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Vijay-Shanker et al. (1987) note that many inter-
esting linguistic formalisms can be thought of as hav-
ing essentially context-free structure, but operating
over objects richer than simple strings (sequences
of strings, trees, or graphs). They introduce linear
context-free rewriting systems (LCFRS’s, see also
Weir (1988)) as a unifying framework for superfi-
cially different such formalisms (like (multi compo-
nent) tree adjoining grammars, head grammars, and
categorial grammars). Later work (Michaelis, 1998)
has added minimalist grammars (MGs, see (Stabler,
1997)) to this list. Recently, Fülöp et al. (2004)
have introduced multiple bottom-up tree transducers
(mbutt), which can be thought of as offering a trans-
ductive perspective on LCFRSs. The transductive
perspective allows us to view a grammar in one of
these grammar formalisms as defining both a set of
well-formed derivations, and functions which inter-
pret these derivations as the derived structures (trees,
strings, or meanings) they are derivations of. Be-
ing explicit about the structure of the derivation, and
divorcing it from the construction of the object so
derived has two main advantages. First, we may en-
tertain and study the effects of modifications to the
structure of the derivational process, such as insist-
ing that a particular operation apply only in case
there is an isomorphic subderivation somewhere in
the same derivation (for example, in deletion under
identity with an antecedent), or other non-local fil-

ters on well-formed derivations, without worrying
about the kinds of data structures that would be re-
quired to support such operations in real-time (as
in parsers, for example). Secondly, viewing deriva-
tional grammar formalisms in this way makes par-
ticularly salient two loci of language theoretic com-
plexity:

1. the set of well-formed derivation structures

2. the transformation from derivation structures to
derived structures

Taking this latter perspective, Shieber (2006)
shows that TAGs are exactly characterized in terms
of monadic macro tree transducers simple in both
the input and the parameters (1-MTTsi,sp) (Engelfriet
and Vogler, 1985) acting on a regular tree language
(see also Mönnich (1997)).

Minimalist grammars offer a formal perspective
on some of the core ideas in Chomsky’s minimal-
ist program (Chomsky, 1995) (various extensions to
the core formalism have been proposed and inves-
tigated; a variant with copying was introduced and
studied in (Kobele, 2006)). We show in this paper
how, given a minimalist grammar G, to construct a
simple, regular, characterization of its well formed
derivations. Furthermore, given the close connection
between LCFRSs and mbutts, it is straightforward
to construct a linear deterministic mbutt which maps
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derivation trees to the structures they are derivations
of. Deterministic mbutts were proven in Fülöp et al.
(2004) to be equivalent to deterministic top-down
tree transducers with regular look-ahead (dT T R),
and it was conjectured that adding linearity to the
mbutt corresponded to restricting the dT T R to be
finite copying. We prove half of this conjecture
in the appendix: linear deterministic mbutts (ldm-
butt) can be simulated by finite copying deterministic
top-down tree transducers with regular look-ahead
(dT T R

f c).1We obtain thus both a bottom-up and a top-
down characterization of the function from minimal-
ist derivations to derived trees. The same construc-
tion extends to minimalist grammars with copying
simply by removing the finite copying restriction
(dT T R). In other words, the structure languages gen-
erated by minimalist grammars with (without) copy-
ing are contained in the output languages of (finite
copying) tree homomorphisms.

We can immediately conclude that, although the
string languages generated by minimalist grammars
properly include those generated by TAGs,2 the same
is not true of their respective structure languages, as

1Michaelis et al. (2001) have provided a different character-
ization of the derived trees definable by minimalist grammars
(see also Morawietz (2003)). Given a minimalist grammar, they
define a regular tree grammar which encodes the operations of
an equivalent LCFRS as operation symbols in a lifted signature.
From there, they show that one can obtain the desired trees us-
ing a monadic second order logic transduction, a MTT simple in
the input and the parameters, or a deterministic tree walking au-
tomaton. As we think the derivation tree is an interesting object
in its own right (as per our introductory comments), we prefer
to start from there. Our obtained transducer class is different in
non-trivial ways as well, with MSO and simple MTTs able to
define transductions which dT T R

( f c)s cannot.
2MGs were proven to be equivalent to multiple context-free

grammars (Seki et al., 1991) in (Michaelis, 1998; Harkema,
2001; Michaelis, 2001). The variant with copying is equivalent
to parallel multiple context-free grammars (Seki et al., 1991),
see (Kobele, 2006). TAGs are equivalent to a proper subclass of
multiple context-free grammars (Seki et al., 1991).

the output languages of deterministic (finite copy-
ing) tree transducers are incomparable to those of
1-MTTsi,sps (Engelfriet and Maneth, 2000). An ex-
ample of a derived TAG tree language that is not
also generable by an MG is {an(bn(e)) : n ≥ 1} (as
monadic languages which are the output of a regular
tree transducer are all recognizable).

