
Higher Order Structures in
Minimalist Derivations

Greg Kobele

TAG+13

Universität Leipzig

Intro

Intro

Grammar formalisms, like programming languages, are useful
because

they allow us to factor our explanation of linguistic be-
haviour into a statement of abstract regularities (the
grammar), and a description of how these are com-
puted online (the parser/parser-generator)

1

Intro

Current MG parsing algorithms

• needlessly explode state space (making beam search
implausible)

• are based on (exponentially less succinct) MCFGs

• have only extrema on GLC lattice (inherited from MCFG)

1

Intro

We exploit the structure of MGs
to define a MG-specific TD parsing strategy

• structures search space by ’sharing’ infinite classes of
items

• bringing us closer to LC

This gives a formal (very literal) reconstruction of popular
psycholinguistic ideas about the human sentence processing
mechanism

1

MGs

Overview

a formalization of Chomsky’s “minimalist program”

• I think they are an exact formalization

• I am interested in them because they are a bridge
between linguistics and computer science

2

Properties

MGs belong to family of MCS grammar formalisms

• TAG is Monadic CFTG, and MG is (contained in) MRTG
• Share the regularity of derivation trees

• TALs are all well-nested MCFLs, but MLs are the
non-well-nested MCFLs
separation: (Kanazawa & Salvati, 2010)

{w#w | w ∈ L, L is in CFL− EDT0L}

well-nested MCFLs can have crossing dependencies,
but not between syntactically complicated objects

3

Minimalist Grammars

• To specify a grammar, we need to specify two things:
1. The features

(which features we will use in our grammar)
2. The lexicon

(which syntactic feature sequences are assigned to which
words)

4

Features

Features come in pairs

• =x and x

• +y and -y

Like in CG, categories are structured

• list of features

tradition calls categories: feature bundles

=n.d.-k

5

Data structure

Binary branching trees

• internal node labels: > and <

• leaf labels: (w , δ) and t

Headed trees

head(>(u,v)) = head(v)
head(<(u,v)) = head(u)
head(l) = l

�

1

6

Merge

=x.� x.�

� �

+)

<

1

7

Move

+y.�

-y

�

)

>

1

SMC
No other possible mover

8

Move

+y.�

-y

�

)

>

1

SMC
No other possible mover 8

A working example

boy n
every =n.d.-k
laugh =d.v
will =v.+k.s

9

Representing derivations

1. select every

2. select boy

3. merge 1 and 2
[DP every [NP boy]]

4. select laugh

5. merge 4 and 3
[VP laugh [DP every boy]]

6. select will

7. merge 6 and 5
[IP will [VP laugh [DP every boy]]]

8. move every boy
[IP [DP every boy][I ′ will [VP laugh t]]]

every

10

Representing derivations

1. select every

2. select boy

3. merge 1 and 2
[DP every [NP boy]]

4. select laugh

5. merge 4 and 3
[VP laugh [DP every boy]]

6. select will

7. merge 6 and 5
[IP will [VP laugh [DP every boy]]]

8. move every boy
[IP [DP every boy][I ′ will [VP laugh t]]]

every

10

Representing derivations

1. select every

2. select boy

3. merge 1 and 2
[DP every [NP boy]]

4. select laugh

5. merge 4 and 3
[VP laugh [DP every boy]]

6. select will

7. merge 6 and 5
[IP will [VP laugh [DP every boy]]]

8. move every boy
[IP [DP every boy][I ′ will [VP laugh t]]]

every boy

10

Representing derivations

1. select every

2. select boy

3. merge 1 and 2
[DP every [NP boy]]

4. select laugh

5. merge 4 and 3
[VP laugh [DP every boy]]

6. select will

7. merge 6 and 5
[IP will [VP laugh [DP every boy]]]

8. move every boy
[IP [DP every boy][I ′ will [VP laugh t]]]

merge

every boy

10

Representing derivations

1. select every

2. select boy

3. merge 1 and 2
[DP every [NP boy]]

4. select laugh

5. merge 4 and 3
[VP laugh [DP every boy]]

