
Pregroups, Products, and Generative Power

Gregory M. Kobele

UCLA Department of Linguistics

7. May 2005

Chieti Workshop on Pregroups



Kobele, Chieti Workshop on Pregroups 2005 1

Motivation

• One natural intuition is that

Our linguistic competence is best modeled by a finite set of generators

together with operations combining them to produce more complex

expressions.

• pregroup grammars (Lambek, 2004) allow us to say that there is one mode of

combination, which acts uniformly on strings as concatenation, and on categories as

multiplication.



Kobele, Chieti Workshop on Pregroups 2005 2

But. . .

• Pregroup grammars are unable even to weakly describe certain constructions in

natural language (Shieber, 1985; Buszkowski, 2001). . .

• and there are certain simple intuitions we’d like to expressabout others, but can’t

(see Kobele, 2005)



Kobele, Chieti Workshop on Pregroups 2005 3

The Italian Nominal and Adjectival Paradigm

Two binary valued features

• masculine∼ feminine

• singular∼ plural

Two kinds of adjective:

m f

s bello bella

p belli belle

m f

s grande grande

p grandi grandi

Two kinds of noun:

m f

s gallo rana

p galli rane

m f

s cane volpe

p cani volpi



Kobele, Chieti Workshop on Pregroups 2005 4

The Italian Nominal and Adjectival Paradigm

What we want to say:

m f

s -o -a

p -i -e

m & f

s -e

p -i

1. adjectives and nouns have the same endings

2. some adjectives and nouns only inflect for number



Kobele, Chieti Workshop on Pregroups 2005 5

The Italian Nominal and Adjectival Paradigm

Since pregroups operate under adjacency, there’s no way to recover the gender

information fromgallo after it goes throughtriste:

m s s m s

gallo triste bello

We can separate the ‘lumped together’ information into different tiers:

s s s

m m

gallo triste bello



Kobele, Chieti Workshop on Pregroups 2005 6

So. . .

• We would like a way to strengthen pregroup grammars

– both in terms of their strong, and weak generative capacities

• while keeping as much of their simplicity as possible



Kobele, Chieti Workshop on Pregroups 2005 7

Products

• For P1 = 〈M1, •, 11,v,
l , r 〉 andP2 = 〈M2, ◦, 12,�,

L, R〉 pregroups, we can form

their direct productP1 × P2 = 〈M1 × M2, ·, 〈11, 12〉,≤,
`, r〉, which is also a

pregroup. The operations are defined pointwise:

1. 〈x, y〉 ≤ 〈x′, y′〉 iff x v x′ andy � y′

2. 〈x, y〉 · 〈x′, y′〉 = 〈x • x′, y ◦ y′〉

3. 〈x, y〉` = 〈xl , yL〉 and〈x, y〉r = 〈xr , yR〉



Kobele, Chieti Workshop on Pregroups 2005 8

Products

• We relax the definition of a pregroup grammar to allow for both

– assignment of types to the empty string, and

– drawing types fromanypregroup (not just a free pregroup)

• Thus we can say that Buszkowski (2001) showed that (ε-free) free pregroup

grammars generate exactly the (ε-free) context-free languages



Kobele, Chieti Workshop on Pregroups 2005 9

Products

An interesting fact:

• Define an operation of ‘cross-product’ over grammars (i.e. lexica) (for the moment

we ignore the possibility of type assignments to the empty string):

I1 × I2 := {〈p1, p2, a〉 : 〈p1, a〉 ∈ I1 and〈p2, a〉 ∈ I2}

• We have that

L(I1 × I2) = L(I1) ∩ L(I2)



Kobele, Chieti Workshop on Pregroups 2005 10

Where we are

• Because (free) pregroup grammars are incapable of describing all the constructions

in human language, we want to find a way to extend them

• Looking at patterns of (systematic) syncretism in morphology, we found that we

could provide a description of these patterns in the object language if we worked

within a product pregroup.

• Now we examine the formal consequences of this move (an open question: how else

are we to evaluate it?)

• and we look at interesting natural subclasses the structureof the pregroup formalism

makes available to us.