Tree transducers can also be used to characterize
transformations of trees into non-tree-like structures,
such as graphs, or even arbitrary algebras (Bauderon
and Courcelle, 1987; Engelfriet, 1994). The idea is
to encode elements of the algebra as trees, and to ‘de-
code’ the tree τ(t), for input tree t and transducer τ,
into the algebraic object it represents (this is the idea
behind the common ‘tree-to-string’ mappings). For
instance, we might interpret the derived objects not
as strings, but rather as partially ordered multi-sets,
as proposed in Pan (2007), which allows for an ele-
gant statement of otherwise quite difficult to describe
(Bobaljik, 1999) word order regularities in languages
like Norwegian. Compositionality, the principle that
the meaning of an object is determined by the mean-
ings of its immediate parts and their mode of com-
bination, is naturally formulated as a transduction
mapping derivation trees to (terms denoting) seman-
tic values. The compositional semantics for mini-
malist grammars introduced in Kobele (2006) is nat-
urally expressed in terms of a transduction of the
same type as that mapping derivations to derived
trees (a dT T R

( f c)). We present a general method of
synchronizing (in the sense of Shieber (1994)) mul-
tiple transductions over the same derivation, showing
as a result that the form-meaning relations definable
by MGs interpreted as per Kobele (2006) can be de-
scribed as bimorphisms of type B(M,M) (in the ter-
minology of Shieber (2006)).

The rest of this paper is structured as follows. Af-
ter some mathematical preliminaries, we introduce
minimalist grammars. We then define the derivation
tree language of a minimalist grammar, and prove
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that it is regular. We then introduce multi bottom-
up tree transducers, and show that one can there-
with transform a minimalist derivation tree into the
derived structure it represents a derivation of. Fi-
nally, bimorphisms are introduced, and the form-
meaning relations generable by minimalist gram-
mars are shown to be contained within the bimor-
phism class B(M,M) (M is the set of unrestricted
homomophisms). In the appendix, the linear deter-
ministic multi bottom-up tree transducers used in this
paper to establish the above results are shown to be
included in the top-down tree transducers with regu-
lar look-ahead and finite copying, as conjectured by
Fülöp et al. (2005). At the end we include a picture
which contains some of the wealth of information on
tree languages generated by various grammars and
devices.

1 Preliminaries

The set of natural numbers will be denoted by N and
[n] will denote the set {1, . . . ,n} with the convention
that [0] represents the empty set.

Σ∗ is the set of all finite sequences of elements of
Σ. Σ+ is the set of all non-empty such sequences, and
ε is the empty sequence. The length of a sequence
w is denoted |w|, and |ε| = 0. For a non-empty se-
quence aw, a ∈ Σ is its head and w its tail.

A ranked alphabet Ω is a finite set (also denoted
Ω) together with a function rank : Ω → N assigning
to each ω ∈Ω its rank. The notation Ω(n), for n ∈N,
denotes the set {ω ∈ Ω : rank(ω) = n} of symbols
of rank n. Given ω ∈ Ω(n), we sometimes write ω(n)

to remind us that rank(ω) = n. The set of trees built
on a ranked alphabet Ω, noted TΩ, is the smallest set
that contains Ω(0) and ω(t1, . . . , tn) iff for all i ∈ [n],
ti ∈ TΩ.

2 Minimalist Grammars

An idea common to many grammar formalisms
is that natural languages are resource sensitive, in
the sense that grammatical operations consume re-
sources when applied. Minimalist grammars imple-
ment this idea in terms of features, which are deleted
or checked as operations are applied. Syntactic fea-
tures come in two varieties: licensing features and
selection features, which are relevant for the gram-
matical operations of move and merge respectively.
Each feature type has a positive and a negative po-
larity. The set of licensing features is lic, and for
x ∈ lic, +x is the positive, and -x the negative po-
larity feature of type x. The set of selection features
is sel, and for x ∈ sel, =x is the positive, and x the
negative polarity feature of type x. We assume with-
out loss of generality that lic and sel are disjoint.
F = {+x,-x,=y,y : x ∈ lic,y ∈ sel} is the set of all
positive and negative polarity features of all types.
An expression φ = φ0,φ1, . . . ,φn is a finite sequence
of pairs φi = 〈ti, li〉 of trees t and sequences of fea-
tures l.3 The intuition is that the grammatical op-
erations combine trees in various ways based on the
features that are associated with these trees. Given an
alphabet Σ and a symbol ε /∈Σ we will interpret as the
empty string (the set Σ∪{ε} is denoted Σε), the tree
components of a minimalist expression have internal
nodes labelled with either < or > (indicating that the
head of the tree as a whole is the head of the left or
right subtree respectively), and leaves labelled with
either t (a ‘trace’) or elements of Σε. These labels
form a ranked alphabet Ω = {<(2),>(2),t(0)} ∪ Σε,
where each σ ∈ Σε has rank 0. In lexicalized gram-
mar formalisms like MGs, the grammatical opera-

3This is the ‘chain-based’ presentation of MGs (Stabler and
Keenan, 2003), but with trees, and not strings, as the derived
objects. The possibility of such a representation was first noticed
by Michaelis (1998), who used it to prove the containment of the
minimalist languages in the MCFGs.
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tions are held constant across grammars, the locus of
variation being confined to different choices of lexi-
cal items. A lexicon is a finite set Lex⊂Σε×F+. The
grammatical operations move and merge, common
to all minimalist grammars, are defined as per the
following. The unary operation move is defined on
an expression φ0, . . . ,φn just in case the head of the
feature sequence of φ0 is a positive polarity licensing
feature type +x, and there is exactly one φi the head
of whose sequence is the corresponding negative fea-
ture -x (the requirement that φi be unique is called
the SMC, and results in an upper bound of |lic|+ 1
on the length of useful expressions). The definition
of move is given in two cases, as per whether the
moving element has exactly one (move1), or more
than one (move2) feature in its feature sequence. The
tree denoted by f (t1, t2) is <(t1, t2) if t1 ∈ Σε, and is
>(t2, t1) otherwise. For li non-empty,

move1(〈t0,+xl0〉, . . . ,〈ti,-x〉, . . . ,φn)
= 〈 f (t0, ti), l0〉, . . . ,φn

move2(〈t0,+xl0〉, . . . ,〈ti,-xli〉, . . . ,φn)
= 〈 f (t0,t), l0〉, . . . ,〈ti, li〉, . . . ,φn

