LF-Interpretation, Compositionally

Greg Kobele

University of Chicago

Dec 02

(1) Compositionality

2 Cooper Storage Laws

(3) Formal Consequences

4 Interpreting Tucking-in

- Give a compositional semantics for minimalism

Main claim LF-interpretation can be viewed directly compositionally

Semantics in Generative Grammar

- Binary branching nodes

- Unary branching nodes

$$
\left.\llbracket \begin{array}{c}
\bullet \\
\mid \\
\alpha
\end{array}\right]^{g}=\llbracket \alpha \rrbracket^{g}
$$

- Binding

$$
\llbracket i^{\prime} \stackrel{\backslash}{ } \stackrel{ }{\bullet} \rrbracket^{g}=\lambda x \cdot \llbracket \alpha \rrbracket^{g[i:=x]}
$$

- Traces

$$
\llbracket t_{i} \rrbracket^{g}=g(i)
$$

Interpreting λ terms in type structures

- Application $\llbracket(M N) \rrbracket^{g}=\llbracket M \rrbracket^{g}\left(\llbracket N \rrbracket^{g}\right)$
- Abstraction $\llbracket \lambda i . M \rrbracket^{g}=\lambda x \cdot \llbracket M \rrbracket^{g[i:=x]}$
- Variables
$\llbracket i \rrbracket^{g}=g(i)$
- Binary branching nodes

$$
\llbracket \alpha^{\prime} \backslash{ }^{\bullet} \rrbracket^{g}=\llbracket \alpha \rrbracket^{g} \oplus \llbracket \beta \rrbracket^{g}
$$

- Unary branching nodes

$$
\left.\llbracket \begin{array}{c}
\bullet \\
\mid \\
\alpha
\end{array}\right]^{g}=\llbracket \alpha \rrbracket^{g}
$$

- Binding

$$
\llbracket i_{i}^{\prime} \backslash \rrbracket^{\bullet}=\lambda x \cdot \llbracket \alpha \rrbracket^{g[i:=x]}
$$

- Traces
$\llbracket t_{i} \rrbracket^{g}=g(i)$

Parts and their meanings

Most expressions don't have any meaning

$$
\begin{aligned}
& =\llbracket p r a i s e \rrbracket^{g} \oplus\left(\llbracket e v e r y \rrbracket^{g} \oplus \llbracket b o y \rrbracket^{g}\right)
\end{aligned}
$$

- $\llbracket e v e r y \rrbracket^{g} \oplus \llbracket b o y \rrbracket^{g}:(e t) t$
- 【praise】g : eet
these cannot be combined!
FA $\alpha \beta \rightarrow \alpha \rightarrow \beta$
BA $\alpha \rightarrow \alpha \beta \rightarrow \beta$

$$
\mathrm{PM} \alpha t \rightarrow \alpha t \rightarrow \alpha t
$$

Revisiting meaningless parts

What is the contribution of praise every boy to expressions it is part of?
a quantifier part every(boy) ($\lambda x \ldots$...
and a property part praise (x)

Let's write instead:

$$
[\text { every(boy) }]_{x} \vdash \text { praise }(x)
$$

Notation and Operations

[every(boy)] ${ }_{x} \vdash$ praise(x)

The general case, with multiple stored quantifiers:

$$
\left[Q_{1}\right]_{x_{1}}, \ldots,\left[Q_{i}\right]_{x_{i}} \vdash M
$$

The entire point is to ignore what is stored

$$
\frac{M}{\vdash M} \uparrow \quad \frac{\Gamma \vdash M}{\Gamma, \Delta \vdash M N} \lll \ll
$$

Working with Storage

Building praise every boy

Building praise every boy

We want to 'insert a trace'

$$
\frac{\vdash M}{[M]_{x} \vdash x} \square
$$

Building praise every boy

We want to 'insert a trace'

$$
\frac{\vdash M}{[M]_{x} \vdash x} \square
$$

Building praise every boy

We want to 'insert a trace'

$$
\frac{\vdash M}{[M]_{x} \vdash x} \square
$$

Taking things out of storage

Taking things out of storage

retrieval

$$
\frac{\Gamma,\left[M_{i}\right]_{x_{i}} \Delta \vdash N}{\Gamma, \Delta \vdash M_{i} \oplus\left(\lambda x_{i} . N\right)}\langle\cdot\rangle_{\oplus}^{i}
$$

