
LF-Copying without LF

Gregory M. Kobele

Linguistics Department & Computation Institute
University of Chicago

Abstract

A copying approach to ellipsis is presented, whereby the locus of copying is not a level
of derived syntactic structure (LF), but rather the derivation itself. The ban on prepo-
sition stranding in sprouting follows without further stipulation, and other, seemingly
structure sensitive, empirical generalizations about elliptical constructions, including the
preposition stranding generalization, follow naturally as well. Destructive operations
which ‘repair’ non-identical antecedents are recast in terms of exact identity of deriva-
tions with parameters. In the context of a compositional semantic interpretation scheme,
the derivational copying approach to ellipsis presented here is revealed to be a particular
instance of a proform theory, thus showing that the distinctions between, and arguments
about, syntactic and semantic theories of ellipsis need to be revisited.

Key words: Minimalist grammars, ellipsis, preposition stranding, sprouting

1. Introduction

As Merchant (2001) puts it, “nowhere does [the] sound-meaning correspondance break
down so spectacularly as in ellipsis”. In a discourse context as in 1, we interpret an
elliptical sentence like 1a as meaning the same thing as 1b.

1. Someone praised Oskar.

(a) I wonder who.

(b) I wonder who praised him.

Elliptical sentences are dependent on the surrounding mostly (Hankamer and Sag, 1976)
linguistic context for their interpretation; in the context of Oskar criticized someone,
an utterance of 1a would mean something quite different. From the perspective of the
listener, the central problem posed by ellipsis is that of inferring the intended meaning
from the context, which is called ellipsis resolution. A primary task of ellipsis research is
to characterize the nature of this inference, with a major current research area focussed
on the question of what information about the context is relevant to this inference; does

Email address: kobele@uchicago.edu (Gregory M. Kobele)

Preprint submitted to Lingua July 29, 2014



the listener’s inference procedure make reference to semantic properties of the context,
to syntactic ones, to yet something else, or to combinations of these?

One difficulty posed by ellipsis is the fact that the folk classification of lingusitic
constructions do not seem to provide a fine-grained enough description of conditions
to answer this question. Sentence 2 (from Hardt (1993)) shows that a syntactic differ-
ence (mismatching voice features) between antecedent and ellipsis site does not block
the listener’s inference, whereas sentence 3, despite having a similar form, is much less
acceptable.1

2. This information could have been released, but Gorbachev chose not to release this
information.

3. %Information was leaked, but Snowden didn’t leak information.

At the moment, the conditions under which various information becomes relevant to the
listener’s inference have yet to coalesce into a clear picture, although information and
discourse structure seem to play an important role (Rooth, 1992; Kehler, 2002; Kertz,
2010).

In light of this, one strategy is to focus on first explaining general tendencies in
the data. For example, whereas in verb phrase ellipsis (VPE; sentences 2 and 3) voice
mismatches are at least sometimes quite acceptable, the same does not appear to be true
in the case of sluicing (Merchant, 2013) irrespective of information or discourse structural
properties (SanPietro et al., 2012).

4. %Someone murdered Joe, but we don’t know by whom he was murdered.

Following this strategy, the problem of accounting for sentences like 2, 3, and 4 can be
divided into the two problems of (i) accounting for the fact that voice mismatches are
never good in sluicing, but are sometimes good in VPE, and (ii) accounting for the
varying acceptability of voice mismatches in VPE. This strategy will be adopted in this
paper, where a unified account of problems like (i) will be provided; Kim et al. (2011)
show how an analysis of problem (i) of the sort to be presented in this paper can serve
as the foundation for an analysis of problem (ii).

The following generalizations provide some of the most influential arguments for
the proposition that elipsis resolution is sensitive to purely syntactic properties of an-
tecedents.2

1In this paper, the diacritic % will be used to indicate unacceptability, and ∗ to indicate ungram-
maticality. To say that a sentence is unacceptable is to make an empirical claim (about either formal
or informal experiments). To say that a sentence is ungrammatical is to claim that it has a particular
theoretical property, that of not being generated by the grammar. The link between the formal notion
of ungrammaticality and the empirical one of unacceptability is still unclear (see Clark et al. (2013)
for recent advances), but a rough idea is that ungrammatical sentences should be, ceteris paribus, less
acceptable than grammatical ones.

2While case-matching (Ross, 1969) is often taken as another argument for the role of syntactic identity
in ellipsis, it has become evident that the case matching effects can be modeled without any reference
to syntactic identity (Jäger, 2005; Barker, 2013). These works, from the categorial grammar tradition,
enrich the syntactic types of expressions to include information about case. The approach adopted here
can be thought of as an extension (across grammar frameworks) of the same basic idea. This is a viable
strategy whenever there are only finitely many distinct cases; the way to challenge this, therefore, is
to investigate sluicing in languages with Suffixaufnahme (Plank, 1995), where the number of cases has
(potentially) no upper bound.

2



I. the differential acceptability of voice mismatches across ellipsis types (Merchant,
2013)

II. the preposition stranding generalization (Merchant, 2001)

III. the ban on preposition stranding in sprouting (Chung et al., 1995)

These generalizations are reviewed in the subsections to follow.

1.1. Voice (mis)matches
Given that some voice mismatches in VPE are very acceptable, it is natural to treat

them uniformly as derivable syntactically (i.e. grammatical). Similarly, as (to date)
no voice mismatches in sluicing are acceptable, it is natural to treat them uniformly as
syntactically underivable (i.e. ungrammatical). Merchant (2013) (see also Tanaka (2011))
observes that the grammaticality difference in voice mismatches across ellipsis types can
be accounted for if one adopts a phrasal approach to the passive (Bach, 1980; Keenan,
1980), and formulates the listener’s inference in terms of simply identifying the ellipsis
site with a syntactic antecedent. The availability of voice mismatches in VPE then follows
from the fact that the antecedent is unspecified for voice (it is beneath the position at
which voice is determined), whereas the unavailability of such in sluicing (analyzed as
TP ellipsis) from the fact that the antecedent is specified for voice.

An overlooked prediction of this sort of account is that voice mismatches should be
a sort of ‘root phenomenon’; it is not that VPE should allow voice mismatches across
the board, but rather that VPE should only allow voice mismatches in the clause in
which ellipsis takes place. In particular, voice mismatches should be impossible if em-
bedded within an elided structure (to use a PF-deletion metaphor). Sentence 5 tests this
prediction.

5. %This information seems to have been released, but Gorbachev doesn’t seem to
have released this information.

The unacceptability of this sentence is unexpected under a theory which allows voice
mismatches in VPE across the board (as for example does that of Hardt (1993)),3 but
is exactly what one would expect under a unified timing-based theory of ellipsis (à la
Merchant (2013)).