Kobele, Chieti Workshop on Pregroups 2005 11

1 Product= 2 Stacks

• We can view a 2-stack automaton as an 8-tuple

M := 〈Q,Σ, Γ, δ, #, q0,Qf 〉

where

– Q,Σ, Γ are finite, pairwise disjoint sets (of states, input symbols, and stack

symbols, respectively)

– Qf ⊆ Q is the set of final states

– q0 ∈ Q is the initial state

– # < Γ is the empty stack symbol

– δ : Q× Σε × (Γ ∪ {#}) × (Γ ∪ {#})→ 2Q×Γ∗×Γ∗ is the transition function.



Kobele, Chieti Workshop on Pregroups 2005 12

1 Product= 2 Stacks

• An instantaneous descriptionid ∈ Γ∗{#}Γ∗QΣ∗.

– We define a relation⇒ over the set of instantaneous descriptions as follows, for

γ, γ′, η, η′ ∈ Γ∗, σ ∈ Σ∗, g, g′ ∈ Γ, a ∈ Σε , q, q′ ∈ Q:

1. γg#γ′g′qaσ⇒ γη#γ′η′q′σ

iff 〈q′, η, η′〉 ∈ δ(〈q, a, g, g′〉)

2. #γ′g′qaσ⇒ η#γ′η′#q′σ

iff 〈q′, η, η′〉 ∈ δ(〈q, a, #, g′〉)

3. γg#qaσ⇒ γη#η′#q′σ

iff 〈q′, η, η′〉 ∈ δ(〈q, a, g, #〉)

4. #qaσ⇒ η#η′q′σ

iff 〈q′, η, η′〉 ∈ δ(〈q, a, #, #〉)

• the language of a 2-stack automaton is here defined in terms ofempty stacks and

final state:

L(M) := {σ : ∃qf ∈ Qf . #q0σ⇒
∗ #qf }



Kobele, Chieti Workshop on Pregroups 2005 13

1 Product= 2 Stacks

• Given a 2-stack automatonM = 〈Q,Σ, Γ, δ, #, q0,Qf 〉, we construct an equivalent

pregroup grammar as follows:

1. LetP be the free pregroup overQ∪ Γ ∪ {#} ∪ {s}, wheres is a new symbol not in

Q∪ Γ ∪ {#}. We draw types fromP× P.



Kobele, Chieti Workshop on Pregroups 2005 14

1 Product= 2 Stacks

• Instead of〈b1, b2, a〉 we write
































b1

b2

a

































• The intuition behind the translation:

An expression has the form
































#γ`q

#γ′`q

w

































and intuitively represents an instantaneous description

rev(γ)#rev(γ′)qσ

Or rather, a machine in stateq with rev(γ) in the first stack, andrev(γ′) in the

second.



Kobele, Chieti Workshop on Pregroups 2005 15

1 Product= 2 Stacks

I is the smallest set containing

1. for q0 the start state,
































#q0

#q0

ε

































2. for qf ∈ Qf a final state,
































qr
f #

r s

qr
f #

r s

ε

































3. for 〈q′, rev(η), rev(η′)〉 ∈ δ(〈q, a, g, g′〉), whereg, g′ ∈ Γ ∪ {#},
































qrgη`q′

qrg′η′`q′

a



































Kobele, Chieti Workshop on Pregroups 2005 16

Interim Summary

• We can thus “get everything” without losing any of the nice properties of the

pregroup formalism.

• However, now our syntax doesn’t restrict the class of languages weakly generated!



Kobele, Chieti Workshop on Pregroups 2005 17

On not getting everything

• Can we find any “natural” subclasses of pregroup grammars (inour new sense) that

get something like the “right” family of languages?

