Higher Order Structures in Minimalist Derivations

Greg Kobele

TAG+13

Universität Leipzig

Grammar formalisms, like programming languages, are useful because

they allow us to factor our explanation of linguistic behaviour into a statement of abstract regularities (the grammar), and a description of how these are computed online (the parser/parser-generator)

1

Current MG parsing algorithms

- needlessly explode state space (making beam search implausible)
- are based on (exponentially less succinct) MCFGs
- have only extrema on GLC lattice (inherited from MCFG)

1

We exploit the structure of MGs to define a MG-specific TD parsing strategy

- structures search space by 'sharing' infinite classes of items
- bringing us closer to LC

This gives a formal (very literal) reconstruction of popular psycholinguistic ideas about the human sentence processing mechanism

1

MGs

Overview

- a formalization of Chomsky's "minimalist program"
 - I think they are an exact formalization
 - I am interested in them because they are a bridge between linguistics and computer science

Properties

MGs belong to family of MCS grammar formalisms

- TAG is Monadic CFTG, and MG is (contained in) MRTG
 - Share the regularity of derivation trees
- TALs are all well-nested MCFLs, but MLs are the non-well-nested MCFLs separation: (Kanazawa & Salvati, 2010)

```
\{w\#w\mid w\in L,\ L \text{ is in } CFL-EDT0L\}
```

well-nested MCFLs can have crossing dependencies, but not between syntactically complicated objects

Minimalist Grammars

- To specify a grammar, we need to specify two things:
 - 1. The features (which features we will use in our grammar)
 - The lexicon
 (which syntactic feature sequences are assigned to which words)

Features

Features come in pairs

- \bullet =x and x
- +y and -y

Like in CG, categories are structured

list of features

tradition calls categories: feature bundles

$$=n.d.-k$$

Data structure

Binary branching trees

- internal node labels: > and <
- leaf labels: (w, δ) and t

Headed trees

```
head(>(u,v)) = head(v)

head(<(u,v)) = head(u)

head(1) = 1
```


Merge

Move

Move

SMCNo other possible mover

A working example

```
boy n
every =n.d.-k
laugh =d.v
will =v.+k.s
```

1. select *every*

every

- 1. select every
- 2. select boy

every boy

- 1. select every
- 2. select boy
- 3. merge 1 and 2[DP every [NP boy]]

- 1. select every
- 2. select boy
- 3. merge 1 and 2[DP every [NP boy]]
- 4. select laugh

- 1. select every
- 2. select boy
- 3. merge 1 and 2[DP every [NP boy]]
- 4. select laugh
- 5. merge 4 and 3 $[_{VP}$ laugh $[_{DP}$ every boy]]

- 1. select *every*
- 2. select boy
- 3. merge 1 and 2[DP every [NP boy]]
- 4. select laugh
- 5. merge 4 and 3 $[_{VP}$ laugh $[_{DP}$ every boy]]
- 6. select will

- 1. select every
- 2. select boy
- 3. merge 1 and 2[DP every [NP boy]]
- 4. select laugh
- 5. merge 4 and 3 $[_{VP}$ laugh $[_{DP}$ every boy]]
- 6. select will
- 7. merge θ and θ [IP will [VP laugh [DP every boy]]]

- 1. select *every*
- 2. select boy
- 3. merge 1 and 2[DP every [NP boy]]
- 4. select laugh
- 5. merge 4 and 3 [$_{VP}$ laugh [$_{DP}$ every boy]]
- 6. select will
- 7. merge 6 and 5 [IP will [VP laugh [DP every boy]]]
- 8. move every boy $||_{IP}|_{DP}$ every boy $||_{IP}|_{VP}$ laugh t

Attract Closest

Minimal Link

Shortest Move

SMC can only be 1 thing moving for a particular reason at any time

Attract Closest

Minimal Link

Shortest Move

SMC can only be 1 thing moving for a particular reason at any time

The proof objects of minimalism

• are first order (i.e. trees)

The proof objects of minimalism

- are first order (i.e. trees)
- the proofs of any proposition (e.g. S) form a regular tree language

Towards MCFGs (I.)