1.2. The preposition stranding generalization
Merchant (2001) observes that not all languages allow for preposition stranding in

sluicing, and that moreover there is a strong correlation between whether a language
allows preposition stranding at all, and whether it allows preposition stranding in sluicing.
He advances the following generalization, based on a preliminary sample of 24 languages
from three different families:

Merchant’s generalization:

A language L will allow preposition stranding under sluicing iff L allows preposition
stranding under regular wh-movement.

3Kobele (2012b) provides additional examples with mismatch along the dimension of raising.

3



For illustration, consider the following English sentences.

6. John stood under something, but I don’t know under what he stood.

7. John stood under something, but I don’t know what he stood under.

According to Merchant’s generalization, given that 7 is grammatical, we should (cor-
rectly) conclude that English allows preposition stranding under regular wh-movement.

Conversely, if the sentences above were from a language about which we know only
that it allows for preposition stranding under regular wh-movement, on the basis of
Merchant’s generalization we should predict 7 to be grammatical.

1.3. The ban on preposition stranding in sprouting
The phenomenon of sprouting encompasses sentences like the below:

8. John ate, but I don’t know what.

9. John ate pancakes, but I don’t know why.

10. Pancakes were eaten, but I don’t know by whom.

What unifies the sprouting sentences 8–10 is that the relation between antecedent and
(syntactically fleshed out) ellipsis site is one of suppressed and realized optional argument.
In the LF-copying theory of Chung et al. (1995), according to which a derived syntactic
antecedent is selected, and then manipulated via a set of transformations before being
inserted in the ellipsis site, sprouting is the name of the transformation which inserts
a trace (which can be then bound by the wh-phrase) in an appropriate place in the
antecedent structure.

Chung et al. (1995) observe that, in constrast to the usual case in (English) sluicing,
in sprouting contexts preposition stranding is prohibited. This is illustrated by the
sentences below.

11. John stood near something, but I don’t know near what.

12. John stood near something, but I don’t know what.

13. John stood, but I don’t know near what.

14. ∗John stood, but I don’t know what.

1.4. Plan of the paper
One of the interesting aspects of decompositional analyses in syntax is that they make

available the possibility that the appropriate notion of inference can be characterized as
exact identity (of a very abstract part), without the need for operations which alter
structure; ‘inference’ reduces to simple copying. This paper is a working out of how this
might look in a range of cases. The basic idea is that the copied structure is the derivation
itself. This forces one to the perspective that the shape of the copy is not a tree, as is
commonly assumed, but rather a context (a tree with holes). The account is presented in
terms of the formal framework of minimalist grammars (MGs; (Stabler, 1997)), which is
a well-understood and extensible grammar formalism (Stabler, 2011) capable of directly

4



implementing minimalist-style analyses. After the basic minimalist grammar system is
presented in §2, it is extended in §3 to allow for ‘LF-copying’ (in quotes because there
is no LF involved). This section presents the details of the ellipsis mechanism in the
context of a running example of VPE. Section 4 presents a fragment of English, and
demonstrates how this simple set-up allows for an account of the varying acceptability
of voice mismatches, the ban on preposition stranding in sprouting, and the preposition
stranding generalization of Merchant (2001). Finally §5 discusses phenomena, such as
antecedent containment and island effects, which did not make it into the paper, reflects
upon the debate about whether there is syntactic structure in ellipsis sites in light of the
derivational copying theory presented herein, and concludes.

2. Minimalist Grammars

Minimalist grammars are a mildly context-sensitive grammar formalism (Harkema,
2001; Michaelis, 2001), inspired by Chomsky (1995).4 MGs provide a framework in
which minimalist-style analyses and proposed mechanisms can be directly implemented,
and theoretical proposals formally evaluated. Since their introduction in Stabler (1997),
many variants of the ‘barebones’ MG formalism have been proposed and investigated (an
overview is in Stabler (2011)). What follows is a fairly canonical version, without regard
to many potential points of linguistic controversy. The results in this paper are largely
independent of this particular version.

A minimalist grammar has a fixed set of structure building operations, which are
taken here to be just binary merge and unary move, whose application to expressions is
dependent on the syntactic categories of these expressions.5 The language of a particular
minimalist grammar consists of those expressions which can be built up from lexical
items by finitely many applications of the operations merge and move. The formalism
is introduced by means of an example.

In order to describe sentences with ellipsis, one must be able to describe those without
ellipsis, at the very least so as to be able to provide a discourse context for ellipsis
resolution. Consider the simple intransitive sentence, Carl will run, analyzed in the
familiar way sketched in figure 1. This structure records that the sentence has a derivation
which proceeds as follows: (i) merge the lexical item for run together with the one for
Carl, (ii) then merge the result together with the lexical item for will (iii) finally move
Carl to the specifier position of will. A number of questions arise, among which are
included: 1. why can’t Carl and will be merged first? 2. why does Carl move and not

4Grammar formalisms belonging to this class (such as tree adjoining grammars, combinatory cat-
egorial grammars, and multiple context-free grammars) are unable to describe an infinite number of
recursively enumerable languages, and are thus restrictive in the sense of ruling out a priori a large
number of computationally possible languages as linguistically impossible. The languages which can be
described are all simple in a formally precise sense (Joshi, 1985), which makes it possible to, among
other things, build correct and efficient parsing algorithms for these grammar formalisms.

5A currently influential idea is that the structure building operations should be reduced to a single
one, with move being a special case of merge, which itself is the operation of set formation. A
particularly simple way of doing this in the present system takes merge(A,B) = {A,B}, and move(A) =
merge(A,A) = {A}. These two operations are kept separate in this paper because nothing said here
depends on them being unified in any particular way. Readers whom this discomforts may read external-
merge and internal-merge for merge and move, respectively.

5



>

Carl <

will <

run t

will

Carl will

will run

run t

Figure 1: The basic structure of an intransitive sentence. Left: a label-free representation.
Internal nodes record only which daughter they are a projection of by ‘pointing’ in the
direction of their heads; ‘>’ points to the right, and ‘<’ to the left. Right: the bare-phrase
structure equivalent.

