
On Pregroups, Freedom, and (Virtual) Conceptual Necessity

Gregory M. Kobele and Marcus Kracht
Abstract

Pregroups were introduced in (Lambek, 1999), and provide a founda-
tion for a particularly simple syntactic calculus. Buszkowski (2001) showed
that free pregroup grammars generate exactly theε-free context-free lan-
guages. Here we characterize the class of languages generable by all pre-
groups, which will be shown to be the entire class of recursively enumerable
languages. To show this result, we rely on the well-known representation of
recursively enumerable languages as the homomorphic imageof the inter-
section of two context-free languages (Ginsburg et al., 1967). We define an
operation of cross-product over grammars (so-called because of its behaviour
on the types), and show that the cross-product of any two free-pregroup
grammars generates exactly the intersection of their respective languages.
The representation theorem applies once we show that allowing ‘empty cat-
egories’ (i.e. lexical items without overt phonological content) allows us to
mimic the effects of any string homomorphism.

1 Introduction

The advent of the Minimalist Program (Chomsky, 1995) heralded a shift of
emphasis from the by now familiar goals of descriptive and explanatory ade-
quacy, to a characterization of human language in terms of departures from a
minimally necessary system meeting various boundary (‘bare output’) condi-
tions. This involves determining both what the appropriateboundary condi-
tions are, and what the simplest systems are that meet these conditions. Work
within the minimalist program can be viewed as concerning itself primarily
with the first question: the nature of the interfaces. Work intheoretical com-
putational linguistics, on the other hand, is easily understood as seeking an-
swers to the second. Viewing languages as sets of strings, although an ob-
vious simplification, allows us to formulate precisely simple but interesting
boundary conditions, which in turn enables feasible inquiry into the various
possible formalisms which meet these boundary conditions.Perhaps the best
studied such boundary condition is that the grammar formalism be able to de-
scribe a particular classL of languages, whereL usually ranges over classes
of languages as given by the Chomsky hierarchy (Chomsky, 1956), or vari-
ous refinements thereof.1 Results obtained here bear directly on the questions

1This kind of boundary condition can be understood as a first approximation of
some confluence of conditions that give rise to the patterns that we actually observe

U. Penn Working Papers in Linguistics, Volume 10.1, 2005

2 GREGORY M. KOBELE & MARCUS KRACHT

raised by Chomsky, as they can be understood as exhibiting the minimal prop-
erties a grammar formalism must have in order to be able to describe (as such)
the complex of patterns attested in natural language. Properties of motivated
linguistic formalisms can be compared against these minimal properties, and
differences in complexity can either be interpreted as providing evidence for
heretofore unacknowledged boundary conditions, or, if there is no structure
in the deviations from minimality, as departures of our language faculty from
perfection.

There is a broad consensus that languages are usefully described in terms
of a finite set of generators (the lexicon) which are acted upon by another finite
set of structure building functions. It is common to take these structure build-
ing operations to be invariant across languages, isolatingthe lexicon as the
locus of linguistic variation.2 Setting aside meanings, a linguistic expression
consists of an exponent (here taken to be a string over a finitealphabet), and a
syntactic category reflecting its distribution (which is inmany theories repre-
sented as a tree). Our structure building operations, therefore, need to specify
both how to combine exponents, as well as how to combine syntactic cate-
gories. In many linguistic theories, such as Tree AdjoiningGrammar (TAGs,
Joshi, 1987), Minimalist Grammars (MGs, Stabler and Keenan, 2003), Head
Grammars (Pollard, 1984), etc, use is made of complex wrapping operations
on strings when combining exponents, while in pregroup grammars, like cate-
gorial grammars, simple string concatenation is all that isavailable. Similarly,
with respect to operations on categories, pregroup and categorial grammars
make do with a simple merge operation (along with equally simple reduc-
tion (i.e. feature checking) steps), whereas TAGs and MGs have much more
complicated syntactic operations. However, although simpler, neither cate-
gorial grammars nor pregroup grammars satisfy what work in computational
linguistics (see esp. Shieber, 1985) has established as theappropriate bound-
ary condition – that the formalism in question be able to describe so-called
mildly context-sensitive languages(Joshi, 1985) – both categorial grammars
(both the AB- and the Lambek calculi) and free pregroup grammars are only
context-free (Bar-Hillel et al., 1960; Pentus, 1993; Buszkowski, 2001). In or-
der to meet this and other relevant boundary conditions, categorial grammar-

(i.e. regardless of why these patterns are “actually” there). The primary motivation for
adopting it as opposed to some other, more “natural”, condition (such as constraints
on the pairings of sound and meaning), is that in this case it is relatively clear what
questions to ask, and how to proceed.