- a categorized string is a pair $\phi = (u, \delta)$, where
 - u is a string
 - δ is a feature bundle
- an expression is a finite sequence of categorized strings

$$\phi_0,\ldots,\phi_n$$

- each ϕ_i , $1 \le i \le n$ represents a moving subtree
- ϕ_0 represents the rest of the tree

Towards MCFGs (II.)

$$\frac{(u,=x.\gamma),\phi_1,\ldots,\phi_m \quad (v,x.\delta),\psi_1,\ldots,\psi_n}{(u,\gamma),\phi_1,\ldots,\phi_m,(v,\delta),\psi_1,\ldots,\psi_n}$$

Towards MCFGs (II.)

$$\frac{(u,=x,\gamma),\phi_1,\ldots,\phi_m \quad (v,x),\psi_1,\ldots,\psi_n}{(uv,\gamma),\phi_1,\ldots,\phi_m,\psi_1,\ldots,\psi_n}$$

Towards MCFGs (III.)

$$\frac{(u,+y,\gamma),\phi_1,\ldots,\phi_{j-1},(v,-y),\phi_{j+1},\ldots,\phi_m}{(vu,\gamma),\phi_1,\ldots,\phi_{j-1},\phi_{j+1},\ldots,\phi_m}$$

Automata

An rule like:

$$\frac{(u,+y,\gamma),\phi_1,\ldots,\phi_{j-1},(v,-y),\phi_{j+1},\ldots,\phi_m}{(vu,\gamma),\phi_1,\ldots,\phi_{j-1},\phi_{j+1},\ldots,\phi_m}$$

gives us an *ldmbutts* (tree-to-string) production:

move
$$(q(u, v_1, ..., v_{j-1}, v, v_{j+1}, ..., v_m))$$

 $\rightarrow q'(vu, v_1, ..., v_{j-1}, v_{j+1}, ..., v_m)$

where

$$q = \langle +y.\gamma, \delta_1, \dots, \delta_{j-1}, -y, \delta_j, \dots, \delta_m \rangle$$
$$q' = \langle \gamma, \delta_1, \dots, \delta_{j-1}, \delta_j, \dots, \delta_m \rangle$$

An example

An example

every

 $(\mathsf{every}, \texttt{=} \mathsf{n.d.-k})$

An example

every boy $(\mathsf{every}, = \mathsf{n.d.-k}) \qquad (\mathsf{boy}, \mathsf{n})$

$$\frac{\text{(every,=n.d.-k)} \text{ (boy,n)}}{\text{(every boy,d.-k)}}$$

$$\begin{array}{c} \text{laugh merge} \\ \text{every boy} \end{array}$$

$$(\text{laugh}, = \text{d.v}) \qquad \begin{array}{c} (\text{every}, = \text{n.d.-k}) & (\text{boy}, \text{n}) \\ \text{(every boy}, d.-k) \end{array}$$

$$\frac{\text{(laugh,=d.v)}}{\text{(laugh,v),(every boy,d.-k)}} \frac{\text{(boy,n)}}{\text{(every boy,d.-k)}}$$


```
\frac{\text{(laugh,=d.v)}}{\text{(laugh,v),(every boy,-k)}} \frac{\text{(boy,n)}}{\text{(every boy,d.-k)}}
\frac{\text{(will,=v.+k.s)}}{\text{(will laugh,+k.s),(every boy,-k)}}
\frac{\text{(will laugh,+k.s),(every boy,-k)}}{\text{(every boy will laugh,s)}}
```



```
\frac{\text{(laugh,=d.v)}}{\text{(laugh,v),(every boy,-k)}} \frac{\text{(boy,n)}}{\text{(every boy,d.-k)}}
\frac{\text{(will,=v.+k.s)}}{\text{(will laugh,+k.s),(every boy,-k)}}
\frac{\text{(will laugh,+k.s),(every boy,-k)}}{\text{(every boy will laugh,s)}}
```