〈carl, d k〉 〈run, *d v〉
〈will, *v *k t〉

Figure 2: Lexical items for figure 1

run? The common answer to the first question is that there is some sort of selection
at work here; Carl has a certain property (being a DP), and will just is not looking for
something with that property. The common answer to the second is similar: Carl has
some property (needing case), and will is looking for something with that property. This
sort of information will be represented here in terms of features; a feature x indicates
that an expression has a certain property, and a feature *x indicates that an expression is
looking for another with that property. The features had by a lexical item are orgainized
into a feature bundle, which is simply a list of features. Lexical items are written using
the notation 〈w, δ〉, where w is a lexeme, and δ is a feature bundle. Lexical items will,
when context permits, be referred to by their lexeme (and so ‘w’ may be used to refer to
the lexical item 〈w, δ〉). In the lexicon below, the lexical item carl has the feature bundle
d k, which can be understood intuitively as saying that it is a DP (d) which needs case
(k).6 The lexical item run has the feature bundle *d v, which indicates that it must select
a DP (*d) and will then be a vP (v). Finally, the feature bundle of the lexical item will
indicates that it must select a vP (*v), assign case to something (*k), and will then be
a TP (t). It is important to distinguish between a grammar formalism, which defines
a space of possible analyses, and a grammatical analysis of some phenomenon, written
in that formalism. In lexicalized grammar formalisms, such as minimalist grammars, an
analysis is given by presenting a lexicon. Throughout this paper, lexical items (which
constitute particular analyses) are put in boxes as in figure 2.

The expressions generated by a lexicon are those which can be built up from lexical

6An influential idea in modern minimalist syntax is that at least some of the information represented
here in terms of lists of syntactic features might in fact be derivable from something more basic, in
particular morphological feature matrices. For example, that a DP should move to check its syntactic
case feature, here encoded by a k feature, might ultimately be derivable from the fact that in its mor-
phological feature matrix the case attribute is unvalued. This is an interesting reductionist idea, but is
largely orthogonal to the concerns of this paper. In particular, as the fragment to be described in this
paper abstracts away from inflectional distinctions, morphological feature matrices of lexical entries are
suppressed entirely. Someone who favours this view may understand these syntactic feature bundles as
emergent properties of the morphological feature matrices associated with individual lexical items.

6



items by a finite number of applications of merge and move. Given the lexicon above,
(all and only) the following additional expressions can be generated:

i. merge(〈run, *d v〉, 〈carl, d k〉):

<

〈run, v〉 〈carl, k〉

Because run’s feature bundle begins with a *d, and carl’s begins with a matching
d, merge can put them together as per the tree above. Note that both *d and d
features are eliminated in the resulting expression, the head of which can be found
by walking down from the root always toward the direction pointed at by the node
label; as here the root is labeled with <, which ‘points’ left, the head is in the left
daughter subtree, which in this case is simply the leaf run.

ii. merge(〈will, *v *k t〉, i):

<

〈will, *k t〉 <

〈run, 〉 〈carl, k〉

Merge applies to the indicated expressions because the one has a feature *v, and
the head of the other has the feature v. Again, both features are eliminated in the
result, the head of which is will. Note also that all of the features of run have been
checked; the leaf run and the subtree headed by it are now syntactically inert.

iii. move(ii):

>

〈carl, 〉 <

〈will, t〉 <

〈run, 〉 t

Finally, move attracts carl to a projection of will, driven by their respective k and
*k features, which are then eliminated. This expression is a projection of will, as
can be seen by following from the root the path indicated by the arrowheads,7

which has just a single feature t representing the fact that it is a TP (and can be
selected as such). All features of all other lexical items used to build this expression
have been checked.

7The root (labeled by >) points to the right, the right-hand daughter of the root (labeled by <) points
to the left, the left-hand daughter of which is will.

7



Categories, which are here called feature bundles, are complex, as in categorial gram-
mar, and are structured as lists of atomic features, themselves with various diacritics
(x, *y, . . . ). The currently accessible feature is the feature at the beginning (leftmost)
position of the list, which allows for some features being available for checking only after
others have been checked. Although there are many different notations, the basic idea
is familiar (Adger, 2003; Müller, 2010). The present system differs formally from these
primarily in that both features (x and *x) triggering an operation are checked. Adger
and Müller also make a distinction among the features *x according to whether they
(in the case of move/internal merge) trigger overt displacement. To keep novelty to a
minimum, this distinction will be used here as well; *x will continue to be used for overt
movement, and ~x will be used for covert movement.8 In the case of merge/external
merge, ~x will be used for merger with head movement. The operations merge and
move will be discussed in more detail in §2.1. The features *x and ~x will be called
the attractor and x the attractee variants of the feature type x. This is not the same as
the interpretable/uninterpretable distinction, which serves both to allow asymmetric fea-
ture checking (interpretable features are not necessarily checked), and to describe which
derivations are well-formed at the interfaces (those without uninterpretable features). As
set out here, all features are uninterpretable from the checking perspective (what Stabler
(2011) calls persistent features may be thought of as interpretable ones in this sense).
From the perspective of interface well-formedness, all features must be checked except
for a single attractee feature of the head of the expression, which is to be understood as
the category of the expression.

As discussed in the next section, the internal tree geometric structure of expressions is
not relevant in determining whether merge or move can apply. Instead, all that matters
are (i) the features of the head, and (ii) the features (if any) of the other heads in the
tree. This information provides all the information which is relevant to determining
whether the structure building operations can apply. Because the more familiar term
‘category’ is typically associated with only the properties of the head of an endocentric
expression, this information will instead be called the type of an expression,9 and is
written type(t) = 〈α,A〉, where α is the feature bundle of the head of t, and A contains the
feature bundles of the other heads in t. Note that for any lexical item 〈w, δ〉, type(〈w, δ〉) =
〈δ, ∅〉. In the expressions derived above, type(i) = 〈v, {k}〉, type(ii) = 〈*k t, {k}〉, and
type(iii) = 〈t, ∅〉.

2.1. Operations
Derived expressions are binary branching trees, whose internal nodes are labeled with

< or > and where leaves are labeled with lexeme/feature bundle pairs (and so a lexical item
〈w, δ〉 is a special case of a tree with only a single node).10 Each node in an expression
is a projection of the unique leaf one arrives at by following the arrows down the tree. A

8Equivalently, one might think of ~x as the basic selection feature, and *x as a ~x feature with an
epp diacritic.

9When it is important to distinguish this notion from the semantic one, it will be called the syntactic
type of an expression.

10The symbol ‘t’, representing a trace, needn’t be taken as a primitive; it can be defined as the pair
〈ε, 〉, where the first component, ε, is the empty word (something without any phonetic material), and
the second component is the empty feature bundle.

8



node is a maximal projection of a leaf ` just in case it is a projection of ` and its parent (if
it has one) is a projection of a different leaf. In terms of paths, the maximal projection
of a leaf is obtained by walking up from the leaf until the arrow at a node no longer
points down to it. If t is a bare phrase structure tree with head h, then we write t[h] to
indicate this. (This means that the lexical item 〈w, δ〉 can be written as 〈w, δ〉[〈w, δ〉].)
The notation t[h′] indicates the tree like t[h] but with the head h replaced by h′.

