied to a mover
merge

Unmerge2

- Given

- merge could have applied to a mover merge

xs = sort (us ++ vs)

Completion (I)

- Given

Completion (I)

- Given

- this is the tree you're looking for

ATNs and filling gaps

- Psycholinguists
- you process moved items (fillers)
- and then you try to find where they moved from (gap)
- TD MG parsing to process filler, first find gap!
- Here
- unmove constructs a filler
- unmerge2 constructs a gap
- complete fills the gap

Remnant movement

$$
\begin{array}{ll}
\text { boy } & \mathrm{n} \\
\text { every } & =\mathrm{n} . \mathrm{d} .-\mathrm{k} \\
\text { laugh } & =\mathrm{d} . \mathrm{v} \\
\text { will } & =\mathrm{v} .+\mathrm{k} . \mathrm{s} \\
& \\
\epsilon & =\mathrm{v} . \mathrm{v} .-\mathrm{top} \\
\epsilon & =\text { s.ttop.s }
\end{array}
$$

Remnant movement

S^{ϵ}

Remnant movement

move
1
+top.s 1
v.-top 1
v.-top 0

Remnant movement

Enforcing the SMC

Recall:

1. Movers gonna move : $\neg(\$ \triangleleft \ell)$
2. No movement without movement : $\neg($ move $\triangleleft \$)$
3. No competition : $\neg\left(\right.$ move $\left.\triangleleft \ell_{1}, \ell_{2}\right)$

How are these being enforced?

Enforcing the SMC

Recall:

1. Movers gonna move : $\neg(\$ \triangleleft \ell)$
2. No movement without movement : $\neg($ move $\triangleleft \$)$
3. No competition : $\neg\left(\right.$ move $\left.\triangleleft \ell_{1}, \ell_{2}\right)$

How are these being enforced?

1. Two ways of generating a mover:

Enforcing the SMC

Recall:

1. Movers gonna move : $\neg(\$ \triangleleft \ell)$
2. No movement without movement : $\neg($ move $\triangleleft \$)$
3. No competition : $\neg\left(\right.$ move $\left.\triangleleft \ell_{1}, \ell_{2}\right)$

How are these being enforced?

1. Two ways of generating a mover:

- via unmerge2 (i.e. a gap) must be filled
- via unmove (i.e. a filler) born dominated

Enforcing the SMC

Recall:

1. Movers gonna move : $\neg(\$ \triangleleft \ell)$
2. No movement without movement : $\neg($ move $\triangleleft \$)$
3. No competition : $\neg\left(\right.$ move $\left.\triangleleft \ell_{1}, \ell_{2}\right)$

How are these being enforced?

1. Two ways of generating a mover:
2. move nodes and movers postulated simultaneously

Enforcing the SMC

Recall:

1. Movers gonna move : $\neg(\$ \triangleleft \ell)$
2. No movement without movement : $\neg($ move $\triangleleft \$)$
3. No competition : $\neg\left(\right.$ move $\left.\triangleleft \ell_{1}, \ell_{2}\right)$

How are these being enforced?

1. Two ways of generating a mover:
2. move nodes and movers postulated simultaneously
3. via restrictions

Restricting Unmove

As long as nothing in $x s$ is on the $-y$ tier

Restricting Unmerge2

If there is something on the -y tier in $x s$ it must complete this gap
in other words, the -y tier is hereby blocked!

Completion (II)

A partial proof tree with an n-ary hole is an operation of type

$$
\left(\alpha_{1} \rightarrow \cdots \rightarrow \alpha_{n} \rightarrow t\right) \rightarrow t
$$

The ' α 's are the types of the arguments to the hole Upper bounds on

1. number of holes
2. their arity
depending on number of -y feature types in lexicon

Completion (III)

Conditions
xs = sort (us1 ++ ... ++ usk)
each substitution path is free for the relevant tier

A Note on Semantic Interpretation

$$
\begin{aligned}
& \llbracket \text { merge】 } \mapsto \lambda m, n .(m \oplus n) \\
& \llbracket \text { merge】 } \mapsto \lambda m, n .(m \oplus \square n)
\end{aligned}
$$

$$
\llbracket \mathrm{move} \rrbracket \mapsto \lambda m \cdot m
$$

$$
\llbracket \mathrm{move} \rrbracket \mapsto \lambda m \cdot\langle m\rangle_{\oplus}^{k}
$$

$$
\llbracket \ell \rrbracket=\mathcal{I}(\ell)^{\uparrow}
$$

$$
\begin{aligned}
& (\mid f \mathrm{~m} n \mathrm{l})=\mathrm{do} \\
& \mathrm{x}<-\mathrm{m} \\
& \mathrm{y}<-\mathrm{n} \\
& \text { return }(\mathrm{f} x \mathrm{y})
\end{aligned}
$$

The meaning of partial parse trees

Conclusion : Exploiting structure

- MGs have more structure in their derivations than is being made use of
- how can we take advantage of it?
- Simple intersection w/ regular sets:

$$
\left(\text { will },={ }^{r} v^{s} .+{ }^{p} k^{q} \cdot{ }^{p} c^{s}\right), \text { where } \delta(q, \text { will })=r
$$

- how to do scheduling to obtain a version of the present algorithm?
- Left-corner parsing (for CFGs) has similar looking partial proof trees
- can we use these ideas to get a left-corner parser for MGs and solve the problem of left branch movement?