The binary operation merge is defined on expres-
sions φ and ψ just in case the head of the feature
sequence of φ0 is a positive polarity selection fea-
ture =x, and the head of the feature sequence of ψ0 is
the corresponding negative feature x. As before, we
split the definition of merge into two cases, based on
whether the feature sequence of ψ0 contains exactly
one (merge1) or more than one (merge2) feature.
For l′0 non-empty,

merge1(〈t0,=xl0〉,φ1, . . . ,φm; 〈t ′0,x〉,ψ1, . . . ,ψn)
= 〈 f (t0, t ′0), l0〉,φ1, . . . ,φm,ψ1, . . . ,ψn

merge2(〈t0,=xl0〉,φ1, . . . ,φm; 〈t ′0,xl′0〉,ψ1, . . . ,ψn)
= 〈 f (t0,t), l0〉,φ1, . . . ,φm,〈t ′0, l′0〉,ψ1, . . . ,ψn

Given an alphabet Σ, a minimalist grammar G over
Σ is given by its set of features F, a lexicon Lex, and a
designated feature c∈ F (the type of sentences). The
expressions generated by a minimalist grammar G =
〈F,Lex,c〉 are those in CL(Lex) =

S
n∈NCLn(Lex),

where4

CL0(Lex) = Lex

CLn+1(Lex) = CLn(Lex)
∪{move(φ) : φ ∈CLn(Lex)}
∪{merge(φ,ψ) : φ,ψ ∈CLn(Lex)}

An expression φ = φ0, . . . ,φn is complete iff n = 0.
The structure language S(G) = {t : 〈t,c〉 ∈CL(Lex)}
generated by G is the set of tree components of com-
plete expressions whose feature sequence compo-
nent is the designated feature c.

3 Derivations as trees

Given a minimalist grammar over Σ, G = 〈F,Lex,c〉,
its derivation trees are defined to be the terms
over the ranked alphabet Γ = {mrg(2),mv(1)}∪Lex,
where the elements of Lex have rank 0. A deriva-
tion tree t ∈ TΓ is a derivation of an expression
φ just in case φ = h(t), where h maps lexical
items to themselves, and h(mv(t)) = move(h(t)) and
h(mrg(t1, t2)) = merge(h(t1),h(t2)). As the func-
tions merge and move are partial, so is h. We can
identify the set of convergent (well-formed) deriva-
tion trees with the domain of h.

The first question we ask is as to the language the-
oretic complexity of the set of well-formed deriva-
tion trees of complete expressions. We will show

4It is implicitly assumed that the arguments presented to the
generating functions are restricted to those in their domains.
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(by exhibiting the automaton) that this set is the lan-
guage accepted by a bottom-up tree automaton; in
other words, a regular tree language. A bottom-up
tree automaton (BA) is a structure A = 〈Q,Q f ,Σ,δ〉,
where Q is a finite set of states, Q f ⊆ Q the set of
final states, Σ is a ranked alphabet, and δ = (δσ)σ∈Σ

is a family of partial functions δσ : Qrank(σ) → 2Q

from rank(σ)-tuples of states to sets of states. If
for every σ(n) ∈ Σ, and for every q1, . . . ,qn ∈ Q,
|δσ(q1, . . . ,qn)| ≤ 1 then A is deterministic, and we
write δσ(q1, . . . ,qn) = q for δσ(q1, . . . ,qn) = {q}.
For a term σ(n)(t1, . . . , tn) ∈ TΣ, δ(σ(t1, . . . , tn)) =S
{δσ(q1, . . . ,qn) : qi ∈ δ(ti)}. A term t ∈ TΣ is ac-

cepted by A just in case δ(t)∩Q f is non-empty.

Theorem 1 For G = 〈F,Lex,c〉 a minimalist gram-
mar over an alphabet Σ, and for l ∈ F+, the set of
convergent derivation trees of complete expressions
of type l is a regular tree language.

Proof: We construct a deterministic bottom up tree
automaton AG = 〈Q,Q f ,Γ,δ〉 which recognizes just
the convergent derivations in TΓ of complete expres-
sions of type l. Any set accepted by such an automa-
ton is regular, whence the conclusion. The states of
our automaton will keep track of the featural compo-
nents of the expression h(t) that the derivation tree t
is a derivation of. To bring out the logical structure of
the feature calculus (and thereby simplify the state-
ment of the transition function), instead of working
with arbitrary sequences of feature sequences (the
right projection of minimalist expressions) we repre-
sent the features had by an expression φ as an n+1-
ary sequence of feature sequences, with n = |lic| (re-
call that the SMC condition on move ensures that no
expression that is part of a convergent derivation of
a complete expression has more than one subpart φi

with feature sequence beginning -x, for any x ∈ lic).
Moreover, an arbitrary but fixed enumeration of lic
allows us to denote licensing feature types with posi-

tive integers (thus +1 denotes a positive polarity fea-
ture of the first licensing feature type), and we re-
quire that the ith component of our states, if non-
empty, contain a feature sequence beginning with -i.
Formally, for suf(Lex) := {β : 〈σ,αβ〉 ∈ Lex} the set
of suffixes of lexical feature sequences, we define our
set of states such that