Taking things out of storage

retrieval

$$
\frac{\Gamma,\left[M_{i}\right]_{x_{i}}, \Delta \vdash N}{\Gamma, \Delta \vdash M_{i} \oplus\left(\lambda x_{i} . N\right)}\langle\cdot\rangle_{\oplus}^{i}
$$

Manipulating Stores

pure

$$
\frac{M}{\vdash M} \uparrow
$$

apply

$$
\frac{\Gamma \vdash M \quad \Delta \vdash N}{\Gamma, \Delta \vdash M N}<*>
$$

retrieve

$$
\frac{\Gamma,\left[M_{i}\right]_{x_{i}}, \Delta \vdash N}{\Gamma, \Delta \vdash M_{i} \oplus\left(\lambda x_{i} . N\right)}\langle\cdot)_{\oplus}^{i}
$$

store

$$
\frac{\vdash M}{[M]_{x} \vdash x} \square
$$

Understanding stores

$$
\begin{aligned}
& {\left[M_{1}\right]_{x_{1}}, \ldots,\left[M_{i}\right]_{x_{i}} \vdash N} \\
& \quad \Rightarrow \lambda k . k M_{1} \ldots M_{i}\left(\lambda x_{1}, \ldots, x_{i} \cdot N\right)
\end{aligned}
$$

Example

[every boy] ${ }_{x} \vdash$ praise x

$$
\Rightarrow \lambda k . k \text { (every boy) (} \lambda x . \text { praise } x \text {) }
$$

Some examples

pure

$$
\begin{gathered}
\frac{M}{\vdash M} \uparrow \\
\Downarrow \\
\frac{M}{\lambda k \cdot k M} \uparrow
\end{gathered}
$$

$M^{\uparrow} \equiv \lambda k . k M$

storage

$$
\begin{gathered}
\frac{\vdash M}{[M]_{x} \vdash x} \square \\
\Downarrow \\
\frac{\lambda k \cdot k M}{\lambda k \cdot k M(\lambda x \cdot x)} \square
\end{gathered}
$$

$$
\square m \equiv \lambda k \cdot m(\lambda M . k M(\lambda x . x))
$$

More notation

idiom brackets

$$
\begin{aligned}
& \text { write }\left(\begin{array}{llll}
f & a_{1} & \ldots & \left.a_{i} \mid\right) \\
& \text { for } f^{\uparrow}<*> & a_{1} & <*>
\end{array} .<*>a_{i}\right.
\end{aligned}
$$

application

Forward $f \triangleright a:=f a$
Backward $a \triangleleft f:=f a$

Minimalist semantics

【merge】 $\mapsto \lambda m, n .(m \oplus n)$
 $\llbracket m e r g e \rrbracket \mapsto \lambda m, n .(m \oplus \square n)$

$\llbracket \mathrm{move} \rrbracket \mapsto \lambda m . m$
$\llbracket \mathrm{move} \mathrm{\rrbracket} \mapsto \lambda m .\langle m\rangle_{\oplus}^{k}$

$$
\llbracket \ell \rrbracket=\mathcal{I}(\ell)^{\uparrow}
$$

for $\oplus \in\{\triangleright, \triangleleft\}$

Unpacking the notation

Recall that

$$
\lambda m, n .(|m \triangleright n|)
$$

means

$$
\lambda m, n .(\triangleright)^{\uparrow}\langle *>m<*>n
$$

$$
\frac{\frac{\triangleright}{\vdash \triangleright} \uparrow \quad \begin{array}{c}
(m) \\
\Gamma \vdash M
\end{array}<*>}{\frac{\Gamma \triangleright}{\Gamma, \Delta \vdash M \triangleright N}} \begin{aligned}
& \text { (n) } \\
& \Gamma \vdash N
\end{aligned}<*>
$$