A slightly larger example

```
boy n
every =n.d.-k
laugh =d.v
will =v.+k.s

to =v.i
seem =i.v
```

More derivations

Yoda

```
boy
    n
every =n.d.-k
laugh =d.v
will =v.+k.s
to =v.i
seem =i.v
\epsilon =v.v.-top
\epsilon =s.+top.c
```

Remnant movement

Parsing

this exploits: MG derivation trees form a local set

S

Undoing movement

• When we hypothesize a move node:

Undoing movement

• When we hypothesize a move node:

• We next must hypothesize where the mover is:

Appearances can be deceiving

Every boy will (seem to)* laugh

If only...

If only...

- Might work in this case,
 - but is there a non-analysis specific principle?

Structure in derivations

```
MG derivations are subregular (Graf) (Tier-based) strictly local strict locality conjunction of negative literals (with immediate successor) tier-based relativized successors (\lhd_{\mathcal{T}}, \text{ where } \mathcal{T} \subseteq \Sigma)
```

Example (strings)

Primary stress $\triangleleft := \triangleleft_{\acute{\tau}}$

 $\neg \cdot - \neg \sigma$

Have primary stress $\neg(\$ \lhd \$)$

Have at most one stress $\neg(\acute{\sigma} \lhd \acute{\sigma})$

Example (trees)

Movers gonna move $\neg(\$ \lhd \ell)$

No movement without movement $\neg (move \lhd \$)$

No competition $\neg (move \lhd \ell_1, \ell_2)$

Argument structure via *n*-grams

Every lexical item ℓ appears in a derivation with a unique local context

 depends exclusively on positive feature sequence (=x and +y)

$$(will, =v.+k.s)$$

Argument structure via *n*-grams

Every lexical item ℓ appears in a derivation with a unique local context

 depends exclusively on positive feature sequence (=x and +y)

$$(\mathsf{will}, =_{\mathsf{V}}.+\mathtt{k.s}) \ \square$$

Argument structure via *n*-grams

Every lexical item ℓ appears in a derivation with a unique local context

 depends exclusively on positive feature sequence (=x and +y)

Exploiting regularities in derivations

• When we hypothesize a move node:

Exploiting regularities in derivations

• When we hypothesize a move node:

 We know it immediately dominates a mover (on the relevant tier):

• g is a gorn address where we are in the derived tree

```
data Hole t b x = Hole t [(b,x)]
```


- g is a gorn address where we are in the derived tree
- xs is a (finite) list of

```
data Hole t b x = Hole t [(b,x)]
```


- g is a gorn address
 where we are in the derived tree
- xs is a (finite) list of
 - derivations with holes elements in separate tiers

```
data Hole t b x = Hole t [(b,x)]
```


- g is a gorn address
 where we are in the derived tree
- xs is a (finite) list of
 - derivations with holes elements in separate tiers
 - ... paired with feature bundles information about the occupied tier

```
data Hole t b x = Hole t [(b,x)]
```

Given

Given

$$\alpha : g$$

• merge could have applied

Given

$$\alpha : g$$

• merge could have applied

Given

$$\alpha: g$$

• merge could have applied

merge
$$\begin{bmatrix}
-x.\alpha : g0 \\
us
\end{bmatrix} \begin{bmatrix}
x : g1
\end{bmatrix}$$

$$xs = sort (us ++ vs)$$

Unmove

Given

Unmove

Given

$$\alpha : g$$

• move could have applied

Given

Given

• merge could have applied to a mover

Given

• merge could have applied to a mover

Given

• merge could have applied to a mover

$$xs = sort (us ++ vs)$$

Completion (I)

Given

Completion (I)