2Recent work by Guillaumin (2005) raises the intriguing possibility that restrict-
ing variation to the lexicon might actually allow for simpler descriptions of the same
phenomena.

ON PREGROUPS, FREEDOM, AND (VIRTUAL) CONCEPTUAL
NECESSITY 3

ians have augmented their theories with new operations (seee.g. Steedman,
2000; Moortgat, 1996), which increase the complexity of theformalisms. In
this paper we show that the pregroup grammar formalism can bemade to sat-
isfy the relevant boundary conditionswhile preserving the original simplicity
of the theory. In so doing, we are offering a yardstick of (virtual) concep-
tual necessity against which other theories can be measuredand departures
therefrom noticed. This is an essential step if we wish to understand which
properties of language are necessary design consequences,and which require
a different explanation.

The remainder of this paper is structured as follows. In§ 2, we (re)acquaint
the reader with various useful definitions and abbreviatoryconventions we will
use in the paper, and introduce the pregroup grammar formalism. In§ 3, we
show that removing the requirement that the pregroups from which categories
are drawn be free gives us the power to describe any recursiveset of strings.

2 Pregroups and Grammar

Let’s begin with a quick review of some basic concepts and abbreviations used
in this paper.N := {0, 1, 2, 3, . . .} is the set of natural numbers. For a finite
setA, ||A|| denotes its cardinality. The unique set of cardinality0 is denoted∅.
Given two setsA andB, their cross-productA×B := {〈a, b〉 : a ∈ A∧b ∈ B}
is the set of ordered pairs whose first component is inA and whose second is
in B. A relationR overA is a subset ofA × A. It is reflexive just in case
xRx for everyx ∈ A. It is antisymmetric iff for everya, b ∈ A, if both
aRb and bRa, thena = b and it is transitive when for everya, b, c ∈ A,
if aRb andbRc thenaRc. A relationR is a partial order iff it is reflexive,
antisymmetric and transitive. Given a setA, a string overA is a finite sequence
of elementsx = x1 . . . xn, xi ∈ A for 1 ≤ i ≤ n. If n = 0 thenx is the
empty string and is denotedε. The length of a stringx is denoted||x||. In
particular,||ε|| = 0. The concatenation of two stringsx andy is denoted by
their juxtapositionxy, or sometimes asxay. If A andB are sets of strings,
thenAε := A ∪ {ε} denotes the set differing fromA at most in the presence
of the empty string, andAB := {xy : x ∈ A andy ∈ B} is the set of strings
gotten by concatenating a string inA with a string inB. We setA0 := {ε} and
defineAn+1 := AnA. An is then-fold iteration of strings inA. We define
A∗ :=

⋃
∞

n=0 An, andA+ :=
⋃

∞

n=1. If L ⊆ A∗ thenL is called a language
overA.

If f : X → Y is a function andU ⊆ X then we writef [U] := {f(x) :
x ∈ U} for the image ofU underf . A signature Ω over a setF of function

4 GREGORY M. KOBELE & MARCUS KRACHT

symbols is a functionΩ : F → N. An Ω–algebra is a pairB = 〈B, I〉 such
that I assigns to eachf ∈ F a function of arityΩ(f) over B (i.e. I(f) :
BΩ(f) → B). B is partial if I(f) may also be a partial function. We shall
also writefB in place ofI(f). For example, letF = {1,⊗} andΩ(1) = 0
andΩ(⊗) = 2. An Ω–algebra is a pair〈B, I〉 such thatI(1) : {ε} → B

andI(⊗) : B2 → B (recall thatB0 = {ε}). Thus we may also viewI(1)
as an element ofB instead of a nullary function. A particular example of
an Ω–algebra is the algebraS(A) of strings over an alphabetA. Here, the
underlying set ofS(A) is the setA∗ of strings overA and 1S(A) = ε as
well as⊗S(A) = a, the concatenation of strings. Notice that concatenation is
associative, that is, for all stringsx, y andz,

xa(yaz) = (xay)az (1)

Given two algebrasB = 〈B, I〉 andC = 〈C, J〉, we putB× C = 〈A×C, K〉
where

K(f)(〈b1, c1〉, 〈b2, c2〉, · · · , 〈bΩ(f), cΩ(f)〉) :=

〈I(f)(b1, b2, · · · , bΩ(f)), J(f)(c1, c2, · · · , cΩ(f))〉 (2)

This is undefined if any of the functionsI(f) or J(f) is undefined on their
respective arguments.

