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Motivation

• One natural intuition is that

Our linguistic competence is best modeled by a finite set of generators

together with operations combining them to produce more complex

expressions.

• pregroup grammars (Lambek, 2004) allow us to say that there is one mode of

combination, which acts uniformly on strings as concatenation, and on categories as

multiplication.
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But. . .

• Pregroup grammars are unable even to weakly describe certain constructions in

natural language (Shieber, 1985; Buszkowski, 2001). . .

• and there are certain simple intuitions we’d like to expressabout others, but can’t

(see Kobele, 2005)
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The Italian Nominal and Adjectival Paradigm

Two binary valued features

• masculine∼ feminine

• singular∼ plural

Two kinds of adjective:

m f

s bello bella

p belli belle

m f

s grande grande

p grandi grandi

Two kinds of noun:

m f

s gallo rana

p galli rane

m f

s cane volpe

p cani volpi
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The Italian Nominal and Adjectival Paradigm

What we want to say:

m f

s -o -a

p -i -e

m & f

s -e

p -i

1. adjectives and nouns have the same endings

2. some adjectives and nouns only inflect for number
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The Italian Nominal and Adjectival Paradigm

Since pregroups operate under adjacency, there’s no way to recover the gender

information fromgallo after it goes throughtriste:

m s s m s

gallo triste bello

We can separate the ‘lumped together’ information into different tiers:

s s s

m m

gallo triste bello
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So. . .

• We would like a way to strengthen pregroup grammars

– both in terms of their strong, and weak generative capacities

• while keeping as much of their simplicity as possible
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Products

• For P1 = 〈M1, •, 11,v,
l , r 〉 andP2 = 〈M2, ◦, 12,�,

L, R〉 pregroups, we can form

their direct productP1 × P2 = 〈M1 × M2, ·, 〈11, 12〉,≤,
`, r〉, which is also a

pregroup. The operations are defined pointwise:

1. 〈x, y〉 ≤ 〈x′, y′〉 iff x v x′ andy � y′

2. 〈x, y〉 · 〈x′, y′〉 = 〈x • x′, y ◦ y′〉

3. 〈x, y〉` = 〈xl , yL〉 and〈x, y〉r = 〈xr , yR〉
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Products

• We relax the definition of a pregroup grammar to allow for both

– assignment of types to the empty string, and

– drawing types fromanypregroup (not just a free pregroup)

• Thus we can say that Buszkowski (2001) showed that (ε-free) free pregroup

grammars generate exactly the (ε-free) context-free languages
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Products

An interesting fact:

• Define an operation of ‘cross-product’ over grammars (i.e. lexica) (for the moment

we ignore the possibility of type assignments to the empty string):

I1 × I2 := {〈p1, p2, a〉 : 〈p1, a〉 ∈ I1 and〈p2, a〉 ∈ I2}

• We have that

L(I1 × I2) = L(I1) ∩ L(I2)
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Where we are

• Because (free) pregroup grammars are incapable of describing all the constructions

in human language, we want to find a way to extend them

• Looking at patterns of (systematic) syncretism in morphology, we found that we

could provide a description of these patterns in the object language if we worked

within a product pregroup.

• Now we examine the formal consequences of this move (an open question: how else

are we to evaluate it?)

• and we look at interesting natural subclasses the structureof the pregroup formalism

makes available to us.
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1 Product= 2 Stacks

• We can view a 2-stack automaton as an 8-tuple

M := 〈Q,Σ, Γ, δ, #, q0,Qf 〉

where

– Q,Σ, Γ are finite, pairwise disjoint sets (of states, input symbols, and stack

symbols, respectively)

– Qf ⊆ Q is the set of final states

– q0 ∈ Q is the initial state

– # < Γ is the empty stack symbol

– δ : Q× Σε × (Γ ∪ {#}) × (Γ ∪ {#})→ 2Q×Γ∗×Γ∗ is the transition function.
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1 Product= 2 Stacks

• An instantaneous descriptionid ∈ Γ∗{#}Γ∗QΣ∗.

– We define a relation⇒ over the set of instantaneous descriptions as follows, for

γ, γ′, η, η′ ∈ Γ∗, σ ∈ Σ∗, g, g′ ∈ Γ, a ∈ Σε , q, q′ ∈ Q:

1. γg#γ′g′qaσ⇒ γη#γ′η′q′σ

iff 〈q′, η, η′〉 ∈ δ(〈q, a, g, g′〉)

2. #γ′g′qaσ⇒ η#γ′η′#q′σ

iff 〈q′, η, η′〉 ∈ δ(〈q, a, #, g′〉)

3. γg#qaσ⇒ γη#η′#q′σ

iff 〈q′, η, η′〉 ∈ δ(〈q, a, g, #〉)

4. #qaσ⇒ η#η′q′σ

iff 〈q′, η, η′〉 ∈ δ(〈q, a, #, #〉)

