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Abstract

Pregroups were introduced in (Lambek, 1999), and provideuada-
tion for a particularly simple syntactic calculus. Buszlet(2001) showed
that free pregroup grammars generate exactlyetfree context-free lan-
guages. Here we characterize the class of languages gknbsahbll pre-
groups, which will be shown to be the entire class of recefgienumerable
languages. To show this result, we rely on the well-knowmesgntation of
recursively enumerable languages as the homomorphic imithe inter-
section of two context-free languages (Ginsburg et al.7198Ve define an
operation of cross-product over grammars (so-called lsecatits behaviour
on the types), and show that the cross-product of any twoedregroup
grammars generates exactly the intersection of their otispelanguages.
The representation theorem applies once we show that alip\@impty cat-
egories’ (i.e. lexical items without overt phonologicantent) allows us to
mimic the effects of any string homomorphism.

1 Introduction

The advent of the Minimalist Program (Chomsky, 1995) hexdld shift of
emphasis from the by now familiar goals of descriptive anpl@xatory ade-
guacy, to a characterization of human language in terms pdrtgres from a
minimally necessary system meeting various boundary €'batput’) condi-
tions. This involves determining both what the approprizaendary condi-
tions are, and what the simplest systems are that meet tbad@ions. Work
within the minimalist program can be viewed as concernigglitprimarily
with the first question: the nature of the interfaces. Workhigoretical com-
putational linguistics, on the other hand, is easily unmed as seeking an-
swers to the second. Viewing languages as sets of strintpgugh an ob-
vious simplification, allows us to formulate precisely simput interesting
boundary conditions, which in turn enables feasible inginto the various
possible formalisms which meet these boundary conditiBeshaps the best
studied such boundary condition is that the grammar fosmabe able to de-
scribe a particular clas§ of languages, wherg usually ranges over classes
of languages as given by the Chomsky hierarchy (Chomsky6)195 vari-
ous refinements therebfResults obtained here bear directly on the questions

1This kind of boundary condition can be understood as a firptagimation of
some confluence of conditions that give rise to the pattdraswe actually observe
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raised by Chomsky, as they can be understood as exhibigngithimal prop-
erties a grammar formalism must have in order to be able terithes(as such)
the complex of patterns attested in natural language. Piep®f motivated
linguistic formalisms can be compared against these mirnmogperties, and
differences in complexity can either be interpreted as iping evidence for
heretofore unacknowledged boundary conditions, or, ifehg no structure
in the deviations from minimality, as departures of our laage faculty from
perfection.

There is a broad consensus that languages are usefullylsbbor terms
of a finite set of generators (the lexicon) which are actedpoanother finite
set of structure building functions. It is common to takesthetructure build-
ing operations to be invariant across languages, isolatiagexicon as the
locus of linguistic variatiorf. Setting aside meanings, a linguistic expression
consists of an exponent (here taken to be a string over a éilpitabet), and a
syntactic category reflecting its distribution (which isnrany theories repre-
sented as a tree). Our structure building operations, filrereneed to specify
both how to combine exponents, as well as how to combine siateate-
gories. In many linguistic theories, such as Tree AdjoifBrgmmar (TAGS,
Joshi, 1987), Minimalist Grammars (MGs, Stabler and Kee28A3), Head
Grammars (Pollard, 1984), etc, use is made of complex wngpmperations
on strings when combining exponents, while in pregroup gnans, like cate-
gorial grammars, simple string concatenation is all thavilable. Similarly,
with respect to operations on categories, pregroup andj@as grammars
make do with a simple merge operation (along with equallypséreduc-
tion (i.e. feature checking) steps), whereas TAGs and MG&e hauch more
complicated syntactic operations. However, although Emmeither cate-
gorial grammars nor pregroup grammars satisfy what worlomputational
linguistics (see esp. Shieber, 1985) has established apfirepriate bound-
ary condition — that the formalism in question be able to dbscso-called
mildly context-sensitive languagé®shi, 1985) — both categorial grammars
(both the AB- and the Lambek calculi) and free pregroup gransmare only
context-free (Bar-Hillel et al., 1960; Pentus, 1993; Buszgki, 2001). In or-
der to meet this and other relevant boundary conditionggeatal grammar-

(i.e. regardless of why these patterns are “actually” thefke primary motivation for
adopting it as opposed to some other, more “natural”, camdisuch as constraints
on the pairings of sound and meaning), is that in this casen¢latively clear what
questions to ask, and how to proceed.

