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Abstract

We study languages of λ-terms generated by IO and OI unsafe grammars. These
languages can be used to model meaning representations in the formal semantics
of natural languages following the tradition of Montague [25]. Using techniques
pertaining to the denotational semantics of the simply typed λ-calculus, we
show that the emptiness and membership problems for both types of grammars
are decidable. In the course of the proof of the decidability results for OI, we
identify a decidable variant of the λ-definability problem, and prove a stronger
form of Statman’s finite completeness Theorem [35].
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1. Introduction

At the end of the sixties, similar but independent lines of research were
being pursued in formal language theory and in the formal semantics of natural
language. Formal language theory was refining the Chomsky hierarchy so as to
find an adequate syntactic model of programming languages lying in between
the context-free and context-sensitive languages. Among others, this period
resulted in the definition of IO and OI macro languages by Fischer [13] and
the notion of indexed languages (which coincide with OI macro languages) by
Aho [2]. At the same time, Richard Montague [25] was proposing a systematic
way of mapping natural language sentences to logical formulae representing their
meanings, providing thereby a solid foundation for the field of formal semantics.
The main idea behind these two lines of research can be summed up in the
phrase ‘going higher-order.’ For macro and indexed grammars, this consisted
in parameterizing non-terminals with strings and indices (stacks) respectively,
and in Montague’s work it consisted in using the simply typed λ-calculus to
map syntactic structures to their meanings. In this respect, Montague was
ahead of the formal language theory community, which took another decade to
go higher-order with the work of Damm [7]. However, the way Damm defined
higher-order grammars used (implicitly) a restricted version of the λ-calculus
that is now known as the safe λ-calculus. This restriction was made explicit
by Knapik et al. [19] and further studied by Blum and Ong [4]. For formal
grammars this restriction was first lifted by de Groote [8] and Muskens [27]
in the context of computational linguistics as a way of applying Montague’s
techniques to syntactic modeling.

In the context of higher-order recursive schemes, Ong [28] showed that safety
was not a necessary condition for the decidability of the MSO model checking
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problem. The safety restriction has been shown to be a real restriction by
Parys [29]. Nevertheless, concerning the IO and OI hierarchies, the question as
to whether safety is a genuine restriction in terms of the definable languages
is still an open problem. Aehlig et al. [1] showed that, for second order OI
grammars, safety was in fact not a restriction. It is nevertheless generally
conjectured that safety is a restriction for higher-order grammars.

As we wish to extend Montague’s technique with the OI hierarchy so as to
enrich it with fixed-point computation as proposed by Moschovakis [26], or as
in proposals to handle presuppositions in natural languages by Lebedeva and
de Groote [10, 9, 22], we work with languages of λ-terms rather than with just
languages of strings or trees. In the context of languages of λ-terms, safety
clearly appears to be a restriction since, as shown by Blum and Ong [4], not
every λ-term is safe. Moreover the terms generated by Montague’s technique
appear to be unsafe in general.

This paper is thus studying the formal properties of the unsafe IO and OI
languages of λ-terms. A first property that the use of unsafe grammars brings
into the picture is that the class of unsafe IO languages hierarchy is strictly
included within the class of unsafe OI languages. The inclusion can be eas-
ily shown using a standard continuation passing style (CPS) transform on the
grammars, and its strictness is implied by decidability results. Nevertheless, it
is worth noting that such a transform does not result in safe grammars, and so it
is unclear whether safe IO languages are safe OI languages. This paper focuses
primarily on the emptiness and the membership problems for unsafe IO and OI
languages, using simple techniques related to the denotational semantics of the
λ-calculus. For the IO case, we recast some known results from Salvati [31, 30]
so as to emphasize that they derive from the fact that, given an IO language and
a finite model of the λ-calculus, one can effectively compute the elements of the
model which are the interpretations of terms in the language. This allows us to
show that the emptiness problem is decidable, and also, using Statman’s finite
completeness theorem [35], to show that the membership problem is decidable.
In contrast to the case for IO languages, we show that this proof method does
not work for OI languages. Indeed, we prove that the set of closed λ-terms of a
given type is an OI language, and thus, since λ-definability is undecidable [23],
the set of elements in a finite model that are the interpretation of terms in an
OI language cannot be effectively computed. To show the decidability of the
emptiness and membership problems for OI, we prove a theorem that we call the
Observability Theorem; it characterizes some semantic properties of the elements
of an OI language in monotonic models, and leads directly to the decidability
of the emptiness problem. For the membership problem we prove a generaliza-
tion of Statman’s finite completeness theorem which, in combination with the
Observability Theorem, entails the decidability of the membership problem of
OI languages.

The work we present here is closely related to the research that is being
carried out on higher-order recursive schemes. It differs from it in one impor-
tant respect: the main objects of study in the research on higher-order recursive
schemes are the infinite trees generated by schemes, while our work is related to
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the study of the Böhm trees of λY -terms, which may contain λ-binders. Such
Böhm trees are closer to the configuration graphs of Higher-order Collapsible
Pushdown Automata, whose first-order theory has been shown undecidable [6].
If we were only interested in grammars generating trees or strings, the decidabil-
ity of MSO for higher-order recursion schemes [28] would yield the decidability
of both the emptiness and the membership problems of unsafe OI grammars,
but this is no longer the case when we turn to languages of λ-terms. It is also
important to notice that for the cases of string languages and tree languages,
our results give more specific algorithms than those induced by the theorem of
Ong [28] and are proved using very different techniques.

Organization of the paper. We start by giving the definitions related to the
λ-calculus, its finitary semantics, and how to define higher-order grammars in
section 2. We then present the decidability results concerning higher-order IO
languages and explain why the techniques used there cannot be extended to OI
languages in section 3. Section 4 contains the main contributions of the paper:
the notion of hereditary prime elements of monotone models together with the
Observability Theorem, and a strong form of Statman’s finite completeness
Theorem. Finally we present conclusions and a broader perspective on our
results in section 5.

2. Preliminaries

In this section, we introduce the various calculi we are going to use in the
course of the article. Then we show how these calculi may be used to define IO
and OI grammars. We give two presentations of these grammars, one using tra-
ditional rewriting systems incorporating non-terminals, and the other as terms
in one of the calculi; these two perspectives are equivalent. In the remainder of
the paper we will switch between these two formats as is most convenient. Fi-
nally we introduce the usual notions of full and monotone models for the calculi
we work with.

2.1. λ-calculi

We introduce here various extensions of the simply typed λ-calculus. Given
an atomic type 0 (our results extend without difficulty to any finite number
of atomic types), the set type of types is built inductively using the binary
right-associative infix operator →. We write α1 → · · · → αn → α0 for (α1 →
(· · · (αn → α0))). As in [16], the order of a type is: order(0) = 1, order(α→ β) =
max(order(α) + 1, order(β)). Constants are declared in higher-order signatures
Σ which are finite sets of typed constants {Aα1

1 , . . . , Aαnn }. We use constants to
represent non-terminal symbols.

We assume that we are given, for each type, a countably infinite set of typed
λ-variables (xα, yβ ,. . . ). The families of typed λY+Ω-terms (Λα)α∈type built on
a signature Σ are inductively constructed according to the following rules, where
cα ∈ Σ : xα, cα and Ωα are in Λα; Y α is in Λ(α→α)→α; if M is in Λα→β and N
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is in Λα, then (MN) is in Λβ ; if M is in Λβ then (λxα.M) is in Λα→β ; if M and
N are in Λ0 then M + N is in Λ0. When M is in Λα we say that it has type
α, we write Mα to indicate that M has type α; the order of a term M , is the
order of its type. As it is customary, we omit type annotations when they can
be easily inferred or when they are irrelevant. We adopt the usual conventions
about dropping parentheses in the syntax of terms. We write Mα→β + Nα→β

as an abbreviation for λxα.Mx + Nx. The set of free variables of the term M
is written FV (M); a term M is closed when FV (M) = ∅. Finally we write
M [x1 ← N1, . . . , xn ← Nn] for the simultaneous capture-avoiding substitutions
of the terms N1, . . . , Nn for the free occurrences of the variables x1, . . . , xn in
M .

The set of λ-terms is the set of terms that do not contain occurrences of Y ,
+ or Ω, and for any S ⊆ {Y,+,Ω}, the λS-terms are the λY+Ω-terms that may
contain only those constructors in S. For example, λ+Ω-terms are the terms
that do not contain occurrences of Y .

We assume the reader is familiar with the notions of β- and η-contraction
and η-long forms (see [16]). The constant Ωα stands for the undefined term
of type α, Y α is the fixpoint combinator of type (α → α) → α, and + is
the non-deterministic choice operator. The families of terms that may con-
tain occurrences of Ω are naturally ordered with the least compatible relation
v such that Ωα v M for every term M of type α; δ-contraction provides
the operational semantics of the fixpoint combinator: YM →δ M(YM), and
+-contraction gives the operational semantics of the non-deterministic choice
operator: M + N →+ M and M + N →+ N . Given a set R of symbols
denoting compatible relations, for S ⊆ R, S-contraction is the union of the con-
traction relations denoted by the symbols in S; it will generally be written as
→S . For example,→βη+ denotes βη+-contraction. S-reduction, written

∗→S , is
the reflexive transitive closure of S-contraction, and S-conversion, written =S ,
is the smallest equivalence relation containing →S . A term is in S-normal form
when it cannot be further reduced by any of the contraction relations denoted
by symbols in S; we simply say it is in normal form when S is clear from the
context. We recall (see [16]) that when M

∗→βηδ+ N , and M ′ and N ′ are the

η-long forms of M and N respectively, then M ′
∗→βδ+ N ′. This means that

η-long forms provide a means of forgetting about η-reduction; in addition, they
strongly relate the syntax of terms to the structure of their types. Therefore,
in the remainder of the paper, we assume that we are working with terms in
η-long form.