• the language of a 2-stack automaton is here defined in terms ofempty stacks and

final state:

L(M) := {σ : ∃qf ∈ Qf . #q0σ⇒
∗ #qf }
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1 Product= 2 Stacks

• Given a 2-stack automatonM = 〈Q,Σ, Γ, δ, #, q0,Qf 〉, we construct an equivalent

pregroup grammar as follows:

1. LetP be the free pregroup overQ∪ Γ ∪ {#} ∪ {s}, wheres is a new symbol not in

Q∪ Γ ∪ {#}. We draw types fromP× P.
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1 Product= 2 Stacks

• Instead of〈b1, b2, a〉 we write
































b1

b2

a

































• The intuition behind the translation:

An expression has the form
































#γ`q

#γ′`q

w

































and intuitively represents an instantaneous description

rev(γ)#rev(γ′)qσ

Or rather, a machine in stateq with rev(γ) in the first stack, andrev(γ′) in the

second.
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1 Product= 2 Stacks

I is the smallest set containing

1. for q0 the start state,
































#q0

#q0

ε

































2. for qf ∈ Qf a final state,
































qr
f #

r s

qr
f #

r s

ε

































3. for 〈q′, rev(η), rev(η′)〉 ∈ δ(〈q, a, g, g′〉), whereg, g′ ∈ Γ ∪ {#},
































qrgη`q′

qrg′η′`q′

a
































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Interim Summary

• We can thus “get everything” without losing any of the nice properties of the

pregroup formalism.

• However, now our syntax doesn’t restrict the class of languages weakly generated!
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On not getting everything

• Can we find any “natural” subclasses of pregroup grammars (inour new sense) that

get something like the “right” family of languages?

• A natural option is to place restrictions on allowable types– either in the lexicon, or

in general:

– Lambek (2004) gives a “performance restriction”, which restricts types to those

of length less thann

– another option is to place a condition on the lexicon

∗ in the 2-stack translation, we had lexical types which had multiple atoms in

them, and so this might seem a natural restriction,

∗ however, we can simulate a queue automaton just using lexical types of the

form aα`, andαra, which seem pretty simple
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Global Index Grammars

• Castãno (2004) introduces Global Index Grammars (GIGs) as a variant of (linear)

indexed grammars – instead of associating a stack with a non-terminal, there is a

single, global, stack accessible to everything.

• The Global Index Languages (GILs) are semi-linear and bounded polynomially

parsable. They contain non- Multiple Context-Free Languages (MCFLs), like the

multiple copy language{ww+ : w ∈ Σ∗}, and it is an open question whether the

MCFLs are properly included in the GILs, or not.

• We can also look at GIGs as context-free grammars with productions labeled by

subwords of a Dijk language:x, x, xx, ε, thus connecting with the tradition of

grammars with controlled derivations (Dassow and Păun, 1989).
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Global Index Grammars

• Castãno places two restrictions on GIGs (above and beyond them being CFGs

labeled in the above way):

1. only rules in Greibach Normal Form (A→ aB1 . . .Bn) can be labeled with an

opening parenthesis (x)

2. rules labeled with either an opening (x) or a closing (x) parenthesis can only be

used in a derivation if they are rewriting the left-most non-terminal
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Global Index Grammars

• Given a GIGG = 〈N,T, I ,S, #,P〉, where all productions inP are in GNF, we

construct a pregroup grammar as follows

1. LetP1 be the free pregroup overN, andP2 the free pregroup overI . We draw

types fromP1 × P2.

• The intuition behind the translation:

An expression has the form
































AB`n . . .B
`
1

δ

w

































whereδ is a substring of a Dijk word, andAB`n . . .B
`
1 is a context-free production in

GNF
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Global Index Grammars

I is the smallest set containing, for eachA→δ aB1 . . . Bn ∈ P, the expression
































AB`n . . .B
`
1

δ′

a

































where,

if δ is thenδ′ is

ε ε

x x

x xr

xx xr x
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Global Index Grammars

What about the restriction to left-most derivation?!

• pregroup grammars always yield a ‘left-corner’ derivation

• but when a CFG is in GNF, ‘left-corner’ coincides with left-most

Thus we don’t have to make the additional stipulation Castaño makes in his system – we

get it ‘for free’.
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Summary

• Drawing types from products of free pregroups increases thegenerative power of

pregroup grammars, and allowing the empty string to be assigned a type in this

setting makes them r.e.

• Intersection of languages can be modeled by taking the cross-product of the

respective lexica (allowing the empty string gives us in essence closure under

erasing homomorphisms).

• By implementing a simple lexical restriction on type assignments, we can define a

class of pregroup grammars that are semi-linear.

• Pregroups have a ‘built-in’ leftmost-derivation-like property, which allows us to give

a simpler statement of Castaño’s restrictions.
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