2Recent work by Guillaumin (2005) raises the intriguing floifisy that restrict-
ing variation to the lexicon might actually allow for simpléescriptions of the same
phenomena.
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ians have augmented their theories with new operationsggpeSteedman,
2000; Moortgat, 1996), which increase the complexity offdrenalisms. In
this paper we show that the pregroup grammar formalism canduke to sat-
isfy the relevant boundary conditiomgile preserving the original simplicity
of the theory In so doing, we are offering a yardstick of (virtual) coneep
tual necessity against which other theories can be measunédiepartures
therefrom noticed. This is an essential step if we wish toeustéind which
properties of language are necessary design consequandesghich require
a different explanation.

The remainder of this paper is structured as follows, 2nwe (re)acquaint
the reader with various useful definitions and abbreviatorwentions we will
use in the paper, and introduce the pregroup grammar femaling 3, we
show that removing the requirement that the pregroups frbimwmcategories
are drawn be free gives us the power to describe any recuasive strings.

2 Pregroups and Grammar

Let’s begin with a quick review of some basic concepts andeabations used
in this paper.N := {0, 1,2, 3, ...} is the set of natural numbers. For a finite
setA, | A|| denotes its cardinality. The unique set of cardindlity denoted.
Given two setsA andB, their cross-producd x B := {{(a,b) : a € AAb € B}
is the set of ordered pairs whose first component id end whose second is
in B. A relation R over A is a subset ofdA x A. It is reflexive just in case
zRx for everyz € A. It is antisymmetric iff for everyu,b € A, if both
aRb andbRa, thena = b and it is transitive when for every,b,c € A,
if aRb andbRc thenaRe. A relation R is apartial order iff it is reflexive,
antisymmetric and transitive. Given a skta string ovet is a finite sequence
of elementst = z1...2,, x; € Aforl < i < n. If n = 0 thenzx is the
empty string and is denoted The length of a string: is denoted|z|. In
particular,|e|] = 0. The concatenation of two stringsandy is denoted by
their juxtapositionzy, or sometimes as”y. If A and B are sets of strings,
then A, := A U {e} denotes the set differing from at most in the presence
of the empty string, andl B := {xy : © € A andy € B} is the set of strings
gotten by concatenating a stringdnwith a string inB. We setA® := {¢} and
defineA"t! .= A" A. A" is then-fold iteration of strings inA. We define
A* = U A" andAt = |J,~,. If L C A* thenL is called a language
overA.

If f:X — Yisafunctionand/ C X then we writef[U] := {f(z) :
x € U} for the image ofU/ underf. A signature (2 over a sett” of function
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symbols is a functiof? : F' — N. An Q-algebrais a pair8 = (B, J) such
thatJ assigns to eaclf € F a function of arity$2(f) over B (i.e. 3(f) :
B — B). B is partial if J(f) may also be a partial function. We shall
also write f® in place ofJ(f). For example, leF’ = {1,®} andQ(1) = 0
andQ(®) = 2. An Q-algebra is a paitB,J) such thatJ(1) : {¢} — B
andJ(®) : B> — B (recall thatB° = {¢}). Thus we may also view(1)
as an element oB instead of a nullary function. A particular example of
an Q-algebra is the algebr&(A) of strings over an alphabet. Here, the
underlying set 0fS(A) is the setd* of strings overd and1(4) = ¢ as

well as®®(4) =~ the concatenation of strings. Notice that concatenasion i
associative, that is, for all strings y andz,
7 (y"z) = (27y)" 2 (Y

