
Journal of Logic, Language and Information manuscript No.
(will be inserted by the editor)

The Cooper Storage Idiom

Gregory M. Kobele

Abstract Cooper storage is a widespread technique for associating sentences
with their meanings, used (sometimes implicitly) in diverse linguistic and com-
putational linguistic traditions. This paper encodes the data structures and
operations of cooper storage in the simply typed linear λ-calculus, revealing
the rich categorical structure of a graded applicative functor. In the case of
finite cooper storage, which corresponds to ideas in current transformational
approaches to syntax, the semantic interpretation function can be given as a
linear homomorphism acting on a regular set of trees, and thus generation can
be done in polynomial time.

Keywords cooper storage · applicative functor · compositionality · lambda
calculus

Acknowledgements This is a pre-print of an article published in 2018 in the Journal
of Logic, Language and Information (vol 27, no 2, pages 95-131). The final authenticated
version is available online at: https://doi.org/10.1007/s10849-017-9263-1.

1 Introduction

Since Montague (1973), a guiding principle in the semantics of natural lan-
guage has been to map sentences to meanings homomorphically based on their
syntactic structure. The proper treatment of quantification has been challeng-
ing from the outset, as quantifier denoting expressions seem in general to be
structurally embedded inside of the expressions whose meanings they should
take as their arguments. The strategy of Montague (1973), adopted by much
of the subsequent linguistic literature, is to change the structures of syntax so
as to have the quantificational elements in as transparent a position as possible
for semantic interpretation.

University of Leipzig
E-mail: gkobele@uni-leipzig.de

https://doi.org/10.1007/s10849-017-9263-1

2 Gregory M. Kobele

Cooper storage (Cooper, 1983) is a technique for interpreting sentences
with quantificational elements based on structures where these elements are
not in the positions which straightforwardly correspond to their semantic
scopes. It involves assigning to each node of a syntax tree, in a non-deterministic
recursive bottom-up manner, a pair consisting of an expression in some logical
language with variables which will here be called the main expression, and a
data structure, called the store, containing pairs of a free variable and a logical
expression. The main expression associated with a node indicates the intended
meaning of the syntax tree rooted at that node, whereas the store contains
expressions representing the meanings of parts of the syntax tree rooted at
that node whose relative scope with respect to the entire syntax tree have yet
to be determined.

The main formal problem surrounding cooper storage is that it requires
some mechanism for avoiding accidental variable capture (§1.2), and thus,
among other things, this means that the map from parse tree to meaning
cannot be represented as a λ-homomorphism (de Groote, 2001a). This makes
difficult an understanding of the complexity of the form-meaning relation ex-
pressed by grammars making use of cooper storage.

This paper

– provides a general characterization of cooper storage in terms of graded ap-
plicative functors. This characterization has as special cases the variations
on the cooper storage theme present in the literature.

– provides a sequent notation for cooper storage. As this notation is very
close to that of Cooper (1983), it can be viewed as putting this latter on
solid logical ground.

– interprets cooper storage in the linear lambda calculus. This makes avail-
able access to general complexity theoretic results in particular on parsing
and generation (Kanazawa, 2016).

From a type-logical perspective, cooper storage seems like the mirror image
of hypothetical reasoning; instead of using hypotheses to saturate predicates,
and only introducing quantified expressions in their scope positions, predicates
are directly saturated with quantified expressions. This situation, while logi-
cally somewhat backwards, allows the otherwise higher order proof structures
to be simulated with simpler second order terms (i.e. trees).

From a transformational, LF-interpretation based, perspective, it is intu-
itive to think of the main expression as the meaning of the LF-tree rooted
in that node, with variables for traces, and of the store as containing the
meanings of the quantifiers which have not yet reached their final landing
site (Larson, 1985). Indeed, recent proposals about compositional semantics
in minimalist grammars (Kobele, 2006; Hunter, 2010; Kobele, 2012) implement
quantifier-raising using cooper storage. These approaches exploit the ‘logical
backwardness’ (as described above) of cooper storage to account for empirical
constraints on scope possibilities in natural language.

The Cooper Storage Idiom 3

1.1 Examples

Two case studies in cooper storage are developed here which will be returned
to throughout this paper. The first (in §1.1.1) is an instance of a traditional
perspective on cooper storage; cooper storage is used to interpret a context-free
grammar for a naıve fragment of English. It is included here to fix notation,
as well as to provide intuitions for the rationale of cooper storage. The second
(in §1.1.2) uses cooper storage to interpret movement (and reconstruction),
as in the literature on minimalist syntax and semantics (Kobele, 2006). It
is included so as to provide a nonstandard use of cooper storage, which the
resulting formalism should be able to account for.

The case studies make use of grammar formalisms of different formal
power (context-free grammars, and multiple context-free grammars (Seki et al,
1991)). In order to minimize the notational distance between the examples, I
will make use of the formalism of (second order) abstract categorial grammars
(ACGs) (de Groote, 2001a), in particular the bottom-up Horn clause notation
of Kanazawa (2009). A second order ACG consists of a context-free grammar
specifying well-formed derivation trees, along with a means of homomorphi-
cally interpreting these structures.

A context-free production of the form X → Y1 . . . Yn is written instead as
X(y_1 . . ._ yn) :- Y1(y1), . . . , Yn(yn). The left hand side of such a clause is
called the head of the clause,1 and the right hand side of a clause is called its
body. In general, a clause is of the form X(M) :- Y1(y1), . . . , Yn(yn), where
y1, . . . , yn are variables, and M is a term whose free variables are among
y1, . . . , yn. Clauses are naturally read in a bottom-up manner, with the in-
terpretation that expressions y1, . . . , yn, of categories Y1, . . . , Yn respectively,
can be used to construct an expression of category X by combining them in
the way specified. This can be presented succinctly in terms of an inference
system, deriving judgments of the form ` X(M), asserting that M is an object
of type X. The rules of such an inference system are given by the clauses, with
the atoms in the body as antecedents, and the head as conclusion:

` Y1(N1) · · · ` Yn(Nn)

` X(M [y1 := N1, . . . , yn := Nn])

where M [y1 := N1, . . . , yn := Nn] represents the simultaneous substitution of
each variable yi in M with the term Ni, for 1 ≤ i ≤ n.

Clauses can be multiply annotated, so that atoms are of the form X(x)(x′).
In this case, the grammar can be thought of as constructing multiple objects
in parallel, e.g. a pronounced form in tandem with a semantic form.

1.1.1 Traditional Cooper Storage

Consider a linguist analysing a language (English), who for various reasons has
decided to analyze the syntactic structure of a sentence like 1 as in figure 1.

1 This has nothing to do with endocentricity, or the headedness of syntactic phrases.

4 Gregory M. Kobele

1. The reporter will praise the senator from the city.

The linguist has come up with a compositional semantic interpretation for
this analysis, and the clauses are annotated with both a pronounced and a
semantic component. As an example, consider the clause for IP in the figure;
IP(s_t)(fa i d) :- DP(s)(d) I’(t)(i). This clause can be read as saying that
an I’ pronounced t with meaning i and a DP pronounced s with meaning d
can be combined to make an IP pronounced s_t with meaning fa i d (i.e. the
result of applying i to d). There is a general X-bar theoretic clause schema,
allowing for unary branching (an XP can be constructed from an X’, and an X’
from an X), which is intended to stand for a larger (but finite) set of clauses,
one for each category used in the grammar. The clause schema X(w)(w):- is
intended to be read as saying that a word w has its lexically specified meaning
w (and is of a lexically specified category X); a clause without any right hand
side functions as a lexical item; it allows for the construction of an expression
without any inputs.

IP

DP

D’

D

the

NP

N’

N

reporter

I’

I

will

VP

V’

V

praise

DP

D’

D

the

NP

N’

N

senator

PP

P’

P

from

DP

D’

D

the

NP

N’

N

city

XP(s)(x) :- X’(s)(x)

X’(s)(x) :- X(s)(x)

X(w)(w) :-

IP(s

_
t)(fa i d) :- DP(s)(d), I’(t)(i)

I’(s

_
t)(fa i v) :- I(s)(i), VP(t)(v)

V’(s

_
t)(fa v d) :- V(s)(v), DP(s)(d)

D’(s

_
t)(fa d n) :- D(s)(d), NP(s)(n)

NP(s

_
t)(pm n p) :- N’(s)(n), PP(s)(p)

P’(s

_
t)(fa p d) :- P(s)(p), DP(s)(d)

fa f x = f x, pm f g = f ^ g

IP

DP

D’

D

the

NP

N’

N

reporter

I’

I

will

VP

V’

V

praise

DP

D’

D

the

NP

N’

N

senator

PP

P’

P

from

DP

D’

D

the

NP

N’

N

city

XP(s)(x) :- X’(s)(x)

X’(s)(x) :- X(s)(x)

X(w)(w) :-

IP(s

_
t)(fa i d) :- DP(s)(d), I’(t)(i)

I’(s

_
t)(fa i v) :- I(s)(i), VP(t)(v)

V’(s

_
t)(fa v d) :- V(s)(v), DP(t)(d)

D’(s

_
t)(fa d n) :- D(s)(d), NP(t)(n) fa f x = f x, pm f g = f ^ g

NP(s

_
t)(pm n p) :- N’(s)(n), PP(t)(p)

P’(s

_
t)(fa p d) :- P(s)(p), DP(t)(d) N : et D : (et)e P,V : eet I : (et)et

Fig. 1 A grammar and syntactic analysis of sentence 1

In figure 1, the expressions of category DP have been analysed as being
of type e, that is, as denoting individuals.2 While this is not an unreasonable
analytical decision in this case (where the can be taken as denoting a choice
function), it is untenable in the general case. Consider the linguist’s reaction
upon discovering sentence 2, and concluding that determiners are in fact of
type (et)(et)t (i.e. that they denote relations between sets).

2. No reporter will praise a senator from every city.

2 Our linguist is using the atomic types e and t (which correspond to the ι and o of
Church (1940)). The complex type αβ is elsewhere written as α → β, and juxtaposition is
right associative; αβγ is α(βγ).

The Cooper Storage Idiom 5

The immediate problem is that the clauses constructing expressions out of DPs
(those with heads P’(s_t)(fa p d), V’(s_t)(fa v d), and IP(s_t)(fa i d)) are
no longer well-typed; the variable d now has type (et)t and not e. While in the
clause with head IP(s_t)(fa i d) this could be remedied simply by switching
the order of arguments to fa, there is no such simple solution for the others,
where the coargument is of type eet.3

The linguist might first investigate solutions to this problem that preserve
the syntactic analysis. One diagnosis of the problem is that whereas the syntax
was set up to deal with DPs of type e, they are now of type (et)t. A solution
is to allow them to behave locally as though they were of type e by adding an
operation (storage) which allows an expression of type (et)t to be converted
into one which behaves like something of type e. This is shown in figure 2.
This notion of ‘behaving like something’ of another type is central to this pa-

IP

IP

IP

IP

DP

D’

D

no

NP

N’

N

reporter

I’

I

will

VP

V’

V

praise

DP

D’

D

a

NP

N’

N

judge

PP

P’

P

from

DP

D’

D

every

NP

N’

N

city

XP(s)(x,X) :- X’(s)(x,X)

X’(s)(x,X) :- X(s)(x,X)

X(w)(w, ;) :-

XP(s)(q(�y.x), X) :- XP(s)(x, {hy, qi} [X) (retrieval)

XP(s)(y, X [{hy, xi}) :- X’(s)(x,X) (storage)

IP(s

_
t)(fa i d, I [D) :- DP(s)(d,D), I’(t)(i, I)

I’(s

_
t)(fa i v, I [V) :- I(s)(i, I), VP(t)(v, V)

V’(s

_
t)(fa v d, V [D) :- V(s)(v, V), DP(t)(d,D)

D’(s

_
t)(fa d n,D [N) :- D(s)(d,D), NP(t)(n,N) fa f x = f x, pm f g = f ^ g

NP(s

_
t)(pm n p,N [P) :- N’(s)(n,N), PP(t)(p, P)

P’(s

_
t)(fa p d, P [D) :- P(s)(p, P), DP(t)(d,D) N : et D : (et)(et)t P,V : eet I : (et)et

Fig. 2 Preserving syntactic structure via cooper storage

per, and will be developed formally in §3. For now, note that the linguist’s
strategy was to globally enrich meanings to include a set (a quantifier store)
containing some number of variables paired with quantificational expressions.
An expression now denotes a pair of the form 〈x,X〉, where the first com-
ponent, x, is of the same type as the denotation of that same expression in
the grammar of figure 1. Inspecting the clauses in figure 2, one sees that all
but the two labeled storage or retrieval correspond to the clauses in the
previous figure. Indeed, restricting attention to just the first component of the
meanings in these clauses, they are identical to those in the previous figure.