Every boy laughs

Every boy laughs

$$
\begin{aligned}
& \text { 【move】 } \\
& \text { 【merge】 } \\
& \mathcal{I}(\text { will })^{\uparrow} \quad \text { mmerge】 } \\
& \mathcal{I}(\text { laugh })^{\uparrow} \text { 【merge】 } \\
& \mathcal{I}(\text { every })^{\uparrow} \quad \mathcal{I}(\text { boy })^{\uparrow}
\end{aligned}
$$

Every boy laughs

Every boy laughs

$$
\begin{aligned}
& \text { 【move】 } \\
& \text { 【merge】 } \\
& \vdash \text { will 【merge】 } \\
& \vdash \text { laugh } \quad \lambda m, n .(m \triangleright n) \\
& \vdash \text { every } \quad \vdash \text { boy }
\end{aligned}
$$

Every boy laughs

> 【move】
> 【merge】
> \vdash will 【merge】
> \vdash laugh $\quad \vdash$ every boy

Every boy laughs

$\begin{aligned} & \text { 【move』 } \\ & \text { 【merge】 } \\ & \vdash\end{aligned}$

$$
\text { will } \lambda m, n \cdot(m \triangleright \square n)
$$

\vdash laugh $\quad \vdash$ every boy

Every boy laughs

Every boy laughs

Every boy laughs

【move】
 [every boy] ${ }_{x} \vdash$ will (laugh x)

Every boy laughs

$$
\begin{gathered}
\lambda m \cdot\langle m\rangle_{\triangleright}^{1} \\
\left.[\text { every boy }]_{x} \vdash \text { will (laugh } x\right)
\end{gathered}
$$

Every boy laughs

\vdash every boy $(\lambda x$.will (laugh $x)$)

(1) Compositionality

(2) Cooper Storage Laws

3 Formal Consequences

4. Interpreting Tucking-in

- Present algebraic laws of cooper storage
- Introduce delimited continuations

Main claim

LF-interpretation à la $\mathrm{H} \& \mathrm{~K}$ is based on delimited continuations

Applicative Functor Laws

identity

$$
\operatorname{id}^{\uparrow}\langle *>u=u
$$

composition

$$
\left(\left(\circ^{\uparrow}\langle *\rangle u\right)<*>v\right)<*>w=u<*>(v<*>w)
$$

homomorphism

$$
f^{\uparrow}<*>x^{\uparrow}=(f x)^{\uparrow}
$$

interchange

$$
u<*>x^{\uparrow}=(\lambda P . P x)^{\uparrow}<*>u
$$

Deriving homomorphism

$$
\begin{gathered}
\text { homomorphism } \\
f^{\uparrow<*>x^{\uparrow}=(f x)^{\uparrow}} \\
\frac{\frac{f}{\vdash f} \uparrow \quad \frac{x}{\vdash x}_{\vdash}^{\vdash f x}}{<*>}
\end{gathered}=\frac{f x}{\vdash f x} \uparrow .
$$

Laws Particular to Cooper Storage

(1) That which is stored, can be retrieved

$$
\left.\left\langle E\left[\square_{k} M\right]\right\rangle_{N}^{k}=N^{\uparrow}\langle *\rangle M<*\right\rangle\left\langle E\left[\square_{k} \mathrm{id} \mathrm{~d}^{\uparrow}\right]\right\rangle_{\triangleright}^{k}
$$

(2) Storing and retrieving vacuity is vacuous

$$
\left\langle u\langle *\rangle \square_{k} \mathrm{id}^{\uparrow}\right\rangle_{\triangleright}^{k}=u
$$