• A natural option is to place restrictions on allowable types– either in the lexicon, or

in general:

– Lambek (2004) gives a “performance restriction”, which restricts types to those

of length less thann

– another option is to place a condition on the lexicon

∗ in the 2-stack translation, we had lexical types which had multiple atoms in

them, and so this might seem a natural restriction,

∗ however, we can simulate a queue automaton just using lexical types of the

form aα`, andαra, which seem pretty simple



Kobele, Chieti Workshop on Pregroups 2005 18

Global Index Grammars

• Castãno (2004) introduces Global Index Grammars (GIGs) as a variant of (linear)

indexed grammars – instead of associating a stack with a non-terminal, there is a

single, global, stack accessible to everything.

• The Global Index Languages (GILs) are semi-linear and bounded polynomially

parsable. They contain non- Multiple Context-Free Languages (MCFLs), like the

multiple copy language{ww+ : w ∈ Σ∗}, and it is an open question whether the

MCFLs are properly included in the GILs, or not.

• We can also look at GIGs as context-free grammars with productions labeled by

subwords of a Dijk language:x, x, xx, ε, thus connecting with the tradition of

grammars with controlled derivations (Dassow and Păun, 1989).



Kobele, Chieti Workshop on Pregroups 2005 19

Global Index Grammars

• Castãno places two restrictions on GIGs (above and beyond them being CFGs

labeled in the above way):

1. only rules in Greibach Normal Form (A→ aB1 . . .Bn) can be labeled with an

opening parenthesis (x)

2. rules labeled with either an opening (x) or a closing (x) parenthesis can only be

used in a derivation if they are rewriting the left-most non-terminal



Kobele, Chieti Workshop on Pregroups 2005 20

Global Index Grammars

• Given a GIGG = 〈N,T, I ,S, #,P〉, where all productions inP are in GNF, we

construct a pregroup grammar as follows

1. LetP1 be the free pregroup overN, andP2 the free pregroup overI . We draw

types fromP1 × P2.

• The intuition behind the translation:

An expression has the form
































AB`n . . .B
`
1

δ

w

































whereδ is a substring of a Dijk word, andAB`n . . .B
`
1 is a context-free production in

GNF



Kobele, Chieti Workshop on Pregroups 2005 21

Global Index Grammars

I is the smallest set containing, for eachA→δ aB1 . . . Bn ∈ P, the expression
































AB`n . . .B
`
1

δ′

a

































where,

if δ is thenδ′ is

ε ε

x x

x xr

xx xr x



Kobele, Chieti Workshop on Pregroups 2005 22

Global Index Grammars

What about the restriction to left-most derivation?!

• pregroup grammars always yield a ‘left-corner’ derivation

• but when a CFG is in GNF, ‘left-corner’ coincides with left-most

Thus we don’t have to make the additional stipulation Castaño makes in his system – we

get it ‘for free’.



Kobele, Chieti Workshop on Pregroups 2005 23

Summary

• Drawing types from products of free pregroups increases thegenerative power of

pregroup grammars, and allowing the empty string to be assigned a type in this

setting makes them r.e.

• Intersection of languages can be modeled by taking the cross-product of the

respective lexica (allowing the empty string gives us in essence closure under

erasing homomorphisms).

• By implementing a simple lexical restriction on type assignments, we can define a

class of pregroup grammars that are semi-linear.

• Pregroups have a ‘built-in’ leftmost-derivation-like property, which allows us to give

a simpler statement of Castaño’s restrictions.



Kobele, Chieti Workshop on Pregroups 2005 24

References
Buszkowski, W. (2001). Lambek grammars based on pregroups.In P. de Groote, G. Morrill, and C. Retoré

(Eds.),Logical Aspects of Computational Linguistics, Volume 2099 ofLecture Notes in Artificial

Intelligence. New York: Springer.

Castãno, J. M. (2004).Global Index Languages. Ph. D. thesis, Brandeis University.

Dassow, J. and G. Păun (1989).Regulated Rewriting in Formal Language Theory. Berlin: Springer-Verlag.

Kobele, G. M. (2005). Agreement bottlenecks in Italian. ms.UCLA.

Lambek, J. (2004, August). A computational algebraic approach to English grammar.Syntax 7(2), 128–147.

Shieber, S. M. (1985). Evidence against the context-freeness of natural language.Linguistics and Philosophy

8, 333–343.