6. select will

7. merge 6 and 5
[IP will [VP laugh [DP every boy]]]

8. move every boy
[IP [DP every boy][I ′ will [VP laugh t]]]

laugh merge

every boy

10

Representing derivations

1. select every

2. select boy

3. merge 1 and 2
[DP every [NP boy]]

4. select laugh

5. merge 4 and 3
[VP laugh [DP every boy]]

6. select will

7. merge 6 and 5
[IP will [VP laugh [DP every boy]]]

8. move every boy
[IP [DP every boy][I ′ will [VP laugh t]]]

merge

laugh merge

every boy

10

Representing derivations

1. select every

2. select boy

3. merge 1 and 2
[DP every [NP boy]]

4. select laugh

5. merge 4 and 3
[VP laugh [DP every boy]]

6. select will

7. merge 6 and 5
[IP will [VP laugh [DP every boy]]]

8. move every boy
[IP [DP every boy][I ′ will [VP laugh t]]]

will merge

laugh merge

every boy

10

Representing derivations

1. select every

2. select boy

3. merge 1 and 2
[DP every [NP boy]]

4. select laugh

5. merge 4 and 3
[VP laugh [DP every boy]]

6. select will

7. merge 6 and 5
[IP will [VP laugh [DP every boy]]]

8. move every boy
[IP [DP every boy][I ′ will [VP laugh t]]]

merge

will merge

laugh merge

every boy

10

Representing derivations

1. select every

2. select boy

3. merge 1 and 2
[DP every [NP boy]]

4. select laugh

5. merge 4 and 3
[VP laugh [DP every boy]]

6. select will

7. merge 6 and 5
[IP will [VP laugh [DP every boy]]]

8. move every boy
[IP [DP every boy][I ′ will [VP laugh t]]]

move

merge

will merge

laugh merge

every boy

10

The determinacy of movement

move

merge

will merge

laugh merge

every boy

Attract Closest

Minimal Link

Shortest Move

SMC
can only be 1 thing moving for
a particular reason at any time

11

The determinacy of movement

move

merge

will merge

laugh merge

every boy

Attract Closest

Minimal Link

Shortest Move

SMC
can only be 1 thing moving for
a particular reason at any time

11

The determinacy of movement

move

merge

will merge

laugh merge

every boy

The proof objects of
minimalism

• are first order (i.e. trees)

• the proofs of any
proposition (e.g. S) form
a regular tree language

11

The determinacy of movement

move

merge

will merge

laugh merge

every boy

The proof objects of
minimalism

• are first order (i.e. trees)

• the proofs of any
proposition (e.g. S) form
a regular tree language

11

Towards MCFGs (I.)

• a categorized string is a pair φ = (u, δ), where

u is a string
δ is a feature bundle

• an expression is a finite sequence of categorized strings

φ0, . . . , φn

• each φi , 1 ≤ i ≤ n represents a moving subtree
• φ0 represents the rest of the tree

12

Towards MCFGs (II.)

=x.� x.�

� �

+)

<

1

(u, =x.γ), φ1, . . . , φm (v , x.δ), ψ1, . . . , ψn

(u, γ), φ1, . . . , φm, (v , δ), ψ1, . . . , ψn

13

Towards MCFGs (II.)

=x.� x

�

+)

<

1

(u, =x.γ), φ1, . . . , φm (v , x), ψ1, . . . , ψn

(uv , γ), φ1, . . . , φm, ψ1, . . . , ψn

13

Towards MCFGs (III.)