2.2. IO and OI grammars

The notions of IO and OI macro grammars were introduced by Fischer [13]
so as to extend the expressive power of context free grammars. As for context
free grammars, these grammars are defined by means of non-terminals that
can be rewritten with production rules. Fischer’s extension consists in using
non-terminals that are parametrized by strings. These non-terminals can be
understood as non-deterministic functions from strings to strings. Going higher-
order consists in parametrizing non-terminals not only with first order data such
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as strings, but also with functions over those data and functionals over those
functions and so on. A simple way to represent such grammars is to assign
non-terminals a type, and to rewrite non-terminals to λ-terms of the same type.
We define a higher-order macro grammar G as a triple (Σ, R, S) where Σ is a
higher-order signature of non-terminals, R is a finite set of rules A → M , for
A a non-terminal of Σ, and M a λ-term built on Σ that has the same type
as A, and where S is a distinguished non-terminal of Σ, the start symbol. We
do not require M to be a closed term; free variables in the right hand side of
grammatical rules play the role of terminal symbols (as there are finitely many
rules, there can be only finitely many such variables). We also do not require S
to be of a particular type. This permits (higher-order) macro grammars to define
languages of λ-terms of arbitrary types. As noted in [8], languages of strings and
trees are special cases of languages of λ-terms. A grammar has order n when
its non-terminals have at most order n. Our higher-order macro grammars
generalize those of Damm [7] in two ways. First, they do not necessarily fulfill
the safety condition that hold of Damm’s grammars. According to [4], a term
M is safe when no subterm N of M contains free λ-variables (excluding the free
variables of M which play the role of constants) of order lower than that of N ,
unless N occurs as part of a subterm NP or λx.N . A grammar is safe when the
right hand sides of its rules are all safe terms. Safe terms can be safely reduced
using substitution in place of capture-avoiding substitutions. Second, instead
of only defining languages of strings or trees, our higher-order macro grammars
can define languages of λ-terms of higher type, following Montague’s tradition
in the formal semantics of natural languages.

The rules of a grammar G = (Σ, R, S) define a natural relation→G on terms
built on Σ. We write M →G N when N is obtained from M by replacing
(without capturing free variables) an occurrence of a non-terminal A in M by a
term P , such that A→ P is a rule of G. A term is in G-normal form when it does
not contain any occurrence of a non-terminal and in βG-normal form when it is
both G normal and β-normal. The grammar G defines two languages: LOI(G) =

{M in βG-normal form | S ∗→βG M} and LIO(G) = {M in β-normal form |
∃P in G-normal form.S

∗→G P ∧P
∗→β M}. These two languages can be defined

in a different manner, in particular M is in LOI(G) iff S can be reduced to M
with the head reduction strategy that consists in always contracting top-most
redices of the relation →βG . For a given grammar G, we always have that
LIO(G) ⊆ LOI(G), but, in general, LIO(G) 6= LOI(G). For a grammar G, we say
that the terms in LOI(G) are obtained in the OI (‘outside-in’) mode of derivation
while those in LIO(G) are obtained in the IO (‘inside-out’) mode of derivation.
For a grammar that is used in the IO or in the OI mode of derivation we
may speak respectively of an IO or of an OI grammar. The class of languages
defined by IO or OI grammars respectively define IO and OI languages and
when restricted to order n they respectively define order n IO and OI languages
which are denoted IOn and OIn. The class IOn is included in the class IOn+1

and the class OIn is included in the class OIn+1. The same argument as for
safe grammars should show that those inclusions are strict [12]. The IO and
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OI hierarchies are the families of increasing classes of languages (IOn)n∈N and
(OIn)nN.

Here follows an example of a second order macro grammar G whose free vari-
ables (i.e. terminals) are ex(0→0)→0, and0→0→0, not0→0 and P0→0, and whose
non-terminals are S0 (the start symbol), S′0→0 and cons0→0→0 (extending BNF
notation to macro grammars).

S → ex(λx.(S′x)) | andS S | notS
S′ → λy.ex(λx.S′(consx y)) | λy.and(S′y)(S′y) | λy.not(S′y) | λy.Py

cons → λxy.x | λxy.y

The language LOI(G) represents the set of formulae of first-order logic built with
one predicate P (we use a similar construction later on to prove Theorem 10).
For example the formula ex(λx.ex(λy.and(Px)(Py))), written in the more fa-
miliar syntax of first-order logic as ∃x.∃y.P (x)∧P (y), can be derived as shown
on Figure 1. In derivation representations, we underline the redex that the next
step is reducing.

S →G ex(λx.(S′x))

→G ex(λx.((λz.ex(λy.S′(cons y z)))x))

→β ex(λx.ex(λy.S′(cons y x)))

→G ex(λx.ex(λy.(λz.and(S′z)(S′z))(cons y x)))

→β ex(λx.ex(λy.and(S′(cons y x))(S′(cons y x))))

→G ex(λx.ex(λy.and(S′((λuv.v) y x))(S′(cons y x))))

→β ex(λx.ex(λy.and(S′((λv.v)x))(S′(cons y x))))

→β ex(λx.ex(λy.and(S′x)(S′(cons y x))))

→G ex(λx.ex(λy.and(S′x)(S′((λuv.u) y x))))

→β ex(λx.ex(λy.and(S′x)(S′((λv.y)x))))

→β ex(λx.ex(λy.and(S′x)(S′y)))

→G ex(λx.ex(λy.and((λz.Pz)x)(S′y)))

→β ex(λx.ex(λy.and(Px)(S′y)))

→G ex(λx.ex(λy.and(Px)((λz.Pz)y)))

→β ex(λx.ex(λy.and(Px)(Py)))

Figure 1: OI derivation of ex(λx.ex(λy.and(Px)(Py))) with the grammar G

The language LIO(G) represents the formulae of first-order logic that can be
built with only one variable (that is each subformula of a formula represented
in LIO(G) contains at most one free variable). We give an example of the
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derivation of the formula ex(λx.ex(λy.and(Py)(Py))), representing the (one-
variable) FOL sentence ∃x.∃y.P (y) ∧ P (y), in Figure 2.

S →G ex(λx.(S′x))

→G ex(λx.((λz.ex(λy.S′(cons y z)))x))

→G ex(λx.((λz.ex(λy.(λu.and(S′u)(S′u))(cons y z)))x))

→G ex(λx.((λz.ex(λy.(λu.and((λv.Pv)u)(S′u))(cons y z)))x))

→G ex(λx.((λz.ex(λy.(λu.and((λv.Pv)u)((λv.Pv)u))(cons y z)))x))

→G ex(λx.((λz.ex(λy.(λu.and((λv.Pv)u)((λv.Pv)u))((λuv.u) y z)))x))

→β ex(λx.((λz.ex(λy.(λu.and((λv.Pv)u)((λv.Pv)u))((λv.y) z)))x))

→β ex(λx.((λz.ex(λy.(λu.and((λv.Pv)u)((λv.Pv)u))y))x))

→β ex(λx.((λz.ex(λy.and((λv.Pv)y)((λv.Pv)y)))x))

→β ex(λx.((λz.ex(λy.and(Py)((λv.Pv)y)))x))

→β ex(λx.((λz.ex(λy.and(Py)(Py)))x))

→β ex(λx.ex(λy.and(Py)(Py)))

Figure 2: IO derivation of ex(λx.ex(λy.and(Py)(Py))) with the grammar G

As the description of LIO(G) given above suggests, the term

ex(λx.ex(λy.and(Px)(Py)))

is not in LIO(G). The reason why this is so illustrates well the difference between
IO and OI. In the IO mode of derivation, terms must be reduced using the
rules of the grammar until all non-terminals have been eliminated, before β-
reduction is performed. In the OI mode of derivation, on the other hand, a
β-contraction step may be performed at any time during the derivation. This
feature, particular to OI, allows (in the derivation of Figure 1) the term cons y x
to be copied, resulting in two occurrences which are reduced independently. This
is not possible in the IO mode of derivation since the term cons y x contains
the non-terminal cons, and thus must be further reduced using the rules of the
grammar before it may be copied in a β-reduction step.

Given the definition of safety in [4], it is easily verified that the terms of
LIO(G) and LOI(G) of the example grammar G are not safe; this illustrates
that unsafe IO and OI languages of λ-terms are more general than their safe
counterparts. Moreover, when seen as graphs, the terms of LOI(G) form a class
of graphs which has an unbounded treewidth; the MSO theory of these terms
is undecidable. This explains why the decidability results we obtain later on
cannot be seen as immediate corollaries of Ong’s Theorem [28].
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2.3. IO and OI languages in the λY+Ω-calculus

We extend the notions of IO and OI languages to λY+Ω-terms. Given a
λY+Ω-term M , its IO language LIO(M) is the set of λ-terms N in normal form

such that there is P such that M
∗→δ+ P

∗→β N . Its OI language LOI(M) is the

set of λ-terms N in normal form such that M
∗→βδ+ N (we can also restrict our

attention to head-reduction). An alternative characterization of LOI(M), which
we make use of later on, is the following. Given a term M we write ω(M) for the
immediate approximation of M , that is the term obtained from M as follows:
ω(λxα.M) = Ωα→β if ω(M) = Ωβ , and λxα.ω(M) otherwise; ω(MN) = Ωβ if
ω(M) = Ωα→β or M = λx.P , and ω(MN) = ω(M)ω(N) otherwise; ω(Y α) =
Ω(α→α)→α, ω(xα) = xα, ω(Ωα) = Ωα, and ω(N1 +N2) = ω(N1) + ω(N2). Note
that ω(M) is a λ+Ω-term that contains no β-redices. A λ+Ω-term Q is a finite

approximation of M if there is a P such that M
∗→βδ P and Q = ω(P ). The

language LOI(M) is the union of the languages LOI(Q) so that Q is a finite
approximation of M .