3 The obvious minimal solution, namely, allowing a operation which combines a term of
type (et)t with one of type eet (for example λm, f, k.m(λx.fxk)), will not extend to an
account of the ambiguity of sentences with quantifiers.

6 Gregory M. Kobele

The second component of an expression’s denotation is called a store, as it
stores higher typed meanings until they can be appropriately integrated with
a first component. An expression with meaning 〈x,X〉 can, via the storage
rule, become something with the meaning 〈y, {〈y, x〉} ∪ X〉; here its original
meaning, x : (et)t, has been replaced with a variable y : e, and has been pushed
into the second components of the expression’s meaning. The retrieval rule
allows for a pair 〈y, x〉 in the second meaning component to be taken out,
resulting in the generalized quantifier representation x to take as argument
a function created by abstracting over the variable y.4 Note that, while the
syntactic structure is now different, as there are multiple unary branches at
the root (one for each quantifier retrieved from storage), this difference is not
of the kind that syntactic argumentation is usually sensitive to. Thus, this
plausibly preserves the syntactic insights of our linguist.

This example will be revisited in figures 13 and 14.
It is worth noting some formal aspects of this grammar which are eas-

ily overlooked. First, the syntactic grammar itself generates infinitely many
structures (the rule involving retrieve is a context-free production of the form
IP → IP). Most of these will not have a semantic interpretation, as retrieve is
partial: one cannot retrieve from an empty store. Thus, in the general case,
using cooper storage in this way to interpret even a context free grammar
will result in a properly non-regular set of parse trees being semantically well-
formed: if all retrieval steps are deferred to the end of the derivation (as they
are in this example), then the semantically interpretable parse trees will be
those which begin with a prefix of unary branches of length no more than k,
where k is the number of elements which have been stored in the tree. Sec-
ond, we are primarily interested in those expressions with empty stores. As
expressions of indefinitely many types may be used in a given grammar, this
cannot be given a finite state characterization. Finally, the retrieve operation as
given is inherently non-deterministic. This non-determinism could be pushed
instead into the syntax, given a more refined set of semantic operations, as
will be done in the next example.

1.1.2 Movement via Cooper Storage

The previous section presented cooper storage in its traditional guise; quantifi-
cational expressions can be interpreted higher, but not lower, than the position
they are pronounced in. More importantly, in the traditional presentation of
cooper storage, the quantifiers in the store are completely dissociated from
the syntax. Much work in linguistic semantics (particularly in the tradition of
transformational generative grammar) attempts to identify constraints on the
scope-taking possibilities of quantificational expressions in terms of their syn-
tactic properties (see, e.g. Johnson (2000)). In this tradition, nominal phrases
(among others) are typically syntactically dependent on multiple positions
(their deep, surface, and logical positions).

4 What exactly this means is discussed in §1.2.

The Cooper Storage Idiom 7

[↵;�] (x

_
y, z) :- [=x.↵] (x), [x;�] (y, z).

[↵;�] (x, y) :- [=x.↵] (x), [x.�] (y).

[↵] (y

_
x) :- [+x.↵; -x] (x, y)

[=n.d.-k](a) :- . [=v.i](to) :- .

[n](dog) :- . [=v.+k.s](must) :- .

[=d.v](bark) :- . [=i.v](seem) :- .

[s] (a dog must bark)

[+k.s; -k] (must bark, a dog)

[=v.+k.s] (must) [v; -k] (bark, a dog)

[=d.v] (bark) [d.-k] (a dog)

[=n.d.-k] (a) [n] (dog)

Fig. 3 A transformational grammar and analysis of sentences 3 and 4

A linguist might, in order to have a simple syntactic characterization of
selectional restrictions across sentences like 3 and 4, analyze there as being
a single structural configuration in which the selectional restrictions between
subject and verb obtain, which is present in both sentences.

3. A dog must bark.
4. A dog must seem to bark.

Figure 3 again uses a Horn-clause like notation, and a production has the
form X(x) :- Y1(y1), . . . , Yn(yn). The yi on the right hand side of such a rule
are finite sequences of pairwise distinct variables, and the x on the left is a
finite sequence consisting of exactly the variables used on the right. Instead
of deriving a set of strings, a non-terminal derives a set of finite sequences of
strings. Categories will in this example consist of either pairs or singletons of
what are called in the transformational syntax literature feature bundles, and
heavy use of polymorphism will be made (the polymorphic category [fα, β] is
unifiable with any instantiated category of the form [fg, h], for any g and h).5
The basic intuition behind the analysis in figure 3 is that a noun phrase (a
dog) is first combined syntactically with its predicate (bark), and is then put
into its pronounced position when this becomes available.

A straightforward semantic interpretation scheme simply maps the deriva-
tion tree homomorphically to a meaning representation, with binary branching
rules corresponding to (either forward or backward) function application, and
unary branching rules to the identity function, as shown in figure 4. Here the
literals are of the form X(x)(x′), where X and x are as before, and x′ is a

5 The present syntax is a variant of the notation used in Stabler and Keenan (2003) for
minimalist grammars. Michaelis (2001) shows that this polymorphism is finitely boundable:
there are a finite number of useful feature bundles in any minimalist grammar.

8 Gregory M. Kobele

[↵;�] (x

_
y, z)(fa x

0
y

0
) :- [=x.↵] (x)(x

0
), [x;�] (y, z)(y

0
).

[↵;�] (x, y)(fa y

0
x

0
) :- [=x.↵] (x)(x

0
), [x.�] (y)(y

0
).

[↵] (y

_
x)(x

0
) :- [+x.↵; -x] (x, y)(x

0
)

[=n.d.-k](a)(9) :- . [=v.i](to)(id) :- .

[n](dog)(dog) :- . [=v.+k.s](must)(⇤) :- .

[=d.v](bark)(bark) :- . [=i.v](seem)(seem) :- .

Fig. 4 Interpreting deep structures

meaning representation (on the left x′ is a term, and on the right a variable).
This allows the linguist to assign the meaning in 5 to sentence 3.

5. It must be the case that a dog barks. �(∃(dog)(bark))

However, sentence 3 is ambiguous; another reading of this sentence is as in 6.

6. There is a dog which must bark. ∃(dog)(λx.�(bark(x)))

The linguist might be tantalized by the fact that the currently underivable
reading 6 fits naturally with the surface word order, and indeed, in the deriva-
tion of sentence 3 in figure 3, the string a dog, although introduced before
must, is prepended to it in the last step. To allow the quantificational aspect
of a dog to remain active as long as its phonetic aspect is, the linguist extends
meanings with a finite store, whose elements are in correspondence with the
derived string parts of the expression, as shown in figure 5. Here the literals

[↵;�] (x

_
y, z)(fa x

0
y

0
, z

0
) :- [=x.↵] (x)(x

0
), [x;�] (y, z)(y

0
, z

0
).

[↵;�] (x, y)(fa x

0
v, hv, y0i) :- [=x.↵] (x)(x

0
), [x.�] (y)(y

0
).

[↵] (y

_
x)(y

0
(�v.x

0
)) :- [+x.↵; -x] (x, y)(x

0
, hv, y0i).

[↵;�] (x

_
y, z)(fa x

0
y

0
) :- [=x.↵] (x)(x

0
), [x;�] (y, z)(y

0
).

[↵;�] (x, y)(fa y

0
x

0
) :- [=x.↵] (x)(x

0
), [x.�] (y)(y

0
).

[↵] (y

_
x)(x

0
) :- [+x.↵; -x] (x, y)(x

0
).

[=n.d.-k](a)(9) :- . [=v.i](to)(id) :- .

[n](dog)(dog) :- . [=v.+k.s](must)(⇤) :- .

[=d.v](bark)(bark) :- . [=i.v](seem)(seem) :- .

Fig. 5 Additional rules for surface scope interpretation

are of the form X(x)(x′), where the meaning component x′ is a sequence of
meaning representations. The two readings (5 and 6) of sentence 3 are shown
in figure 6. (Just the meaning components are shown, as the strings are iden-
tical.)

This example will be revisited in figures 15 and 16.

The Cooper Storage Idiom 9

[s] (⇤(9(dog)(bark)))

[+k.s; -k] (⇤(9(dog)(bark)))

[=v.+k.s] (⇤) [v; -k] (9(dog)(bark))

[=d.v] (bark) [d.-k] (9(dog))

[=n.d.-k] (9) [n] (dog)

[s] (9(dog)(�x.⇤(bark(x))))

[+k.s; -k] (⇤(bark(x)), hx, 9(dog)i)

[=v.+k.s] (⇤) [v; -k] (bark(x), hx, 9(dog)i)

[=d.v] (bark) [d.-k] (9(dog))

[=n.d.-k] (9) [n] (dog)

Fig. 6 Two readings of 3

In contrast to the previous example, here the size of the cooper store is
finitely bounded (at 1). This means that the set of syntactically and seman-
tically well-formed derivations is regular; only finitely many semantic types
are used in this grammar, and these can be (and have been) encoded into the
syntactic category information of the grammar.

1.2 Making it compositional

As presented above, the data structures involved in cooper storage are not
semantic; the objects of the theory are syntactic representations of semantic
objects: free variables (or indices of variables) are used to maintain a link be-
tween the objects in the store and the semantic arguments they should bind
in the main expression. It is of course possible to ‘semanticize’ variables by
reifying assignment functions (as is done explicitly in the textbook of Kreisel
and Krivine (1967)), and to reconceptualize variables as functions from assign-
ment functions to individuals. Indeed, both Cooper (1983) and (much later)
Kobele (2006) assign the same denotation to objects in the store. Letting g
be the type of assignment functions, the representation 〈xi, [[NP]]〉 is viewed
as a model-theoretic object of type (gt)gt mapping over sentence denotations
dependent on a variable assignments in the following way:6

〈xi, [[NP]]〉(φ)(h) := [[NP]] ({a : φ(h[i := a])})

The deeper problem is that there is no mechanism to ensure freshness of vari-
ables; each time the storage rule is used a globally unique variable name should
be produced. Kobele (2006), exploiting the fact that variable names can be
uniquely associated with nodes in the derivation tree (the point at which the
storage rule is used), uses combinators to encode pairs of assignment func-
tions as single assignment functions in a way that allows stored elements to
correctly identify the variable they should ‘bind’. This convoluted move re-
quires variable binding operators to be simulated via model theoretic objects

6 The retrieval operation is redefined so: XP(fa q x,X) :- X’(x, {q} ∪X)

10 Gregory M. Kobele

(of type e.g. (gt)egt). When it seems one is reinventing well-understood ma-
chinery, it is reasonable to try to recast the problem being addressed so as to
take advantage of what already exists.

The problem is that free variables are being used (either syntactically or
semantically), and these necessitate a complicated sort of bookkeeping. In par-
ticular, 1. free variables appear in the main expression, and 2. stored items are
paired with free variables. Given the intended use of these free variables, which
is that the variable paired with a stored item be abstracted over in the main
expression when this stored item is retrieved, the resolution to both of these
problems is simple and in retrospect obvious: this lambda abstraction takes
place immediately, and is not deferred to some later point in time. Eliminating
free variables then obviates the need for fresh variables. The basic idea of this
paper is:

An expression of the form M, {〈x1, N1〉, . . . , 〈xk, Nk〉} should instead
be replaced by one of the form 〈λx1, . . . , xk.M,N1, . . . , Nk〉.