Given two algebra® = (B,J) and¢ = (C, J), we putB x € = (A x C, R)
where

R(f)((bl7cl>7<b27c2>7"' 7<bQ(f)7CQ(f)>) =
(I(f)(b1,ba, -+, bocp)), I(f)er,e2, -+ seaep)))  (2)

This is undefined if any of the functiorig f) or J(f) is undefined on their
respective arguments.

Let B be an algebra and’ C B a set. Then the algebra generated by
X in B is obtained as follows. First, we call a subget of A closed if,
forall f € F, f®(a;,as,--- ,aq(p)) € M whenevera; € M, fori <
Q(f). We let(X) be the smallest (with respect o) closed set containing
M. The algebrap defines an algebri on (X) via f* (a1, a2, -, aq(s)) :=
fE(ay,az,--- ,aq(sy)- The left hand is defined iff the right hand side is.
We can give a more concrete characterisation as follows. ti&styaterm
is built from variablesX = {1, z3,...} using the function symbols af.
Terms with only the binary symba as function symbols arey, z2, 1 ® 22,
z1 ® (x2 ® 1), and soon. lk(zqy,--- ,x,) isaterm,and;, 1 <i <nare
elements of the algebra, theéfrq,-- - , ¢,) denotes the result of substituting
the valuesc; for the variablesr;. With this, (X) consists of all elements
t(er, - ,cn), Wheret(zq, -+ ,z,) isatermand foralf < n,¢; € X. A
termt(zy,--- , x,) defines aterm functiot® : (cy,--- ,¢,) = t(ci, -, cn)
on A™. We shall henceforth not distinguish between the témnd the term
function it induces orB. If f is a term function and’ a set, writef [U] :=
{f(@) : ¢ € U™}. We can now also say

(X) = [ J{f1X] : f aterm function of8} (3)



ON PREGROUPS, FREEDOM, AND (VIRTUAL) CONCEPTUAL
NECESSITY 5

2.1 Pregroups

Pregroups offer a simplification of the AB calculus in so fartley are asso-
ciative, and so are unable to distinguish between diffecenstituent struc-
tures. Pregroups can thus be thought of as a dependencylifm8ecause
of their associativity, many of the operations commonlyextitb the AB cal-
culus (such as type raising, or composition) are derivabldhaorems in the
pregroup setting.

A pregroup (see Lambek, 200P)= (M, -, 1,<, ", !} is a partially or-
dered monoid M, -, 1, <) with left and right inverses satisfying the following
equations’

2or<i<z-zlandr-z"<1<2" -z (4)

Note that the product of two pregroups is itself a pregroupem(p, ¢) <
(', q¢)iff p<p andg < ¢.

A freepregroup is built up from a partially ordered set of atdinsy first
creating iterated adjoints from atomsc T

.. ,a“, ag, a",a™", ...
and then taking elements of the pregroup to be sequenceistiog®f atoms
and iterated adjoints (the unit element in the pregroupdsthpty sequence).
If p,q are elements of the pregroup,< ¢ if it holds in virtue of the equa-
tions above given the ordering over the atoms, together aitiimonotony
conditions:z < y entails thaty” < 2" andy’ < *.

We define a binary operatiah over M x X* such thatp, o) ® (¢, 7) =
(pg,oT). The associativity of® follows from the associativity of the multi-
plications of the string algebra and the pregroup. A (freegpup grammar
is a 4-tupleG = (I, s, P,X), whereP = (M,-,1,<, ", !} is a (free) pre-
group,s € M is the category of sentences, dnd ¢;,, M x X. is the lexicon.