In both IO and OI modes of evaluation, λ+Ω-terms define finite languages,
and the λY+Ω-calculus defines exactly the same classes of languages as higher-
order macro grammars.

Theorem 1 Given a higher-order macro grammar G, there is a λY+Ω-term
M such that LOI(G) = LOI(M) and LIO(G) = LIO(M).

Given a λY+Ω-term M there is a higher-order macro grammar G such that
LOI(G) = LOI(M) and LIO(G) = LIO(M).

The proof of this theorem is based on the correspondence between higher-
order schemes and the λY -calculus given in [33]. Going from a λY+Ω-term to
a grammar is simply a direct transposition of the procedure described in [33]
with the obvious treatment for +. For the other direction, it suffices to see
the grammar as a non-deterministic scheme, which is done by viewing all the
rules A→M1, . . . , A→Mn, of a non-terminal A as a unique rule of a scheme
A→M1 + · · ·+Mn; and then to transform the scheme into a λY+-term using
the transformation given in [33]. There is a minor technical difficulty concerning
IO languages; one needs to start with a grammar where every non-terminal can
be rewritten into a G-normal form using

∗→G only. This is related to the slight
differences in the treatment of recursion in grammars and in terms, which could
be suppressed by following the slightly modified syntax of [33] where Y is a
variable binding operator rather than a combinator.

The grammar G that we took as an example is represented by the term:

Y (λS. ex(Y (λS′y. ex(λx.S′(x+ y))
+ and(S′y)(S′y)
+ not(S′y)
+ Py))

+ and(S)(S)
+ not(S))
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2.4. Models of the λ-calculi

Full models of the λ-calculus. We start by giving the simplest notion of model
for the λ-calculus, that of full models. A full model F is a collection of type-
indexed sets (Fα)α∈type , where Fα→β is FFαβ , the set of functions from Fα to
Fβ . Note that F is completely determined by F0. A full model is said to be
finite when F0 is a finite set; in that case Fα is finite for every α ∈ type. A
valuation ν is a function that maps variables to elements of F respecting typing,
which means that, for every xα, ν(xα) is in Fα. Given a valuation ν and a in
Fα, we write ν[xα ← a] for the valuation which maps the variable xα to a but
is otherwise equal to ν. We can now interpret λ-terms in F , using the following
interpretation scheme: [[xα]]

ν
F = ν(xα), [[MN ]]

ν
F = [[M ]]

ν
F ([[N ]]

ν
F ) and [[λxα.M ]]

ν
F

is the function such that for a in Fα, [[λxα.M ]]
ν
F (a) = [[M ]]

ν[xα←a]
F . For a closed

term M , [[M ]]
ν
F does not depend on ν, and thus we simply write [[M ]]F . The

following facts are known about full models:

Theorem 2 (Soundness (see [15])) If M =βη N then for every full model
F and valuation ν, [[M ]]

ν
F = [[N ]]

ν
F .

Theorem 3 (Finite Completeness [35]) Given a λ-term M , there is a finite
full model FM and a valuation ν, such that, for every N , [[N ]]

ν
FM = [[M ]]

ν
FM iff

N =βη M .

Theorem 3 implies in particular that it suffices for two λ-terms to have the
same interpretation in every finite full model so as to be βη-convertible. In this
theorem, the constructions of FM and ν are effective.

For a full model F , an element f of Fα is said to be λ-definable when there
is a closed λ-term M such that [[M ]]F = f . The problem of λ-definability is the
problem whose input is a finite full model F together with an element f of Fα,
and whose answer is whether f is λ-definable.

Theorem 4 (Loader [23]) The λ-definability problem is undecidable.

Given a language of λ-terms L, a full model F , and a valuation ν, we write
[[L]]

ν
F for the set {[[N ]]

ν
F | N ∈ L}. So in particular, for a λY+Ω-term M , we

may write [[LIO(M)]]
ν
F or [[LOI(M)]]

ν
F .

Monotone models of λY+Ω-calculus. Given two complete lattices L1 and L2,
we write Mon[L1 → L2] for the lattice of monotonic functions from L1 to L2

ordered pointwise; f is monotonic if a ≤1 b implies f(a) ≤2 f(b), and given f
and g in L, f ≤ g whenever for every a in L1, f(a) ≤2 g(a). It is worth noticing
that for f, g in L = Mon[L1 → L2] we have (f ∨ g)(a) = f(a) ∨2 g(a) and
(f ∧ g)(a) = f(a) ∧2 g(a). Among the functions in Mon[L1 → L2], of special
interest are the step functions. A step function a 7→ b is determined from
elements a in L1 and b in L2, and is defined such that (a 7→ b)(c) is equal to b
when a ≤1 c and to ⊥2 otherwise. A monotone modelM is a collection of finite
lattices indexed by types, (Mα)α∈type where Mα→β = Mon[Mα → Mβ ] (we
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write ⊥α and >α respectively for the least and greatest elements of Mα). The
notion of valuation on monotone models is similar to the one on full models and
we use the same notation. Terms are interpreted in monotone models according
to the following scheme: [[xα]]

ν
M = ν(xα), [[MN ]]

ν
M = [[M ]]

ν
M([[N ]]

ν
M) and for a in

Mα, [[λxα.M ]]
ν
M(a) = [[M ]]

ν[xα←a]
M , [[Ωα]]

ν
M = ⊥α, [[M +N ]]

ν
M = [[M ]]

ν
M∨ [[N ]]

ν
M

and for every a in Mα→α, [[Y ]]
ν
M(a) =

∨
{an(⊥α) | n ∈ N}.

The following Theorem gives well known results on monotone models (see [3]):

Theorem 5 Given two λY+Ωterms of type α, M and N , the following obtain
for every monotone model M and valuation ν:

1. if M =βδ N then [[M ]]
ν
M = [[N ]]

ν
M,

2. [[M ]]
ν
M =

∨
{[[Q]]

ν
M | Q is a finite approximation of M},

3. if M
∗→βδ+ N then [[N ]]

ν
M ≤ [[M ]]

ν
M,

4. if N vM then [[N ]]
ν
M ≤ [[M ]]

ν
M.

3. Relations between IO, OI and full models

In this section, we investigate some basic properties of IO and OI languages.
We will see that the class of higher-order OI languages strictly subsumes the
class of higher-order IO languages. We will then see that the emptiness and
membership problems for higher-order IO languages are decidable, by showing
that for a higher-order grammar G, a finite full model F , and a valuation ν, the
set [[LIO(G)]]

ν
F is effectively computable. On the other hand, we show that [[L]]

ν
F

is not in general effectively computable when L is an OI language. This is done
by a reduction to the λ-definability problem, which proceeds by showing that
the set of closed λ-terms of type α is actually an OI language.

3.1. OI subsumes IO

We first start by showing that OI subsumes IO; for this given a higher-order
grammar G, we construct a grammar G′ so that LIO(G) = LOI(G′). The con-
struction of G′ can be seen as a continuation passing style (CPS) transformation
of G. In the community on higher-order schemes, Haddad [14] showed that the
IO and OI modes of evaluation on schemes define the same classes of infinite
trees. Nevertheless, in the context of schemes, IO is understood in terms of
a call-by-value strategy that is quite close to that used in programming lan-
guages: Haddad considers that a value is either a possibly infinite tree or a
non-terminal that is not applied to all its possible arguments. If we were to
present IO macro grammars in terms of call-by-value strategy, then the notion
of a value would be that of a term that does not contain non-terminals, that is,
a term whose evaluation is completely deterministic (non-determinism emerg-
ing from non-terminal rewriting when working with grammars). This difference

11



of interpretation of what IO means in the context of schemes and in that of
higher-order grammars explains why our results, even though they might su-
perficially look similar, are quite different. In particular, in contrast to the case
of higher-order schemes where IO and OI coincide, we show that, in the context
of higher-order grammars, OI strictly subsumes IO.

Theorem 6 (OI subsumes IO) Given a higher-order grammar G, one can
construct a higher-order grammar G′ such that LIO(G) = LOI(G′).

Proof
Let us assume that G = (Σ, R, S). Before we begin the proof, we adopt the
convention that when, for A1, . . . , An a sequence of non-terminals, we write
M = P [x1 ← A1, . . . , xn ← An] (where P [x1 ← A1, . . . , xn ← An] is the result
of simultaneously substituting A1, . . . , An for the free occurrences of x1, . . . ,
xn in P ) for a λ-term M built on Σ, we implicitly assume that P is a λ-term
that does not contain any non-terminal and also that the variables x1, . . . , xn
have exactly one free occurrence in P .

We now define the higher-order macro grammar G′ = (Σ′, R′, S) as follows:
for every Aα in Σ, we let A′α

′
be in Σ′ such that α′ = (α → 0) → 0, we also

let S be in Σ′. Now for every rule A→ P [x1 ← A1, . . . , xn ← An] in R, we let
A′ → λk.A′1(λx1. . . . A

′
n(λxn.kP ) . . . ) be in R′; if S has type α1 → · · · → αn →

0, we also add to R′ the rule S → λx1 . . . xn.S
′(λQ.Qx1 . . . xn). It now remains

to show that LIO(G) = LOI(G′).
We start by showing that LIO(G) ⊆ LOI(G′). For this, we show that, when

A
∗→G M with M = P [x1 ← A1, . . . , xn ← An], then

A′
∗→βG′ λk.A

′
σ(1)(λxσ(1) . . . A

′
σ(n)(λxσ(n).kP ) . . . )

for some permutation σ of [1, n]. This is proved by induction on the reduction

A
∗→G M . In case this reduction has length one the conclusion follows from

the definition of G′. Let us now assume the reduction has length m = o + 1
for o > 0. This implies that A can be rewritten in o steps into N = Q[y1 ←
B1, . . . , yr ← Br], and that for some i in [1, r], Bi → O is a rule of G such that
M is obtained from N by rewriting Bi into O. Without loss of generality we
assume that i = 1 and thus that M = Q[y1 ← O, y2 ← B2 . . . , yr ← Br] and
O = O′[z1 ← C1, . . . , zq ← Cq]. Therefore we have:

M = (Q[y1 ← O′])[z1 ← C1, . . . , zq ← Cq, y2 ← B2 . . . , yr ← Br]

By the induction hypothesis, A′ can be rewritten in the OI mode of evaluation
with the grammar G′ to a term Q′ = λk.B′τ(1)(λyτ(1). . . . B

′
τ(r)(λyτ(r).kQ)).