Crucially, the M and Nis in the first expression are syntactic objects (formulae
in some logical language), while in the second expression they are semantic
objects (whatever those may be). The intent of Cooper’s store is to have all and
only those variables free in M which are paired with some expression in the
store; pairing a variable with an expression in the store is simply a means to
keep track of which argument position this latter expression should be binding.
Thus there is a systematic relation between the type of the expressions in
the original cooper store and the type of their reformulation here; roughly, if
M, 〈x1, N1〉, . . . , 〈xk, Nk〉 is such that M : α, and for all 1 ≤ i ≤ k xi : βi and
Ni : γi, then λx1, . . . , xk.M has type β1 → · · · → βk → α, and the objects
N ′

i in the store have type γi. Generally, there will be some systematic relation
between βi and γi; typically γi is the type of a function taking a continuation
of something of type βi; γi = (βi → η) → η. I will call β the trace type of γ,
and write tγ := β. The intent behind the introduction of the terminology of
trace types is to abstract away from the precise relation between the type of
a stored expression and the type of the variable associated with it.

All relevant information about the type of an expression cum store is there-
fore given by the list of types p := γ1, . . . , γk of expressions in the store, to-
gether with the result type α of the main expression. The type ♦pα := tγ1

→
· · · → tγn → α is the type of the main expression, and �pα is the type asso-
ciated with expressions cum stores with list of stored expression types p and
main expression type α (this will be revised in a later section).7

©pα := �p(♦pα) = (tγ1 → · · · → tγk
→ α)× γ1 × · · · × γn

While I will show that the cooper store data structure can be encoded in the
lambda calculus in the above way, the crucial contribution of this paper is to
observe that this type theoretic encoding reveals a non-trivial structure, that

7 These types can be viewed as right folds over the list p. In particular, ♦p =
foldr (→◦ t) p, and �p

∼= foldr (⊗) p, where (→◦ t) x y = tx → y.

The Cooper Storage Idiom 11

of a graded applicative functor. Thus all of the operations usually performed
on cooper storage expressions are also definable in the simply typed lambda
calculus, and moreover the fact that expressions with attached stores behave
for most intents and purposes as though they had the type α (as opposed to
©pα), is a consequence of this structure.

1.3 Related work

De Groote (2001b) presents linguistic applications of the λµ-calculus of Parigot
(1992).8 In particular, the λµ-term λP.µα.every(P)(λx.αx), proposed as the
meaning representation of the word every, has type (et)e. He notes that cooper
storage can be thought of in these terms; here storage is built in to lexical
meaning representations using µ-abstraction, and the reductions for µ behave
like retrieval. In order to account for scope ambiguities, de Groote proposes
to use a non-confluent reduction strategy. Crucially, µ-reduction is completely
divorced from syntactic structure (just as is retrieval in Cooper (1983)). This
means that alternative versions of cooper storage which enforce a tighter con-
nection between syntactic operations and stored elements, as §1.1.2, are not
straightforwardly implementable using the λµ-calculus.

A recent type-logical presentation of cooper storage is given in Pollard
(2011). There a sequent is of the form Γ ` M : α a ∆, where Γ is a variable
context, ∆ is a set of pairs of the form 〈x,N〉, where x is a variable, and M and
N are what Pollard calls rc-terms with free variables among those in Γ and
∆. (rc-terms are not quite λ-terms, but are straightforwardly interpretable
as such.) Here, ∆ is simply a quantifier store, exactly as in Cooper (1983);
indeed Pollard (2011) is explicitly trying to give a direct type-logical imple-
mentation of cooper storage. There are two substantive differences between
Pollard’s proposal and the one in this paper. First, in Pollard (2011), stored
elements may contain free variables. From a more categorical perspective, an
RC-sequent of the form Γ ` M : α a ∆ can be thought of (being somewhat
loose with notation) as a term of type Γ → t∆ → (α×∆), where t∆ are the
types of the free variables in M from ∆. Thus a rule of hypothetical reasoning
would be invalid (as variables in either of Γ or t∆ may occur in ∆). Indeed, no
rule for implication elimination from Γ is proposed in Pollard (2011), and the
corresponding rule for ∆ is restricted so as to be applicable only in case the
variable does not occur in any terms in ∆. The lack of such a rule is noted in
de Groote et al (2011). The presentation here simply rebrackets so as to obtain
Γ → ((t∆ → α)×∆). Second, Pollard uses variables to coordinate the stored
expressions with the positions they should ultimately bind into. The proposal
here takes advantage of the additional structure in this problem made explicit
in the above categorical presentation of types to eschew variables. Namely, the

8 De Groote (1994) presents a translation of the λµ-calculus into the λ-calculus, using a
continuation passing style transform. From this perspective, continuation-based proposals
(developed extensively in Barker and Shan (2014), although there the focus is on delimited
continuations) can be viewed as related to the λµ-calculus, and thus to cooper-storage.

12 Gregory M. Kobele

expressions in the store are in a bijective correspondance with the positions
they are intended to bind into, which allows this coordination to be achieved
by introducing and enforcing an order invariant between the abstractions t∆

and the store ∆.
These differences notwithstanding, the present paper (especially given the

sequent presentation of cooper storage in §4.3) can be thought of as a contin-
uation of the logical approach to cooper storage initiated in Pollard (2011),
offering in particular an embedding of the cooper-storage proof system into
the linear lambda calculus, as well as a formal specification of the underlying
algebraic structures involved.

1.4 Structure of the paper

The remainder of the paper is structured as follows. In the next section are
formal preliminaries. The following section introduces the relevant category
theoretic notion of applicative functors (but without category theory), defines
their graded variants, and proves that they enjoy familiar formal properties.
Then it is shown that the data structure underlying cooper storage is in fact a
graded applicative functor, which supports the operations particular to the use
of cooper storage in semantics (in particular, retrieval and storage). Various
instantiations of the general cooper-storage scheme are presented, which allow
for the recasting of the examples in §1.1.1 and §1.1.2 in these terms.

2 Formal preliminaries

2.1 Partial functions and algebras

Given a set A, let ⊥ be a symbol not in A and define A⊥ = A∪{⊥}. A partial
function with domain A and codomain B is here identified with a total function
f : A → B⊥ where f is said to be undefined on a ∈ A if f(a) = ⊥. I write
def(f) = f−1(B) for the subset of elements in its domain on which f is defined,
and [A ↪→ B] for the set of all partial functions from A to B. Given A ⊆ B, a
partial function f : A ↪→ C can be coerced to one with domain B by setting
f(b) = ⊥ for all b ∈ B−A. Note that this preserves def(f). The empty function
is undefined on all objects in its domain. (Equivalently, it is (a coercion of) the
unique map with domain ∅.) Two partial functions f, g : A ↪→ B are compatible
iff def(f)∩def(g) = ∅. Given compatible f and g, their superposition is defined
to be f ⊕ g : A ↪→ B where (f ⊕ g)(a) = if a ∈ def(f) then f(a) else g(a).
Note that f ⊕ g is just the set theoretic union of f and g viewed as sets of
pairs.

I assume familiarity with basic notions of algebra. A monoid M = 〈M, +, 0〉
consists of a set M together with a designated element 0 and an associative
operation + for which 0 is an identity. A monoid homomorphism between M
and M ′ is a function h : M → M ′ such that h(0) = 0′ and h(a + b) = h(a) +′

The Cooper Storage Idiom 13

h(b). A partial monoid is a monoid which contains an absorbing element ⊥
such that a + ⊥ = ⊥ = ⊥ + a. Often the absorbing element will be left
implicit (i.e. the carrier set of the partial monoid will be given as M instead of
as M⊥). Homomorphisms between partial monoids are required to in addition
map absorbing elements to absorbing elements. A monoid is abelian iff + is
commutative.

Note that for any sets A,B, the set [A ↪→ B] together with ⊕ and the
empty function forms a partial abelian monoid.

2.2 λ-calculus and types

Here I briefly recall the simply typed λ-calculus (Barendregt et al, 2013). I
will write typed terms in the Curry style, but will, if convenient, indicate the
type of a variable in a binding construct with a superscript (e.g. λxα.M).

Given a finite set A of atomic types, the set TA of (simple) types over A is
the smallest superset of A such that α, β ∈ TA implies that (α→ β) ∈ TA.

TA := A | TA → TA

As is common, parentheses are omitted whenever possible, writing α → β
for (α → β). Implication (i.e. the operator →) associates to the right; thus
α→ β → γ stands for α→ (β → γ).

Given a countably infinite set X of variables, the set Λ of λ-terms is the
smallest set containing X which is closed under application and abstraction

Λ := X | (λX.Λ) | (ΛΛ)

Parentheses are omitted under the convention that application associates to
the left, i.e. MNO is ((MN)O), and multiple abstractions are written as one,
i.e. λx, y.M is λx.(λy.M). The simultaneous capture avoiding substitution of
N1, . . . , Nk for x1, . . . , xk in M is written M [x1 := N1, . . . , xk := Nk]. Terms
are identified up to renaming of bound variables. The standard notions of
β reduction and η expansion are as follows: (λx.M)N ⇒β M [x := N] and,
provided x is not free in M , M ⇒η λx.Mx. A term M is equivalent to N ,
written M ≡βη N just in case M and N can be reduced to the same term O in
some finite number of β or η steps. By the Church-Rosser theorem, this notion
of equivalence is in fact an equivalence relation (Barendregt et al, 2013).

A term is linear just in case every λ abstraction binds exactly one variable
(i.e. in every subterm of the form λx.M , x occurs free exactly once in M). An
important property of linear terms (up to equivalence) is that they are uniquely
determined by their principal (most general) type (Babaev and Soloviev, 1982).
A linear λ-term M has a type α (when its free variables are assigned types as
per a variable context Γ) just in case the sequent Γ ` M : α can be derived
using the inference rules in figure 7 (in the → E rule it is assumed that the
domains of Γ and ∆ are disjoint, see the text below for the definition of the
comma notation). A (variable) context Γ : X ↪→ TA is a partial function such

14 Gregory M. Kobele

Ax
x : α ` x : α

Γ, x : α ` M : β
→I

Γ ` λx.M : α → β

Γ ` M : α → β ∆ ` N : α
→E

Γ,∆ ` (MN) : β

Fig. 7 Linear typing rules

that |def(Γ)| ∈ N; it is defined only on a finite subset of X. A context Γ will be
sometimes represented as a list x1 : α1, . . . , xn : αn, which is to be understood
as indicating that Γ is defined only on x1, . . . , xn and maps each xi to αi. If
contexts Γ and ∆ are compatible, I write Γ,∆ instead of Γ ⊕∆.

3 (Graded) Applicative Functors

A fundamental intuition behind cooper storage is that the meaning of a parse
tree node, while complex (of high type), behaves as though it were far simpler
(of lower type). For example, whereas a predicate might intuitively denote a
function of type e → t, this is only the denotation of the main expression,
which comes together with a store.

Our setting can be recast in the following way. We see an object of some
type α (the main expression), which is somehow embedded in an object of
some richer type ©α, for some function © : TA → TA over types. Part of
our intuitions about this embedding come from the fact that (some of) our
semantic operations are stated over these simpler types, yet are given as input
more complicated objects — we would like our grammatical operations to
be (by and large) insensitive to the contents of the stores; they should be
systematically derived from simpler operations acting on the main expressions.
The notion of an applicative functor will allow us to do exactly this.