+y.�

-y

�

)

>

1

(u, +y.γ), φ1, . . . , φj−1, (v , -y), φj+1, . . . , φm

(vu, γ), φ1, . . . , φj−1, φj+1, . . . , φm

14

Automata

An rule like:

(u, +y.γ), φ1, . . . , φj−1, (v , -y), φj+1, . . . , φm

(vu, γ), φ1, . . . , φj−1, φj+1, . . . , φm

gives us an ldmbutts (tree-to-string) production:

move(q(u, v1, . . . , vj−1, v , vj+1, . . . , vm))

→ q′(vu, v1, . . . , vj−1, vj+1, . . . , vm)

where

q = 〈+y.γ, δ1, . . . , δj−1, -y, δj , . . . , δm〉
q′ = 〈γ, δ1, . . . , δj−1, δj , . . . , δm〉

15

An example

every

16

An example

(every, =n.d.-k)

every

16

An example

(every, =n.d.-k) (boy, n)

every boy

16

An example

(every, =n.d.-k) (boy, n)

(every boy, d.-k)

merge

every boy

16

An example

(laugh, =d.v)

(every, =n.d.-k) (boy, n)

(every boy, d.-k)

laugh merge

every boy

16

An example

(laugh, =d.v)

(every, =n.d.-k) (boy, n)

(every boy, d.-k)

(laugh, v), (every boy, -k)

merge

laugh merge

every boy

16

An example

(will, =v.+k.s)

(laugh, =d.v)

(every, =n.d.-k) (boy, n)

(every boy, d.-k)

(laugh, v), (every boy, -k)

will merge

laugh merge

every boy

16

An example

(will, =v.+k.s)

(laugh, =d.v)

(every, =n.d.-k) (boy, n)

(every boy, d.-k)

(laugh, v), (every boy, -k)

(will laugh, +k.s), (every boy, -k)

merge

will merge

laugh merge

every boy

16

An example

(will, =v.+k.s)

(laugh, =d.v)

(every, =n.d.-k) (boy, n)

(every boy, d.-k)

(laugh, v), (every boy, -k)

(will laugh, +k.s), (every boy, -k)

(every boy will laugh, s)

move

merge

will merge

laugh merge

every boy

16

An example

(will, =v.+k.s)

(laugh, =d.v)

(every, =n.d.-k) (boy, n)

(every boy, d.-k)

(laugh, v), (every boy, -k)

(will laugh, +k.s), (every boy, -k)

(every boy will laugh, s)

move

merge

will merge

laugh merge

every boy

16

A slightly larger example

boy n
every =n.d.-k
laugh =d.v
will =v.+k.s

to =v.i
seem =i.v

17

More derivations

move

merge

will merge

laugh merge

every boy

merge

seem merge

to merge∗

18

Yoda

boy n
every =n.d.-k
laugh =d.v
will =v.+k.s

to =v.i
seem =i.v

ε =v.v.-top
ε =s.+top.c

19

Remnant movement

move

merge

ε move

merge

will merge

ε merge

laugh merge

every boy

20

Parsing

Top-down parsing

Items represent cuts of derivation tree

�

21

Top-down parsing

Items represent cuts of derivation tree

move

�

21

Top-down parsing

Items represent cuts of derivation tree

move

merge

� �

21

Top-down parsing

Items represent cuts of derivation tree

move

merge

� merge

� �

21

Top-down parsing

Items represent cuts of derivation tree

move

merge

� merge

� merge

� �

21

Top-down parsing

Items represent cuts of derivation tree

move

merge

� merge

� merge

every �

21

Top-down parsing

Items represent cuts of derivation tree

move

merge

� merge

� merge

every boy

21

Top-down parsing

Items represent cuts of derivation tree

move

merge

will merge

� merge

every boy

21

Top-down parsing

Items represent cuts of derivation tree

move

merge

will merge

laugh merge

every boy

21

Local trees

this exploits:
MG derivation trees form a local set

s

22

Local trees

this exploits:
MG derivation trees form a local set

move

+k.s;-k

22

Local trees

this exploits:
MG derivation trees form a local set

move

merge

=v.+k.s v;-k

22

Local trees

this exploits:
MG derivation trees form a local set

move

merge

=v.+k.s merge

=d.v d.-k

22

Local trees

this exploits:
MG derivation trees form a local set

move

merge

=v.+k.s merge

=d.v merge

=n.d.-k n

22

Local trees

this exploits:
MG derivation trees form a local set

move

merge

=v.+k.s merge

=d.v merge

every n

22

Local trees

this exploits:
MG derivation trees form a local set

move

merge

=v.+k.s merge

=d.v merge

every boy

22

Local trees

this exploits:
MG derivation trees form a local set

move

merge

will merge

=d.v merge

every boy

22

Local trees

this exploits:
MG derivation trees form a local set

move

merge

will merge

laugh merge

every boy

22

Undoing movement

• When we hypothesize a move node:
move

+k.s;-k

• We next must hypothesize where the mover is:

move

merge

� merge

� d.-k

23

Undoing movement

• When we hypothesize a move node:
move

+k.s;-k

• We next must hypothesize where the mover is:

move

merge

� merge

� d.-k

23

Appearances can be deceiving

Every boy will (seem to)∗ laugh

move

merge

⇤ merge

⇤ d.-k

move

merge

⇤ merge

⇤ merge

⇤ merge

⇤ d.-k

move

merge

⇤ merge

⇤ merge

⇤ merge

⇤ merge

⇤ merge

⇤ d.-k

1

24

If only. . .

move

merge

� ©
merge

� d.-k

• Might work in this case,
• but is there a non-analysis specific principle?

25

If only. . .

move

merge

� ©
merge

� d.-k

• Might work in this case,
• but is there a non-analysis specific principle?

25

Structure in derivations

MG derivations are subregular (Graf)
(Tier-based) strictly local

strict locality conjunction of negative literals
(with immediate successor)

tier-based relativized successors
(CT , where T ⊆ Σ)

26

Example (strings)

Primary stress
C := Cσ́

Have primary stress ¬($ C $)

Have at most one stress ¬(σ́ C σ́)

27

Example (trees)

Movement (Graf)
C := C+k,-k

Movers gonna move ¬($ C `)

No movement without movement ¬(move C $)

No competition ¬(move C `1, `2)

28

Argument structure via n-grams

Every lexical item ` appears in a derivation with a unique local
context

• depends exclusively on positive feature sequence
(=x and +y)

(will, =v.+k.s)

29

Argument structure via n-grams

Every lexical item ` appears in a derivation with a unique local
context

• depends exclusively on positive feature sequence
(=x and +y)

merge

(will, =v.+k.s) �

29

Argument structure via n-grams

Every lexical item ` appears in a derivation with a unique local
context

• depends exclusively on positive feature sequence
(=x and +y)

move

merge

(will, =v.+k.s) �

29

Exploiting regularities in derivations

• When we hypothesize a move node:
move

+k.s;-k

• We know it immediately dominates a mover (on the
relevant tier):

move

+k.s

d.-k

30

Exploiting regularities in derivations

• When we hypothesize a move node:
move

+k.s;-k

• We know it immediately dominates a mover (on the
relevant tier):

move

+k.s

d.-k

30

A sketch

�

31

A sketch

move

�

31

A sketch

move

merge

� �

31

A sketch

move

merge

every �

31

A sketch

move

merge

every boy

31

A sketch

move

merge

�
merge

every boy

31

A sketch

move

merge

will

merge

every boy

31

A sketch

move

merge

will merge

�
merge

every boy

31

A sketch

move

merge

will merge

laugh

merge

every boy

31

A sketch

move

merge

will merge

laugh merge

every boy

31

A basic ’hole’ data structure

α g

xs

• g is a gorn address
where we are in the derived tree

• xs is a (finite) list of

• derivations with holes
elements in separate tiers

• . . . paired with feature bundles
information about the occupied tier

data Hole t b x = Hole t [(b,x)]

32

A basic ’hole’ data structure

α g

xs

• g is a gorn address
where we are in the derived tree

• xs is a (finite) list of

• derivations with holes
elements in separate tiers

• . . . paired with feature bundles
information about the occupied tier

data Hole t b x = Hole t [(b,x)]

32

A basic ’hole’ data structure

α g

xs

• g is a gorn address
where we are in the derived tree

• xs is a (finite) list of
• derivations with holes

elements in separate tiers

• . . . paired with feature bundles
information about the occupied tier

data Hole t b x = Hole t [(b,x)]