®A monoid (M, -, 1) consists of a sef/ together with a distinguished element
1 € M and a binary operation ovéd satisfying the following equations:

lrz=a2=2-1 (unit)
z-(y-2)=(x-y) =z (associativity)

A partially ordered monoidM, -, 1, <) is a monoid(M, -, 1) together with a partial

y =

order< over M such that for any:, b, ¢, d € M,
a<candb<d—a-b<c-d (monotonicity)

In this paperr - y is often abbreviatedy.
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A string o € ¥* is accepted if there is somep € M such thatp < s and
(p,o) € (I). We writeL(G) = {0 : (p, o) is acceptedl

Intuitively, in a free pregroup an atoie T is a categorial feature (like an
NP) which can be selected for by an adjoimt ¢r «”, depending on whether
it should appear to the right or the left of the selector) (sembek, 2004).
Movement-like dependencies can be captured by means afdatbadjoints
(e.g. a*%), which look to their right (left) for an adjoint which looKsr an
atom on its right (left). Finallya < b, a,b € T, means that anything looking
for ab (i.e. that has &" or b* feature) will be satisfied with am.

3 Pregroups and Language

To show that pregroup grammars can define any recursivelymerable lan-

guage, we rely on Ginsburg et al.'s theorem that every r.aguage is the
homomorphic image of the intersection of two context-fraeguages, and
on Buszkowski's theorem that every context-free languadbe language of
some pregroup grammar.

Theorem 1 (Ginsburg et al.) For every recursively enumerable language
L, there are context-free languagés and L,, and a non-length increasing
homomorphism such thatl = h[L; N Ly].°

Theorem 2 (Buszkowski) For every context-free languade there is a pre-
group grammaiG such thatl = L(G).

Given theorem 2, the desired result follows from theoremdeome show
that the operations of homomorphic image and intersectilaleguages can
be performed at the level of grammars. Proposition 3 estaddi this for non-
length increasing homomorphisms, and proposition 4 shbatshe language
of the product of two pregroup grammars is exactly the itetisn of their
respective languages. This has some independent interdetmains where

“4A string homomorphism fronL* to I'* is a maph that satisfies
h(oT) = h(o)h(T)

Such a map is uniquely determined by its action3anA string homomorphisnk :
¥* — I'* is non-length increasing just in case every element &f is mapped to an
element ofl"c (in which casgh(a)| < 1, foralla € X).

5This formulation differs from the one in (Ginsburg et al.6¥9pg 405). Inspection
of their homomorphisnt easily reveals it to be non-length increasing, and so their
proof is valid also for this formulation of their theorem.
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intersection of languages can be used to model relevaniopiema, such as
in linguistics — insofar as modules are thought to be inddpahand operate
in parallel (as in the framework of Autolexical Syntax (Seklp1991)) — and
in computational biology.

Proposition 3 LetG = ([, s, P,X) be a pregroup grammar, and: ¥* — T'*
a non-length increasing homomorphism. Then there is a ptgggrammar
G" = (1", s, P,T") such thatL(G") = h[L(G))].

Proof. We extendh to a mapl x h : P x ¥* — P x I'* by putting (1 x
h)({p,o)) := (p, h(o)). This is a homomorphism, as is easily verified. This
means that for every termand all expressions; = (p;, o;)

(Ixh)(t(en, -+ am)) = (1 x h)(an), -+ (Lx h)(an))  (5)

In turn, this means thdt x h)[t[X]] = t[(1 x h)[X]]. Hence(1 x h)[¢[I]] =
t[I"]. It follows that

(") = [ J{t[1"] : t a term function
= [ J{(1 x h)[t[1)] : ¢ aterm function (6)
= (1 x h)[D)]