© : TA → TA is an applicative functor (McBride and Paterson, 2008) if
there are operations · � and · � such that · � turns objects of type α into ones
of type ©α, for every type α, and · � allows expressions of type ©(α→ β) to
be treated as functions from ©α to ©β, for every pair of types α, β, subject
to the conditions in figure 8.9 While an applicative functor does not permit a
function f : α → β to be applied directly to an α-container a : ©α to yield
a β-container b : ©β, it does allow f to be turned into an (α → β)-container

9 Notation has been changed from McBride and Paterson (2008). The operator (·) � (there
called pure) lifts a value into a functor type. This is reflected notationally by having the
arrow point up. The operator (·) � (there written as a binary infix operator <*> and known
as apply) lowers its argument from a function-container to a function over containers, and
so the arrow points down. Viewing © as a necessity operator, the type of (·) � is familiar
as the K axiom, and viewing it as a possibility operator, the type of (·) � is the axiom T.
Lax logic (Fairtlough and Mendler, 1997) is the (intuitionistic) modal logic which to the
axioms above adds © © α → ©α and corresponds via the Curry-Howard correspondance
to monads (Moggi, 1991; Benton et al, 1998), which are applicative functors enriched with
an operation join : ©© α → ©α satisfying certain conditions.

The Cooper Storage Idiom 15

· � : α → ©α (T)

· � : ©(α → β) → ©α → ©β (K)

id � � = id (identity)

((◦ � � u) � v) � = u � ◦ v � (composition)

f � � x � = (f x) � (homomorphism)

u � x � = (λf.fx) � � u (interchange)

Fig. 8 applicative functors: operations (above) and laws (below)

(|id|) � = id (identity)

(|u ◦ v|) � = u � ◦ v � (composition)

(|f x � |) = (f x) � (homomorphism)

u � x � = (|λf.fx u|) (interchange)

Fig. 9 applicative functors: abbreviated laws

f �, which can be combined with a via (·) �:

f � � a : ©β

This basic structure, where a simple function is lifted into a container type,
and then combined with containers of its arguments one by one, is described
by McBride and Paterson (2008) as the ‘essence of applicative programming,’
and is abbreviated as (|f a|). In general, ((f � � a1) � . . .) � an is abbreviated as
(|f a1 . . . an|); as a special case, (|f |) = f �. Making use of this abbreviation, the
applicative functor laws from figure 8 can be succinctly given as in figure 9.

An important property of applicative functors is that they are closed under
composition.

Theorem 1 (McBride and Paterson, 2008) If �,♦ : TA → TA are ap-
plicative functors, then so too is � ◦ ♦.

Figure 10 provides a list of notation that shall be used in the remainder of this
paper.

3.1 Parameters

We would like to view cooper storage in terms of applicative functors. To do
this, there should be a type mapping © : TA → TA such that ©α is a cooper
store with main expression of type α. However, the type of a cooper store must

16 Gregory M. Kobele

� (·) � (·) � � (·) � (·) � [|f a1 . . . an|]
♦ (·) � (·) � � (·) � (·) � 〈|f a1 . . . an|〉
© (·) � (·) � � (·) � (·) � (|f a1 . . . an|)

(·) ⇒ (·) ⇐ [|]f a1 . . . an[|]

Fig. 10 Notation for applicative functors and associated operators. # will be used exclu-
sively as a metavariable ranging over applicative functors.

depend not only on the type of the main expression, but also on the types of
the stored expressions. Thus for each possible store type p, we need a possibly
different type mapping ©p : TA → TA; the type ©pα is the type of a cooper
storage expression with main expression type α and store type p. With this
intended interpretation of the ©p, we see that none of these are applicative
functors on their own; in particular, the only reasonable way to inject an
expression of type α into the world of cooper storage is to associate it with an
empty store. Thus we would like the operation · � to map an expression of type
α to one of type ©0α. Similarly, if two expressions with their own stores are
somehow combined, the store of the resulting expression includes the stores of
both. Thus the desired operation · � must relate the family of type mappings
©p to one another in the following way:

· � : ©p(α→ β) → ©qα→ ©p+qβ

The necessary generalization of applicative functors can be dubbed graded
applicative functors, after the graded monads of Melliès (2017).10 Given a
monoid (of parameters) P := 〈P, 0, +〉, a graded applicative functor is a function
© : P → TA → TA together with maps · � : α → ©0α and (·) �p,q : ©p(α →
β) → ©qα → ©p+qβ for every α, β ∈ TA and p, q ∈ P such that p + q is
defined satisfying the equations in figure 11.11 These equations are the same
as those in figure 8, though their types are different. These equations require
that 0 is an identity for +, and that + is associative; in other words, that P
is in fact a monoid.12 In our present context, the elements of P represent the
possible types of stores, with 0 the type of the empty store, and + the function
describing the behaviour of the mode of store combination at the type level.

Note that it it not necessary that a graded applicative functor © : P →
TA → TA be such that, for some p ∈ P , ©p is an applicative functor in its
own right (although each ©p is a (graded) functor). Non-graded applicative

10 Melliès (2017) (circulated in 2012) introduces graded monads under the name parame-
terized monads. The adjective graded has replaced parameterized in the relevant literature,
which also serves to distinguish graded monads from the parameterized monads of Atkey
(2009).
11 The parameter arguments will sometimes be suppressed for readability; it is always

possible to reconstruct them from the context.
12 Rather, the equations require only that ©0+p = ©p = ©p+0 and that ©p+(q+r) =
©(p+q)+r. This is automatic if P is in fact a monoid, but would also be satisfied if, for
example, © were the constant function from P into TA → TA.

The Cooper Storage Idiom 17

· � : α → ©0α (T)

(·) �p,q : ©p(α → β) → ©qα → ©p+qβ (K)

(id �) �0,p︸ ︷︷ ︸
©pα→©0+pα

= id︸︷︷︸
©pα→©pα

(identity)

(((◦ �) �0,p u) �p,q v) �p+q,r︸ ︷︷ ︸
©rα→©((0+p)+q)+rβ

= (u) �p,q+r ◦ (v) �q,r︸ ︷︷ ︸
©rα→©p+(q+r)β

(composition)

(f �) �0,0 x �︸ ︷︷ ︸
©0+0α

= (f x) �︸ ︷︷ ︸
©0α

(homomorphism)

(u) �

p,0 x �︸ ︷︷ ︸
©p+0α

= ((λf.fx) �) �0,p u︸ ︷︷ ︸
©0+pα

(interchange)

Fig. 11 graded applicative functors: operations (above) and laws (below)

functors are the special case of graded applicative functors where the param-
eters are ignored (i.e. the applicative functor is a constant mapping from P
into TA → TA).

New graded applicative functors can be constructed out of old ones in
various regular ways. In particular, parameters may be pulled back along a
homomorphism, and functors may be composed.

Theorem 2 Let P,Q be monoids, and let h : Q → P be a monoid homo-
morphism. Then for any graded applicative functor © : P → TA → TA,
©◦ h : Q→ TA → TA is a graded applicative functor.

Proof This follows from the fact that h is a monoid homomorphism by a simple
inspection of the parameters in the laws in figure 11.

Graded applicative functors are closed under composition.

Theorem 3 Let P be a monoid, and let �,♦ : P → TA → TA be graded
applicative functors. Then © is a graded applicative functor, where ©p =
�p ◦ ♦p, with

u � = u � �

(u) �p,q = (((λx.(x) �p,q) �) �0,p u)

�

p,q

= λy.[|λx.x � u y|]

18 Gregory M. Kobele

The proof of Theorem 3 follows from tedious algebraic manipulation and has
been deferred to the appendix.

Note that the definitions of the applicative operations · � and · � given in
Theorem 3 are just the graded versions of the ones given by McBride and
Paterson (2008) in their construction for the composition of two non-graded
applicative functors.

3.2 Why monoids?

It may seem strange that the parameters should be monoidal. This is made
more natural when we consider an alternative presentation of applicative func-
tors in terms of monoidal functors, presented in (McBride and Paterson, 2008),
and explored in greater detail in (Paterson, 2012). This makes specific refer-
ence to the fact that the space of types and terms is itself monoidal with
respect the standard cartesian operations (product × and unit 1). In addition
to a map © : (A → B) → ©A → ©B which is part of every functor, a
monoidal functor © also has the following operations.
– 0 : ©1
– + : ©A→ ©B → ©(A×B)

The laws which 0 and + must satisfy require 1 to be a unit for ×. Paterson
(2012) shows the equivalence between the presentation given previously (based
on (McBride and Paterson, 2008)) and this one.13 Of course, the benefit of the
applicative functor presentation is that it requires only implication.

Graded applicative functors then give rise to the following operations.
– 0 : ©01
– + : ©pA→ ©qB → ©p+q(A×B)

Here one sees immediately that the behaviour of the parameters exactly mir-
rors the behaviour of the types — in 0, the parameter is the unit, as is the
type, and in + the parameters are multiplied together just as are the types.
Indeed, the product of two monoids is itself a monoid (with operations de-
fined pointwise), and so a graded monoidal functor can be viewed simply as a
(non-graded) monoidal functor whose domain is a product monoid.

4 Implementing cooper storage

Cooper storage is here reconceptualized in terms of graded applicative func-
tors, with parameters representing the types of the contents of the store. Sec-
13 The applicative functor operations are interdefinable with these, as follows (K = λx, y.x,
(,) = λx, y.〈x, y〉, uncurry = λf, x.f(π1x)(π2x), app = λx, y.xy, and 〈〉 is the empty tuple —
the monoidal unit for the product operation).

u � = ©(Ku) 0 0 = 〈〉 �

u � v = ©(app ◦ uncurry) (u+ v) u+ v = (|(,) u v|)

The Cooper Storage Idiom 19

tion 4.1, begins with the case of unbounded cooper storage (where there is
no a priori size limit on how large a store can be), which is followed in §4.2
by nested cooper storage (Keller, 1988), and in §4.6 by finite cooper storage.
Section 4.3 presents a useful sequent calculus notation for cooper storage.

4.1 Basic cooper storage

I define here two maps ♦,� : P → TA → TA, where P is the free monoid over
types, P = T ∗

A , together with the associated applicative functions. The map
♦w, for w ∈ P , is intended to represent the type of an expression of type α,
which contains |w| free variables of types w1, . . . , w|w|, intended to be bound
by elements in the cooper store.

Definition 1

♦εα = α

♦awα = a→ ♦wα

It is convenient to represent terms of applicative functor type in a uniform way,
one which facilitates both the visualization of the relevant manipulations of
these terms, as well as comparison to more traditional cooper-storage notation;
this will be explored in more depth in §4.3. I will write x1 : u1, . . . , xn : un ♦̀

M : α as a representation of the term λx1, . . . , xn.M : ♦u1...unα.

Definition 2

M � =M

(M) �u,v N = λx1, . . . , x|u|, y1, . . . , y|v|.M x1 . . . x|u| (N y1 . . . y|v|)

Note that for M : α, M � = ♦̀ M : α, and that, leaving parameters implicit,
(Γ ♦̀ M : α→ β) � (∆ ♦̀ N : α) = Γ,∆ ♦̀ (M N) : β.

Theorem 4 ♦ is a graded applicative functor.

The map �w, for w ∈ P , is intended to represent the type of an ex-
pression which is associated with a store containing |w| elements of types
w1, . . . , w|w|. One way of implementing this idea (suggested in the introduc-
tion) is to encode a store as an n-tuple of expressions, 〈M1, . . . ,Mn〉. Instead,
I will encode products using implication in the standard way, using continua-
tions; a pair 〈M,N〉 is encoded as the term λk.kMN . When M : α and N : β,
λk.kMN : (α→ β → o) → o for some type o.

Definition 3
�wα := (♦wα o) → o

Something of type �wα is a term of type (w1 → . . . → w|w| → α → o) → o.
Again, as a convenient notation, N1 : u1, . . . , Nn : un �̀ M : α represents the
term λk.kN1 . . . NnM : �u1...un

α.

20 Gregory M. Kobele

Definition 4

M � = λk.kM

(M) �u,v N = λk.M(λx1, . . . , x|u|,m.

N(λy1, . . . , y|v|, n.kx1 . . . x|u|y1 . . . y|v|(mn)))

Note that, once again, for M : α, M � = �̀ M : α, and that, leaving pa-
rameters implicit, (Γ �̀ M : α→ β) � (∆ �̀ N : α) = Γ,∆ �̀ (M N) : β.