Without loss of generality we assume that τ(1) = 1. By the definition of G′,
B′1 → λk′.C ′1(λz1. . . . C

′
q(λzq.k

′O′) . . . ) is in R′. Therefore Q′ can be rewritten
to

λk.(λk′.C ′1(λz1. . . . C
′
q(λzq.k

′O′) . . . ))(λy1.B
′
τ(2)(λyτ(2). . . . B

′
τ(r)(λyτ(r).kQ) . . . ))
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which itself reduces to

λk.C ′1(λz1. . . . C
′
q(λzq.B

′
τ(2)(λyτ(2). . . . B

′
τ(r)(λyτ(r).kQ[y1 ← O′]))) . . . ))

This finally proves the claim.
Now we can use the claim so as to prove the inclusion. If N is in LIO(G),

it means that there is some P which does not contain any non-terminals (P is

in G-normal form), such that S
∗→G P and P

∗→β N . Thus, using the previous

claim, we have that S′
∗→βG′ λk.kN . But then

S
∗→G′ λx1 . . . xn.S

′(λQ.Qx1 . . . xn)
∗→βG′ λx1 . . . xn.(λk.kN)(λQ.Qx1 . . . xn)
∗→β N

so that N is in LOI(G′).
Let us now prove the converse inclusion: LOI(G′) ⊆ LIO(G). Here we

use head-reduction as the evaluation strategy for OI. We prove that, under
this reduction strategy, when a non-terminal A′ can be rewritten in 3m + 1
steps into a term M that still contains a non-terminal, then M is of the form
λk.A′1(λx1. . . . A

′
n(λxn.kN) . . . ), and A

∗→G N [x1 ← A1, . . . , xn ← An]. This
claim can be proved by induction on m. The case where m = 0 is clear
from the definition of G′. If m = o + 1, then by the induction hypothe-
sis A′ can be rewritten in 3o + 1 steps into λk.A′1(λx1. . . . A

′
n(λxn.kN) . . . )

and A
∗→G N [x1 ← A1, . . . , xn ← An]. Now there must be a rule A′1 →

λk′.B′1(λz1. . . . B
′
p(λzp.k

′P ) . . . ) in R′ so that:

λk.A′1(λx1.A
′
2(λx2. . . . A

′
n(λxn.kN) . . . ))

→G′ λk.(λk′.B′1(λz1. . . . B
′
p(λzp.k

′P ) . . . ))(λx1.A
′
2(λx2. . . . A

′
n(λxn.kN) . . . ))

→β λk.B
′
1(λz1. . . . B

′
p(λzp.(λx1.A

′
2(λx2. . . . A

′
n(λxn.kN) . . . ))P ) . . . )

→β λk.B
′
1(λz1. . . . B

′
p(λzp.A

′
2(λx2. . . . A

′
n(λxn.kN [x1 ← P ]) . . . )) . . . )

But since A′1 → λk′.B′1(λz1. . . . B
′
p(λzp.k

′P )) is in R′ we must have A1 →
P [z1 ← B1, . . . , zp ← Bp] in R and thus N [x1 ← A1, . . . , xn ← An] can be
rewritten into N [x1 ← P [z1 ← B1, . . . , zp ← Bp], x2 ← A2, . . . , xn ← An] that
is into (N [x1 ← P ])[z1 ← B1, . . . , zp ← Bp, x2 ← A2, . . . , xn ← An] and thus
the claim is proved by induction.

With the claim we easily obtain that when m is the smallest number such
that A′ is rewritten into a term M which does not contain any non-terminal in
3m+1 steps, then M = λk.kP and A

∗→G P . This implies that, if LIO(A) is the
language of terms that A defines in G in the IO mode of derivation and LOI(A′)
is the language of terms that A′ defines in G′ in the OI mode of derivation,
λk.kN is in LOI(A′) implies that N is in LIO(A). The fact that LOI(G′) is
included into LIO(G) is an immediate consequence. �

Regarding the proof of the previous theorem, several remarks need to be
made. First, the CPS transform naturally makes the order of G′ be two more
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than the order of G. Second, even if G is safe, the grammar G′ constructed in
the proof is not necessarily so. Indeed, consider the safe rule A → aAA where
A is a non-terminal of type 0. The new rule A′ → λk.A′(λx.A′(λy.kaxy)) is not
safe since the term of type 0→ 0 of order 2, (λy.kaxy), contains a free variable
x of type 0 that is of order 1 and is in argument position. Thus, Theorem 6 only
applies to unsafe grammars and it is unclear even whether the safe OI languages
contain the safe IO languages. Finally Fischer [13] has shown that the classes of
languages defined by macro grammars in the OI and IO modes of derivation are
incomparable. We conjecture that for a fixed order n, the classes of languages
IOn and OIn are incomparable.

3.2. Decidability results for IO

We now show that for a full model F , a valuation ν and a given grammar G,
the set [[LIO(G)]]

ν
F can be effectively computed. A natural consequence of this is

that the emptiness and the membership problems for higher-order IO languages
are decidable. These results are known in the literature [30, 31, 32], nevertheless,
we include them here so as to emphasize that they are related to the effectivity
of the set [[LIO(G)]]

ν
F , a property that, as we will see later, does not hold in

the case of OI languages. Also, as one can note, the decidability results for
emptiness and membership for IO can be derived from the one we shall prove
later on for OI by using Theorem 6. However, we think that the decidability of
the set [[LIO(G)]]

ν
F and the undecidability of the set [[LOI(G)]]

ν
F underline a key

difference between IO and OI, and that the decidability of [[LIO(G)]]
ν
F gives a

much simpler route to prove decidability results for IO.

Theorem 7 (Effective finite interpretation of IO) Given a higher-order ma-
cro grammar G, a full model F and a valuation ν, one can effectively construct
the set [[LIO(G)]]

ν
F .

Proof
Since this theorem is some reformulation of results that already appeared in the
literature, we simply sketch its proof.

The idea behind this theorem is reminiscent of the usual techniques used
when facing some problem related to context free grammars. Basically the
proof of this theorem consists in computing a least fixpoint.

For this we assume that G = (Σ, R, S) and that F = (Fα)α∈type . We define
the family P = (Pα)α∈type so that Pα = 2Fα . So as to give an interpretation
to terms that contain non-terminals, we adopt the same convention as in the
proof of Theorem 6: we write M = P [x1 ← A1, . . . , xn ← An] to mean that M
contains n occurrences of non-terminals each of them materialized in P by the
variables x1, . . . , xn that each occur exactly once. Now if we let ξ be a type
consistent mapping of non-terminals to elements of P, we say that a valuation
ρ is compatible with ν and ξ relative to P written ρ ∈P (ν, ξ), when, for every

y, ρ(y) = ν(y) and for every i in [1, n], ρ(xi) ∈ ξ(Ai); we then let [[M ]]
ν,ξ
P be the

set {[[P ]]
ρ
F | ρ ∈P (ν, ξ)}.
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We then use this interpretation to compute the least valuation ξ so that
for every non-terminal A, if the rules with left-hand side A are A → M1, . . . ,
A → Mn, then ξ(A) =

⋃
i∈[1,n] [[Mi]]

ν,ξ
P . For this, it suffices to let ξ0 be the

valuation of non-terminals so that for every non-terminal A, ξ0(A) = ∅, and

then let ξk+1(A) =
⋃
i∈[1,n] [[Mi]]

ν,ξk
P . It is then easy to see that for every k, and

every A, ξk(A) ⊆ ξk+1(A), which guarantees the existence of the least valuation
ξ. Then the usual techniques show that an element f of M is in ξ(A) iff there
are P and M respectively in G-normal form and in βG-normal form so that
A
∗→G P

∗→β M and [[M ]]
ν
F = f . �

Corollary 8 Given a higher-order macro grammar G, the problem of deciding
whether LIO(G) = ∅ is P-complete.

Proof
The P-hardness of the problem comes from the fact that it subsumes the problem
of the emptiness of a context-free language which is P-complete. The fact that
it is in P comes from that if we take the full model S = (Sα)α∈type so that S0 is
a singleton set, then for every α ∈ type, Sα is a singleton set. Then Tα = 2Sα is
a two elements set and computing the interpretation of a term as explained in
the proof of Theorem 7 is then linear in the size of the term, so that computing
a fixpoint of a grammar in (Tα)α∈type is linear in the number of non-terminals
and in the size of the terms involved in the rules of the grammar. �

Corollary 9 Given a higher-order macro grammar G and a term M , it is de-
cidable whether M ∈ LIO(G).