Q := {〈s0, . . . ,sn〉 : s0, . . . ,sn ∈ suf(Lex) and for

1 ≤ i ≤ n either si = ε or si = -iα}

The set of final states Q f is the singleton
{〈l,ε, . . . ,ε〉} It remains to describe the action of the
transition function on states. To make the descrip-
tion of the results of these functions easier, we define
the partial binary operation over feature sequences⊕
(‘sum’) which is defined just in case at least one of
its arguments is ε, and returns its non-empty argu-
ment if one exists, and ε otherwise. We extend ⊕
to a function which takes a state q = 〈s0, . . . ,si, . . .〉
and a feature sequence s and returns q if s = ε and
〈s0, . . . ,(si ⊕ s), . . .〉 if s = -is′ (otherwise, ⊕ is un-
defined). The transition function δmv is defined on a
state q = 〈s0, . . . ,sn〉 just in case the head of the se-
quence of features in the initial position of is a pos-
itive polarity licensing feature (+i), the head of the
feature sequence in the ith position is the correspond-
ing negative polarity licensing feature (-i), and if the
tail of the feature sequence in the ith position is non-
empty and begins with -j, then the jth position is
empty. If defined, the result is identical to q, except
that the matching ith licensing features are deleted,
and the remainder of the feature sequence in the ith

array position is moved to the jth array position if it
begins with -j. Formally,

δmv(〈+is0, . . . ,-isi, . . .〉) = 〈s0, . . . ,ε, . . .〉⊕ si

The transition function δmrg applies to a pair of states
just in case the following three conditions are met.
First, the heads of the initial feature sequence of the
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two states must be positive and negative polarity fea-
tures of the same selection feature type, respectively.
Second, whenever a non-initial feature sequence of
the first state is non-empty, the corresponding fea-
ture sequence in the second state must be empty. Fi-
nally, if the tail of the initial feature sequence of the
second state begins with -j, then the jth position of
both states must be empty. If defined, δmrg(q1,q2)
is the state whose initial component is the tail of the
initial component of q1, whose jth component is the
sum of the tail of the initial component of q2 with the
jth components of both input states, and whose non-
initial components are the sum of the corresponding
non-initial components in q1 and q2. Formally,

δmrg(〈=fs0, . . . ,si, . . .〉, 〈fs′0, . . . ,s
′
i, . . .〉)

= 〈s0, . . . ,(si⊕ s′i), . . .〉⊕ s′0

Finally, for each lexical item 〈σ, l〉, δ〈σ,l〉 is the con-
stant function that outputs the state with initial com-
ponent l, and all other components ε. Formally,

δ〈σ,l〉(〈σ, l〉) = 〈l,ε, . . . ,ε〉

A simple induction on derivation trees proves the
correctness of the automaton. The only slightly
tricky bit stems from the fact that the automaton in
effect enforces the SMC at each step, whereas the
minimalist grammars ‘wait’ until a move step. This
is harmless as once an expression is generated which
has more than one component with the same initial
-i feature it can never be ‘rescued’ and turned into a
complete expression. �

As a special case we obtain

Corollary 1 For any MG G = 〈F,Lex,c〉, the set of
derivation trees of sentences (complete expressions
of category c) is regular.

4 Interpreting derivations

The picture of minimalist grammars with which we
began conflates the structure of the feature calcu-
lus with the process of tree assembly. We have
seen that by factoring out the tree-building opera-
tions from the syntactic feature manipulation, we are
left with a simple and elegant system, and that the
structure of the feature calculus is underlyingly reg-
ular. We can think of the syntactic calculus as de-
livering blueprints for building trees. We now know
that these blueprints themselves have a simple regu-
lar structure, but what is left to determine is the com-
plexity of building trees from blueprints.

We will extend the bottom-up automaton from the
previous section (which manipulated sequences of
feature sequences) so as to allow it to build trees.
In minimalist expressions φ = φ0, . . . ,φm, each tree ti
is paired with its syntactic features si directly. This
makes the order of occurrence of the φis irrelevant.
In contrast, in our automata, features are used in the
description of states, and thus are dissociated from
their trees. Accordingly, we make the objects derived
during a derivation n+1-ary sequences of trees over
the ranked alphabet Ω = {<(2),>(2),t(0)}∪Σε. The
connection between a tree and its feature sequence
is established by the invariant that the ith component
of a state represents the features of the ith tree in a
sequence. There are n2 + 2n + 1 basic operations
on n + 1-ary sequences of trees: m(2), mj

(2), vi
(1),

and vi,j
(1), for 1 ≤ i, j ≤ n. These operations form

an algebra S over the carrier set S = {〈t0, . . . , tn〉 :
t0, . . . , tn ∈ TΩ} of n + 1-ary tree sequences. Intu-
itively, the operations on tree sequences are indexed
to particular cases of the δmv and δmrg functions, and
derivations in the syntactic calculus then control tree
sequence assembly (as shown in figure 1). The oper-
ations are defined as per the following, where t1⊕ t2
is defined iff at least one of t1 and t2 is t, in which
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operation case of δmv/δmrg
vi si = ε

vi,j si = -jl
m s′0 = ε

mj s′0 = -jl

Figure 1: Operations on tree sequences and the syntactic operations they are associated with

case it returns the other one.