Let B be an algebra andX ⊆ B a set. Then the algebra generated by
X in B is obtained as follows. First, we call a subsetM of A closed if,
for all f ∈ F , fB(a1, a2, · · · , aΩ(f)) ∈ M wheneverai ∈ M , for i ≤
Ω(f). We let 〈X〉 be the smallest (with respect to⊆) closed set containing
M . The algebraB defines an algebraX on 〈X〉 via fX(a1, a2, · · · , aΩ(f)) :=

fB(a1, a2, · · · , aΩ(f)). The left hand is defined iff the right hand side is.
We can give a more concrete characterisation as follows. Saythat aterm
is built from variablesX = {x1, x2, . . .} using the function symbols ofF .
Terms with only the binary symbol⊗ as function symbols arex1, x2, x1⊗x2,
x1 ⊗ (x2 ⊗ x1), and so on. Ift(x1, · · · , xn) is a term, andci, 1 ≤ i ≤ n are
elements of the algebra, thent(c1, · · · , cn) denotes the result of substituting
the valuesci for the variablesxi. With this, 〈X〉 consists of all elements
t(c1, · · · , cn), wheret(x1, · · · , xn) is a term and for alli ≤ n, ci ∈ X . A
termt(x1, · · · , xn) defines a term functiontB : 〈c1, · · · , cn〉 7→ t(c1, · · · , cn)
on An. We shall henceforth not distinguish between the termt and the term
function it induces onB. If f is a term function andU a set, writef [U] :=
{f(~c) : ~c ∈ Un}. We can now also say

〈X〉 =
⋃

{f [X] : f a term function ofB} (3)

ON PREGROUPS, FREEDOM, AND (VIRTUAL) CONCEPTUAL
NECESSITY 5

2.1 Pregroups

Pregroups offer a simplification of the AB calculus in so far as they are asso-
ciative, and so are unable to distinguish between differentconstituent struc-
tures. Pregroups can thus be thought of as a dependency formalism. Because
of their associativity, many of the operations commonly added to the AB cal-
culus (such as type raising, or composition) are derivable as theorems in the
pregroup setting.

A pregroup (see Lambek, 2001)P = 〈M, ·, 1,≤, r, l〉 is a partially or-
dered monoid〈M, ·, 1,≤〉 with left and right inverses satisfying the following
equations:3

x` · x ≤ 1 ≤ x · x` andx · xr ≤ 1 ≤ xr · x (4)

Note that the product of two pregroups is itself a pregroup, where〈p, q〉 ≤
〈p′, q′〉 iff p ≤ p′ andq ≤ q′.

A free pregroup is built up from a partially ordered set of atomsT by first
creating iterated adjoints from atomsa ∈ T

. . . , a``, a`, ar, arr, . . .

and then taking elements of the pregroup to be sequences consisting of atoms
and iterated adjoints (the unit element in the pregroup is the empty sequence).
If p, q are elements of the pregroup,p ≤ q if it holds in virtue of the equa-
tions above given the ordering over the atoms, together withantimonotony
conditions:x ≤ y entails thatyr ≤ xr andy` ≤ x`.

We define a binary operation⊗ overM × Σ∗ such that〈p, σ〉 ⊗ 〈q, τ〉 =
〈pq, στ〉. The associativity of⊗ follows from the associativity of the multi-
plications of the string algebra and the pregroup. A (free) pregroup grammar
is a 4-tupleG = 〈I, s, P, Σ〉, whereP = 〈M, ·, 1,≤, r, l〉 is a (free) pre-
group,s ∈ M is the category of sentences, andI ⊆fin M ×Σε is the lexicon.