Deriving Law 1

Retrieval from storage

$$
\left\langle E\left[\square_{k} M\right]\right\rangle_{N}^{k}=N^{\uparrow} \oplus M \oplus\left\langle E\left[\square_{k} \mathrm{id} \mathrm{~d}^{\uparrow}\right]\right\rangle_{\triangleright}^{k}
$$

$$
\begin{aligned}
& \frac{\vdash M}{[M]_{x_{k}} \vdash x_{k}} \square_{k} \\
& \Gamma,[M]_{x_{k}}, \Delta \vdash O \\
& \overline{\Gamma, \Delta \vdash N M\left(\lambda x_{k} \cdot O\right)}{ }^{\langle\cdot)_{N}^{k}} \\
& \frac{N}{\vdash N} \uparrow \quad \vdash M_{\langle *\rangle} \quad \frac{\Gamma,[\mathrm{id}]_{x_{k}}, \Delta \vdash O}{\Gamma, \Delta \vdash \mathrm{id} \triangleright\left(\lambda x_{k} \cdot O\right)}\langle\cdot)^{k} \\
& \frac{\vdash N M}{\Gamma, \Delta \vdash N M\left(\lambda x_{k,}, O\right)}
\end{aligned}
$$

shift0 and reset

- x
- (MN)
- $\lambda x . M$
- $\square_{k} M$
- $\langle M\rangle^{k}$

$$
\begin{aligned}
& \quad \begin{array}{l}
\beta(\lambda x . M) N \rightsquigarrow M[x:=N] \\
\eta \lambda x .(M x) \rightsquigarrow M \\
\operatorname{shift0}\left\langle E\left[\square_{k} M\right]\right\rangle^{k} \rightsquigarrow M\left(\lambda x \cdot\langle E[x]\rangle^{k}\right) \\
\text { reset }\langle V\rangle^{k} \rightsquigarrow V
\end{array}
\end{aligned}
$$

shift0 and reset

- X
- (MN)
- $\lambda x . M$
- $\square_{k} M$
- $\langle M\rangle^{k}$

$$
\begin{aligned}
& \beta(\lambda x \cdot M) N \rightsquigarrow M[x:=N] \\
& \eta \lambda x .(M x) \rightsquigarrow M \\
& \text { shift0 }\left\langle E\left[\square_{k} M\right]\right\rangle^{k} \rightsquigarrow M\left(\lambda x \cdot\langle E[x]\rangle^{k}\right) \\
& \text { reset }\langle V\rangle^{k} \rightsquigarrow V
\end{aligned}
$$

$$
\begin{aligned}
& \left\langle E\left[\square_{k} M\right]\right\rangle^{k} \rightsquigarrow M\left(\lambda x .\langle E[x]\rangle^{k}\right) \\
& \left.\left\langle E\left[\square_{k} M\right]\right\rangle_{\triangleright}^{k}=M<*\right\rangle\left\langle E\left[\square_{k} i d^{\uparrow}\right]\right\rangle_{\triangleright}^{k}
\end{aligned}
$$

Minimalist semantics (via delimited continuations)

$$
\begin{aligned}
& \llbracket \text { merge】 } \mapsto \lambda m, n .(m \oplus n) \\
& \llbracket \text { merge】 } \mapsto \lambda m, n .(m \oplus \square n)
\end{aligned}
$$

$$
\llbracket \mathrm{move} \rrbracket \mapsto \lambda m . m
$$

$$
\llbracket \mathrm{move} \rrbracket \mapsto \lambda m \cdot\langle m\rangle_{\oplus}^{k}
$$

$$
\llbracket \ell \rrbracket=\mathcal{I}(\ell)^{\uparrow}
$$

for $\oplus \in\{\triangleright, \triangleleft\}$

Minimalist semantics (via delimited continuations)

$$
\begin{aligned}
& \llbracket \text { merge】 } \mapsto \lambda m, n . m \oplus n \\
& \llbracket \text { merge】 } \mapsto \lambda m, n .(m \oplus \square n)
\end{aligned}
$$

$$
\llbracket \mathrm{move} \rrbracket \mapsto \lambda m . m
$$

$$
\llbracket \mathrm{move} \rrbracket \mapsto \lambda m \cdot\langle m\rangle_{\oplus}^{k}
$$