Theorem 5 � is a graded applicative functor.

Let t : TA → TA be arbitrary. The type tα, to be read as “the trace
type of α”, is intended to represent the type of a variable which is to be
bound by an expression in the store of type α. Let map extend functions over
a set X homomorphically over X∗. By theorems 2 and 4, ♦ ◦ (map t) is a
graded applicative functor. The desired structure is the composition of � and
♦ ◦ (map t).

Definition 5

©w := �w ◦ ♦map t w

M � =M � � = λk.kM

(M) �u,v N = [|λx.(x) �u,v M N |]
≡ λk.M(λx1, . . . , x|u|,m.

N(λy1, . . . , y|v|, n.

kx1 . . . x|u|y1 . . . y|v|(λp1, . . . , p|u|, q1, . . . , q|v|.

mp1 . . . p|u|(nq1 . . . q|v|))))

An expression of type ©wα has type (w1 → . . . → w|w| → (tw1
→ . . . →

tw|w| → α) → o) → o. While the sequent-like notation suggested previously
would yield N1 : u1, . . . , Nn : un �̀ (x1 : tu1

, . . . , xn : tun
♦̀ M : α) :

♦u1...un
α, it is more convenient to write instead the following, which takes ad-

vantage of the fact that the parameters are shared across the two composands
of ©w = �w ◦ ♦map t w:

[N1 : u1]x1
, . . . , [Nn : un]xn

©̀ M : α

Then for M : α, M � = ©̀ M : α, and, still leaving parameters implicit,
(Γ ©̀ M : α→ β) � (∆ ©̀ N : α) = Γ,∆ ©̀ (M N) : β.

Corollary 1 © is a graded applicative functor.

The Cooper Storage Idiom 21

Corollary 1 demonstrates that expressions of type ©wα can be manipu-
lated as though they were of type α. This is only half of the point of cooper
storage. The other half is that the store must be manipulable; expressions
should be able to be put into (storage) and taken out of (retrieval) the store.

Formulating these operations at first in terms of the sequent representa-
tion is more congenial to intuition. First, with retrieval, given an expression
Γ, [M : α]x,∆ ©̀ N : β, the goal is to combine M with λx.N to obtain a
sequent of the form Γ,∆ ©̀ fM(λx.N) : γ, where f : α → (tα → β) → γ is
some antecedently given way of combining expressions M and λx.N . In the
canonical case, α = (e→ t) → t, tα = e, β = t, and f is function application.14

Definition 6

retrieve© u α v : (α→ (tα → β) → γ) → ©uαvβ → ©uvγ

retrieve© u α v f M

= λk.M(λx1, . . . , x|u|, n, y1, . . . , y|v|,m.

kx1 . . . x|u|y1 . . . y|v|(λp1, . . . , p|u|, q1, . . . , q|v|.

fn(λr.mp1 . . . p|u|rq1 . . . q|v|)))

An expression which cannot be interpreted in its surface position must be
put into the store, until such time as it can be retrieved. In the sequent-style
notation, ©̀ M : α is mapped to [M : α]x ©̀ x : tα; an expression of type
©0α can be turned into one of type ©αtα simply by putting the expression
itself into the store.

Definition 7

store© : ©0α→ ©αtα

store© M = λk.kM(λx.x)

This is not faithful to Cooper’s original proposal, as here only expressions
associated with empty stores are allowed to be stored. Cooper’s original pro-
posal simply copies the main expression of type α directly over to the store.
From the perspective advocated for here, this cannot be done simply because
there is no closed term of type α in an expression of type ©wα;15 only closed
terms of type ♦wα and of type wi, for 1 ≤ i ≤ |w|, are guaranteed to exist.16

This is taken up again in the next section.
14 While the operations and types involving cooper storage are linear, there is no such

guarantee about the objects being so manipulated. A natural way to think about this involves
treating the types being manipulated as abstract types (as in abstract categorial grammars
(de Groote, 2001a)), the internal details of which are irrelevant to the storage mechanisms.
15 Except in the uninteresting case where wi = α for some i.
16 A misguided attempt to generalize the current proposal to arbitrary stores is, when

attempting to store something of type ©uvα = �uv(♦uvα), to put the entire expression of
type ♦uvα into the store (Kobele, 2006). This would yield an alternative storage operator
store’© u v : ©uvα → ©u(♦uvα)vt♦uvα. (The given store© would correspond to store’© e e.)
While such a generalization is logically possible, it is problematic in the sense that there is
no obvious way for the other elements in the store to bind what should intuitively be their
arguments, which have been abstracted over in the newly stored expression.

22 Gregory M. Kobele

4.2 Nested stores

Cooper’s original proposal, in which syntactic objects with free variables were
manipulated, suffered from the predictable difficulty that occasionally vari-
ables remained free even when the store was emptied. In addition to being
artificial (interpreting terms with free variables requires making semantically
unnatural distinctions), this is problematic because the intent behind the par-
ticular use of free variables in cooper storage is that they should ultimately be
bound by the expression connected to them in the store.

Keller (1988) observed that Cooper’s two-step generate-and-test semantic
construction process could be replaced by a direct one if the store data type
was changed from a list of expressions to a forest of expressions. An expression
was stored by making it the root of a tree whose daughters were the trees on its
original store. Thus if an expression in the store contained free variables, they
were intended to be bound by expressions it dominated. An expression could
only be retrieved if it were at the root of a tree. These restrictions together
ensured that no expression with free variables could be associated with an
empty store.

From the present type-theoretic perspective, the structure of the store must
be encoded in terms of types. The monoid of parameters is still based on
sequences (with the empty sequence being the identity element of the monoid),
except that now the elements of these sequences are not types, but trees of
types.17 The operation rt maps a tree to (the label of) its root, and dtrs
maps a tree to the sequence of its daughters. Given a tree t = a(t1, . . . , tn),
rt t = a, and dtrs t = t1, . . . , tn.

Note the following about nested stores. First, all and only the roots of the
trees in the store bind variables in the main expression. Second, for each tree
in the store, the expression at any node in that tree may bind a variable only
in the expressions at nodes dominating it. These observations motivate the
following type definitions.

As the type of the main expression is determined by the types of the traces
of the roots of the trees in the sequence only, the type function � can be
defined in terms of ♦ in the previous section, and is by theorem 2 itself a
graded applicative functor.

Definition 8
� = ♦ ◦ (map t) ◦ (map rt)

In contrast to the previous, non-nested setting, an expression in the store
may very well be an expression with an associated store (and so on). This is
reflected in terms of the set of parameters having a recursive structure. Accord-
ingly, the type function for stores (�) is defined in terms of the type function
for (nested) cooper storage (�), which is, just as before, the composition of �
and �.
17 More precisely, P = ε | TA(P), P is a forest of unranked trees. For a, b, c, d ∈ TA, ε, a(ε),

and a(b(ε), c(ε)), d(ε) are elements of P . The term a(ε) will be written as a, and so these
elements of P will be represented rather as ε, a, and a(b, c), d.

The Cooper Storage Idiom 23

Definition 9

�εα = α

�wα = �w(�wα)

� := � ◦ (map (λt.�dtrs trt t))

Given a parameter w = w1 · · ·wk, where wi = ai(t
i
1, . . . , t

i
ni
) for each 1 ≤ i ≤

k,
�wα = (�t11···t1n1

a1 → · · · → �tk1 ···tknk
ak → ♦a1···ak

α→ o) → o

As before, a sequent-style notation aids the understanding; observe that se-
quents for nested stores have as antecedents sequents for nested stores! A
sequent �̀ M : α represents an expression �̀ M : α = λk.kM : �0α = (α→
o) → o, and a sequent [Γ1 �̀ M1 : a1]x1

, . . . , [Γn �̀ Mn : an]xn
�̀ M : α rep-

resents an expression λk.k(Γ1 �̀ M1 : a1) . . . (Γn �̀ Mn : an)(λx1, . . . , xn.M).
The type function � : P → TA → TA is a graded applicative functor;

indeed, modulo the types, its applicative functor operations are the same as
those of ©.

In the nested context, storage is straightforward, and fully general; it should
simply map an expression Γ �̀ M : α to [Γ �̀ M : α]x �̀ x : tα. Indeed, this
is just store© at every parameter value:

Definition 10

store� w : �wα→ �α(w)tα

store� w M := λk.kM(λx.x)

Retrieval should, given a mode of combination f : α→ (tα → β) → γ, turn
an expression Γ, [Ξ �̀ M : α]x,∆ �̀ N : β into Γ,Ξ,∆ �̀ fM(λx.N) : γ.

Definition 11

retrieve� u α(w) v : (α→ (tα → β) → γ) → �uα(w)vβ → �uwvγ

retrieve� u α(w) v f M

= λk.M(λx1, . . . , x|u|, N, y1, . . . , y|v|,m.

N(λz1, . . . , z|w|, n.

kx1 . . . x|u|

z1 . . . z|w|

y1 . . . y|v|

(λp1, . . . , p|u|, q1, . . . , q|w|, r1, . . . , r|v|.

f (nq1 . . . q|w|)

(λx.mp1 . . . p|u|xr1 . . . r|v|))))

24 Gregory M. Kobele

4.3 Sequent notation for cooper storage

The cooper storage idiom is succinctly manipulated using the sequent notation,
as presented in figure 12. It is easy to see that basic cooper storage (§4.1) is the
special case of nested cooper storage (§4.2) where the store rule requires that Γ
be empty. Somewhat perversely, the usual natural deduction proof system for
minimal (implicational) logic can be viewed as the special case of the system
in figure 12, where 1. tα→α = α, 2. the axiom rule at a type α is simulated
by first injecting the identity function at type α using ⇒, and then using the
store rule, and 3. implication introduction is simulated by the rule of retrieval,
constrained in such a manner as to always use the Church encoding of zero as
its first argument (i.e. M = λx, y.y). Alternatively, the cooper storage system
is just the usual natural deduction system where assumptions are associated
with closed terms, and upon discharge of an assumption its associated term is
applied to the resulting term.

M : α

⇒

#̀ M : α

Γ #̀ M : α → β ∆ #̀ N : α

⇐Γ,∆ #̀ MN : β

Γ #̀ M : α
store

[Γ #̀ M : α]x #̀ x : tα

M : α → (tα → β) → γ Γ, [Ξ #̀ N : α]x,∆ #̀ O : β
retrieve

Γ,Ξ,∆ #̀ M N (λx.O) : γ

Fig. 12 A sequent notation for cooper storage

Moving away from the implementation of these abstract operations in the
previous sections, observe that a sequent Γ #̀ M : α corresponds to an ex-
pression of a particular type in the following way.

ty([Γ1 #̀ M1 : α1]x1
, . . . , [Γn #̀ Mn : αn]xn

#̀ M : α) =

#α1(ty(Γ1))+···+αn(ty(Γn))α

In other words, the monoid of parameters of the expression is determined by
the types of the elements in the antecedent, and the comma (,) connective in
the antecedent corresponds to the + operation in the monoid of parameters,
with the empty antecedent corresponding to the monoidal 0.

The sequent representation facilitates proving a type function © to be a
graded applicative functor.

Definition 12 Given a monoid P , a sequent representation is determined
by a set Φ of possible antecedent formulae and a function ty : Φ → P . The
extension of ty over sequences of elements of Φ is also written ty.

As an example, the set Φ♦ of possible antecedent formulae for the function ♦
is X × TA, and ty(〈x, α〉) = α. In the case of �, Φ� = {〈M,α〉 : ` M : α},
and ty(〈M,α〉) = α.

The Cooper Storage Idiom 25

Definition 13 Given a monoid P , an interpretation of a sequent representa-
tion determined by Φ is a map φ : Φ∗ × Λ→ Λ.