Proof
From the finite completeness Theorem, we know that there is a full model
FM and a valuation ν so that for every term N , [[N ]]

ν
FM = [[M ]]

ν
FM iff N =βη

M . It then follows that M is in LIO(G) iff [[M ]]
ν
FM is in [[LIO(G)]]

ν
FM . Since

from Theorem 7 the set [[LIO(G)]]
ν
FM can effectively be computed, and since

the constructions of FM and ν are also effective, it follows that we can decide
whether [[M ]]

ν
FM is in [[LIO(G)]]

ν
FM . �

3.3. OI generates all closed terms of a given type

We will now see that the set of all closed λ-terms of a given type α is an OI
language. Combined with Theorem 4, it follows that the set [[LOI(G)]]F cannot
be effectively computed. Moreover, Theorems 6 and 7 imply that the class of
IO languages is strictly included in that of OI languages.

Theorem 10 For every type α, there is a higher-order macro grammar Gα such
that LOI(Gα) is the set of all closed λ-terms of type α in β-normal form.
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Proof
Fix α. We are going to build a grammar Gα so that LOI(Gα) is the set of
closed λ-terms of type α. For this we let Tα be the finite set of types which are
subformulae of α, i.e. the types that have a syntactic occurrence within α. We
assume a total order on Tα so that when we deal with a subset S = {α1, . . . , αn}
of Tα, we take the ordering of the elements to be α1, . . . , αn. We define the non-
terminals of Gα to be either pairs 〈γ, S〉 where γ is in Tα and S ⊆ Tα, or to be
of the form consγ . The finiteness of Tα guaranties that the set of non-terminals
of Gα is finite. The type of the non-terminals 〈γ, S〉 is α1 → · · · → αn → γ
when S = {α1, . . . , αn} (it is γ when S = ∅; and otherwise the order of the αi is
fixed according to the order of Tα), and the type of consγ is γ → γ → γ. The
non-terminals consγ will serve to construct non-empty finite sets of variables
of type γ; they allow the addition of a variable to such a set. For example the
set of variables {xγ , yγ , zγ} will be represented as consγx

γ(consγy
γzγ). The

grammar will reduce such a term non-deterministically to one of the variables
in the set it represents. The non-terminals of the form 〈γ, S〉, where S =
{α1, . . . , αn}, will always be applied to terms representing non-empty sets of
variables of type α1, . . . , αn. If TV1 , . . . , TVn are terms representing respectively
the finite set V1 of variables of type α1, . . . , and the finite set Vn of variables
of type αn, the grammar will rewrite the term 〈γ, S〉TV1

. . . TVn into any term
of type γ whose free variables are in the set V1 ∪ · · · ∪ Vn. In particular, closed
terms of type γ will be generated by the non-terminal 〈γ, ∅〉.

We now describe the rules of Gα. For the non-terminals 〈γ, S〉, we assume
that S = {α1, . . . , αn}. The rules of Gα are given by:

1. consγ → λxy.x and consγ → λxy.y are rules of Gα. These two rules
implement the non-deterministic choice of the grammar concerning a set
of variables,

2. in case γ = γ1 → γ2 and γ1 = αi for some i ≤ n, then

〈γ, S〉 → λyα1
1 . . . yαnn xαi .〈γ2, S〉y1 . . . yi−1(consαi x yi)yi+1 . . . yn

is a rule of Gα. This rule constructs a λ-abstraction that introduces a fresh
variable x of type αi; the variable x is added to the set of variables of type
αi; while the non-terminal 〈γ2, S〉 is used to construct a term of type γ2
with the updated sets of variables.

3. in case γ = γ1 → γ2, γ1 /∈ S and γ1 appears in between αi and αi+1 in
the order of Tα, then

〈γ, S〉 → λyα1
1 . . . yαnn xγ1 .〈γ2, S ∪ {γ1}〉y1 . . . yixyi+1 . . . yn

is a rule of Gα. This rule is similar to the previous one, except that γ1 is
not in S so that we initiate a new set of variables of type γ1.

4. in case γ = 0 and S 6= ∅, if αi = β1 → · · · → βp → 0 then

〈γ, S〉 → λyα1
1 . . . yαnn .yi(〈β1, S〉y1 . . . yn) . . . (〈βp, S〉y1 . . . yn)
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is a rule of Gα. This rule chooses one of the variables in the set of variables
of type αi represented by the variable yi, and then inductively constructs
the arguments of the right types for that variable.

It is rather easy to show that the non-terminals behave as we explained above.
As a consequence the non-terminal 〈α, ∅〉 generates all the closed terms of type α.
�

Theorem 11 (Undecidable finite interpretation of OI) Given a higher-
order macro grammar G, a finite full model F , and f an element of F , it is
undecidable whether f ∈ [[LOI(G)]].

Proof
This is a direct consequence of Theorems 10 and 4. �

Theorem 12 The class of higher-order IO language is strictly included in the
class of higher-order OI languages.

Proof
If there were an IO grammar that could define the set of closed terms of type
α, Theorem 7 would contradict Theorem 4. �

4. Emptiness and membership for the OI hierarchy

In this section we prove the decidability of the emptiness and membership
problems for higher-order OI languages. For this we use monotone models as
approximations of sets of elements of full models.

4.1. Hereditary primality and the Observability Theorem

Theorem 11 implies that the decision techniques we used for the emptiness
and the membership problems for IO do not extend to OI. So as to show that
those problems are nevertheless decidable, we are going to prove a theorem that
we call the Observability Theorem, which allows us to observe certain semantic
properties of λ-terms in the OI language of a λY+Ω-term M by means of the
semantic values of M in monotone models. For this we introduce the notion of
hereditary prime elements of a monotone model.

Definition 13 In a lattice L, an element f is prime (or ∨-prime) when for
every g1 and g2 in L, f ≤ g1 ∨ g2 implies that f ≤ g1 or f ≤ g2.

Given a monotone model M = (Mα)α∈type , for every type α we define the
sets M+

α and M−α by:

1. M+
0 and M−0 contain the prime elements of M0 that are different from

⊥0,

2. M+
α→β = {(

∨
F ) 7→ g | F ⊆M−α ∧ g ∈M+

β },
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3. M−α→β = {f 7→ g | f ∈M+
α ∧ g ∈M−β }.

A valuation ν on M is said hereditary prime when, for every variable xα,
ν(xα) =

∨
F for some F ⊆M−α . The elements ofM+

α are called the hereditary
prime elements of Mα.1

The main interest of primality lies in that, if f is prime and f ≤ [[M +N ]]
ν
M,

then either f ≤ [[M ]]
ν
M or f ≤ [[N ]]

ν
M. This can be interpreted as the fact that

either there is an element in LOI(M) whose semantics is greater than f or
there is one in LOI(N) whose semantics is greater than f . The difficulty that is
solved by hereditary prime elements is how to transfer this property to the whole
hierarchy of types while remaining compatible with all the constructs of λY+Ω-
terms. Hereditary prime elements are reminiscent of finite state automata for
λ-terms, while other elements inMα are more similar to alternating finite state
automata. The elements in M−α can be thought of as representing transitions;
to a variable x of type α, we associate a set of transitions F , in a manner
similar to finite state automata which may have several transitions associated
to a given symbol. The elements of M+

α can then be seen as the states of
the automaton. Then, when we want to check whether λx.M has a semantics
greater than

∨
F 7→ g in M+

α→β , this amounts to checking whether M has
a semantics greater than g while associating the transitions in F to x. The
proof of the following technical Lemma, from which we derive the Observability
Theorem, can be seen as constructing a run of this kind of automaton on one
of the λ-terms in the language defined by a λ+Ω-term. The role that is fulfilled
by primality is to ensure that there is a run in at least one of the arguments of
the +.

Lemma 14 Given a λ+Ω-term Mα, a monotone model M = (Mγ)γ∈type , a
hereditary prime valuation ν and a hereditary prime element f ofMα, we have
the equivalence:

f ≤ [[Mα]]
ν
M ⇔ ∃N ∈ LOI(M).f ≤ [[N ]]

ν
M

Proof
The direction from right to left is a simple consequence of Theorem 5.3.

Let us now prove the other direction. We assume that Mα is in β-normal
and η-long form. We then proceed by induction on the structure of M .

In case M = hMγ1
1 . . .Mγn

n , we have α = 0, and since f is strictly greater
than ⊥, and f ≤ [[M ]]

ν
M we cannot have h = Ωγ . Thus h must be a variable xγ

with γ = γ1 → · · · → γn → 0. Since ν is hereditary prime there is G ⊆M−γ such
that ν(x) =

∨
G. Since f ≤ [[M ]]

ν
M and f is prime, there must be g in G such

that f ≤ g[[M1]]
ν
M . . . [[Mn]]

ν
M = g′. But as g is in M−γ , g = g1 7→ . . . 7→ gn 7→ g′

with g1,. . . , gn respectively in M+
γ1 , . . . , M+

γn . Thus, by induction, for every

1As is usual, we assume that, when F ⊆M+
α is such that F = ∅, then

∨
F = ⊥α.
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i in [1, n], there is Ni in LOI(Mi) such that gi ≤ [[Ni]]
ν
M. We then have that

N = xN1 . . . Nn is in LOI(M) moreover g′ ≤ [[N ]]
ν
M such that f ≤ [[N ]]

ν
M.

In case M = λxα1 .Pα2 , we have f = f1 7→ f2, where f1 =
∨
F and F ⊆M−α1

and f2 is inM+
α2

. As f ≤ [[M ]]
ν
M, we have that f2 ≤ [[P ]]

ν[xα1←f1]
M . By induction

hypothesis, there is Q in LOI(P ) such that f2 ≤ [[Q]]
ν[xα1←f1]
M . Thus, letting

N = λxα1 .Q, we have that f ≤ [[N ]]
ν
M and N in LOI(M).

