## A derivational approach to phrasal spellout

Gregory M. Kobele

kobele@uchicago.edu Computation Institute & Department of Linguistics University of Chicago

> BCGL 7, 2012 Brussels

### What this talk is about

### Hypothesis: "Interface Uniformity"

The interfaces to syntax have the same structure.

The differences between the syntax-semantics and the syntax-morphology interfaces lie only in the objects they are building.

### Research Strategy

- 1. Study the structure of the syntax-semantics interface
- 2. Reflect these properties onto the syntax-morphology interface

Here we will look at idioms.

### In a nutshell

#### Main Claim:

Morphology is insensitive to derived structure

Morphology only cares about DS.

### Outline

#### The Syntax-Semantics Interface

Direct Compositionality
What is a derivation?
Compositional Semantics
Idioms

The Syntax-Morphology Interface

Conclusion

## Basic Assumptions

### Direct Compositionality

The syntactic derivation is a recipe for constructing a semantic representation.

Semantic differences must stem from differences in the way expressions are built, not from differences in the surface (or LF) structure.

#### Historical Antecedents

#### Generative Semantics

Deep structure is the structure interpreted.

#### Categorial Grammar

Surface structure [is] no more than the trace of the algorithm that delivers the [...] interpretation (Steedman, 2000)

# Direct Compositionality (in Minimalism)

### Direct Compositionality

- Each lexical item has a semantic denotation
- ► Each operation (merge, move) is semantically interpretable;
  - [merge] combines two denotations into a single one
  - ▶ **[move**] maps a single denotation to another one

#### **Denotations**

- Expressions are associated with (bounded size) quantifier stores
- ► (Bounded size) stores faithfully implement Heim & Kratzer-style LF-interpretation (Kobele; 2006,2010)
- ► Can be encoded into the simply typed lambda calculus; (Kobele; 2012)



# Direct Compositionality and Derivation Trees

#### Derivations are the structures interpreted

▶ We need a precise notion of what a derivation is

### Complete Decomposability

If a derivation d = M[N], then  $[d] = \lambda x$ . [M[x]] ([N])





## Representing derivations

### A derivation shows how a sentence is built up from the primitives of the grammar.

- 1. [DP every [NP boy ]]
- 2. [VP laugh [DP every boy ]]
- 3. [IP will [VP laugh [DP every boy ]]]
- 4. [IP[DP every boy ][IV will [VP laugh t]]]

merge(every, boy)

merge(laugh, #1)

merge(will, #2)

*move*(#3)

#### Processes have structure

derivations like the above can be viewed as trees

## Representing derivations



# The Syntax-Semantics Interface (I)

### We typically see:

$$\llbracket \sigma(t_1,\ldots,t_n) \rrbracket = \sigma(\llbracket t_1 \rrbracket,\ldots,\llbracket t_n \rrbracket)$$

This conflates two kinds of information:

- 1. what the meanings of the formatives are
- 2. that there is an isomorphism between the syntactic structure and the semantic structure

#### Reformulated:

- 1. replace each formative  $\phi$  with its meaning  $\llbracket \phi \rrbracket$
- 2. interpret immediate dominance as (uncurried) function application:  $f(t_1,\ldots,t_n) \rightsquigarrow f(t_1)\cdots(t_n)$



# Syntax-Semantics Interface (II)

The way to obtain a meaning from a structure is universal:

$$\langle \sigma(t_1,\ldots,t_n)\rangle_f=f_\sigma(\langle t_1\rangle_f)\cdots(\langle t_n\rangle_f)$$

### The language particular content of the interface:

- a finite list of denotations for all formatives
  - merge and move
  - all lexical items

But are [merge] and [move] really language particular? (No.)









# Syntax-Semantics Interface (III)

### The language particular content of the interface:

- a finite list  $\Lambda$  of denotations for
  - all lexical items

A derivation is interpreted at the interface by replacing all of its formatives (lexical items) with their associated denotations.











Idioms



# Syntax-Semantics Interface (IV)

### The language particular content of the interface:

- a finite list  $\Lambda$  of denotations for
  - all derivation chunks

A derivation is interpreted at the interface by replacing all of its chunks with their associated denotations.

# Syntax-Semantics Interface (IV)

### The language particular content of the interface:

a finite list  $\Lambda$  of denotations for

all derivation chunks

A derivation is interpreted at the interface by replacing all of its chunks with their associated denotations.