$$
\llbracket \ell \rrbracket=\mathcal{I}(\ell)
$$

for $\oplus \in\{\triangleright, \triangleleft\}$

Minimalist semantics (via delimited continuations)

$$
\begin{aligned}
& \llbracket \text { merge】 } \mapsto \lambda m, n . m \oplus n \\
& \llbracket \text { merge】 } \mapsto \lambda m, n .(m \oplus \square n)
\end{aligned}
$$

$$
\llbracket \mathrm{move} \rrbracket \mapsto \lambda m . m
$$

$$
\llbracket \mathrm{move} \rrbracket \mapsto \lambda m \cdot\langle m\rangle_{\oplus}^{k}
$$

$$
\llbracket \ell \rrbracket=\mathcal{I}(\ell)
$$

for $\oplus \in\{\triangleright, \triangleleft\}$

Minimalist semantics（via delimited continuations）

【merge】 $\mapsto \lambda m, n . m \oplus n$
$\llbracket m e r g e \rrbracket \mapsto \lambda m, n . m \oplus \square_{k}(\lambda o . n \oplus o)$

【move】 $\mapsto \lambda m . m$
$\llbracket m o v e \rrbracket \mapsto \lambda m .\langle m\rangle^{k}$

$$
\llbracket \ell \rrbracket=\mathcal{I}(\ell)
$$

for $\oplus \in\{\triangleright, \triangleleft\}$

(1) Compositionality

2 Cooper Storage Laws
(3) Formal Consequences

4. Interpreting Tucking-in

Plan

- give examples of the benefits of viewing LF-interpretation compositionally

Main claim

LF-interpretation not only can be viewed directly compositionally, it should be.

Generative Capacity

The set of meanings assigned to sentences of a grammar is

- a linear higher order IO language and thus the set of structures which yield a given λ-term
- can be found in polynomial time

Decompositionality

any part of a derivation has a normal semantic value

Top-down parsing

$$
\lambda m .
$$

Top-down parsing

λm.

$$
\langle m\rangle_{\triangleright}^{k}
$$

Top-down parsing

move

merge
$/$ 1 $1>$

$$
\lambda t, v .
$$

$$
\left\langle\triangleright^{\uparrow<*\rangle t<*\rangle v\rangle_{\triangleright}^{k}}\right.
$$

Top-down parsing

move

merge
$/ 1$ 1 $1>$

$$
\lambda t, v .
$$

$$
\left.\left\langle\triangleright^{\uparrow}\langle *\rangle t<*\right\rangle v\right\rangle_{\triangleright}^{k}
$$

Top-down parsing

move

merge
$/ 1$

$$
\begin{aligned}
& \lambda t, v . \\
& \quad\langle t\langle *\rangle v\rangle_{\triangleright}^{k}
\end{aligned}
$$

Top-down parsing

move

merge
merge

$\lambda t, V, s$.

$$
\langle t<*\rangle\left(\triangleright^{\left.\left.\uparrow<*>V<*>\square_{k} s\right)\right\rangle_{\triangleright}^{k} .}\right.
$$

Top-down parsing

move

merge
merge

$\lambda t, V, s$.

$$
\langle t<*\rangle\left(\triangleright^{\left.\left.\uparrow<*>V<*>\square_{k} s\right)\right\rangle_{\triangleright}^{k} .}\right.
$$

Top-down parsing

move

merge
merge

$1>$
$\lambda t, V, s$.

$$
\left.\left.\langle t<*\rangle(V<*\rangle \square_{k} s\right)\right\rangle_{\triangleright}^{k}
$$

Top-down parsing

move

merge
merge

$1>$
$\lambda t, V, s$.

$$
\left.\left.\langle t<*\rangle(V<*\rangle \square_{k} s\right)\right\rangle_{\triangleright}^{k}
$$

Top-down parsing

move

merge
merge
 $1>$
$\lambda t, V, s$.

$$
\left.\left.s<*\rangle\langle t<*\rangle(V<*\rangle \square_{k} \mathrm{id}^{\uparrow}\right)\right\rangle_{\triangleright}^{k}
$$