vi(〈t0, . . . , ti, . . .〉) = 〈 f (t0, ti), . . . ,t, . . .〉

vi,j(〈t0, . . . , ti, . . . , t j, . . .〉)
= 〈 f (t0,t), . . . ,t, . . . ,(t j⊕ ti), . . .〉

m(〈t0, . . . , ti, . . .〉, 〈t ′0, . . . , t ′i , . . .〉)
= 〈 f (t0, t ′0), . . . ,(ti⊕ t ′i), . . .〉

mj(〈t0, . . . , t j, . . .〉, 〈t ′0, . . . , t ′j, . . .〉)
= 〈 f (t0,t), . . . ,(t j⊕ t ′j)⊕ t ′0, . . .〉

Each state q = 〈s0, . . . ,sn〉 is associated with an
n + 1-tuple of trees 〈t0, . . . , tn〉. We would like the
states to be put together in accord with the transi-
tion function δ from the proof of theorem 1, and the
tuples of trees in accord with the operations in fig-
ure 1. Thus, we would like to map mrg(u,v), where
u is mapped to q(t0, . . . , tn) and v to q′(t ′0, . . . , t

′
n),

to δmrg(q,q′)(m(〈t0, . . . , tn〉, 〈t ′0, . . . , t ′n〉)) if the
first component of q′ is of length one, and to
δmrg(q,q′)(mj(〈t0, . . . , tn〉, 〈t ′0, . . . , t ′n〉)) if the tail of
the first component of q′ begins with -j. This in-
tuitive picture is very close to the multi bottom-up
tree transducer model introduced in (Fülöp et al.,
2004). A multi bottom-up tree transducer is a tuple
M = (Q,Σ,∆,root, f ,R) where:

1. Q is a ranked alphabet, the states, with Q(0) = /0

2. Σ and ∆ are ranked alphabets, respectively the
input alphabet and the output alphabet

3. root is a unary symbol called the root

4. f is the final ‘state’. Q, Σ∪∆, {root}, and { f}
are pairwise disjoint sets

5. R is the set of rules which are of one of the two
forms below, for σ ∈ Σ(n), qk ∈ Q(rk), and tl ∈
T∆({y1,1, . . . ,y1,r1 , . . . ,yn,1, . . . ,yn,rn}) and q ∈
Q(n) and t ∈ T∆(Xn)

σ(q1(y1,1, . . . ,y1,r1), . . . ,qn(yn,1, . . . ,yn,rn))
→ q0(t1, . . . , tr0)

root(q(x1, . . . ,xn))→ f (t)

An mbutt is linear just in case each of the variables
occur at most once in at most one of the output trees.
It is deterministic just in case there are no two pro-
ductions with the same left hand sides.

Theorem 2 For every minimalist grammar G =
〈F,Lex,c〉, there is a linear deterministic multi-
bottom up tree transducer MG such that for L(AG)
the set of derivations of complete expressions of cat-
egory c, MG(L(AG)) = S(G).

Proof: The states of MG are triples of states from
our bottom-up tree automaton, our tree sequence al-
gebra operations, and a boolean value which encodes
the result of the test for the function f (whether or not
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the first tree is a symbol from Σε). Each state has the
same arity, |lic|+1. Our rules R include5

1. for q = δmv(q1), ρ ∈ {vi,vi,j} such that the con-
dition in figure 1 is satisfied, and 〈t0, . . . , tn〉 =
ρ(〈y1,1, . . . ,y1,n+1〉),

mv(〈q1,ρ1,b1〉(y1,1, . . . ,y1,n+1))
→ 〈q,ρ,0〉(t0, . . . , tn)

2. for q = δmrg(q1,q2), ρ ∈ {m,mi}
such that the condition in fig-
ure 1 is satisfied, and 〈t0, . . . , tn〉 =
ρ(〈y1,1, . . . ,y1,n+1〉,〈y2,1, . . . ,y2,n+1〉),

mrg(〈q1,ρ1,b1〉(y1,1, . . . ,y1,n+1),
〈q2,ρ2,b2〉(y2,1, . . . ,y2,n+1))
→ 〈q,ρ,0〉(t0, . . . , tn)

3. 〈σ, l〉 → 〈q,ρ,1〉(σ,t, . . . ,t) just in case q =
δ〈σ,l〉(〈σ, l〉)

4. root(〈q,ρ,b〉(x1, . . . ,xn+1)) → f (x1) just in
case q = 〈c,ε, . . . ,ε〉

Again, a simple induction on derivation trees suffices
to establish the correctness of the construction. �

Given the construction of the ldmbutt in theorem
2, it is clear that we could just as well have cho-
sen different operations over different n + 1 tuples
of objects (Kobele (2006) provides an example of
such). Additionally, we can use the very same fea-
ture calculus to simultaneously control different op-
erations over different algebras. A synchronization
of two dmbutts M and M′ is a triple 〈M,M′,C〉where
C ⊆ R×R′ is the control set, which serves to specify

5The resolution of the operation⊕ in the definition of ρ must
be done by the states q1 and q2. As an empty component in a
state is shadowed by a trace in a tree sequence, this is merely a
notational inconvenience.

which transitions in M are allowed to be used with
which productions in M′. The relation defined by
such an object is

{〈u,v〉 : ∃t ∈ TΣ.∃c ∈C∗. t `π1(c)
M u ∧ t `π2(c)

M′ v}

where πi is the ith projection function extended over
sequences in the obvious way, u `aw

M v just in case
u `a

M v′ and v′ `w
M v, and u `a

M v just in case a is a
production in M, u rewrites to v in a single step using
a, and a is applied to the left-most rewritable node in
u.