Given

• this is the tree you're looking for

ATNs and filling gaps

- Psycholinguists
 - you process moved items (fillers)
 - and then you try to find where they moved from (gap)
- TD MG parsing to process filler, first find gap!
- Here
 - unmove constructs a filler
 - unmerge2 constructs a gap
 - complete fills the gap

Remnant movement

boy n every =n.d.-klaugh =d.v will =v.+k.s=v.v.-top ϵ =s.+top.s ϵ

Remnant movement

Recall:

- 1. Movers gonna move : $\neg(\$ \lhd \ell)$
- 2. No movement without movement : $\neg(move \lhd \$)$
- 3. No competition : $\neg (move \lhd \ell_1, \ell_2)$

Recall:

- 1. Movers gonna move : $\neg(\$ \lhd \ell)$
- 2. No movement without movement : $\neg(move \lhd \$)$
- 3. No competition : $\neg (move \lhd \ell_1, \ell_2)$

How are these being enforced?

1. Two ways of generating a mover:

Recall:

- 1. Movers gonna move : \neg (\$ \triangleleft ℓ)
- 2. No movement without movement : $\neg (move \lhd \$)$
- 3. No competition : $\neg (move \lhd \ell_1, \ell_2)$

- 1. Two ways of generating a mover:
 - via unmerge2 (i.e. a gap) must be filled
 - via unmove (i.e. a filler)
 born dominated

Recall:

- 1. Movers gonna move : $\neg(\$ \lhd \ell)$
- 2. No movement without movement : $\neg(move \lhd \$)$
- 3. No competition : $\neg (move \lhd \ell_1, \ell_2)$

- 1. Two ways of generating a mover:
- 2. move nodes and movers postulated simultaneously

Recall:

- 1. Movers gonna move : $\neg(\$ \lhd \ell)$
- 2. No movement without movement : $\neg(move \lhd \$)$
- 3. No competition : $\neg (move \lhd \ell_1, \ell_2)$

- 1. Two ways of generating a mover:
- 2. move nodes and movers postulated simultaneously
- 3. via restrictions

Restricting Unmove

As long as nothing in xs is on the -y tier

Restricting Unmerge2

If there is something on the -y tier in xs it must complete this gap

in other words, the -y tier is hereby blocked!

Completion (II)

A partial proof tree with an *n*-ary hole is an operation of type

$$(\alpha_1 \to \cdots \to \alpha_n \to t) \to t$$

The α 's are the types of the arguments to the hole

Upper bounds on

- 1. number of holes
- 2. their arity

depending on number of -y feature types in lexicon

Completion (III)

$$x.-y$$
 $\Rightarrow \Delta[us_1,\ldots,us_k]$
 Δ xs

Conditions

each substitution path is free for the relevant tier

A Note on Semantic Interpretation

```
[\![\mathsf{merge}]\!] \mapsto \lambda m, n. (\![m \oplus n]\!)[\![\mathsf{merge}]\!] \mapsto \lambda m, n. (\![m \oplus \square n]\!)
```

$$[\![\mathsf{move}]\!] \mapsto \lambda \mathit{m.m}$$

$$[\![\mathsf{move}]\!] \mapsto \lambda \mathit{m.} \langle \mathit{m} \rangle_{\oplus}^{\mathit{k}}$$

$$\llbracket \ell \rrbracket = \mathcal{I}(\ell)^{\uparrow}$$

The meaning of partial parse trees

Conclusion: Exploiting structure

- MGs have more structure in their derivations than is being made use of
 - how can we take advantage of it?
- Simple intersection w/ regular sets:

(will,
$$=^{r}v^{s}.+^{p}k^{q}.^{p}c^{s}$$
), where $\delta(q, will) = r$

- how to do scheduling to obtain a version of the present algorithm?
- Left-corner parsing (for CFGs) has similar looking partial proof trees
 - can we use these ideas to get a left-corner parser for MGs and solve the problem of left branch movement?