Top-down parsing

move

merge
merge

$1>$
$\lambda t, V, s$.

$$
\left.\left.s<*\rangle\langle t<*\rangle(V<*\rangle \square_{k} i \mathrm{~d}^{\uparrow}\right)\right\rangle_{\triangleright}^{k}
$$

Top-down parsing

move

merge
merge

$\lambda t, V, s$.

$$
\left.\left.s<*\rangle\left\langle\left(\circ^{\uparrow}\langle *\rangle t<*\right\rangle V\right)<*\right\rangle \square_{k} i d^{\uparrow}\right\rangle_{\triangleright}^{k}
$$

Top-down parsing

move

merge
merge

$\lambda t, V, s$.

$$
\left.\left.s<*\rangle\left\langle\left(\circ^{\uparrow}<*\right\rangle t<*\right\rangle V\right)<*>\square_{k} i d^{\uparrow}\right\rangle_{\triangleright}^{k}
$$

Top-down parsing

move

merge
merge

$\lambda t, V, s$.

$$
\left.\left.s<*>\left(0^{\uparrow}<*\right\rangle t<*\right\rangle V\right)
$$

Top-down parsing

move

merge
merge
merge

$\lambda t, V, d, n$.

$$
\left(\triangleright^{\uparrow}<*>d<*>n\right)<*>\left(\circ^{\uparrow}<*>t<*>V\right)
$$

Top-down parsing

move

merge
merge
merge
$/ 1$
$\lambda t, V, \boldsymbol{d}, n$.

$$
\left(\triangleright^{\uparrow}<*>d<*>n\right)<*>\left(\circ^{\uparrow}<*>t<*>V\right)
$$

Top-down parsing

move

merge
merge
merge
$/ \$
$\lambda t, V, d, n$.

$$
(d<*>n)<*>\left(o^{\uparrow}<*>t<*>V\right)
$$

Top-down parsing

move

l
merge
merge
merge
every
$\lambda t, V, n$.

$$
\left(\text { every }^{\uparrow}<*>n\right)<*>\left(\circ^{\uparrow}<*>t<*>V\right)
$$

Top-down parsing

move merge merge
merge

$\lambda t, V$.

$$
\left(\text { every }^{\uparrow}<*>\text { boy }^{\uparrow}\right)<*>\left(0^{\uparrow}<*>t<*>V\right)
$$

Top-down parsing

move merge merge
merge

$\lambda t, V$.

$$
\left(\text { every }^{\uparrow}<*>\text { boy }^{\uparrow}\right)<*>\left(o^{\uparrow}<*>t<*>V\right)
$$

Top-down parsing

move

merge
merge
merge
every boy
$\lambda t, V$.

$$
(\text { every boy })^{\uparrow}<*>\left(\circ^{\uparrow}<*>t<*>V\right)
$$

Top-down parsing

λV.
(every boy $)^{\uparrow}<*>\left(\circ^{\uparrow}<*>\right.$ will $\left.^{\uparrow}<*>V\right)$

Top-down parsing

every boy
λV.
(every boy $)^{\uparrow}<*>\left(\circ^{\uparrow}<*>\right.$ will $\left.^{\uparrow}<*>V\right)$

Top-down parsing

λV.
$(\text { every boy })^{\uparrow}<*>\left((\lambda f \text {.will } \circ f)^{\uparrow}<*>V\right)$

Top-down parsing

every boy
λV.
$(\text { every boy })^{\uparrow}<*>\left((\lambda f \text {.will } \circ f)^{\uparrow}<*>V\right)$

Top-down parsing

every boy
λV.
$(\lambda P \text {.every boy }(\lambda x \text {.will }(P x)))^{\uparrow}\langle *\rangle V$

Top-down parsing

laugh merge every boy
$(\lambda P \text {.every boy }(\lambda x \text {.will }(P x)))^{\uparrow}<*>$ laugh $^{\uparrow}$