Now, v € L(G") iff there is ap € M such that(p,~) € (I") iff there is a
p € M such that(p,y) € (1 x h)[(I)] iff there is ap € M and as € ¥* such
thaty = h(o) and(p,o) € (I) iff there isoc € L(G) such thath(c) = .
Hence,L(G") = h[L(G)], as promised. =
Next we shall exhibit a general construction, namelygheduct of two
grammars. This works as follows. L& = (Iy,s1,P, %) and Gy =
(Iy, 89, P2, X) pregroup grammars. PUt x’' I := {{p,p’,0) : (p,0) €
Iy, <p/7(7> € ]12} Finally, pUtGl X Gy 1= <]I1 x/ Iy, <81782>7P1 X Py, Z>
Suppose that there are no empty lexical type assignmeatst(e lexicon
is such thatp, o) € Tonly if o € X). Then an analysis of a string of length
will contain exactlyn occurrences of lexical elements. o¢ (I) iff there is

atermt(xq,-- - ,x,) containing exactly: — 1 (!) occurrences of and lexical
elementsy; = (p;, 0;), 1 < i < n, such that
t(a17"' 7a’n) = <p70'> (7)

6As pertains to this latter domain, Chiang (2004) argues et he callsveak
parallelismis inappropriate for modeling various biological phenomebecause the
structural descriptions assigned by the two languagesateonrelated. He proposes a
solution within the framework of Tree Adjoining Grammarsur@peration of product
over pregroup grammars also has the properties that haesqui
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for somep. If ® is associative, we can choose the following term:

(- (1 ®@az) ®az) - ay) (8)
This will be useful for the next theorem.

Proposition 4 For G1, G» pregroup grammars (without empty lexical type as-
signments)L(G1 x Ga) = L(G1) N L(G2).

Proof. Define the following mapsr; : Py x Pox¥* — Py xX* : (p,p/,0) —
(p,o), andmy : P x P, x ¥* — Py x X* : (p,p',0) — (p/,0). These
maps are actually homomorphisms. Furthermerd,; x’ I,] =T, as well as
m2[l; x’ Iz] = . From this we can already deduce thatiE L(G; x G2)
theno € L(G1)NL(G2). Forifo € L(G1 x G2) then there arg, p’ such that
p < spandp’ < sy and(p,p’,o) € (I; x'Lz), then(p,o) = m ((p,p’,0) €
m[(I; x' I2)] = (m[I; x'Io]) = (I;). Similarly (p’, o) € (1) is established.
For the converse we need to make use of our further assurspappose that
o € L(G1) ando € L(G2). Then thereis atert(y,, - - - ,y;) and elements
a; € I, suchthat(a, - -, ;) = (p, o) for somep < s;; and thereis aterm
t'(z1,- -+ ,2) and elementsy, € I, such thatt(a), -+, o)) = (', 0) for
somep’ < s5. We are not guaranteed thandt’ are the same term. However,
under the assumptions made, as the discussion above hakekwee do have
j = k, and we can use the same term. Moreover, we have (p;,o;) and
o, = (p}, o;) for certainp; € M; andp, € Ms. It follows that

t(<p17p117‘71>7"' 7<pjvp/770-j>>: <p,p/,0.> (9)
and sincgp, p’) < (s1, s2), we now haver € L(G; x G3). =

The theorem can be improved. Itis often customary to allawhe empty
stringe in the lexicon. In this case, the product grammar shall doraiso the
following items: (p,1,¢) iff (p,e) € I; and (1,p’,¢) iff (p',e) € I5. Or,
equivalently, we assume that both lexica contain the efitry). Intuitively,
this is so because, unlike the actual letters2pfvhich both grammars must
recognize, one grammar may ‘see’ an empty string withouvther one being
required to.

We are now able to show our main theorem:

Theorem 5 For every recursively enumerable there is a pregroupd> such
thatL = L(G).

Proof. By theorem 1, there are context-free languafeandL», and a string
homomorphisnk such thatl, = h[L; N Ls]. By theorem 2, there are pregroup
grammars=; andGs such thatl; = L(G;), for i € {1,2}. The theorem
follows from propositions 3 and 4 by taking = (G; x G2)". -
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