This is a contradiction!

# Syntax-Semantics Interface (IV)

### The language particular content of the interface:

- a finite list  $\Lambda$  of denotations for
  - some derivation chunks

A derivation is interpreted at the interface by replacing all of its chunks with their associated denotations.

Idioms

# Syntax-Semantics Interface (IV)

### The language particular content of the interface:

- a finite list  $\Lambda$  of denotations for
  - some derivation chunks

A derivation is interpreted at the interface by replacing all of its chunks with their associated denotations.



#### Historical Antecedents

Fraser: Idioms are identical to non-idioms at DS

Koopman & Sportiche: "If X is the minimal constituent containing all

the idiomatic material, the head of X is part of the idiom."

Jackendoff: Idioms are triples  $\langle Phon, Syn, Sem \rangle$  of structured entities.

O'Grady: "An idiom's component parts must form a chain."

#### The main difference:

We are looking at the derivation

#### Historical Antecedents

Fraser: Idioms are identical to non-idioms at DS

Koopman & Sportiche: "If X is the minimal constituent containing all

the idiomatic material, the head of X is part of the idiom."

Jackendoff: Idioms are triples  $\langle Phon, Syn, Sem \rangle$  of structured entities.

O'Grady: "An idiom's component parts must form a chain."

#### The main difference:

We are looking at the derivation

A sequence of heads such that each is the head of a selected argument of another

### Last Remarks

#### No derived idioms

### Example

Raising verb and its derived subject cannot form an idiom.

### Derivational patterns

### Outline

The Syntax-Semantics Interface

The Syntax-Morphology Interface
Suppletion
Linearity
Interpretation

Conclusion

## Interface Uniformity

### Interpretation

Interfaces are lists of associations between derivation pieces and things

### Syntax-Semantics

- things are lambda terms over semantic domain
- 'chunks' of derivations correspond to idioms/constructions

## Syntax-Morphology

- ▶ things are ???
- what do 'chunks' correspond to?

## Interface Uniformity

#### Interpretation

Interfaces are lists of associations between derivation pieces and things

#### Syntax-Semantics

- things are lambda terms over semantic domain
- 'chunks' of derivations correspond to idioms/constructions

## Syntax-Morphology

- ► things are ???
- ▶ what do 'chunks' correspond to?

A suppletive form is a chunk















```
\begin{array}{ccc} \textbf{Interface} & \\ \textbf{Pst} & \\ \textbf{go} & \leadsto \text{"went"} \\ \\ \textbf{John} & \leadsto \text{"John"} \end{array}
```

Fut Neg go john

```
Interface
 Pst
       \rightsquigarrow "went"
  go
 John → "John"
 Neg

→ "not"

 Fut

√ "won't"

 Neg
 go
```



"won't"
"go"
"John"

```
Interface
 Pst

→ "went"

 go
 John
    → "John"
 Neg
    Fut

→ "won't"

 Neg
 go
```



```
"won't"
"go"
"John"

"will"
"not"
```

"go"

"John"

```
Interface
 Pst

→ "went"

 go
 John
     → "John"
 Fut 
→ "will"
 Neg
      Fut

→ "won't"

 Neg
 go
```

#### Prediction

## If 'morphological idiom' = suppletion, then

Clitics cannot trigger suppletion

(Unless we hack the features in an otherwise unmotivated way)

???

# 'Lowering' vs 'Local Dislocation'

## Embick & Noyer

- Jane is even prettier than Kim.
- ▶ Jane is even more naturally pretty than Kim.
- ▶ \*Jane is even naturally prettier than Kim.

Evidence for sensitivity to order/adjacency (?)

# 'Lowering' vs 'Local Dislocation'

## Embick & Noyer

- Jane is even prettier than Kim.
- ▶ Jane is even more naturally pretty than Kim.
- ▶ \*Jane is even naturally prettier than Kim.

#### Evidence for sensitivity to order/adjacency (?)



# **Differing Predictions**

# English-prime: English with mixed [A Adv] & [Adv A] order

- ▶ Jane is even prettier than Kim.
- ▶ Jane is even more naturally pretty than Kim.
- Jane is even prettier naturally than Kim.
- 2. Jane is even more pretty naturally than Kim.

# Embick & Nover

1 is good

GK

1 is bad

# Interpretation of morphological objects



i.e. what does "won't" mean?