In case M = M1 + M2, we have [[M ]]
ν
M = [[M1]]

ν
M ∨ [[M2]]

ν
M. Since f is in

M+
0 , f is prime and thus either f ≤ [[M1]]

ν
M or f ≤ [[M2]]

ν
M. Let us assume,

without loss of generality, that f ≤ [[M1]]
ν
M. By induction hypothesis, there is

N in LOI(M1) such that f ≤ [[N ]]
ν
M. The conclusion follows from the fact that

N is an element of LOI(M). �

Theorem 5 allows to extend Lemma 14 to λY+Ω-terms.

Theorem 15 (Observability) Given a λY+Ω-term M , a monotone model
M = (Mα)α∈type , a hereditary prime valuation ν and a hereditary prime ele-
ment f of Mα, we have the equivalence:

f ≤ [[Mα]]
ν
M ⇔ ∃N ∈ LOI(M).f ≤ [[N ]]

ν
M

Proof
Since for every α, Mα is finite, according to Theorem 5.2 (and the fact that
the set of finite approximations of M is directed for the partial order v), there
is a finite approximation Q of M such that f ≤ [[Qα]]

ν
M. But then Q is a

λ+Ω-term and by the previous Lemma this is equivalent to there being some
N in LOI(Q) such that f ≤ [[N ]]

ν
M. The conclusion follows from the fact that

obviously LOI(Q) ⊆ LOI(M). The other direction follows from Theorem 5.3.
�

4.2. Decidability results

We are now going to use the Observability Theorem so as to prove the decid-
ability of both the emptiness and the membership problems for OI languages.

Decidability of emptiness. We consider the monotone model E = (Eα)α∈type
such that E0 is the lattice with two elements {>,⊥} such that ⊥ ≤ >. We
then define for every α, the element eα of E+α ∩ E−α such that: e0 = >, and
eα→β = eα 7→ eβ . We let ξ be the valuation such that for each variable xα,
ξ(xα) = eα. We first prove that every λ-term of type α has an interpretation
that is greater than eα in E with the valuation ξ.

Lemma 16 For every λ-term M of type γ, eγ ≤ [[M ]]
ξ
E .

Proof
This is a simple induction on the structure of M . �

We are now in position to use the Observability Theorem to prove a charac-
terization of terms that define a non-empty OI language.
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Proposition 1 Given a λY+Ω-term M of type α, we have that

LOI(M) 6= ∅ ⇔ eα ≤ [[M ]]
ξ
E

Proof
If LOI(M) 6= ∅, then there is N in normal form such that M

∗→βδ+ N .

Lemma 16 implies that eα ≤ [[N ]]
ξ
E and thus, using Theorem 5, eα ≤ [[M ]]

ξ
E .

If eα ≤ [[M ]]
ξ
E , since eα is in E+α , from Theorem 15, there is N in LOI(M) such

that eα ≤ [[N ]]
ξ
E ; so in particular that LOI(M) 6= ∅. �

The decidability of the emptiness problem for OI languages follows from
the fact that we can effectively compute interpretations of terms in monotone
models and in particular we can test whether the interpretation of a term is
greater than a given element of the model.

Theorem 17 The emptiness problem for OI languages is decidable.

Decidability of membership. For the decidability of the membership problem,
we are going to prove a stronger version of Theorem 3 (Statman’s finite com-
pleteness Theorem). The proof technique we use together with bringing a gener-
alization of Statman’s Theorem, is also simplifying its argument. In particular,
logical relations (see [3]) play a significant role in the simplification. Most of
our effort deals with properties of models by means of logical relations. If we
take the view of recognizability adopted in [30] with respect to finite models
of the λ-calculus, Statman’s finite completeness Theorem shows that singleton
sets of λ-terms are recognizable. From that point of view, our proof can be
best understood as a generalization from tree to λ-terms that singleton sets are
recognizable. Statman’s Theorem has already received a lot of attention in the
literature and has been given various proofs [35, 36, 34] and it has been proven
using intersection types in [30]. We here give a proof of a stronger statement
that allows us to decide the membership problem for higher-order OI languages.

Given a finite set A, we write M(A) = (Mα(A))α∈type for the monotone
model such that M0(A) is the lattice of subsets of A ordered by inclusion. We
let ⊥A,α be the least element of Mα(A).

Definition 18 Given a λ-term M of type α, a triple T = (A, ν, f), where A
is a finite set, ν is a valuation on M(A) and f is an element of Mα(A), is
characteristic of M when:

1. for every λ-term N of type α, M =β N iff f ≤ [[N ]]
ν
M(A),

2. f is a hereditary prime element of Mα(A) and ν is a hereditary prime
valuation.

The stronger form of Statman’s finite completeness theorem is formulated
as:
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Theorem 19 (Monotone finite completeness) For every type α and λ-term
M of type α, one can effectively construct a triple T that is characteristic of M .

We here start proving Theorem 19. For this we first need to introduce the
notion of logical relation.

Given two monotone models M = (Mα)α∈type and N = (Nα)α∈type , a
logical relation R between M and N is a family of relations (Rα)α∈type , such
that Rα ⊆ Mα × Nα and Rα→β = {(f, g) ∈ Mα→β × Nα→β | ∀(f ′, g′) ∈
Rα.(f(f ′), g(g′)) ∈ Rβ}. Note that a logical relationR is completely determined
by R0. In general, when the type is irrelevant we write f R g to mean that
(f, g) ∈ Rα for some appropriate α. Given two valuations ν and µ, we write
ν R µ when for all variables x, ν(x) R µ(x). Logical relations satisfy the
following property:

Lemma 20 (Fundamental Lemma) Given two monotone modelsM andN ,
a logical relation R between M and N , and two valuations ν and µ over M
and N respectively, such that ν R µ, then for every λY+Ω-term M we have
[[M ]]

ν
M R [[M ]]

µ
N .

We now turn to the proof of Theorem 19 itself. The idea is to prove it
by induction on the structure of M , using a proof that is very similar to the
proof one would use to prove that there is a finite state tree automaton which
recognizes a unique given tree. Let us quickly have a look at this proof: if we
need to prove that there is an automaton recognizing the tree f(t1, . . . , tn) we
first construct, by induction, n automata A1, . . . , An that respectively recognize
the trees t1, . . . , tn with states q1, . . . , qn. Assuming that A1, . . . , An have
disjoint sets of states we construct an automaton A that is the union of A1, . . . ,
An with an additional state q and an additional transition fq1 . . . qn → q. It is
then easy to prove that A recognizes exactly the tree f(t1, . . . , tn). Crucially,
in proving this, one relies on the fact that any term that is recognized by A
in state qi must be equal to ti. This property, which follows obviously from
the construction of A, is precisely the one that is the source of difficulty for
proving Theorem 19. Indeed, in the induction the only difficult case is the
case where M = xM1 . . .Mn, we then construct by induction the characteristic
triples (A1, ν1, f1), . . . , (An, νn, fn) of M1, . . . , Mn. Then, assuming that A1,
. . . , An are pairwise disjoint and taking an fresh element b, we try to construct a
triple for the set A = A1∪· · ·∪An∪{b}. This requires being able to retrieve the
properties we had in each of the monotone models M(Ai) inside the monotone
model M(A) and, in particular, to be able to find elements in M(A) that
characterize the terms M1, . . . , Mn. This is where the logical relations play a
central role.

As a preliminary for the proof of Theorem 19, we study how to embed the
model M(A) into M(B) when A ⊆ B. So, given A and B two finite sets such
that A ⊆ B, we define IA,B = (IA,B,α)α∈type to be the logical relation between
M(A) and M(B) such that IA,B,0 = {(C ∩ A,C) | C ⊆ B}. We now define a
function EA,B that maps every element f of Mα(A) to an element EA,B(f) of
Mα(B), where:
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• EA,B(f) = f when α = 0,

• EA,B(f) =
∨
{EA,B(g) 7→ EA,B(f(g)) | g ∈Mβ(A)} when α = β → γ.

The idea is that when (f, g) is in IA,B,α, then f represents the restriction of g
to M(A). For a fixed f in M(A), the set {g ∈ M(B) | (f, g) ∈ IA,B,α} is the
set of extensions of f to M(B). Among those extensions EA,B(f) is the least
one. All these facts come from the following lemma:

Lemma 21 Given a type α we have the following properties:

1. for every f in Mα(A), (f,EA,B(f)) is in IA,B,α,

2. for every (f, g) in IA,B,α, for every h in Mα(A), we have EA,B(h) ≤ g iff
h ≤ f .

Indeed this lemma allows us to see:

1. if (f, g) is in IA,B,α then EA,B(f) ≤ g. We indeed have from the lemma
that (f,EA,B(f)) is in IA,B,α and f ≤ f so that we obtain EA,B(f) ≤ g
(using the lemma again). This shows that EA,B(f) is the least extension
of f in M(B).

2. If (f1, g) and (f2, g) are in IA,B,α then f1 = f2. Indeed, from the previous
fact, we have that EA,B(f1) ≤ g and thus, using the lemma, f1 ≤ f2.
Symmetrically we obtain that f2 ≤ f1 and thus f1 = f2, so that the
elements ofM(B) have at most one restriction toM(A) (notice that there
are some elements of M(B) that do not have a restriction to M(A)).

Technically, Lemma 21 proves that, for each α, EA,B is a Galois connection be-
tweenMα(A) andMα(B). We now focus on proving some technical properties
about IA,B,α and EA,B , which will be useful either in proving Lemma 21 or
Theorem 19.

Lemma 22 If (f1, g1) and (f2, g2) are in IA,B,α, then (f1 ∨ f2, g1 ∨ g2) is in
IA,B,α.