In the case of ♦, φ♦(〈x1, α1〉, . . . , 〈xn, αn〉,M) = λx1, . . . , xn.M . For the case
of �, φ�(〈N1, α1〉, . . . , 〈Nn, αn〉,M) = λk.kN1 . . . NnM .

Definition 14 Given a map © : P → TA → TA and an associated sequent
representation, an interpretation φ respects © just in case for any sequent
Γ ` M : α, φ(Γ,M) : ©ty(Γ)α. An interpretation φ is full for © just in case
for all parameters p and types α, for every M : ©pα, there is some sequent
Γ ` N : α such that φ(Γ,N) ≡βη M . An interpretation is complete for © just
in case it respects © and is full for ©.

It is straightforward to see that φ♦ and φ� are complete for ♦ and � re-
spectively. Respect is immediate. Fullness follows from the fact that the se-
quence representations can be viewed (via φ♦ and φ�) as manipulating η-
long forms: given a term of type ♦α1,...,αnα = α1 → · · · → αn → α, its
η-long form has the shape λx1, . . . , xn.N , and similarly, for a term of type
�α1,...,αn

α = (α1 → · · · → αn → α → o) → o, its η-long form has the shape
λk.kN1 . . . NnN . (Recall that these are linear terms, whence k does not occur
free in any N1, . . . , Nn, N .) Both long forms are the images under φ♦ (resp.
φ�) of the sequent ψ1, . . . , ψn ` N , where ψi is 〈xi, αi〉 (resp. 〈Ni, αi〉).

Given a sequent representation, operations ⇒ and ⇐ can be defined as per
figure 12. Provided the sequent representation is complete, these operations
induce an applicative functor.

Theorem 6 Given a complete sequent representation for ©, if φ(Γ ©̀ M :
α) ≡βη φ(Γ ©̀ N : α) whenever M ≡βη N , then © is an applicative functor
with operations · � and · �.

Proof As the sequent representation is complete for ©, expressions of type
©pα can be converted back and forth to sequents of the form Γ ` M : α,
where ty(Γ) = p.

Thus, by inspection of figure 12, and making implicit use of conversions
between expressions and sequents, observe that · � : α → ©0α, and that
(·) �ty(Γ),ty(∆) : ©ty(Γ)(α→ β) → ©ty(∆)α→ ©ty(Γ)+ty(∆)β.

I now show that the four applicative functor equations are satisifed. I as-
sume function extensionality (that f = g iff for all x, fx = gx), and convert
implicitly between terms and sequents. In particular, sequent derivation trees
are to be understood as standing for the sequent at their roots; an equality
with a sequent derivation tree on one or both sides is asserting that the term
that the sequent at the root of the tree is interpreted as is equal to some other
term. The types of expressions in the sequent representation is suppressed for
concision.

identity: (id �) �0,p = id

26 Gregory M. Kobele

id

�

©̀ id Γ ©̀ M

�Γ ©̀ id M ≡βη

Γ ©̀ M

= id(Γ ©̀ M) = Γ ©̀ M

composition: (((◦ �) �0,p u) �p,q v) �p+q,r = (u) �p,q+r ◦ (v) �q,r
◦

�

©̀ ◦ Γ ©̀ M
�Γ ©̀ ◦ M ∆ ©̀ N

�Γ,∆ ©̀ M ◦N Ξ ©̀ O

�Γ,∆,Ξ ©̀ (M ◦N)O
≡βη

Γ,∆,Ξ ©̀ M(NO)

=

Γ ©̀ M
∆ ©̀ N Ξ ©̀ O

�∆,Ξ ©̀ NO

�Γ,∆,Ξ ©̀ M(NO)

homomorphism: (f �) �0,0 x � = (f x) �

f

�

©̀ f
x

�

©̀ x

�

©̀ fx

=
fx

�

©̀ fx

interchange: (u) �p,0 x � = ((λf.fx) �) �0,p u

Γ ©̀ M
x

�

©̀ x

�Γ ©̀ Mx
=

λf.fx

�

©̀ λf.fx Γ ©̀ M

�Γ ©̀ (λf.fx)M
≡βη

Γ ©̀ Mx

4.4 An example with nesting

The motivating example in §1.1.1 can be recast using the type theoretical ma-
chinery of this section as in figure 13.18 The parse tree in the figure represents
the derivation in which storage takes place at each DP. The interesting aspect
of the derivation of this sentence lies in the application of the storage rule to
the object DP a judge from every city. The types of expressions in the sequent
notation is suppressed for legibility. The denotation of the D’ is

[�̀ every city]z �̀ a(judge ∧ from z)

After applying store�, the denotation of the DP is

[[�̀ every city]z �̀ a(judge ∧ from z)]x �̀ x

18 The rules in the figure are only annotated with a semantic component, the pronounced
components remain the same as in figure 1.

The Cooper Storage Idiom 27

IP

IP

IP

IP

DP

D’

D

no

NP

N’

N

reporter

I’

I

will

VP

V’

V

praise

DP

D’

D

a

NP

N’

N

judge

PP

P’

P

from

DP

D’

D

every

NP

N’

N

city

XP(x) :- X’(x)

X’(x) :- X(x)

X(w ì) :-

IP(retrieve� fa x) :- IP(x)

DP(store� x) :- D’(x)

IP((|fa i d|)) :- DP(d), I’(i)

I’((|fa i v|)) :- I(i), VP(v)

V’((|fa v d|)) :- V(v), DP(d)

D’((|fa d n|)) :- D(d), NP(n)

NP((|pm n p|)) :- N’(n), PP(p)

P’((|fa p d|)) :- P(p), DP(d)

Fig. 13 Revisiting the grammar of fig 2 with nested cooper storage

The denotation of the lowest IP is given below.

[[�̀ every city]z �̀ a(judge ∧ from z)]
x
, [�̀ no reporter]y �̀ will(praise x) y

There are exactly two possibilities for retrieval:19 1. the subject, or 2. the
object. Crucially, the embedded prepositional argument (every city) to the
object is not able to be retrieved at this step. Retrieving the object first, the
denotation of the next IP node is the below.

[�̀ every city]z, [�̀ no reporter]y �̀ a(judge ∧ from z)(λx.will(praise x) y)

There are again two possibilities for retrieval. Retrieving the subject first, the
denotation of the penultimate IP node is as follows.

[�̀ every city]z �̀ no reporter(λy.a(judge ∧ from z)(λx.will(praise x) y))

Finally, the denotation of the entire parse tree is below.

�̀ every city(λz.no reporter(λy.a(judge ∧ from z)(λx.will(praise x) y)))

This is claimed in the linguistic literature not to be a possible reading of
this sentence, as quantificational elements from the same nested sequent (cities
and judges) are separated by an intervening quantificational element from a
different nested sequent (reporter). Section 4.5 takes this up again.

19 As in example 2, the rule for retrieve is non-deterministic.

28 Gregory M. Kobele

4.5 Avoiding nesting via composition

Keller (1988) proposes the use of nested stores in particular in the context
of noun phrases embedded within noun phrases, as in the example sentences
below.

7. An agent of every company arrived.
8. They disqualified a player belonging to every team.
9. Every attempt to find a unicorn has failed miserably.

This sort of configuration is widely acknowledged in the linguistic litera-
ture as a scope island; the scope of a quantified NP external to another cannot
intervene between the scope of this other quantified NP and the scope of a
quantified contained within it (May and Bale, 2005). In unpublished work,
Larson (1985) proposes a version of nested stores which enforces this restric-
tion; upon retrieval of something containing a nested store, all of its sub-stores
are recursively also immediately retrieved.

These ideas can be implemented without using nested stores at all, if cer-
tain restrictions on types are imposed. First note that the canonical type of
expression on stores is (α → t) → t, for some type α, and designated type t,
and that the canonical value of t(α→t)→t is α. Assume for the remainder of
this section that all elements in stores have a type of this form, and that t is
as just described. For convenience, I will write c a for (a→ t) → t.

Now consider an expression of type ©u c a with a simple (i.e. non-nested)
store; assume as well ui = c ai for each 1 ≤ i ≤ |u| = n. This will be rep-
resented as a sequent [©̀ N1 : u1]x1

, . . . , [©̀ Nn : un]xn
©̀ N : c a. In order

to put the main expression into storage using store© , the current store must
first be emptied out (store© requires that Γ = ∅). In order to use retrieve© ,
some operation M : ui → (tui

→ c a) → α must be supplied which allows the
retrieved element to be combined with the main expression. As the resulting
type should be something which can be stored, α = c b for some b; as the type
of an expression in the context of cooper storage should be the same regardless
of what it may have in the store, b = a. Given the present assumptions about
ui and t, the desired operation has type c ai → (ai → c a) → c a. Unpack-
ing abbreviations, expressions of type (ai → t) → t and ai → (a → t) → t
should be combined in such a manner as to obtain an expression of type
(a → t) → t. The obvious mode of combination involves composing the first
expression with the second with its arguments exchanged (and so of type
(a → t) → ai → t); using combinators Bxyz := x(yz) and Cxyz := xzy, the
desired term is λx, y.Bx(Cy). This is familiar in the programming language
theory literature as the bind operation of the continuation monad (Moggi,
1991), and in the linguistic literature as argument saturation (Büring, 2004).
I will write it here as the infix operator >>=.

This procedure can be iterated until the store is empty, and an expression
of type ©0((a → t) → t) remains. The store© operation can then be applied
to this expression. Clearly, the order in which the elements of the store are
retrieved is irrelevant to this procedure, although it will of course give rise to

The Cooper Storage Idiom 29

different functions (corresponding to different scope-taking behaviours of the
stored QNPs).

This is illustrated in figure 14. The grammar of the figure differs from

IP

IP

IP

DP

D’

D

no

NP

N’

N

reporter

I’

I

will

VP

V’

V

praise

DP

D’

D’

D

a

NP

N’

N

judge

PP

P’

P

from

DP

D’

D

every

NP

N’

N

city

XP(x) :- X’(x)

X’(x) :- X(x)

X(w ë) :-

IP(retrieve� fa x) :- IP(x)

DP(store� x) :- D’(x)

D’(retrieve� (>>=) x) :- D’(x)

IP((|fa i d|)) :- DP(d), I’(i)

I’((|fa i v|)) :- I(i), VP(v)

V’((|fa v d|)) :- V(v), DP(d)

D’((|fa d n|)) :- D(d), NP(n)

NP((|pm n p|)) :- N’(n), PP(p)

P’((|fa p d|)) :- P(p), DP(d)

Fig. 14 Eliminating the need for nested cooper storage

that of figure 13 by the addition of the rule allowing D’ to be immediately
derived from a D’, which in turn allows for the recursive retrieval of any
elements in storage before an expression can be stored. Recall that m >>= f =
λk.m(λx.fxk). The interesting aspect of this derivation centers around the
matrix object a judge from every city. The meaning of the lower of the two
successive nodes labeled D’, of type ©(et)t(et)t, is given below.

[©̀ every city]z ©̀ a(judge ∧ from z)

Then retrieval applies, giving rise to the following meaning of the higher D’
node, which is of type ©0(et)t.

©̀ every city >>= λz.a(judge ∧ from z)

The denotation of the object DP involves simply putting the above meaning
into storage.

[©̀ every city >>= λz.a(judge ∧ from z)]x ©̀ x

4.6 Finite stores

Many restrictive grammar formalisms can be viewed as manipulating not
strings but rather finite sequences of strings (Vijay-Shanker et al, 1987). In

30 Gregory M. Kobele

these cases, there is an a priori upper bound on the maximal number of com-
ponents of the tuples. It is natural to attempt to connect the tuples of strings
manipulated by the grammar to tuples of semantic values,20 which then allows
the interpretation of the elements on the store to be shifted from one where
they are simply being held until they should be interpreted, to one where they
are the meanings of particular strings in the string tuple. Now the position
of an element in the store becomes relevant; it is the formal link between se-
mantics and syntax. Accordingly, this information should be encoded in the
monoid of store types. What is relevant in a store is two-fold: 1. what positions
are available, and 2. what is in each position.