32

A basic ’hole’ data structure

α g

xs

• g is a gorn address
where we are in the derived tree

• xs is a (finite) list of
• derivations with holes

elements in separate tiers
• . . . paired with feature bundles

information about the occupied tier

data Hole t b x = Hole t [(b,x)]

32

Unmerge1

• Given
α : g

xs

• merge could have applied
merge

=x.α : g0

us

x : g1

vs

xs = sort (us ++ vs)

33

Unmerge1

• Given
α : g

xs

• merge could have applied
merge

=x.α : g0

us

x : g1

vs

xs = sort (us ++ vs)

33

Unmerge1

• Given
α : g

xs

• merge could have applied
merge

=x.α : g0

us

x : g1

vs

xs = sort (us ++ vs)

33

Unmerge1

• Given
α : g

xs

• merge could have applied
merge

=x.α : g0

us

x : g1

vs

xs = sort (us ++ vs)

33

Unmove

• Given
α : g

xs

• move could have applied
move

+y.α : g1

x.-y : g0

x.-y

xs

34

Unmove

• Given
α : g

xs

• move could have applied
move

+y.α : g1

x.-y : g0

x.-y

xs

34

Unmerge2

• Given
α g

xs

• merge could have applied to a mover
merge

=x.α g1

us

x.-y

vs

xs = sort (us ++ vs)

35

Unmerge2

• Given
α g

xs

• merge could have applied to a mover
merge

=x.α g1

us

x.-y

vs

xs = sort (us ++ vs)

35

Unmerge2

• Given
α g

xs

• merge could have applied to a mover
merge

=x.α g1

us

x.-y

vs

xs = sort (us ++ vs)

35

Unmerge2

• Given
α g

xs

• merge could have applied to a mover
merge

=x.α g1

us

x.-y

vs

xs = sort (us ++ vs)

35

Completion (I)

• Given
x.-y
x.-y

• this is the tree you’re looking for

36

Completion (I)

• Given
x.-y
x.-y

• this is the tree you’re looking for

36

ATNs and filling gaps

• Psycholinguists
• you process moved items (fillers)
• and then you try to find where they moved from (gap)

• TD MG parsing
to process filler, first find gap!

• Here
• unmove constructs a filler
• unmerge2 constructs a gap
• complete fills the gap

37

Remnant movement

move

merge

ε move

merge

will merge

ε merge

laugh merge

every boy

boy n
every =n.d.-k
laugh =d.v
will =v.+k.s

ε =v.v.-top
ε =s.+top.s

38

Remnant movement

s ε

38

Remnant movement

move

+top.s 1

v.-top 0

v.-top

38

Remnant movement

move

+top.s 1

merge
v.-top

=v.v.-top 00 v 01

38

Remnant movement

move

+top.s 1

merge
v.-top

ε v 01

38

Remnant movement

move

+top.s 1

merge
v.-top

ε merge

=d.v d.-k

38

Remnant movement

move

+top.s 1

merge
v.-top

ε merge

laugh d.-k

38

Remnant movement

move

merge

=s.+top.s 10 s 11

merge
v.-top

ε merge

laugh d.-k

38

Remnant movement

move

merge

ε s 11

merge
v.-top

ε merge

laugh d.-k

38

Remnant movement

move

merge

ε move

+k.s 111

d.-k 110

d.-k
merge
v.-top

ε merge

laugh d.-k

38

Remnant movement

move

merge

ε move

+k.s 111

merge
d.-k

=n.d.-k 1100 n 1101

merge
v.-top

ε merge

laugh d.-k

38

Remnant movement

move

merge

ε move

+k.s 111

merge
d.-k

every n 1101

merge
v.-top

ε merge

laugh d.-k

38

Remnant movement

move

merge

ε move

+k.s 111

merge
d.-k

every boy

merge
v.-top

ε merge

laugh d.-k

38

Remnant movement

move

merge

ε move

merge

=v.+k.s 1110 v.-top

merge
d.-k

every boy

merge
v.-top

ε merge

laugh d.-k

38

Remnant movement

move

merge

ε move

merge

will v.-top

merge
d.-k

every boy

merge
v.-top

ε merge

laugh d.-k

38

Remnant movement

move

merge

ε move

merge

will merge

ε merge

laugh d.-k

merge
d.-k

every boy
38

Remnant movement

move

merge

ε move

merge

will merge

ε merge

laugh merge

every boy

38

Enforcing the SMC

Recall:

1. Movers gonna move : ¬($ C `)

2. No movement without movement : ¬(move C $)

3. No competition : ¬(move C `1, `2)

How are these being enforced?

1. Two ways of generating a mover:

2. move nodes and movers postulated simultaneously

3. via restrictions

39

Enforcing the SMC

Recall:

1. Movers gonna move : ¬($ C `)

2. No movement without movement : ¬(move C $)

3. No competition : ¬(move C `1, `2)

How are these being enforced?

1. Two ways of generating a mover:

2. move nodes and movers postulated simultaneously

3. via restrictions

39

Enforcing the SMC

Recall:

1. Movers gonna move : ¬($ C `)

2. No movement without movement : ¬(move C $)

3. No competition : ¬(move C `1, `2)

How are these being enforced?

1. Two ways of generating a mover:

• via unmerge2 (i.e. a gap)
must be filled

• via unmove (i.e. a filler)
born dominated

2. move nodes and movers postulated simultaneously

3. via restrictions

39

Enforcing the SMC

Recall:

1. Movers gonna move : ¬($ C `)

2. No movement without movement : ¬(move C $)

3. No competition : ¬(move C `1, `2)

How are these being enforced?

1. Two ways of generating a mover:

2. move nodes and movers postulated simultaneously

3. via restrictions

39

Enforcing the SMC

Recall:

1. Movers gonna move : ¬($ C `)

2. No movement without movement : ¬(move C $)

3. No competition : ¬(move C `1, `2)

How are these being enforced?

1. Two ways of generating a mover:

2. move nodes and movers postulated simultaneously

3. via restrictions

39

Restricting Unmove

α : g

xs

⇒

move

+y.α : g1

x.-y : g0

x.-y

xs

As long as
nothing in xs is on the -y tier

40

Restricting Unmerge2

α g

xs

⇒
merge

=z.α g1

us

z.-y

vs

If there is something on the -y tier in xs
it must complete this gap

in other words, the -y tier is hereby blocked!

41

Completion (II)

A partial proof tree with an n-ary hole
is an operation of type

(α1 → · · · → αn → t)→ t

The ’α’s are the types of the arguments to the hole

Upper bounds on

1. number of holes

2. their arity

depending on number of -y feature types in lexicon

42

Completion (III)

x.-y

∆

x.-y
xs

⇒ ∆[us1, . . . , usk]

Conditions

xs = sort (us1 ++ ... ++ usk)

each substitution path is free for the relevant tier

43

A Note on Semantic Interpretation

[[merge]] 7→ λm, n.(|m ⊕ n|)
[[merge]] 7→ λm, n.(|m ⊕�n|)

[[move]] 7→ λm.m

[[move]] 7→ λm.〈m〉k⊕

[[`]] = I(`)↑

(| f m n |) = do
x <- m
y <- n
return (f x y)

44

The meaning of partial parse trees





move

merge

every boy





= λf©.[[move]](f© ([[merge]] [[every]] [[boy]]))

= λf©.〈f© ([[every]] [[boy]])↑〉kFA

45

Conclusion : Exploiting structure

• MGs have more structure in their derivations than is
being made use of

• how can we take advantage of it?
• Simple intersection w/ regular sets:

(will, =rvs.+pkq.pcs), where δ(q,will) = r

• how to do scheduling to obtain a version of the present
algorithm?

• Left-corner parsing (for CFGs) has similar looking partial
proof trees

• can we use these ideas to get a left-corner parser for MGs
and solve the problem of left branch movement?

46

	Intro
	MGs
	Parsing