2.1.1. Merge
The merge operation is defined on a pair of trees t1, t2 if and only if the head of t1

has a feature bundle beginning with *x or ~x, and the head of t2 has a feature bundle
beginning with the matching x feature. The bare phrase structure tree which results
from the merger of t1 and t2 always has t1 projecting over t2, in other words, the head
of the result is always the head of the expression with the attractor feature. In case t1 is
a lexical item, t2 is linearized to its right (a complement), and otherwise t2 is to its left
(a specifier). In either case, both selection features are checked in the result.

merge(t1[〈α, *xδ〉], t2[〈β, xγ〉]) =
<

t1[�α, δ�] t2[�β, γ�] (t1 is a lexical item)

merge(t1[〈α, *xδ〉], t2[〈β, xγ〉]) =
>

t2[�β, γ�] t1[�α, δ�] (t1 is not a lexical item)

The ~x feature triggers head movement, which, following tradition (Baker, 1988), is per-
mitted only from a complement (i.e. first merged) position. Head movement is here ana-
lyzed as a phonological reflex of a particular kind of merger (Stabler, 1997), and not the
result of a special movement step. More sophisticated treatments of head movement-like
phenomena, such as in mirror theory (Brody, 2000), are straightforwardly implementable
(Kobele, 2002). What is important is that head movement divorces the surface position
of a head from its maximal projection, without recourse to movement/internal merge. A
hyphen preceding/following a lexeme indicates whether it is a suffix/prefix.

merge(〈-α,~xδ〉, t2[〈β, xγ〉]) =
<

�β-α, δ� t2[��, γ�]

2.1.2. Move
The operation move applies to a single tree t[〈α, •yδ〉] (where •y is either *y or

~y) only if there is exactly one leaf ` in t with matching first feature y. This is at
least conceptually related to (although formally quite different from) the shortest move
constraint (Chomsky, 1995), and is called the SMC (Stabler, 1997) – it requires that an
expression move to the first possible landing site. If there is competition for that landing
site, the derivation crashes (because the losing expression will end up having to make
a longer movement than absolutely necessary). If it applies, move moves the maximal
projection of ` to a newly created specifier position in t (overtly, in the case of *y, and
covertly, in the case of ~y), and deletes both licensing features. To make this precise, let

9



t{t1 7→ t2} denote the result of replacing all subtrees t1 in t with t2, for any tree t, and
let `Mt denote the maximal projection of ` in t, for any leaf `.

move(t[〈α, *yδ]) =
>

t�[�β, γ�] t[�α, δ�]{t� �→ ��, ��} (where t′ = 〈β, yγ〉Mt )

move(t[〈α,~yδ]) =
>

��, γ� t[�α, δ�]{t� �→ t�[�β, ��]} (where t′ = 〈β, yγ〉Mt )

An expression is complete just in case it has exactly one attractee feature at its head –
this feature can be thought of as its ‘category’ in the traditional sense.

The SMC is a substantive restriction on MGs (Salvati, 2011), which guarantees their
computational efficiency. Note that, since movement can only apply if there is at most
one subtree with the relevant y feature, then if at any point a tree with multiple y heads
is derived, then the move operation can never check these y features, and thus this tree
can never be part of a derivation of a complete expression (Michaelis, 2001). Thus, any
tree which is either itself complete, or is produced during the derivation of a complete
expression, has at most one subtree hosting a y feature for every feature type y. This
means that in the type of an expression t, type(t) = 〈α,A〉, the component A consisting
of the feature bundles of all leaves (other than the head of t) with unchecked features,
can be construed as a simple set of feature bundles. Moreover, because of the SMC, if
a feature bundle in A begins with a feature y, it is the only feature bundle which does;
thus A can also be thought of as a partial function from feature types y to the unique
feature bundle beginning with a feature of that type, if there is one.

2.2. Analytical Background
The basic clause structure assumed here is as in figure 3 (Koopman and Sportiche,

1991; Koizumi, 1995). Sentences with this clause structure can be derived using the

TP

DPi T’

T vP

DPi v’

v AgrOP

DPj AgrO’

AgrO VP

V DPj

Figure 3: Basic clause-structure

lexical items in figure 4 (adapted from Kobele (2006)). A transitive verb, here praise,

〈will, *v *k t〉 〈−ε,~agrO *d v〉 〈−ε,~V ~k agrO〉 〈praise, *d V〉

Figure 4: Lexical items for figure 3

10



is first merged with a DP (its logical object) to form a VP. This VP then is merged with
〈−ε,~V ~k agrO〉, triggering head movement of the V head to this higher AgrO head.11

Next, the DP is covertly moved to the specifier of AgrOP to check its case (k) feature.
This AgrOP is then merged with 〈−ε,~agrO *d v〉, again triggering head movement of
the complex AgrO head. Next a DP (the logical subject) is merged into the specifier of
vP. This vP is then merged with will, and then the subject DP is overtly moved to the

TP ∼ 〈t, ∅〉 AgrOP ∼ 〈agrO, ∅〉
T’ ∼ 〈*k t, {k}〉 AgrO’ ∼ 〈~k agrO, {k}〉
vP ∼ 〈v, {k}〉 VP ∼ 〈V, {k}〉
v’ ∼ 〈*d v, ∅〉 DP ∼ 〈d k, ∅〉

Figure 5: Categories and Types

specifier of TP to check case. It is important to emphasize that object case checking is in
this analysis different from subject case checking, in that the former is covert (~k) and
the latter is overt (*k). That object case checking is covert is motivated by the upcoming
generalization 1 in section 3.

Given these lexical items, each internal node in the tree in figure 3 is associated with
a particular type, as depicted in figure 5.

2.3. Derivations
A derivation tree is a (complete) description of how to construct an expression. For-

mally, a minimalist derivation tree has leaves labeled with lexical items and internal
nodes labeled with either merge or move. As an example, the derivation tree corre-
sponding to the structure derived in iii in the previous subsection (the sentence Carl will
run) is given in figure 6.

move

merge

�will, *v *k t� merge

�run, *d v� �carl, d k�

Figure 6: A derivation tree

Even though, formally speaking, a derivation is simply a tree-like object, which is con-
nected to another tree-like object, the derived structure, in a regular way, it is sometimes
helpful to think of derivations procedurally, as instructions for constructing a derived
structure.12 A derivation tree is then a description of a process. A subtree thereof repre-
sents a subprocess, describing how to construct one of the ingredients to be used. There

11The symbol ε indicates that the lexical item has no phonetic content.
12Thinking about derivations procedurally can also be extremely misleading. The process perspective

on derivations is orthogonal to the process of parsing; even though in algebraic formalisms like minimalist
grammars the most natural procedural perspective on derivations is bottom-up, it is straightforward
to construct correct parsers which recognize these ‘bottom-up’ derivations in a top-down left-to-right
manner (Harkema, 2001; Stabler, 2013).