## A simple answer:

It means the same thing that the following does, where  $\alpha$  and  $\beta$  are the feature bundles of Fut and Neg, respectively.



# Interpretation (II)



#### This looks familiar!

- Chomsky's Strict Lexicalism
- Brody's Mirror Theoretic Spellout

A MW is pronounced in its highest strong position

## Formal Simulability Relations:

Chomsky < Brody < GK



# Where's Morphology?

#### Answer: Inside the Interface

 $won't :: \alpha$ Fut Neg

Regularities in '↔':

- Paradigms
- ▶ DM operations
- ▶ Templates

#### Outline

The Syntax-Semantics Interface

The Syntax-Morphology Interface

Conclusion



#### Conclusion

#### Interface Uniformity

Interfaces interpret syntactic structure in the same way

#### Derivationalism

Derived structure is interface irrelevant

- Relations between theories (Mirror Theory, Strict Lexicalism)
- ▶ Location of morphology (at interface spelling out '√→')

#### Questions

- Is the interface sensitive to derived structure/order?
- ► Are the differences between morphological and semantic interfaces best viewed in terms of which chunks are 'idioms'?
- ► Can we formulate a learning theory which operates by breaking big interface chunks into smaller ones?



#### Outline

Inherited vs Inherent Features

Constraints on 'Idioms'

Minimalist Grammars

#### Inherited Features

He $_{3s,nom}$  is $_{pres,3s}$  happy. happy  $_{pro}^{'}$ 

#### The fundamental claim:

Analytical Possibilities

Only deep configurations matter for morphology

#### Inherited Features

Pres<sub>3s</sub> be  $He_{3s,nom}$  is pres. 3s happy. happy  $pro_{3s,nom}$ 

#### The fundamental claim: Analytical Possibilities

Only deep configurations matter for morphology

Checking: There are no inherited features.

#### Inherited Features

 $\operatorname{\mathsf{He}}_{3s,nom}$  is  $_{pres,3s}$  happy.  $\operatorname{\mathsf{happy}}_{pro_{3s}}$ 

# The fundamental claim: Only deep configurations matter for morphology Checking: There are no inherited features. Valuation: Interface objects are functions with inherited features as arguments

#### Inherited Features and Valuation

## A closer look at Pres

feature matrix: =v +k s



#### Inherited Features and Valuation

#### A closer look at Pres

feature matrix: =v +k s

#### A closer look at (this) +k

- assigns nominative case
- inherits *person* and *number* features

```
\longrightarrow +k \begin{bmatrix} \text{CASE} & : \text{nom} \\ \text{PERSON} & : \alpha \\ \text{NUMBER} & : \beta \end{bmatrix}
```

#### Inherited Features and Valuation

#### A closer look at Pres

feature matrix: =v +k s

#### A closer look at (this) +k

- assigns nominative case
- inherits person and number features

$$\longrightarrow$$
 +k  $\begin{bmatrix} \text{CASE} & : \text{nom} \\ \text{PERSON} & : \alpha \\ \text{NUMBER} & : \beta \end{bmatrix}$ 

```
Pres
             \rightarrow \lambda \alpha, \beta, x : \langle v, -k[PER : \alpha, NUM : \beta] \rangle.match \alpha, \beta with
  be
                                                                                                   \mid 3, s \rightarrow "is"(x)
                                                                                                  |1,s\rightarrow "am" (x)
|-,-\rightarrow "are" (x)
```

#### Outline

Inherited vs Inherent Features

Constraints on 'Idioms'

Minimalist Grammars

## Constraints on Chunks at the Interfaces

#### Semantics

- Chunks are arbitrary
- Chunks can contain specifiers or complements
- Chunks are independent

## Morphology

- Chunks are linear (i.e. non-branching treelets)
- Chunks go down complements (not specifiers)
- Chunks are uniform:

Many chunks are present which differ just in the particular choice of content morphemes. (For many choices of V, T-v-V is an idiom)

#### Outline

Inherited vs Inherent Features

Constraints on 'Idioms'

Minimalist Grammars

## Minimalist Grammars

- ▶ To specify a grammar, we need to specify two things:
  - The features
     (which features we will use in our grammar)
  - The lexicon (which syntactic feature sequences are assigned to which words)

# Merge



## Move



## Move



# SMC

No other possible mover

4□ > 4□ > 4 = > 4 = > 4 = 9 < €</p>