3A monoid 〈M, ·, 1〉 consists of a setM together with a distinguished element
1 ∈ M and a binary operation overM satisfying the following equations:

1 · x = x = x · 1 (unit)

x · (y · z) = (x · y) · z (associativity)

A partially ordered monoid〈M, ·, 1,≤〉 is a monoid〈M, ·, 1〉 together with a partial
order≤ overM such that for anya, b, c, d ∈ M ,

a ≤ c andb ≤ d → a · b ≤ c · d (monotonicity)

In this paperx · y is often abbreviatedxy.

6 GREGORY M. KOBELE & MARCUS KRACHT

A string σ ∈ Σ∗ is accepted if there is somep ∈ M such thatp ≤ s and
〈p, σ〉 ∈ 〈I〉. We writeL(G) = {σ : 〈p, σ〉 is accepted}.

Intuitively, in a free pregroup an atoma ∈ T is a categorial feature (like an
NP) which can be selected for by an adjoint (al or ar, depending on whether
it should appear to the right or the left of the selector) (seeLambek, 2004).
Movement-like dependencies can be captured by means of iterated adjoints
(e.g. a``), which look to their right (left) for an adjoint which looksfor an
atom on its right (left). Finally,a ≤ b, a, b ∈ T, means that anything looking
for a b (i.e. that has abr or b` feature) will be satisfied with ana.

3 Pregroups and Language

To show that pregroup grammars can define any recursively enumerable lan-
guage, we rely on Ginsburg et al.’s theorem that every r.e. language is the
homomorphic image of the intersection of two context-free languages, and
on Buszkowski’s theorem that every context-free language is the language of
some pregroup grammar.4

Theorem 1 (Ginsburg et al.) For every recursively enumerable language
L, there are context-free languagesL1 andL2, and a non-length increasing
homomorphismh such thatL = h[L1 ∩ L2].5

Theorem 2 (Buszkowski) For every context-free languageL, there is a pre-
group grammarG such thatL = L(G).

Given theorem 2, the desired result follows from theorem 1 once we show
that the operations of homomorphic image and intersection on languages can
be performed at the level of grammars. Proposition 3 establishes this for non-
length increasing homomorphisms, and proposition 4 shows that the language
of the product of two pregroup grammars is exactly the intersection of their
respective languages. This has some independent interest in domains where

4A string homomorphism fromΣ∗ to Γ∗ is a maph that satisfies

h(στ) = h(σ)h(τ)

Such a map is uniquely determined by its action onΣ. A string homomorphismh :
Σ∗ → Γ∗ is non-length increasing just in case every element ofΣ is mapped to an
element ofΓε (in which case||h(a)|| ≤ 1, for all a ∈ Σ).

5This formulation differs from the one in (Ginsburg et al., 1967, pg 405). Inspection
of their homomorphismh easily reveals it to be non-length increasing, and so their
proof is valid also for this formulation of their theorem.

ON PREGROUPS, FREEDOM, AND (VIRTUAL) CONCEPTUAL
NECESSITY 7

intersection of languages can be used to model relevant phenomena, such as
in linguistics – insofar as modules are thought to be independent and operate
in parallel (as in the framework of Autolexical Syntax (Sadock, 1991)) – and
in computational biology.6

Proposition 3 LetG = 〈I, s, P, Σ〉 be a pregroup grammar, andh : Σ∗ → Γ∗

a non-length increasing homomorphism. Then there is a pregroup grammar
Gh = 〈Ih, s, P, Γ〉 such thatL(Gh) = h[L(G)].

Proof. We extendh to a map1 × h : P × Σ∗ → P × Γ∗ by putting(1 ×
h)(〈p, σ〉) := 〈p, h(σ)〉. This is a homomorphism, as is easily verified. This
means that for every termt, and all expressionsαi = 〈pi, σi〉

(1 × h)(t(α1, · · · , αn)) = t((1 × h)(α1), · · · , (1 × h)(αn)) (5)

In turn, this means that(1× h)[t[X]] = t[(1× h)[X]]. Hence,(1× h)[t[I]] =
t[Ih]. It follows that

〈Ih〉 =
⋃

{t[Ih] : t a term function}

=
⋃

{(1 × h)[t[I]] : t a term function}

= (1 × h)[〈I〉]

(6)

Now, γ ∈ L(Gh) iff there is ap ∈ M such that〈p, γ〉 ∈ 〈Ih〉 iff there is a
p ∈ M such that〈p, γ〉 ∈ (1 × h)[〈I〉] iff there is ap ∈ M and aσ ∈ Σ∗ such
that γ = h(σ) and〈p, σ〉 ∈ 〈I〉 iff there is σ ∈ L(G) such thath(σ) = γ.
Hence,L(Gh) = h[L(G)], as promised. a