11



〈−en,~V pass〉 〈seem, *c v〉
〈be, *pass v〉 〈to, *v c〉

Figure 7: Passive and Raising

are as many subtrees of a tree as there are nodes; each node determines a subtree whose
root is that node. For example, the merge node immediately dominating run and carl is
the root of a subtree which describes the process of merging run and carl, which results
in the derived tree in i.

Derivation trees, viewed as recipes for constructing expressions, can be used to repre-
sent the expression obtained by following the recipe. A derivation tree which consists of
a single node labeled with a lexical item represents that lexical item. A tree t with root
labeled move and with single daughter t′ represents the result of applying the move
operation to the expression t′ represents, and a tree t with root labeled merge and
with daughters t1 and t2 represents the result of applying the merge operation to the
expressions represented by t1 and t2. A derivation tree which represents an expression
is called convergent.13 To convergent derivation trees are associated the types of the
expressions they represent. In other words, if t is a derivation tree which represents e,
then type(t) = type(e). A non-convergent derivation tree has no type.

Derivation trees will figure prominently in the remainder of this paper. This will
result in an unfortunate use/mention ambiguity; the expression merge(run, carl) might
either denote the result of merging the lexical item run with the lexical item carl, or the
derivation tree which describes this process. When it becomes important to disambiguate
these two, spellOut(α) will denote the result of carrying out the process described by the
derivation tree α.

2.4. The analysis continued
To derive passive sentences, the two lexical items on the left in figure 7 are used.

These implement an analysis of passives whereby a head (-en) which does not assign case
merges with a VP, and then another head (be) merges with the result, forming a vP. This
is just a recasting of Jaeggli (1986) in more modern terms. An example derivation, and
the resulting derived structure, of a passive sentence is given in figure 8. Of course, one
doesn’t say “praise-en” but rather “praised.” Head movement arranges lexical formatives

move

merge

�will, *v *k t� merge

�be, *pass v� merge

�−en,�V pass� merge

�praise, *d V� �oskar, d k�

>

�oskar, � <

�will, t� <

�be, � <

�praise-en, � <

��, � t

Figure 8: A derivation tree (left) for a passive (right).

13As an example, the derivation tree move(move(move(carl))) is not convergent.

12



so as to have stems adjacent to their affixes. The need for a (post-syntactic) theory of
morphology is not thereby eliminated. In the present simplified setting, a transductive
theory like that of Beesley and Karttunen (2003) easily maps complex heads like praise-en
to the desired praised. More involved theories of morphology, such as Distributed Mor-
phology (Halle and Marantz, 1993) or Paradigm Function Morphology (Stump, 2001),
and even head movement itself, can be viewed as special cases of transductive theories
(Kobele, 2012c).

Extending the fragment to derive raising-to-subject sentences, the two lexical items
on the right in figure 7 implement a literal raising to subject analysis.

3. LF-copying, derivationally

According to both LF-copying (Chung et al., 1995) and proform (Hardt, 1993) ap-
proaches to ellipsis, ellipsis sites are syntactically atomic; they do not contain unpro-
nounced structure. The differences between the two can be usefully thought of in terms
of what antecedents are, and how ellipsis sites are resolved. In the LF-copying approach,
antecedents are syntactic objects, and ellipsis sites are resolved by replacing them with
their antecedent in the syntax, whereas in the proform approach, antecedents are se-
mantic objects, and ellipsis sites are resolved by replacing them with their antecedent
in the semantics. In the derivational copying approach introduced here, ellipsis sites
are resolved by replacing them with their antecedents semantically, but antecedents are
delimited syntactically.

The theory advanced herein takes the derivation to be the relevant level of structure.
To get an intuition for how this could work, the LF-copying approach is recast in these
terms. Consider the discourse “Carl will praise Oskar. Oda will, too.” Clearly, the sen-
tence “Carl will praise Oskar” is providing an appropriate antecedent for the subsequent
elliptical sentence. The structures of the unelided versions of these sentences share a
common subderivation, colored in in figure 9. Because these are derivation trees, not

move

merge

�will, *v *k t� merge

merge

�−�,�agrO *d v� move

merge

�−�,�V �k agrO�merge

�praise, *d V� �oskar, d k�

�carl, d k�

move

merge

�will, *v *k t� merge

merge

�−�,�agrO *d v� move

merge

�−�,�V �k agrO�merge

�praise, *d V� �oskar, d k�

�oda, d k�

Figure 9: Shared structure

derived trees, antecedents can be viewed procedurally; an antecedent is a sequence of
derivational steps which have already been performed.

Note that not just any part of a derivation tree provides an appropriate antecedent
for an ellipsis site. First and foremost, it must have the correct syntactic type. (Work by
Yoshida (2010) challenges even this basic assumption; his analysis is incompatible with

13



this setup.) This assumption is common to nearly all syntactic approaches to ellipsis,
and can be thought of as a refinement of the basic semantic constraint that the meanings
of the elliptical pieces must fit appropriately into the meanings of the surroundings. One
important difference between the current approach and these others is that syntactic
types provide a much more refined notion of syntactic categories.

If the tree on the right of figure 9 is viewed, in accord with a copying theory, as the
result of replacing an ellipsis site with the antecedent context (the colored part of the
tree on the left), the tree in figure 10 could be thought of as underlying the sentence
“Oda will.” The bold e in figure 10 is what the antecedent context (the colored subtree

move

merge

�will, *v *k t� merge

e �oda, d k�

1

Figure 10: The structure of an elliptical sentence

on the left in figure 9) replaces to obtain the tree on the right of figure 9. It represents
the ellipsis site. Figure 10 will be the representation adopted in this paper for elliptical
sentences. It remains to understand what it means.