Top-down parsing

laugh merge every boy

$$
(\lambda P \text {.every boy }(\lambda x \text {.will }(P x)))^{\uparrow}<*>\text { laugh } h^{\uparrow}
$$

Top-down parsing

laugh merge every boy
$(\text { every } \operatorname{boy}(\lambda x . \text { will }(\operatorname{laugh} x)))^{\uparrow}$

Ellipsis

【move】（【merge 】（【［ $\left.\mathrm{T}_{\mathrm{pst}} \rrbracket\right)(\llbracket \mathrm{e} \rrbracket($（［Harry】）））
 $\lambda m .(\text { Pass } \circ \text { praise })^{\uparrow}\langle *\rangle \square m$

(1) Compositionality

2 Cooper Storage Laws

(3) Formal Consequences

(4) Interpreting Tucking-in

- give compositional semantics for parasitic scope
- ibid. for tucking-in movement

Main claim

Tucking-in type movement involves complex quantifier formation

Parasitic Scope

Parasitic Scope:

Before all movement

$$
[\text { same }]_{Q},[\text { everyone }]_{x} \vdash \text { serve } \times(\text { the }(Q \text { waiter }))
$$

The types of the stored elements are as follows:

same (Aet)et
$\mathbf{A}=(e t) e t$
everyone (et)t

Before all movement

$$
[\text { same }]_{Q},[\text { everyone }]_{x} \vdash \text { serve } x(\text { the }(Q \text { waiter }))
$$

The types of the stored elements are as follows:

$$
\begin{aligned}
\text { same (Aet)et } & \mathbf{A}=(e t) e t \\
\text { everyone }(e t) t &
\end{aligned}
$$

What we want:

$\vdash \operatorname{everyone}(\operatorname{same}(\lambda Q$, x.serve $\times($ the $(Q$ waiter $))))$

Before all movement

$$
[\text { same }]_{Q},[\text { everyone }]_{x} \vdash \text { serve } x(\text { the }(Q \text { waiter }))
$$

The types of the stored elements are as follows:

$$
\begin{aligned}
\text { same (Aet)et } & \mathbf{A}=(e t) e t \\
\text { everyone (et)t } &
\end{aligned}
$$

What we want:

$\vdash($ everyone \circ same $)(\lambda Q, x$.serve $\times($ the $(Q$ waiter $)))$

Parasitic Storage (Sketch)

$$
\frac{\frac{[\text { same }]_{Q},[\text { everyone }]_{x} \vdash \text { serve } \times(\text { the }(Q \text { waiter }))}{[\text { everyone } \circ \text { same }]_{Q ; x} \vdash \text { serve } \times(\text { the }(Q \text { waiter }))}}{\vdash(\text { everyone } \circ \text { same })(\lambda Q, \text { x.serve } \times(\text { the }(Q \text { waiter })))}
$$

Parasitic Storage

$[\text { same }]_{Q},[\text { everyone }]_{x} \vdash$ serve $x($ the $(Q$ waiter $))$

$[\Pi \text { everyone same }]_{z} \vdash$ let (x, Q) be z in serve $x($ the $(Q$ waiter $))$

$$
\frac{\Gamma,[M:(\alpha \beta) \gamma]_{x},[N:(\delta \alpha \eta) \alpha \beta]_{y}, \Delta \vdash O: \zeta}{\Gamma,[\Pi M N:((\delta \otimes \alpha) \eta) \gamma]_{z}, \Delta \vdash \text { let }(x, y) \text { be } z \text { in } O: \zeta} \text { fuse }
$$

where П $M \mathrm{~N}:=\mathrm{M} \circ N \circ \mathrm{flip} \circ$ curry $=\lambda R \cdot M(N(\lambda y, x \cdot R(x, y)))$

Tucking-in Movement

Before all movement

$[\text { who }]_{x},[\text { what }]_{y} \vdash$ bought $y x$

Before all movement

$$
[\text { who }]_{x},[\text { what }]_{y} \vdash \text { bought } y x
$$

What we want:

\vdash who $(\lambda x . w h a t(\lambda y . b o u g h t y x))$

Before all movement

$$
[\text { who }]_{x},[\text { what }]_{y} \vdash \text { bought } y x
$$

What we want:

$\vdash($ who $\circ(\lambda R, x . w h a t(\lambda y . R y x)))$ bought

Before all movement

$$
[\text { who }]_{x},[\text { what }]_{y} \vdash \text { bought } y x
$$

What we want:

$\vdash($ who $\circ(\mathbb{L}$ what $))$ bought

$$
\begin{aligned}
\mathbb{L} & :=\mathbb{B}(\mathbb{C B} \mathbb{C}) \mathbb{B} \\
& =\lambda D, R, x \cdot D(\lambda y \cdot R y x)
\end{aligned}
$$

About \mathbb{L}

GQs as arity reducers

(Keenan, 2016)

A DP denotes a function of type $\forall n .\left(e^{n+1} t\right) e^{n} t$
For $D:(e t) t$

$$
\begin{aligned}
\mathbb{L}^{n} D & :\left(e^{n+1} t\right) e^{n} t \\
& =\lambda R, x_{1}, \ldots, x_{n} \cdot D\left(\lambda y \cdot R \text { y } x_{1} \ldots x_{n}\right)
\end{aligned}
$$

Tucked Storage (Sketch)

$$
\frac{\frac{[w h o]_{x},[w h a t]_{y} \vdash \text { bought } y x}{[w h o \circ(\mathbb{L} w h a t)]_{x ; y} \vdash \text { bought } y x}}{\vdash(\text { who } \circ(\mathbb{L} \text { what }))(\lambda x, y . \text { bought } y x)}
$$

Tucked Storage

$[\text { who }]_{x},[\text { what }]_{y} \vdash$ bought $y x$

$[\Pi \text { who }(\mathbb{L} \text { what })]_{z} \vdash$ let (x, y) be z in bought $y x$

$$
\frac{\Gamma,[M:(e t) t]_{x},[N:(e t) t]_{y}, \Delta \vdash O: \zeta}{\Gamma,[\Pi M(\mathbb{L} N):((e \otimes e) t) t]_{z}, \Delta \vdash \text { let }(x, y) \text { be } z \text { in } O: \zeta} \text { tuck }
$$ where $\Pi M N:=M \circ N \circ f l i p$ ocurry $=\lambda R \cdot M(N(\lambda y, x \cdot R(x, y)))$

Parasitic vs Tucked Storage

$[\text { everyone }]_{x},[\text { same }]_{Q} \vdash$ serve $x($ the $(Q$ waiter) $)$
$[\Pi \text { everyone same }]_{z} \vdash$ let (x, Q) be z in serve $x($ the $(Q$ waiter $))$
$[\text { who }]_{x},[\text { what }]_{y} \vdash$ bought $y x$
$[\Pi \text { who }(\mathbb{L} \text { what })]_{z} \vdash$ let (x, y) be z in bought $y x$

Parasitic vs Tucked Storage

$$
\frac{[M]_{x},[N]_{y} \vdash O}{[\Pi M N]_{z} \vdash \operatorname{let}(x, y) \text { be } z \text { in } O}
$$

$$
\frac{[M]_{x},[N]_{y} \vdash O}{[\Pi M(\mathbb{L} N)]_{z} \vdash \operatorname{let}(x, y) \text { be } z \text { in } O}
$$

Parasitic vs Tucked Storage

$$
\frac{[M]_{x},[N]_{y} \vdash O}{\left[\Pi M\left(\mathbb{L}^{n} N\right)\right]_{z} \vdash \text { let }(x, y) \text { be } z \text { in } O}
$$

Conclusion

LF-interpretation is in fact directly compositional

- This gives us access to a wealth of results and tools
- generative capacity
- generation
- delimited continuations
- gives new questions to explore
- semantic bootstrapping?!
- conditioning parsing on meaning?!
- connex to cogsci via probabilistic programming?!
- and addresses old ones
- LF? Ellipsis? ACD? ...