Next we shall exhibit a general construction, namely theproduct of two
grammars. This works as follows. LetG1 = 〈I1, s1, P1, Σ〉 and G2 =
〈I2, s2, P2, Σ〉 pregroup grammars. PutI1 ×′

I2 := {〈p, p′, σ〉 : 〈p, σ〉 ∈
I1, 〈p

′, σ〉 ∈ I2}. Finally, putG1 × G2 := 〈I1 ×
′
I2, 〈s1, s2〉, P1 × P2, Σ〉.

Suppose that there are no empty lexical type assignments (i.e. the lexicon
is such that〈p, σ〉 ∈ I only if σ ∈ Σ). Then an analysis of a string of lengthn

will contain exactlyn occurrences of lexical elements. So,σ ∈ 〈I〉 iff there is
a termt(x1, · · · , xn) containing exactlyn−1 (!) occurrences of⊗ and lexical
elementsαi = 〈pi, σi〉, 1 ≤ i ≤ n, such that

t(α1, · · · , αn) = 〈p, σ〉 (7)

6As pertains to this latter domain, Chiang (2004) argues thatwhat he callsweak
parallelism is inappropriate for modeling various biological phenomena, because the
structural descriptions assigned by the two languages are not correlated. He proposes a
solution within the framework of Tree Adjoining Grammars. Our operation of product
over pregroup grammars also has the properties that he requires.

8 GREGORY M. KOBELE & MARCUS KRACHT

for somep. If ⊗ is associative, we can choose the following term:

(· · · ((α1 ⊗ α2) ⊗ α2) · · ·αn) (8)

This will be useful for the next theorem.

Proposition 4 For G1, G2 pregroup grammars (without empty lexical type as-
signments),L(G1 × G2) = L(G1) ∩ L(G2).

Proof. Define the following maps.π1 : P1×P2×Σ∗ → P1×Σ∗ : 〈p, p′, σ〉 7→
〈p, σ〉, andπ2 : P1 × P2 × Σ∗ → P1 × Σ∗ : 〈p, p′, σ〉 7→ 〈p′, σ〉. These
maps are actually homomorphisms. Furthermore,π1[I1 ×

′
I2] = I1 as well as

π2[I1 ×′
I2] = I2. From this we can already deduce that ifσ ∈ L(G1 × G2)

thenσ ∈ L(G1)∩L(G2). For if σ ∈ L(G1×G2) then there arep, p′ such that
p ≤ s1 andp′ ≤ s2 and〈p, p′, σ〉 ∈ 〈I1 ×′

I2〉, then〈p, σ〉 = π1(〈p, p′, σ〉 ∈
π1[〈I1 ×′

I2〉] = 〈π1[I1 ×′
I2]〉 = 〈I1〉. Similarly 〈p′, σ〉 ∈ 〈I2〉 is established.

For the converse we need to make use of our further assumptions. Suppose that
σ ∈ L(G1) andσ ∈ L(G2). Then there is a termt(y1, · · · , yj) and elements
αi ∈ I1, such thatt(α1, · · · , αj) = 〈p, σ〉 for somep ≤ s1; and there is a term
t′(z1, · · · , zk) and elementsα′

i ∈ I2 such thatt(α′

1, · · · , α′

k) = 〈p′, σ〉 for
somep′ ≤ s2. We are not guaranteed thatt andt′ are the same term. However,
under the assumptions made, as the discussion above has revealed, we do have
j = k, and we can use the same term. Moreover, we haveαi = 〈pi, σi〉 and
α′

i = 〈p′i, σi〉 for certainpi ∈ M1 andp′i ∈ M2. It follows that

t(〈p1, p
′

1, σ1〉, · · · , 〈pj , p
′

j , σj〉) = 〈p, p′, σ〉 (9)

and since〈p, p′〉 ≤ 〈s1, s2〉, we now haveσ ∈ L(G1 × G2). a
The theorem can be improved. It is often customary to allow for the empty

stringε in the lexicon. In this case, the product grammar shall contain also the
following items: 〈p, 1, ε〉 iff 〈p, ε〉 ∈ I1 and 〈1, p′, ε〉 iff 〈p′, ε〉 ∈ I2. Or,
equivalently, we assume that both lexica contain the entry〈1, ε〉. Intuitively,
this is so because, unlike the actual letters ofΣ, which both grammars must
recognize, one grammar may ‘see’ an empty string without theother one being
required to.