Since e occurs as a node in a derivation tree, it must have a status similar to the other
nodes; i.e. it must be a grammatical operation (like merge and move). Grammatical
operations are functions over expressions. The operation merge is a binary operation
(i.e. it takes two arguments), move is unary (i.e. it takes one argument), and, as seen
here, e is nullary (i.e. it takes no arguments). To define e, one must specify how it maps
inputs to outputs. The derivation tree in figure 10 constraints the possible definitions of
e: it must be something that Oda can be merged with, giving rise to something which
will can merge with. In other words, it must play exactly the same role in the derivation
in 10 that the colored subderivation in figure 9 would; it must give an expression with a
feature bundle of the form *d v. This amounts to saying that e has type 〈*d v, ∅〉, which
is abbreviated as v’, just as does the antecedent subtree. Looking ahead to §3.4, the
operation e is parameterized with a type, in this case v’. This permits ellipsis operations
at different types to be distingushed (Merchant, 2004), which may prove useful in an
account of why ellipsis constructions differ across languages. For instance, German does
not have a VP-ellipsis construction, but it does have sluicing and gapping constructions.
Accordingly, given a syntactic type τ , there is an ellipsis operation eτ at that type. In
these terms, the ellipsis operation underlying the sentence Oda will, too is ev’. Thus is
resolved half of the question about the nature of the operation e. Next is the question
of what effect e has on the derived structure of an expression.

3.1. Resolution
In the LF-copy theory, the ellipsis site is simply replaced, after being pronounced, by

its antecedent. A first approximation has it that any appropriately categorized object in
the discourse can antecede an ellipsis site. This is only a first approximation; it is well-
known that the actual contextually possible antecedents are a fraction of the logically
possible ones. Ported over to the derivational setting, the basic idea would be to treat

14



>

��, β1� >

��, β2� >

��, βn� ��, γ�spellOut(e�γ,{β1,...,βn}�) =

Figure 11: The spellout of ellipsis operations

the object derived by e as the same as the object derived by its antecedent, modulo
pronounced material; loosely speaking, spellOut(ev’) = delete(antecedent(ev’)).14

This idea, though simple, misses the obvious (but important) point that, no matter
what the antecedent, spellOut(ev’) is always pronounced the same. (This also violates
the spirit of a syntactic version of the principle of compositionality.) In other words, the
form of an elliptical sentence is completely independent of its antecedent, and only the
meaning thereof is not. In the LF-copying theory, this fact is reduced to rule-ordering;
pronunciation happens before ellipsis resolution, which happens before interpretation.
The fact that ellipsis sites are pronounced the way they are (as nothing, rather than as
something) is a brute stipulation. Here, the phonetic form of the expression generated by
a nullary ellipsis operation must still be stiplulated, but there is no need for stipulations
about when ellipsis resolution occurs. There are any number of possible derived structures
which could reasonably be associated with ellipsis sites; the one shown in figure 11 will
be used here. This derived structure encodes the information that (i) the head of this
expression has features γ, and no phonological content, and (ii) it contains n silent
moving subparts, with features β1 through βn. For the special case of ev’, we have
that spellOut(ev’) = 〈ε, *d v〉 (recall that v’ is an abbreviation for the syntactic type
〈*d v, ∅〉).

Part of the interest in this account of ellipsis resolution is that all that needs to
be known about the antecedent is its syntactic type, not its internal structure. The
internal syntactic structure of an expression is the glue that connects its pronounced
form to its meaning. As the pronounced form of ellipsis is completely independent of
any antecedent, there is no need to reconstruct a syntactic structure in the ellipsis site.
Instead, an ellipsis site can be thought of as denoting a proform, which is anaphoric on
the meaning of some derivational structure of the appropriate type. This observation
makes a connection between the derivational copying account of ellipsis and a proform
account of ellipsis, with the former being a special kind of the latter.

3.2. Ellipsis operations of different types
Revisiting figure 9, observe that the colored subderivations are not the only parts

shared between the two trees; indeed, they are the maximal shared subderivations.
Choosing instead the merge node immediately above oskar, we would have an ellip-
sis node of type 〈V, {k}〉, abbreviated as VP. In this case the sentence Oda will, too would

14This suggests a relation between deletion and copying theories of ellipsis. In Kobele (2012a) it is
argued that copying theories should be thought of as descriptions of the algorithm implementing deletion
theories.

15



have the derivation on the left in figure 12, with the structure on the right the corre-
sponding derived object. (The elements colored in in the structure on the right are from
the ellipsis site.) Given that both figure 10 and figure 12 are pronounced as Oda will,

move

merge

�will, *v *k t� merge

merge

�−�,�agrO *d v� move

merge

�−�,�V �k agrO� eVP

�oda, d k�

>

�oda, � <

�will, t� >

t <

��-�-�, � >

��, � <

��, � >

��, � ��, �

spellOut(eVP) =

>

��, k���, V�

Figure 12: Another potential structure for VPE

and are interpreted identically in the context of the sentence “Carl will praise Oskar,”
one might wonder how to choose between them.15 While there are some basic structural
differences between ev’ and eVP, such as that only the latter represents the ellipsis of a
maximal projection, a more fundamental difference is that eVP allows for passive-active
mismatched verb phrase ellipsis as in 2. Consider the discourse “Oskar will be praised.
Oda will.,” where the first sentence has a structure as in figure 8, and the second sentence
means that Oda will praise Oskar.16 This sentence provides no antecedent for an ellipsis
operation of type v’, but does one for one of type VP. Thus the derivation in figure 12
can serve as the structure of “Oda will, too” not only when it is anteceded by an active,
but also when it is anteceded by a passive.

3.3. Restrictions on movement out of ellipsis sites
The general form of the result of an ellipisis operation shown in figure 11 permits,

using a deletion metaphor, movement of expressions which have been deleted (those with
feature bundles βi). This should not be allowed. Consider 15 below, where the intended
reading is indicated with crossing-out.

15. Oskar should be praised. ∗Oskar won’t be praised.

15Kim et al. (2011) suggest that both options be allowed.
16This discourse (and indeed most of the very short example discourses presented in this paper) is not

a very natural one. A complete theory of ellipsis must account for this fact. One basic strategy (adopted
here) is to say that this discourse is well-formed syntactically and semantically, and to then appeal to
some other factors to account for its deviance. A natural way to account for ‘unexpected unacceptability’
is by appeal to properties of language use. Kim et al. (2011) explores how performance factors could be
added to a system like the one presented here. Another strategy is to say that this discourse is ill-formed
syntactically or semantically, and to then appeal to some other factors to account for the acceptability
of superficially similar ones as in example 2. I do not know of a way of determinining a priori which
strategy is going to prove more fruitful in any given case.