This is (a restriction to a particular transducer type
of) a generalization of the model of synchronous tree
adjoining grammars, as developed by Shieber and
Schabes (1990), and thus can be used, for example,
to model the syntax-semantics interface (Nesson and
Shieber, 2006). Shieber (2006) investigates the com-
plexity of the form-meaning relationships definable
by synchronous TAGs by situating them within the
context of bimorphisms. A bimorphism is a triple
B = 〈Φ,L,Ψ〉, where L is a recognizable tree lan-
guage and Φ and Ψ are homomorphisms; the relation
it defines is L(B) = {〈Φ(t),Ψ(t)〉 : t ∈ L}. Given
classes H1 and H2 of homomorphisms, B(H1,H2)
denotes the class of bimorphisms 〈h1,L,h2〉 where
hi ∈ Hi and L is recognizable. Shieber proves that
synchronous TAGs define exactly those relations de-
finable by bimorphisms where the homomorphisms
are one state monadic macro tree transducers simple
in the input and parameters.

The following theorem is an easy consequence of
a result in Fülöp et al. (2004).

Theorem 3 The relation defined by a synchroniza-
tion 〈M,M′,C〉 of dmbutts M and M′ is in the bi-
morphism class B(M,M), where M is the class
of unrestricted homomorphisms. It is in the class
B(FC,FC), where FC is the class of finite copying
homomorphisms, if M and M′ are linear.
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Proof: By moving to the expanded alphabet Σ×R×
R′, we can find new dmbutts M? and M′

? such that the
set {〈M?(t),M′

?(t)〉 : t ∈ TΣ×R×R′} is the very same
relation as defined by 〈M,M′,C〉 (we essentially en-
code the control information into the vocabulary it-
self). By theorem 4.4 in Fülöp et al. (2004), we can
find an equivalent dT T R for any dmbutt. It is well-
known that regular look-ahead and states can be en-
coded into a regular set of trees (Engelfriet, 1977),
and therefore for any dT T R T and regular language
L we can find a homomorphism h and regular lan-
guage Lh such that T (L) = h(Lh). Thus, from M and
M′ over TΣ, we move to M? and M′

? over TΣ×R×R′ ,
and from there we obtain T? and T ′

? , whence we fi-
nally arrive at homomorphisms h? and h′?. By the
result in the appendix, h? (h′?) is finite copying if M
(M′) is linear. �

5 Conclusion

In light of our transductive characterization of min-
imalist grammars, what seems the core of the mini-
malist grammar framework is the underlying feature
calculus, and the n-tuples of terms that are there-
with naturally controllable. The cases of the gener-
ating functions (merge1,merge2,. . . ) that were in-
troduced at the beginning are now revealed to be
gerrymanderings of the feature calculus to support
the particular mode of manipulating expressions qua
minimalist trees. Different modes of expression ma-
nipulation, or different choices of expressions to ma-
nipulate, might well have drawn different lines in the
sand. This perspective allows us to consider the rela-
tions that the minimalist feature calculus makes de-
finable. Situating natural langauge formalisms in the
context of bimorphisms provides an elegant and prin-
cipled way of measuring and comparing their ‘strong
generative capacity’—the kinds of form-meaning re-
lations the formalism can define. We have seen that

all of the relations definable by synchronous mini-
malist grammars are naturally expressible as bimor-
phisms where the component maps are simple tree-
to-tree homomorphisms. Our characterization is still
loose. We must leave it for future work to determine
a tighter description of the relations naturally defin-
able by minimalist grammars.

A Appendix

In this appendix we show the inclusion of the rela-
tions definable by linear deterministic multi bottom-
up tree transducers in those definable by single use
deterministic top-down tree transducers with regular
look-ahead (dT T R

su) which are known to be equiva-
lent to deterministic top-down tree transducers with
regular look-ahead with finite copying (dT T R

f c) (En-
gelfriet and Maneth, 1999). First, some definitions.

Given Σ and ∆ two ranked alphabets, we define
Σ∪∆ to be the ranked alphabet such that (Σ∪∆)(n) =
Σ(n) ∪∆(n). A set A is made into a ranked alphabet
R(A) such that R(A)(0) = A and R(A)(k) = /0 when
k > 0. In particular we write TΩ(A) for TΩ∪R(A).

We describe tree substitution with a set of indexed
input variables X = {xk : k ∈ N∧ k > 0} and also
a set of double indexed input variables Y = {yi, j :
i ∈ N ∧ i > 0 ∧ j ∈ N ∧ j > 0}. The set Xn will
denote {xk : k ∈ [n]} and the set Yn,〈r1,...,rn〉 will de-
note {yk,l : k ∈ [n] ∧ l ∈ [rk]}. Given t ∈ TΣ(Xn)
(resp TΣ(Yn,〈r1,...,rn〉)) and for k ∈ [n] tk ∈ TΣ (resp
k ∈ [n], l ∈ [rk] and tk,l ∈ TΣ), we write t[t1, . . . , tn]
(resp t[t1,[r1], . . . , tn,[rn]]) for the result of replacing ev-
ery occurrence of xk (resp yk,l) in t by tk (resp tk,l) for
all k ∈ [n] (resp k ∈ [n] and l ∈ [rk]). Given σ ∈ Σ(rk)

and a family (tk,l)l∈[rk], we abbreviate σ(tk,1, . . . , tk,rk)
to σ(tk,[rk]) (a particular case is when tk,l = yk,l). We
also assume z to be a variable that is neither in X nor
in Y and we use to define contexts. A context of TΣ

is an element C of TΣ({z}) such that z occurs exactly
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once in C. Given a t we write C[t] the tree obtained
by replacing the occurrence of z in C by t. Contexts
will alway be written using capital C with indicies,
exponents, primes, . . .