Proof
The proof is done by induction on the structure of α. In case α = 0, we have
that f1 = g1∩A and f2 = g2∩A, and so f1∨f2 = f1∪f2 = (g1∩A)∪ (g2∩A) =
(g1∪g2)∩A = (g1∨g2)∩A whence (f1∨f2, g1∨g2) is in IA,B,α. In case α = β → γ,
then given (h, l) in IA,B,β we have that (f1(h), g1(l)) and (f2(h), g2(l)) are in
IA,B,γ , so that by induction (f1(h)∨f2(h), g1(l)∨g2(l)) = (f1∨f2(h), g1∨g2(l))
is in IA,B,γ , showing finally that (f1 ∨ f2, g1 ∨ g2) is in IA,B,α. �

Lemma 23 For every type α, (⊥A,α,⊥B,α) is in IA,B,α.

Proof
A simple induction on α. �
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Lemma 24 If (⊥A,α, f) is in IA,B,α and (⊥A,β , g) is in IA,B,β , then (⊥A,α→β , f 7→
g) is in IA,B,α→β .

Proof
Given (h, l) is in IA,B,α, we have f 7→ g(l) = g or f 7→ g(l) = ⊥B,β , and in each
case ⊥A,α→β(h) = ⊥A,β . As we have, by assumption (⊥A,β , g) in IA,B,β and,
by Lemma 23, (⊥A,β ,⊥B,β) also in IA,B,β , we obtain that (⊥A,α→β , f 7→ g) is
in IA,B,α→β . �

The next lemma is central in the proof of Theorem 19, it allows us to use
disjoint parts of a model without one interfering with the other.

Lemma 25 If A1 and A2 are disjoint subsets of B, and f is in Mα(A1) then
we have:

1. (⊥A2,α, EA1,B(f)) is in IA2,B,α

2. if α = β → γ and g is in Mβ(B) then (⊥A2,γ , EA1,B(f)(g)) is in IA2,B,γ .

Proof

1. We proceed by induction on α. In case α = 0, ⊥A2,α = ∅, and since
f ⊆ A1 and A1 is disjoint from A2, we have that f ∩ A2 = ∅. It thus
follows that (∅, f) is in IA2,B,α. In case α = β → γ, let (h, l) be in
IA2,B,β . We need to show that (⊥A2,γ , EA1,B(f)(l)) is in IA2,B,γ . We
have that EA1,B(f)(l) =

∨
{EA1,B(f(k)) | EA1,B(k) ≤ l, k ∈ Mβ(A1)}.

As, by induction, we have that (⊥A2,γ , EA1,B(f(k))) is in IA2,B,γ and
that, by the previous Lemma (⊥A2,γ ,⊥B,γ) is in IA2,B,γ , we obtain, using
iteratively Lemma 22, that (⊥A2,γ , EA1,B(f)(l)) is in IA2,B,γ .

2. when α = β → γ, by definition of EA1,B(f), we have that for a given g
inMβ(B), EA1,B(f)(g) =

∨
{EA1,B(f(h)) | EA1,B(h) ≤ g, h ∈Mβ(A1)}.

From the previous statement of the Lemma, we have (⊥A2,γ , EA1,B(f(h)))
in IA2,B,γ ; Lemma 22 gives that (⊥A2,γ ,

∨
{EA1,B(f(h)) | EA1,B(h) ≤

g, h ∈Mβ(A1)}) is in IA2,B,γ which gives the result.

�

We are now in a position to prove Lemma 21 (we reproduce its statement
for ease of reading).
Lemma 21. Given a type α we have the following properties:

1. for every f in Mα(A), (f,EA,B(f)) is in IA,B,α,

2. for every (f, g) in IA,B,α, for every h in Mα(A), we have EA,B(h) ≤ g
iff h ≤ f .

Proof
We proceed by induction on the structure of α. The case where α = 0 is clear.

In case α = β → γ, we have:
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1. Given (g1, g2) in IA,B,β , we want to show that (f(g1), EA,B(f)(g2)) is
in IA,B,γ . By definition, EA,B(f)(g2) =

∨
{EA,B(f(l)) | EA,B(l) ≤ g2}.

But by the induction hypothesis, given l in Mβ(A), EA,B(l) ≤ g2 iff
l ≤ g1. Therefore EA,B(f)(g2) =

∨
{EA,B(f(l)) | l ≤ g1}. But the

induction hypothesis also implies that (f(g1), EA,B(f(g1))) is in IA,B,γ ,
and by monotonicity of f , if l ≤ g1, then f(l) ≤ f(g1), which by induction
is equivalent to EA,B(f(l)) ≤ EA,B(f(g1)). Therefore

∨
{EA,B(f(l)) | l ≤

g1} = EA,B(f(g1)), EA,B(f)(g2) = EA,B(f(g1)) and (f(g1), EA,B(f)(g2))
is in IA,B,γ .

2. We first prove that if h ≤ f then EA,B(h) ≤ g. As h ≤ f , we have that for
l in Mβ(A), h(l) ≤ f(l) and by induction we have (f(l), EA,B(f(l))) in
IA,B,γ so that, by induction again, EA,B(h(l)) ≤ EA,B(f(l)). But, given
k in Mβ(B), we have

EA,B(h)(k) =
∨
{EA,B(h(l)) | EA,B(l) ≤ k}

EA,B(f)(k) =
∨
{EA,B(f(l)) | EA,B(l) ≤ k}

and since we have seen that for every l inMβ(A), EA,B(h(l)) ≤ EA,B(f(l)),
we necessarily have EA,B(h)(k) ≤ EA,B(f)(k) and therefore EA,B(h) ≤
EA,B(f). But by induction we have that for every l inMβ(A), (l, EA,B(l))
is in IA,B,β thus (f(l), g(EA,B(l))) is in IA,B,γ . Using the induction
hypothesis again, we obtain EA,B(f(l)) ≤ g(EA,B(l)). Now given k in
Mβ(B), we have that EA,B(f)(k) =

∨
{EA,B(f(l)) | EA,B(l) ≤ k}, but

as when EA,B(l) ≤ k, g(EA,B(l)) ≤ g(k), we have EA,B(f(l)) ≤ g(k) and
thus EA,B(f)(k) ≤ g(k) proving EA,B(f) ≤ g and since we already showed
EA,B(h) ≤ EA,B(f) we have EA,B(h) ≤ g.

Now suppose that EA,B(h) ≤ g, given l inMβ(A), by induction (l, EA,B(l))
is inMβ(A). Therefore, (f(l), g(EA,B(l))) is in IA,B,γ , but also, EA,B(h)(EA,B(l)) ≤
g(EA,B(l)). As, by definition,

EA,B(h)(EA,B(l)) =
∨
{EA,B(h(l′)) | EA,B(l′) ≤ EA,B(l)}

and as, by induction, EA,B(l′) ≤ EA,B(l) iff l′ ≤ l, we obtain

EA,B(h)(EA,B(l)) = EA,B(h(l)).

Thus, from EA,B(h)(EA,B(l)) ≤ g(EA,B(l)) we obtain that EA,B(h(l)) ≤
g(EA,B(l)), then the induction hypothesis gives that h(l) ≤ f(l) and finally
that h ≤ f .

�

Lemma 26 Given (f, g) in IA,B,β and h in Mα(A), we have
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(h 7→ f,EA,B(h) 7→ g) is in IA,B,α→β .

Proof
Given (k, l) in IA,B,α, from Lemma 21 we have that h ≤ k iff EA,B(h) ≤ l.
Therefore we have that either (h 7→ f(k), EA,B(h) 7→ g(l)) = (f, g) or (h 7→
f(k), EA,B(h) 7→ g(l)) = (⊥A,β ,⊥B,β) and in both cases we have that (h 7→
f(k), EA,B(h) 7→ g(l)) is in IA,B,β . �

We are now able to prove Theorem 19.
Theorem 19. For every type α and λ-term M of type α, one can effectively
construct a triple T that is characteristic of M .
Proof
We assume that M is in η-long form and we proceed by induction on M . There
are two cases.

Case M = xαM1 . . .Mn. Let us assume that α = α1 → · · · → αn → 0; by
the induction hypothesis, for every i in [1, n] there is Ti = (Ai, νi, fi) that is
characteristic of Mi. Let B = {b}∪

⋃n
i=1Ai, where b is not in any of the Ai, let

An+1 = {b}, and let ν be the valuation such that, for every variable yβ different
from xα:

ν(yβ) =

n∨
i=1

EAi,B(νi(y
β))

and

ν(xα) = g ∨
n∨
i=1

EAi,B(νi(x
α)) where

g = EA1,B(f1) 7→ · · · 7→ EAn,B(fn) 7→ {b}

We will see that T = (B, ν, {b}) is a characteristic triple for M . It is easy to see
that {b} is hereditary prime and that ν is a hereditary prime valuation. Thus
to prove that T is a characteristic triple for M , it just remains to prove that for
every λ-term N , M =βη N iff {b} ≤ [[N ]]

ν
M(B).