16



This is derivable with the current grammar fragment, where the structure of the elliptical
sentence is as in figure 13. An important difference between the desirable derivation in

move

merge

�will, *v *k t� merge

�be, *pass v� merge

�−en,�V pass� eVP

>

��, � <

�will, t� <

�be, � <

��-en, � >

t ��, �

Figure 13: The structure of the elliptical sentence in 15

figure 11 and the undesirable one in figure 13 is that the source and target positions of
the movement in 11 are not separated by any overt elements, while those in 13 are. In
other words, the good movement is string vacuous, while the bad one is not. As it is
more natural to state this sort of restriction in terms of covert movement (i.e. triggered
by a feature of the form ~x) than in terms of string vacuous movement, I propose the
following stronger generalization.17

Restriction 1. All movement features (y) generated inside of an ellipsis site must be
checked covertly (~y).

This stipulation accounts for the ungrammaticality of the derivation in 13 because the
elliptical sub-piece 〈ε, k〉 has its k feature checked by the *k feature of will. An equivalent
way of putting this views *k as the combination of ~k with an EPP-feature, and then
restriction 1 is a prohibition against elliptical sub-pieces being used to satisfy EPP-
features.

3.4. Antecedents of a higher type
Consider the discourse “Carl will be praised. Oskar will be, too.” Comparing the

derivations of the unelided versions of these sentences in figure 14, they share no non-
trivial subtrees, but would if their different DPs could be ignored. This situation is familiar

move

merge

�will, *v *k t� merge

�be, *pass v� merge

�−en,�V pass� merge

�praise, *d V� �carl, d k�

move

merge

�will, *v *k t� merge

�be, *pass v� merge

�−en,�V pass� merge

�praise, *d V� �oskar, d k�

Figure 14: Shared structure

17Note that covert movement is by definition string vacuous, but that not all string vacuous movement
need be covert.

17



from theories of ellipsis which make use of derived structure. There the offending DPs
are moved out, and an operation (trace conversion in Fox (2002), α-conversion in Sag
(1976)) makes what is left identical. Because of the present focus on derivation trees
(and not derived trees), operations which modify internal structure are not available.
Instead, the effects of derived-structure analyses must be restated in derivational terms.
These analyses have the common effect of ignoring parts of a subtree; accordingly, we
need to be able to talk about trees with missing parts, like the colored in portions of the
trees in 14.

3.4.1. Tree Contexts
Parts of trees like these colored in almost-constituents are known in the computer

science literature (Comon et al., 2002) as (tree) contexts. The context in figure 15 occurs
in the derivation tree in figure 14, where the empty box (�) represents a missing piece,
which, in its occurrance in figure 14, is filled by carl. Viewed procedurally, it describes a
function which takes an argument and merges praise with it. We restrict our attention

merge

�praise, *d V�

Figure 15: A unary derivation tree context

to unary contexts (contexts with just one hole) in this paper.18 Given a context C and
a tree t, C[t] denotes the tree obtained by putting t into the hole in C. Note that tree
contexts, viewed as procedures, are not defined on all arguments. In the case of figure
15, only inputs i which can be merged with praise (i.e. whose heads have first feature d)
are legitimate arguments. Types describe the behaviour of derivations. As a context is
just a subtree with a piece missing, if you put the missing piece back in, you should get a
subtree, which has a type in the usual way, call it c. But the missing piece (also a subtree)
has a type too, call it c′. Then the type of a context can be thought of as a function
c′ → c. More concisely, if C is a context, and i is an input such that type(C[i]) is defined,
then C has type type(i)→ type(C[i]). The context in 15 has type 〈d k, ∅〉 → 〈V, {k}〉, or,
in abbreviated form, DP→ VP; it is a procedure which, given a DP, constructs a VP.19

18A more general solution (Kobele, 2012b) involves treating trees as λ-terms, and contexts as
λ-abstracts. For example, the tree in figure 14 can be represented as the first-order λ-term
move(merge(will)(merge(be)(merge(-en)(merge(praise)(carl))))), and the context in figure 15 as the
second-order λ-term λx.merge(praise)(x). Restricting attention to contexts amounts to, in the more
general setting of the λ-calculus, limiting our attention to terms of order at most two.

19This is not yet entirely satisfactory. Consider again our context which is a VP missing a DP. One
type it should have is 〈d k, ∅〉 → 〈V, {k}〉, i.e. something which, if you give it a DP will result in a VP.
But it also has the type 〈d k wh, ∅〉 → 〈V, {k wh}〉, i.e. it is something which, if you give it a [+wh]
DP will result in a VP which contains a wh-word. Thus, this context has at least two categories as we
have defined them. In fact, it is easy to see that it has infinitely many categories; for any α, it has the
category 〈d α, ∅〉 → 〈V, {α}〉. However, all of these categories are related in a natural sense. A natural
way to express this relation in the type system is to quantify over feature bundles; we might assign it
the (single) type ∀α.〈d α, ∅〉 → 〈V, {α}〉. Technically, because there are only a finite number of useful
categories in Minimalist Grammars with the shortest move constraint (Michaelis, 2001), we do not have
to use such a powerful type theory. We could use intersection types, and express the type of the ellipsis

18



3.4.2. Passive-Passive VPE revisited
Returning to the motivating example of figure 14, we see that antecedents must be

derivational contexts – recall that a subtree is a special case thereof, and so this is a
strict generalization of the previous perspective on ellipsis. Viewing the tree on the
right of figure 14 as the result of replacing an ellipsis site with the antecedent context
(the colored in part of the tree on the left), the tree in figure 16 can be thought of as
underlying the sentence “Oskar will.” The bold e in figure 16 is what the antecedent

move

merge

�will, *v *k t� merge

�be, *pass v� merge

�−en,�V pass� eDP→VP

�oskar, d k�

Figure 16: The derivation of the elliptical sentence “Oskar will be.”

context replaces to obtain the tree on the right of figure 14. It represents the ellipsis site.
It differs from evP in that eDP→VP is a unary operation, whereas evP is a nullary operation.
The natural generalization is to say that eτ is a grammatical operation, which takes a
number of arguments appropriate to its type τ . Note that this kind of view is forced
by a derivational presentation of a copying theory of ellipsis; if movement chains are
created via movement, then ellipsis sites must be able to contain expressions which have
moved out of them. The derivational solution to this puzzle is to treat ellipsis sites as
operations which apply to the expressions that, on a deletion approach, one would say
were generated within them but not deleted.

Now eDP→VP has been determined to be a unary grammatical operation, the next
question to be asked is what effect it has on the derived structure of an expression. As
before, there are many possible (and equally good) answers to this question; as we are
here restricting our attention to unary contexts, the special case in figure 17 will suffice.20

We may revisit our conclusions about the structure of active-active VPE reached above
in light of the richer system of ellipsis operations now available to us. Looking back at
figure 14, a context of type DP → vP = 〈d k, ∅〉 → 〈v, {k}〉 is also shared between the
two structures (this is the context which includes all of the colored in subtree, plus the

site in terms of the coordination of all of the simple types we would normally want to assign to it.
However, this would not allow us to express the similarities between these types, which we can do in a
modern type theory (Martin-Löf, 1984; Luo, 1994); we need to (among others) be able to quantify over
feature bundles and test whether two feature bundles are both non-empty.