Definition 1 A top-down tree transducer with reg-
ular look-ahead (T T R for short) is a tuple M =
(Q,Σ,∆,q0,R,P,δ) where

1. Q is a ranked alphabet of states such that Qk = /0

for every k ∈ N\{1}.

2. Σ and ∆ are ranked alphabets, repectively, the
input alphabet and the output alphabet. Q and
Σ∪∆ are disjoint.

3. q0 is an element of Q, the initial state.

4. (P,Σ,δ) is a deterministic BA (the final states are
unnecessary and will be suppressed).

5. R a subset of
S

Σ(n) 6= /0
Q×Σ(n)×T∆({q(xi) : q ∈

Q∧ xi ∈ [n]})×Pn, the rules.

As usual, the rule (q,σ(n), t,(p1, . . . , pn)) of a
tdT T R will be written

〈q(σ(x1, . . . ,xn))→ t, p1, . . . , pn〉.

A tdT T R, M = (Q,Σ,∆,q0,R,P,δ), is said to be de-
terministic whenever given rules

1. 〈q(σ(x1, . . . ,xn))→ t, p1, . . . , pn〉 and

2. 〈q(σ(x1, . . . ,xn))→ t ′, p1, . . . , pn〉

in R then t = t ′. The class of dT T R that are deter-
ministic will be written dT T R.

A T T R, M = (Q,Σ,∆,q0,R,P,δ), defines a relation
on TΣ∪∆∪Q. Given t, t ′ ∈ TΣ∪∆∪Q, we write t →M t ′ if
there is C, a context of TΣ∪∆∪Q, 〈q(σ(x1, . . . ,xn)) →
v, p1, . . . , pn〉 ∈ R and (tk)k∈[n] verifying:

1. t = C[q(σ(t1, . . . , tn))]

2. for all k ∈ [n], tk ∈ L(P, pk)

3. t ′ = C[v[t1, . . . , tn]].

The reflexive and transitive closure of →M is writ-
ten ⇒M, and the relation that M defines between TΣ

and T∆ is

RM = {(t, t ′) : t ∈ TΣ∧ t ′ ∈ T∆∧q0(t)⇒M t ′}.

We now introduce the notion of strongly single use
and single use deterministic top-down transduction
that has been introduced in Engelfriet and Maneth
(1999).

Definition 2 Let M = (Q,Σ,∆,q0,R,P,δ) be a dT T R

and Q be a nonempty subset of Q. M is said strongly
single use with respect to Q, if for all q,q′ ∈ Q and
all two rules of R :

1. 〈q(σ(x1, . . . ,xn))→ v, p1, . . . , pn〉

2. 〈q′(σ(x1, . . . ,xn))→ w, p1, . . . , pn〉

the existence of contexts C and C′, q′′ ∈Q and j ∈ [n]
such that v = C[q′′(x j)] and w = C′[q′′(x j)] implies
q = q′ and C = C′.

If M is strongly single use with respect to Q the M
is said strongly single use.

Definition 3 Let M = (Q,Σ,∆,q0,R,P,δ) be a
dT T R. M is said single use if there is a partition
Π of Q and a collection of mappings (Tσ,〈p1,...,pn〉 :
Π× [n]→ Π : σ ∈ Σ(n), p1, . . . , pn ∈ P) such that:

1. for all Q ∈ Π, M is strongly single use with re-
spect to Q and

2. for all 〈q(σ(x1, . . . ,xn)) → v, p1, . . . , pn〉 ∈ R
with q ∈ Q ∈ Π, if there is an occurrence of
q′(xi) in v then q′ ∈ Tσ,〈p1,...,pn〉(Q, i).
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The partition Π is called a su partition for M and
T is called a collection of su mapping for M. We
will write dT T R

su to denote the class of dT T R that are
single use.

We now define the relation computed by multi
bottom-up tree transduction.

A mbutt M = (Q,Σ,∆,root,q f ,R) defines a re-
lation →M on the trees of TQ∪Σ∪∆∪{root,q f }. Given
t, t ′ ∈ TQ∪Σ∪∆∪{root,q f }, we have t →M t ′ if there is C
a context of TQ∪Σ∪∆∪{root,q f } verifying one of the two
following properties:

1. t = C[σ(q1(t1,[r1]), . . . ,qn(tn,[rn]))], t ′ =
C[q0(t1, . . . , tr0)[t1,[r1], . . . , tn,[rn]]] and

σ(q1(y1,[r1]), . . . ,qn(yn,[rn]))→ q0(t1, . . . , tr0)∈R

2. t = C[root(q(t1, . . . , tn))], t ′ =
C[q f (v[t1, . . . , tn])] and

root(q(x1, . . . ,xn))→ q f (v) ∈ R

The reflexive and transitive closure of→M is denoted
by ⇒M. M defines a relation between TΣ and T∆,
RM = {(t, t ′) ∈ TΣ×T∆ : root(t)⇒M q f (t ′)}.