Lemma 25 gives that, for every variable yβ , every (i, j) in [1, n+ 1]× [1, n],
if i 6= j then (⊥Ai,β , EAj ,B(νj(y

β))) is in IAi,B,β . An iterative use of Lemma 22
then shows that

(⊥Ai,β ,
∨

j∈{1,...,n}−{i}

EAj ,B(νj(y
β)) ∈ IAi,B,β

Notice that instantiating i with n+ 1 in the above gives

(⊥An+1,β ,
∨

j∈{1,...,n}

EAj ,B(νj(y
β)) ∈ IAi,B,β

Moreover Lemma 21 implies that (νi(y
β), EAi,B(νi(y

β)) is in IAi,B,β . An-
other use of Lemma 22 then gives that for every i in [1, n],

(νi(y
β),

∨
j∈[1,n]

EAj ,B(νj(y
β))) ∈ IAi,B,β .
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So that when yβ 6= xα, (νi(y
β), ν(yβ)) is in IAi,B,β for each i in [1, n] and

(⊥An+1,β , ν(yβ)) is in IAi,B,β .
We are now going to see that we also have that (νi(x

α), ν(xα)) is in IAi,B,α
for each i in [1, n]. As an intermediate result we need to prove that for every i in
[1, n], (⊥Ai,α, g) is in IAi,B,α. Let g0 = {b}, δ0 = 0 and gj+1 = EAn−j ,B(fn−j) 7→
gj and δj+1 = αn−j → δj . Note that gn−1 = g and δn−1 = α. We prove by
induction on j that for every j in [0, n − 1] and every i in [1, n], (⊥Ai,δj , gj) is
in IAi,B,δj . The case where j = 0 is clear. We now show that if (⊥Ai,δj , gj) is
in IAi,B,δj then (⊥Ai,δj+1

, gj+1) is in IAi,B,δj+1
. There are two cases depending

on whether i = n − j or not. If i = n − j, then, Lemma 26, gives that (fi 7→
⊥Ai,δj , EAi,B(fi) 7→ gj) = (⊥Ai,δj+1 , gj+1) is in IAi,B,δi+1 . If i 6= n − j, then
Lemma 25 gives that (⊥Ai,αn−j , EAi,B(fn−j)) is in IAi,B,αn−j and Lemma 24
thus gives that (⊥Ai,δj+1

, gj+1) is in IAi,B,δj+1
. Thus finally we have that, for

every i, (⊥Ai,α, g) is in IAi,B,α and thus (νi(x
α), ν(xα)) is in IAi,B,α.

Using the fundamental Lemma of logical relations, given a λ-term Ni of type
αi, we obtain that

([[Ni]]
νi
M(Ai)

, [[Ni]]
ν
M(B)) ∈ IAi,B,αi

moreover, from Lemma 21, we have that EAi,B(fi) ≤ [[Ni]]
ν
M(B) iff fi ≤ [[Ni]]

νi
M(Ai)

,

but, since Ti is a characteristic triple for Mi, we obtain that EAi,B(fi) ≤
[[Ni]]

ν
M(B) iff Ni =β Mi.

Let us now suppose that we are given a λ-term N of type 0 such that {b} ≤
[[N ]]

ν
M(B). Without loss of generality, we assume that N is in β-normal, η-long

form. We then prove that N =β M . We must have N = yβN1 . . . Np. If yβ is
different from xα, then, we have by Lemma 25 that (⊥An+1,B,β , EAi,B,β(νi(y

β)))
is in IAn+1,B,β . Therefore, again by Lemma 25, we obtain that

(⊥An+1,0, EAi,B,β(νi(yβ))[[N1]]
ν
M(B) . . . [[Nn]]

ν
M(B)) ∈ IAn+1,B,0

so that by Lemma 22 (⊥An+1,0, [[N ]]
ν
M) is also in IAn+1,B,0, which is possible

only if b /∈ [[N ]]
v
M(B) or, equivalently, only if we do not have {b} ≤ [[N ]]

ν
M(B).

Therefore if {b} ≤ [[N ]]
v
M(B) we must have yβ = xα and N = xαN1 . . . Nn. We

are now going to show that we must also have EAi,B(fi) ≤ [[Ni]]
v
M(B), which,

as we have seen above, is equivalent to Ni =β Mi and thus to N =β M . Let
us suppose that for some i we do not have EAi,B(fi) ≤ [[Ni]]

v
M(B). This means

that g([[N1]]
v
M(B)) . . . ([[Nn]]

v
M(B)) = ⊥B,0 and that

ν(xα)([[N1]]
ν
M(B)) . . . ([[Nn]]

ν
M(B)) =

∨
i∈[1,n]

EAi,B(νi(x
α))([[N1]]

ν
M(B)) . . . ([[Nn]]

ν
M(B))

but then, we have that (⊥An+1,B,α, EAi,B(νi(x
α))) is in IAn+1,B,α. This im-

plies that for all i (⊥An+1,B,0, EAi,B(νi(x
α))([[N1]]

ν
M(B)) . . . ([[Nn]]

ν
M(B))) is in

IAn+1,B,0 and, again, Lemma 25 gives that it cannot be the case that {b} ≤
ν(xα)([[N1]]

v
M(B)) . . . ([[Nn]]

v
M(B)). Therefore, for every i in [1, n] we must have

EAi,B(fi) ≤ [[Ni]]
v
M(B).
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Case M = λxβ .P . We assume that P is of type γ and α = β → γ. By induction
there is a triple U = (A, ν, f) that is characteristic of P ; we let T = (A, ν′, g)
with ν′ = ν[xα ← ⊥A,α] and g = ν(xα) 7→ f . Clearly, g is hereditary prime and
ν′ is a hereditary prime valuation.

To prove that T is a characteristic triple for M , it just remains to show that

for every λ-term N , g ≤ [[N ]]
ν′

M(A) iff N =β M . So, given N such that g ≤
[[N ]]

ν′

M(A); we have that g(ν(xα)) ≤ [[N ]]
ν′

M(A)(ν(xα)) so that f ≤ [[Nxα]]
ν
M(A),

therefore Nxα =β P and thus λxα.Nxα =β λx
α.P finally giving N =β M . �

Now, using the Observability Theorem as in the proof of Proposition 1 we
obtain:

Theorem 27 Given a λ-term M of type α and a λY+Ω-term N of type α,
if T = (A, ν, f) is a characteristic triple for M then f ≤ [[N ]]

ν
M(A) iff M ∈

LOI(N).

Proof
By the Observability Theorem, since f is hereditary prime and ν is hereditary
prime, f ≤ [[N ]]

ν
M(A) iff there is a λ-term P in LOI(N) so that f ≤ [[P ]]

ν
M(A),

but, according to Theorem 19, this is equivalent to that P =β M , which is
equivalent to M being in LOI(N). �

And finally we obtain the decidability of the membership problem for OI
grammars.

Theorem 28 Given M a λ-term of type α and N a λY+Ω-term of type α, it
is decidable whether M ∈ LOI(N).

Proof
Theorem 19 gives a constructive method so as to construct a characteristic triple
(A, ν, f) for M . Then [[N ]]

ν
M(A) can effectively be compared to f . �

5. Conclusion

We have seen how to use models of λ-calculus so as to solve algorithmic
questions, in particular the emptiness and membership problems, related to the
classes of higher-order IO and OI languages of λ-terms. In so doing, we have re-
visited various questions related to finite models of the λ-calculus. In particular,
we have seen that hereditary prime elements, via the Observability Theorem,
play a key role in finding effective solutions for higher-order OI languages. In
combination with Theorem 10, we obtain that it is decidable whether there is
a term M whose interpretation in a monotone model is greater than a given
hereditary prime element of that model, which gives a decidability result for a
restricted notion of λ-definability. This raises at least two questions: (i) what
properties of λ-terms can be captured with hereditary prime elements, and (ii) is
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there a natural extension of this notion that still defines some decidable variant
of λ-definability.

We have also proved that the class of OI languages strictly subsumes the
class of IO languages. Nevertheless, the strictness of the inclusion is based on
an argument involving λ-definability and thus we do not know whether, when
restricting OI and IO languages to strings and trees, this inclusion is still strict.
We think that this is likely to be the case, in particular, because it seems that IO
languages are not closed under finite language substitutions while OI languages
are. Unfortunately, this conjecture does not appear to be trivial to establish.
Another problem that this result raises is whether safe IO languages are all safe
OI languages. Indeed the proof technique we use to prove that IO languages are
all OI languages does not preserve safety in general. It remains as well to see
how the respective levels of the IO and OI hierarchies compare to one another.
As far as we know, this problem is also open for the safe IO and OI hierarchies.
Fischer’s [13] result that IO and OI languages are incomparable suggests that
for every n, IOn and OIn are also incomparable and that this should also hold
when attention is restricted to safe languages.

For proving the strictness of the inclusion of the IO languages into the OI
ones we have shown that the set of all closed λ-terms of a given type is an OI
language. As those λ-terms represent proofs in minimal logic via the Curry-
Howard isomorphism, this result gives a language theoretic representation of
these proofs. This new connection to proof representations within standard
classes of languages allows one to use the concepts and techniques of formal lan-
guage theory for studying those representations and may be of use in designing
new proof search or transformation algorithms. This also raises the question of
whether one can see proofs in other logics as OI languages (or at least of some
interesting classes thereof).

On the complexity side, we expect that, using techniques similar to those
in [37], it might be possible to prove that verifying whether the value of a λY+Ω-
term is greater than a hereditary prime element of a monotone model is of the
same complexity as the emptiness and membership problems for the safe OI
hierarchy, which is (n − 2)-Exptime-complete for order n-grammars (see [12];
with Huet’s convention, the order of a grammar is one more than the order of
its corresponding higher-order pushdown automaton).

While most string sets corresponding to natural languages seem to be de-
scribable using simple (first order) macro grammars [17] (although some data
suggests that this is not enough [24, 20]), it is common to find proposals about
syntactic mechanisms which ultimately involve higher order types [21], which
are needed to associate the desired semantic representation with the derived
string. In the domain of semantics, where higher types are commonplace, least
fixed point computations have been proposed by [26] (and are a natural way
to understand certain prominent proposals about ellipsis resolution [38]) and
nondeterminism has been (implicitly) used to model pronoun resolution [11].
The λY+Ω-calculus studied herein provides a way of representing a wide range
of linguistic proposals. That being said, the high complexity of the algorith-
mic problems this paper studies underscores the need to identify linguistically
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motivated restrictions which point to tractable subclasses of OI grammars [39].
Some restricted classes of IO grammars are already known to have low complex-
ity [18, 5]. A natural next step is to see whether in the OI mode of derivation
those grammars still have tractable emptiness and membership problems.
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