The positions available are indexed by a set I of names. The type of a store
is given by specifying the type of element at each store position (or that there
is no element at a particular position). This is modeled as a partial function
f : I ↪→ TA, where f(i) = α iff there is an expression at position i of type
α. Such a function f is occupied at i if i ∈ def(f), and thus two compatible
functions are never occupied at the same positions.

Intuitively, stores can be combined only if their elements are in comple-
mentary positions. In this case, combination is via superposition. The empty
store has nothing at any position; its behaviour is given by the everywhere
undefined function ε : I ↪→ TA.

In order to represent finite cooper storage using λ-terms, a linear order must
be imposed on the index set I. For convenience, I will be identified with an
initial subset of the positive integers with the usual ordering; [n] = {1, . . . , n}.
Then f : [n] ↪→ TA is identified with the sequence 〈f(1), . . . , f(n)〉 ∈ (TA ∪
{⊥})n (where if f(i) is undefined, then ⊥ is in the ith position in the sequence).
In this notation, two functions f, g : [n] ↪→ TA are compatible just in case for
every position i at least one of f and g has ⊥ at that position.

Fix I = [n]. For any S ⊆ I, and g : S ↪→ TA, let g : I ↪→ TA such that
def(g) = def(g) and for all i ∈ S, g(i) = g(i). For any sets X,Y and any x ∈ X,
y ∈ Y , define [x 7→ y] : {x} → Y to be the function that maps x to y. Given
f : I ↪→ TA, clearly f = [1 7→ f(1)] + . . . + [n 7→ f(n)] (note that for some
i ∈ I, f(i) might be ⊥).

The following type functions are not based on a free monoid of parame-
ters, and thus the easy correlation between left hand sides of sequents and
parameters breaks down in this setting. The obvious way to associate a se-
quent with left hand side ψ1, . . . , ψn with a parameter is to treat each ψi as
representing the function [i 7→ ty(ψi)]; in other words, the linear order of the
left hand side elements indicates the index they are associated with. To rep-
resent the function where some index i ≤ n is undefined, the set Φ of possible
antecedent formulae must include an element ⊥ representing undefinedness,
with ty(⊥) = ⊥. There will be then many ways to represent the everywhere
undefined function as a sequence of antecedent formulae; to show fullness of
the sequent interpretation, the canonical sequent will not have ⊥ as its right

20 In the case of minimalist grammars (Stabler, 1997) this has been made explicit in (Ko-
bele, 2006, 2012).

The Cooper Storage Idiom 31

most antecedent formula (and so the everywhere undefined function will have
as canonical sequent the one with an empty left hand side).

The definitions of the graded applicative functors and associated operations
are changed slightly to reflect the different partial monoid of parameters. The
symbols ♦ and � are reused (with a different meaning!) in this new setting.
For any applicative functor #, (·) ⇐

u,v is only defined when u + v is.

Definition 15

♦εα = α

♦⊥wα = ♦wα

♦awα = a→ ♦wα

The set of antecedent formulae are Φ♦ = (X × TA)⊥, with ty(〈x, α〉) =
α and ty(⊥) = ⊥. The sequent ψ1, . . . , ψn ♦̀ M : α represents the term
φ♦(ψ1, . . . , ψn,M) of type ♦fα, where f =

⊕n
i=1 [i 7→ ty(ψi)]. Here, as before,

φ♦(M) = M and φ♦(〈x, α〉, ψ1, . . . , ψn,M) = λx.φ♦(ψ1, . . . , ψn,M), while
φ♦(⊥, ψ1, . . . , ψn,M) = φ♦(ψ1, . . . , ψn,M). It is straightforward to see that
φ♦ respects ♦. Fullness again depends on long forms.

Corollary 2 ♦ is a graded applicative functor.

Proof By theorem 6.

Definition 16
�wα = (♦wα o) → o

The set of antecedent formulae are Φ� = {〈M,α〉 : ` M : α}⊥, with
ty(〈M,α〉) = α and ty(⊥) = ⊥. The sequent ψ1, . . . , ψn �̀ M : α represents
the term φ�(ψ1, . . . , ψn,M) = λk.φ′(ψ1, . . . , ψn,M, k) of type �fα, where f =⊕n

i=1 [i 7→ ty(ψi)]. Here the last argument of φ′ plays the role of an accumula-
tor, and so φ′(M,N) = NM , φ′(⊥, ψ1, . . . , ψn,M,N) = φ′(ψ1, . . . , ψn,M,N),
and φ′(〈O,α〉, ψ1, . . . , ψn,M,N) = φ′(ψ1, . . . , ψn,M,NO). It is again straight-
forward to see that φ� respects �. Fullness depends again on long forms.

Corollary 3 � is a graded applicative functor.

Proof By theorem 6.

Definition 17 ©w := �w ◦ ♦tw

Corollary 4 © is a graded applicative functor.

The grammar of figure 5 can be expressed more naturally in terms of fi-
nite storage, as illustrated in figure 15. There is still a deal of unnecessary
clutter in this figure, which can be rectified, however, once the strings ma-
nipulated by the grammar are recast in type theoretic terms (following de
Groote (2001a) and others). A string /abc/ is viewed as a λ-term of type

32 Gregory M. Kobele

[↵;�] (x

_
y, z)((|fa X Y |)) :- [=x.↵] (x)(X), [x;�] (y, z)(Y).

[↵;�] (x, y)((|fa X (store� Y)|)) :- [=x.↵] (x)(X), [x.�] (y)(Y).

[↵;�] (x, y)((|fa Y X|)) :- [=x.↵] (x)(X), [x.�] (y)(Y).

[↵] (y

_
x)(retrieve� fa X) :- [+x.↵; -x] (x, y)(X).

[↵] (y

_
x)(X) :- [+x.↵; -x] (x, y)(X).

[=n.d.-k](a)((|9|)) :- . [=v.i](to)((|id|)) :- .

[n](dog)((|dog|)) :- . [=v.+k.s](must)((|⇤|)) :- .

[=d.v](bark)((|bark|)) :- . [=i.v](seem)((|seem|)) :- .

Fig. 15 Recasting the grammar of figure 5 in terms of finite storage

str := s→ s: λxs.a(b(c s)). The empty string /ε/ := λxs.x, and concatenation
is function composition: /abc/_ /de/ := /abc/ ◦ /de/ = λxs.a(b(c(d(e s)))).
Define tstr := str, and define up : str → (str → str) → str such that
up w f := w_(f /ε/). Then cooper storage can be used on strings (based on
©). In particular, store©(λkstr→o.k /w/) = λk.k /w/ (λxstr.x). Using cooper
storage on the string side as well in figure 15 allows for a simpler presentation
of the grammar, and is shown in figure 16. In the figure, it can be seen that

[↵;�] ((|x_
y|))((|fa X Y |)) :- [=x.↵] (x)(X), [x;�] (y)(Y).

[↵;�] ((|x_(store� y)|))((|fa X (store� Y)|)) :- [=x.↵] (x)(X), [x.�] (y)(Y).
[↵;�] ((|x_(store� y)|))((|fa Y X|)) :- [=x.↵] (x)(X), [x.�] (y)(Y).

[↵] (retrieve� up x)(retrieve� fa X) :- [+x.↵; -x] (x)(X).
[↵] (retrieve� up x)(X) :- [+x.↵; -x] (x)(X).

[=n.d.-k]((|a|))((|9|)) :- . [=v.i]((|to|))((|id|)) :- .
[n]((|dog|))((|dog|)) :- . [=v.+k.s]((|must|))((|⇤|)) :- .

[=d.v]((|bark|))((|bark|)) :- . [=i.v]((|seem|))((|seem|)) :- .

Fig. 16 Cooper storage on strings and meanings

there is a deep symmetry between the operations on the strings and those on
the meanings, which is broken in two instances. The reason for the broken
symmetry stems from the fact that meanings, in this grammar, are designed
to have a wider distribution than strings; a quantifier can be interpreted either
in its surface position (corresponding to its position in the string), or in its
deep position (corresponding to its position in the derivation tree). Strings, of
course, are only pronounced in their surface positions; this is implemented by
the operation up w f , which uniformly puts the string w in its upper, ‘surface’,
position, and the empty string /ε/ in the lower, ‘deep’, position.

The two readings (5 and 6) of sentence 3 are shown in at the top of fig-
ure 17. Both derivations give rise to the same pronunciation, the incremental
construction of which is shown at the bottom of the figure.

The Cooper Storage Idiom 33

[s] (�̀ ⇤(9 dog bark))

[+k.s; -k] (�̀ ⇤(9 dog bark))

[=v.+k.s] (�̀ ⇤) [v; -k] (�̀ 9 dog bark)

[=d.v] (�̀ bark) [d.-k] (�̀ 9 dog)

[=n.d.-k] (�̀ 9) [n] (�̀ dog)

[s] (�̀ 9 dog (�x.⇤(bark(x))))

[+k.s; -k] ([�̀ 9 dog]
x

�̀ ⇤(bark x))

[=v.+k.s] (�̀ ⇤) [v; -k] ([�̀ 9 dog]
x

�̀ bark x)

[=d.v] (�̀ bark) [d.-k] (�̀ 9 dog)

[=n.d.-k] (�̀ 9) [n] (�̀ dog)

[s] (�̀ /a/_ /dog/_ /must/_ /✏/_ /bark/)

[+k.s; -k] ([�̀ /a/_ /dog/]
x

�̀ /must/_ x

_ /bark/)

[=v.+k.s] (�̀ /must/) [v; -k] ([�̀ /a/_ /dog/]
x

�̀ x

_ /bark/)

[=d.v] (�̀ /bark/) [d.-k] (�̀ /a/_ /dog/)

[=n.d.-k] (�̀ /a/) [n] (�̀ /dog/)

Fig. 17 Two readings of 3 (top) and their common pronunciation (bot.)

5 Conclusion

I have shown that cooper storage, in many variations, can be given a simple
treatment in the linear λ-calculus. Working within the simply typed λ-calculus
has forced us to confront and address problems plaguing more traditional pre-
sentations involving free variables, which allow for the (undesired) generation
of ill-formed meaning representations. One of the interests of linearity lies in
the fact that linear λ-homomorphisms (acting on trees) are particularly well-
behaved for the purposes of parsing and generation (Kanazawa, 2007).

This work allows a straightforward and directly compositional semantics
for frameworks utilizing finite cooper storage, such as the minimalist grammar
semantics of Kobele (2012). While finite cooper storage may seem somewhat
arbitrary, it is here that the type theoretic approach really pays off. By limiting
in advance the size of the store,21 the parameter information can be encoded
in the syntactic category. This allows for a truly homomorphic interpretation
scheme for tree-like syntactic structures. In contrast, full cooper storage re-
quires a richer, polymorphic, type theory in order to have a finitely presented
homomorphic interpretation scheme.

Acknowledgements My thanks to Chris Barker, Dylan Bumford, Simon Charlow, Itamar
Francez, Philippe de Groote, and Carl Pollard for their feedback.

21 Where size is measured in terms of the sum of the sizes of the types is the store; this
bounds as well the maximal size of stored types.

34 Gregory M. Kobele

A Proofs

The purpose of this section is to provide a proof of Theorem 3, that graded applicative
functors are closed under composition.22 It is helpful to first prove a lemma that, for any
applicative functor �, (·) � � distributes over composition.

Lemma 1 If � : P → TA → TA is a graded applicative functor, then for any p ∈ P ,

g : β → γ and f : α → β, ((g ◦ f) �) �0,p = (g �) �0,p ◦ (f �) �0,p

Proof

(g �) �0,p ◦ (f �) �0,p = (((◦ �) �0,0 g �) �0,0 f �) �0,p (composition)

= (((◦ g) �) �0,0 f �) �0,p (homomorphism)

= ((g ◦ f) �) �0,p (homomorphism)

Theorem 3 is repeated below.