We are now able to show our main theorem:

Theorem 5 For every recursively enumerableL, there is a pregroupG such
thatL = L(G).

Proof. By theorem 1, there are context-free languagesL1 andL2, and a string
homomorphismh such thatL = h[L1∩L2]. By theorem 2, there are pregroup
grammarsG1 andG2 such thatLi = L(Gi), for i ∈ {1, 2}. The theorem
follows from propositions 3 and 4 by takingG = (G1 × G2)

h. a

ON PREGROUPS, FREEDOM, AND (VIRTUAL) CONCEPTUAL
NECESSITY 9

References

Bar-Hillel, Y., C. Gaifman, and E. Shamir. 1960. On categorial and phrase-structure
grammars.Bulletin of the research council of IsraelF:1–16.

Buszkowski, W. 2001. Lambek grammars based on pregroups. InLogical aspects of
computational linguistics, ed. P. de Groote, G. Morrill, and C. Retoré, volume 2099
of Lecture Notes in Artificial Intelligence. New York: Springer.

Chiang, D. 2004. Uses and abuses of intersected languages. In Proceedings of the
7th International Conference on Tree Adjoining Grammar andRelated Formalisms,
9–15. Vancouver, BC. Canada.

Chomsky, N. 1956. Three models for the description of language. IRE Transactions
on Information Theory2:113–124.

Chomsky, N. 1995.The minimalist program. Cambridge, Massachusetts: MIT Press.
Chomsky, N. 2004. Beyond explanatory adequacy. InStructures and beyond: The

cartography of syntactic structures, ed. A. Belletti, volume 3 ofOxford Studies in
Comparative Syntax, chapter 3. Oxford University Press.

Ginsburg, S., S. A. Greibach, and M. A. Harrison. 1967. One-way stack automata.
Journal of the Association for Computing Machinery14:389–418.

Guillaumin, M. 2005. A note on the relative succinctness of MGs and equivalent
MCFGs. Ms. UCLA.

Joshi, A. 1985. How much context-sensitivity is necessary for characterizing structural
descriptions. InNatural language processing: Theoretical, computationaland psy-
chological perspectives, ed. D. Dowty, L. Karttunen, and A. Zwicky, 206–250. NY:
Cambridge University Press.

Joshi, A. 1987. An introduction to tree adjoining grammars.In Mathematics of lan-
guage, ed. A. Manaster-Ramer. Amsterdam: John Benjamins.

Lambek, J. 1958. The mathematics of sentence structure.American Mathematical
Monthly65:154–170.

Lambek, J. 1999. Type grammars revisited. InLogical aspects of computational lin-
guistics, ed. A. Lecomte, F. Lamarche, and G. Perrier, volume 1582 ofLecture Notes
in Artificial Intelligence, 1–27. New York: Springer.

Lambek, J. 2001. Type grammars as pregroups.Grammars4:21–35.
Lambek, J. 2004. A computational algebraic approach to English grammar.Syntax

7:128–147.
Moortgat, M. 1996. Categorial type logics. InHandbook of logic and language, ed. J.

van Benthem and A. ter Meulen. Amsterdam: Elsevier.
Pentus, M. 1993. Lambek grammars are context free. InProceedings of the 8th Annual

IEEE Symposium on Logic in Computer Science, 429–433. Los Alamitos, Califor-
nia: IEEE Computer Society Press.

Pollard, C. 1984. Generalized context-free grammars, headgrammars, and natural
language. Doctoral Dissertation, Stanford.

Sadock, J. M. 1991.Autolexical syntax. a theory of parallel grammatical representa-
tions. Studies in Contemporary Linguistics. Chicago: University of Chicago Press.

10 GREGORY M. KOBELE & MARCUS KRACHT

Shieber, S. M. 1985. Evidence against the context-freenessof natural language.Lin-
guistics and Philosophy8:333–343.

Stabler, E. P., and E. L. Keenan. 2003. Structural similarity within and among lan-
guages.Theoretical Computer Science293:345–363.

Steedman, M. 2000.The syntactic process. MIT Press.