A mbutt, M = (Q,Σ,∆,root,q f ,R), is called deter-
ministic whenever

1. σ(q1(y1,[r1]), . . . ,qn(yn,[rn])) → q0(t1, . . . , tr0) ∈
R and

2. σ(q1(y1,[r1]), . . . ,qn(yn,[rn])) → q′0(t
′
1, . . . , t

′
r′0
) ∈

R

imply q0 = q′0 and for all k ∈ [r0], tk = t ′k.
Now that we have defined all the necessary no-

tions, we prove that the classes of transduction real-
ized by dT T R

su include those defined by ldmbutts. In
Fülöp et al. (2004), it is shown that dT T R and dm-
butts define the same class of transduction. We here
prove the transductions defined by ldmbutts can be

defined by dT T R
su; this proof uses the same construc-

tion as in lemma 4.1 in Fülöp et al. (2004) and we
thus only have to prove that when this construction
is used on a ldmbutt it ouputs a dT T R

su.

Let M = (Q,Σ,∆,root,q f ,R) be a ldmbutt and A =
(Q,Σ,δ) be the dBA underlying M. We construct the
dT T R T = (Q′,Σ,∆, p0,R′,Q,δ) as follows:

1. Q′ = {p0}∪{〈q, j〉 : q ∈ Q(n)∧ j ∈ [n]}

2. R′ is the smallest set of rules verifying:

(a) if σ(q1(y1,[r1]), . . . ,qn(yn,[rn])) →
q0(t1, . . . , tr0) ∈ R then for all j ∈ [r0],

〈〈q, j〉(σ(x1, . . . ,xn))
→ t j[t1,[r1], . . . , tn,[rn]],q1, . . . ,qk〉 ∈ R′

with for k ∈ [n] and l ∈ [rk], tk,l =
〈qk, l〉(xk).

(b) if root(q(x1, . . . ,xn)→ q f (t)) ∈ R and for
all k ∈ [n] we have that there is, in R′ a rule
of the form

〈〈q,k〉(σ(x1, . . . ,xk))t ′k,q1, . . . ,qn〉

then 〈p0(σ(x1, . . . ,xn)) →
t[t ′1, . . . , t

′
n],q1, . . .qn〉 ∈ R′

Fülöp et al. (2004) proves that RT = Rm and that T is
indeed a dT T R. We just have to prove that from the
fact that M is linear, T effects a single use transduc-
tion.

Although T is not itself single use (the start state
p0 does not satisfy the definition), we will prove that
the transducer T ′ naturally obtained from T by sup-
pressing p0 is. Since p0 is used only once at the very
beginning of any transduction performed by T , it fol-
lows that T is finite copying, and can thus be turned
into a single use transducer (Engelfriet and Maneth,
1999). To prove that T ′ is single use we need to find
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an su partition Π for T ′. We define Π to be (Πq)q∈Q

with Πq = {〈q, i〉|i ∈ [rank(q)]}. An element of Π

corresponds to the set of states of Q′ that are defined
from a unique state of Q.

We now first prove that for a given q ∈ Q, T ′

is strictly single use with respect to Πq. Suppose
that the rules 〈〈q, i〉(σ(x1, . . . ,xn)) → v,q1, . . . ,qn〉
and 〈〈q, j〉(σ(x1, . . . ,xn)) → w,q1, . . . ,qn〉 are in R′,
because M is deterministic there is in R a unique rule
of the form

σ(q1(y1,1, . . . ,y1,r1), . . . ,qn(yn,1, . . . ,yn,rn))
→ q0(t1, . . . , tr0)

thus, by definition of R′, we must have:

1. q = q0,

2. v = ti[t1,[r1], . . . , tn,[rn]],

3. w = t j[t1,[r1], . . . , tn,[rn]] with,

4. for k ∈ [n] and l ∈ [rk], tk,l = 〈qk, l〉(xk).

Suppose that both v and w contain an occurrence of
〈qk, l〉(xk), then both ti and t j contain an occurrence
of xk,l and since M is linear we have i = j which fi-
naly entails that the two rules are the same, and the
occurrences 〈qk, l〉(xk)considered in v and w are in
fact a unique occurrence; therefore M is strictly sin-
gle use with respect to Πq.

To complete the proof that T ′ is single use, we now
define a collection of su mapping of T ′.

Given σ ∈ Σ(n) and q0, . . . , qn ∈ Q, we de-
fine the function Lσ,〈q1,...,qn〉 : Π× [n] → Π to asso-
ciate Πqi to (Πq0 , i) if σ(q1(y1,[r1]), . . . ,qn(yn,[rn]))→
q0(t1, . . . , tr0) is in R. The determinism of M trivially
implies that Lσ,〈q1,...,qn〉 is actually a function. Now
for 〈〈q0, i〉(σ(x1, . . . ,xn))→ v,q1, . . . ,qn〉 ∈R′, when-
ever 〈qk, l〉(xk) occurs in v, by construction, we have
that 〈qk, l〉 ∈ Lσ,〈q1,...,qn〉(Πq0 ,k) = Πk. This finally
shows that T ′ is single use (and therefore, as per the

remark above, that T realizes a single use transduc-
tion).
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TL Tree Languages

Rec Regular Tree Languages

CF Context Free

OI Outside-In

IO Inside Out

TAG Tree Adjoining Gram-
mars

MTT Macro Tree Transducer

dTTR
f c Deterministic Top
Down Tree Transducer
with Regular Look-Ahead
(Finite Copy) — see this
paper.

(l)dmbutt (Linear) Determinis-
tic Multi-Bottom-Up Tree
Transducer — see this pa-
per.

a was proved in Fülöp et al.
(2004)

b was proved in Mönnich
(1997)

1, 2 these non inclusions were
proved in Michaelis (2005)
by looking at the string lan-
guages

4,5,6 are presented in Engel-
friet and Heyker (1992)

7,8 are obvious.

Figure 2: Minimalist derived trees and friends
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