Theorem 3 Let P be a monoid, and let �,♦ : P → TA → TA be graded applicative
functors. Then © is a graded applicative functor, where ©p = �p ◦ ♦p, with

u � = u � �

(u) �p,q = (((λx.(x) �p,q) �)

�

0,p u) �p,q

The following lemma identifies a useful equality.

Lemma 2 (u �) �0,p = ((u �) �0,p �)

�

0,p

Proof

(u �) �0,p = (((λx.(x) �0,p) �)

�

0,0 (u � �)) �0,p (def)

= (((λx.(x) �0,p) u �) �) �0,p (homomorphism�)

= ((u �) �0,p �)

�

0,p (≡β)

Proof (Proof of theorem 3) Note first that (·) � : α → (�0 ◦ ♦0)α, and that (·) � : (�p ◦
♦p)(α → β) → (�q ◦♦q)α → (�p+q ◦♦p+q)β, as can be seen by inspection of the definitions.

identity

(id �) �0,p = ((id �) �0,p �)

�

0,p (lemma 2)

= (id �) �0,p (identity♦)

= id (identity�)

22 A short Coq development of this proof is available at https://github.com/gkobele/
cooper-storage.

https://github.com/gkobele/cooper-storage
https://github.com/gkobele/cooper-storage

The Cooper Storage Idiom 35

composition

(((◦ �) �0,p u) �p,q v) �p+q,r = ((((◦ �) �0,p �)
�

0,p u) �p,q v) �p+q,r (lemma 2)

= ((((λx.(x) �p,q) �) �0,p (((◦ �) �0,p �) �0,p u)) �p,q v) �p+q,r (def (·) �p,q)

= (((((λx.(x) �p,q) ◦ (◦ �) �0,p) �)

�

0,p u) �p,q v) �p+q,r (lemma 1)

= (((λx.(x) �p+q,r) �)

�

0,p+q (((((λx.(x) �p,q) ◦ (◦ �) �0,p) �)

�

0,p u) �p,q v)) �p+q,r (def (·) �p+q,r)

= (((((◦ �) �0,0 (λx.(x) �p+q,r) �) �0,p ((((λx.(x) �p,q) ◦ (◦ �) �0,p) �)

�

0,p u)) �p,q) v) �p+q,r

(composition�)

= ((((((◦) (λx.(x) �p+q,r)) �) �0,p ((((λx.(x) �p,q) ◦ (◦ �) �0,p) �) �0,p u)) �p,q) v) �p+q,r

(homomorphism�)

= ((((((◦) (λx.(x) �p+q,r)) ◦ (λx.(x) �p,q) ◦ (◦ �) �0,p) �) �0,p u) �p,q v) �p+q,r (lemma 1)

= ((((λg, h.(((◦ �) �0,p g) �p,q h) �p+q,r) �)

�

0,p u) �p,q v) �p+q,r (≡β,η)

= ((((λg, h.(g) �p,q+r ◦ (h) �q,r) �) �0,p u) �p,q v) �p+q,r (composition♦)

= (((((λP.P (λx.(x) �q,r)) ◦ (◦) ◦ (◦) ◦ (λx.(x) �p,q+r)) �) �0,p u) �p,q v) �p+q,r (≡β,η)

= ((((λP.P (λx.(x) �q,r)) �) �0,p ((((◦) ◦ (◦) ◦ (λx.(x) �p,q+r)) �)

�

0,p u)) �p,q v) �p+q,r (lemma 1)

= ((((((◦) ◦ (◦) ◦ (λx.(x) �p,q+r)) �) �0,p u) �

p,0 (λx.(x) �q,r) �)

�

p,q v) �p+q,r (interchange�)

= (((((◦) �) �0,p ((((◦) ◦ (λx.(x) �p,q+r)) �)

�

0,p u)) �

p,0 (λx.(x) �q,r) �)

�

p,q v) �p+q,r (lemma 1)

= (((((◦) ◦ (λx.(x) �p,q+r)) �) �0,p u) �p,q (((λx.(x) �q,r) �)

�

0,q v)) �p+q,r (composition�)

= (((◦ �) �0,p (((λx.(x) �p,q+r) �)

�

0,p u)) �p,q (((λx.(x) �q,r) �)

�

0,q v)) �p+q,r (lemma 1)

= (((λx.(x) �p,q+r) �)

�

0,p u) �p,q+r ◦ (((λx.(x) �q,r) �)

�

0,q v) �q,r (composition�)

= (u) �p,q+r ◦ (v) �q,r (def)

36 Gregory M. Kobele

homomorphism

(f �) �0,0 x � = ((f �) �0,0 �)

�

0,0 x � (lemma 2)

= ((f �) �0,0 �)

�

0,0 x � � (def)

= ((f �) �0,0 x �) � (homomorphism�)

= (f x) � � (homomorphism♦)

= (f x) � (def)

interchange

(u) �

p,0 x � = (((λz.(z) �

p,0) �)

�

0,p u) �
p,0 x � � (def)

= ((λf.f(x �)) �) �0,p (((λz.(z) �
p,0) �)

�

0,p u) (interchange�)

= (((λf.f(x �)) �) �0,p ◦ ((λz.(z) �

p,0) �)

�

0,p) u (def ◦)

= (((λf.f(x �)) ◦ (λz.(z) �

p,0)) �)

�

0,p u (lemma 1)

= ((λv.(v) �

p,0 x �) �) �0,p u (≡β,η)

= ((λv.((λf.fx) �) �0,p v) �) �0,p u (interchange♦)

= ((((λf.fx) �) �0,p) �)

�

0,p u (≡η)

= ((λf.fx) �) �0,p u (lemma 2)

References

Atkey R (2009) Parameterized notions of computation. Journal of Functional Programming
19(3-4):335–376

Babaev AA, Soloviev SV (1982) A coherence theorem for canonical morphisms in cartesian
closed categories. Journal of Soviet Mathematics 20:2263–2279

Barendregt H, Dekkers W, Statman R (2013) Lambda Calculus with Types. Cambridge
University Press, Cambridge

Barker C, Shan C (2014) Continuations and Natural Language, Oxford Studies in Theoret-
ical Linguistics, vol 53. Oxford University Press

Benton PN, Bierman GM, de Paiva V (1998) Computational types from a logical perspective.
Journal of Functional Programming 8(2):177–193

Büring D (2004) Crossover situations. Natural Language Semantics 12(1):23–62
Church A (1940) A formulation of the simple theory of types. Journal of Symbolic Logic

5(2):56–68
Cooper R (1983) Quantification and Syntactic Theory. D. Reidel, Dordrecht
de Groote P (1994) A CPS-translation of the λµ-calculus. In: Tison S (ed) Proceedings of

the Colloquium on Trees in Algebra and Programming — CAAP’94, Springer, Lecture
Notes in Computer Science, vol 787, pp 85–99

de Groote P (2001a) Towards abstract categorial grammars. In: Association for Computa-
tional Linguistics, 39th Annual Meeting and 10th Conference of the European Chapter,
Proceedings of the Conference, pp 148–155

de Groote P (2001b) Type raising, continuations, and classical logic. In: van Rooy R, Stokhof
M (eds) Proceedings of the Thirteenth Amsterdam Colloquium, University of Amsterdam,
pp 97–101

The Cooper Storage Idiom 37

de Groote P, Pogodalla S, Pollard C (2011) About parallel and syntactocentric formalisms: A
perspective from the encoding of convergent grammar into abstract categorial grammar.
Fundamenta Informaticae 106(2-4):211–231

Fairtlough M, Mendler M (1997) Propositional lax logic. Information and Computation
137(1):1–33

Hunter T (2010) Relating movement and adjunction in syntax and semantics. PhD thesis,
University of Maryland

Johnson K (2000) How far will quantifiers go? In: Martin R, Michaels D, Uriagereka J
(eds) Step by Step: Essays on Minimalist Syntax in Honor of Howard Lasnik, MIT Press,
Cambridge, Massachusetts, chap 5, pp 187–210

Kanazawa M (2007) Parsing and generation as datalog queries. In: Proceedings of the 45th
Annual Meeting of the Association of Computational Linguistics (ACL), Association for
Computational Linguistics, Prague, pp 176–183

Kanazawa M (2009) The pumping lemma for well-nested multiple context-free languages.
In: Diekert V, Nowotka D (eds) Developments in Language Theory, Lecture Notes in
Computer Science, vol 5583, Springer, Berlin, Heidelberg, pp 312–325

Kanazawa M (2016) Parsing and generation as Datalog query evaluation. The IfCoLog
Journal of Logics and their Applications

Keller WR (1988) Nested cooper storage: The proper treatment of quantification in ordinary
noun phrases. In: Reyle U, Rohrer C (eds) Natural Language Parsing and Linguistic The-
ories, no. 35 in Studies in Linguistics and Philosophy, D. Reidel, Dordrecht, pp 432–447

Kobele GM (2006) Generating copies: An investigation into structural identity in language
and grammar. PhD thesis, University of California, Los Angeles

Kobele GM (2012) Importing montagovian dynamics into minimalism. In: Béchet D,
Dikovsky A (eds) Logical Aspects of Computational Linguistics, Springer, Berlin, Lecture
Notes in Computer Science, vol 7351, pp 103–118

Kreisel G, Krivine JL (1967) Elements of Mathematical Logic (Model Theory). North-
Holland, Amsterdam

Larson RK (1985) Quantifying into NP. available at: http://semlab5.sbs.sunysb.edu/
~rlarson/qnp.pdf

May R, Bale A (2005) Inverse linking. In: Everaert M, van Riemsdijk H (eds) The Blackwell
Companion to Syntax, vol 2, Blackwell, Oxford, chap 36, pp 639–667

McBride C, Paterson R (2008) Applicative programming with effects. Journal of Functional
Programming 18(1):1–13

Melliès PA (2017) The parametric continuation monad. Mathematical Structures in Com-
puter Science 27(5):651–683

Michaelis J (2001) On formal properties of minimalist grammars. PhD thesis, Universität
Potsdam

Moggi E (1991) Notions of computation and monads. Information and Computation
93(1):55–92

Montague R (1973) The proper treatment of quantification in ordinary English. In: Hintikka
J, Moravcsik J, Suppes P (eds) Approaches to Natural Language, D. Reidel, Dordrecht,
pp 221–242

Parigot M (1992) λµ-calculus: An algorithmic interpretation of classical natural deduction.
In: Voronkov A (ed) Logic Programming and Automated Reasoning, Springer-Verlag,
Berlin Heidelberg, Lecture Notes in Computer Science, vol 624, pp 190–201

Paterson R (2012) Constructing applicative functors. In: Gibbons J, Nogueira P (eds) Math-
ematics of Program Construction, Lecture Notes in Computer Science, vol 7342, Springer,
Berlin, Heidelberg, pp 300–323

Pollard C (2011) Covert movement in logical grammar. In: Pogodalla S, Quatrini M, Retoré
C (eds) Logic and Grammar: Essays Dedicated to Alain Lecomte on the Occasion of his
60th Birthday, Lecture Notes in Artificial Intelligence, vol 6700, Springer, pp 17–40

Seki H, Matsumura T, Fujii M, Kasami T (1991) On multiple context-free grammars. The-
oretical Computer Science 88:191–229

Stabler EP (1997) Derivational minimalism. In: Retoré C (ed) Logical Aspects of Computa-
tional Linguistics, Lecture Notes in Computer Science, vol 1328, Springer-Verlag, Berlin,
pp 68–95

http://semlab5.sbs.sunysb.edu/~rlarson/qnp.pdf
http://semlab5.sbs.sunysb.edu/~rlarson/qnp.pdf

38 Gregory M. Kobele

Stabler EP, Keenan EL (2003) Structural similarity within and among languages. Theoretical
Computer Science 293:345–363

Vijay-Shanker K, Weir D, Joshi A (1987) Characterizing structural descriptions produced by
various grammatical formalisms. In: Proceedings of the 25th Meeting of the Association
for Computational Linguistics, pp 104–111

	Introduction
	Formal preliminaries
	(Graded) Applicative Functors
	Implementing cooper storage
	Conclusion
	Proofs