20We need one variant of each efτ for every grammatically permissible way f of linearly ordering the

moving pieces in expressions which are arguments of efτ . As expanded upon by Kobele (2012a), there
is a close relationship between PF-deletion theories and LF-copying theories. The parameter f can be
thought of as expressing how the deleted material manipulates the non-deleted material; in other words,
f describes what would have happened if you had merged and moved as described by the antecedent,
and then deleted all of the formatives which are part of the antecedent. An important difference is that,
for each type τ , there are only finitely many possible f , whereas there are (generally) infinitely many
possible deleted structures.

19



spellOut(e�αβ,∅�→�γ,{β,β1,...,βn}�(�w, αβ�)) =

>

�w, β� >

��, β1� >

��, β2� >

��, βn� ��, γ�

Figure 17: The spellout of unary ellipsis operations

parent of the root; the missing piece is the sister of the root of the colored in subtree,
the logical subject of the clause). Note that restriction 1 blocks the otherwise possible
context of identical type which is missing the logical object instead of the logical subject.

A final note about the structure in figure 16 is in order. The derived tree has as
its yield the string “Oskar will be -en,” and not the string “Oskar will be.” In line with
Lasnik (1981), the stranded affix -en can be assumed to be deleted by some post-syntactic
rule.21 Not all affixes stranded in this way behave alike (Potsdam, 1997); the English
tense affixes -s and -ed surface as does and did. I have nothing insightful to say about
this; in the present simple treatment of morphology, a rule of do-insertion ordered before
the stranded affix deletion rule will work.

3.4.3. Contexts and overgeneration
Although allowing contexts to antecede ellipsis sites is the derivational version of mod-

ifying derived structure, there is a justifiable worry about overgeneration. Indeed, there
are many more (unary) contexts than subtrees of a given structure, and, althoughsome
of these contexts are needed, we certainly do not want them all. This problem is not
unique to the present theory however (although it is worse here): even restricting atten-
tion to subtrees, there are far more subtrees than possible ellipsis sites. There are two
standard mutually compatible approaches to this sort of problem. The first approach to
this problem is to restrict the distribution of ellipsis. I have already appealed to this in
one form, by suggesting that each language pick ellipsis operations of particular (possibly
different) syntactic types. In addition one can further restrict the distribution of ellipsis
sites by requiring that they have some sort of contextual property (such as being head
governed (Lobeck, 1995), or ‘maximal’ in some sense (Merchant, 2008)). The second
approach to this problem is to focus instead on what makes a good antecedent. It is well
known that information structure is a significant factor in making a good antecedent
(Kertz, 2010). Additionally, especially when antecedents are delimited in terms of their
syntactic properties, it is possible to make reference to these syntactic properties when
talking about what makes an antecedent good. Two possibilities are the following. First,
one can impose a restriction on the distribution of ‘holes’ in a potential antecedent to
the effect that a subtree can be left out of an antecedent (i.e. can be part of the hole)
just in case it has some important property, such as being focussed, having a particular

21Another alternative is to treat the head -en not as an independent affix but rather as an empty head
which influences a morphological feature (verb-form) of its (in this case silent) complement. I view this
as equivalent in all relevant respects.

20



syntactic feature, or not being c-commanded by another expression of the same syntactic
type. Second, as mentioned in Kobele (2012b), parsers incrementally construct deriva-
tional contexts during a parse. This suggests relating the possible antecedent contexts
to those which are constructed during the parsing process (Lavelli and Stock, 1990).

A theory of the mechanisms of ellipsis (such as the one presented here) is a necessary
part of an account of ellipsis. As shown in the next section, the derivational copying
theory is able to give a simple and unified account of some otherwise unexplained data.
Before celebrating, we should of course remember that it relies on as yet unspecified
theories of the distribution of ellipsis sites, and of what makes for a good antecedent (a
property shared by all of its competitors). Still, one advantage of the present theory is
that it is formally explicit, and therefore its predictions can be teased out with pencil,
paper, and sufficient time and interest.

4. Case studies

The previous sections have introduced the minimalist grammar formalism (§2), and
the extension to it of a derivational ellipsis mechanism (§3). Although this formal frame-
work was presented in tandem with a particular analysis of English syntax, it is important
to note that the formal framework is not tied to any particular analysis, although it does,
as a restrictive grammar formalism, make substantive claims about what kinds of pat-
terns one can find realized in natural language. The fundamental claim of this paper is
the following:

Claim 1. Apparently structure-sensitive properties of ellipsis are reducible to syntactic
types.

Moreover, analyses in the minimalist grammar framework end up assigning to expres-
sions the right kinds of syntactic types. To provide support for claim 1, natural and
independently motivated analyses of English clause and preposition structure and wh-
movement will now be presented, and it will be demonstrated that these account for the
relevant elliptical data as well, in conjunction with the derivational-copying theory of
ellipsis from §3.22

Before beginning, a cautionary note is in order. Many factors influence the acceptabil-
ity of elliptical sentences (Kehler, 2002; Kertz, 2010). The particular sentences derived
here are typically not very acceptabile. Indeed, they were chosen primarily for their short
length, so as to admit derivation trees which fit legibly on the page. They do however
exemplify sentence types which have tokens of high acceptability, and, in line with the
discussion in §1, the current project is to account for generalizations I–III, with the hope
being that such an account will provide the scaffolding on which to hang a more complete
account of the data.

22A reviewer notes that the analyses presented herein do not do justice to the richness of the respective
phenomena. Implicit in what follows of course is the hope that these simplified syntactic analyses fit so
neatly with the derivational copying theory of ellipsis not because of some accident, but instead because
the framework, the theory of ellipsis, and the analysis are on the right track, and that therefore more
sophisticated analyses of clauses, prepositions, and wh-movement will continue to support claim 1.

21



4.1. Voice (mis)matches
Verb phrase ellipsis has been the running example in the previous section, and we

have seen that active-passive and passive-active mismatches are derivable in the present
theory of ellipsis. The types compatible with the given analysis are as in figure 18. Not

Antecedent Ellipsis Type(s)
active active v’, VP, DP→ vP
active passive DP→ VP
passive active VP, DP→ VP
passive passive DP→ VP, DP→ PassP

Figure 18: Types for VPE

all of these types have been discussed, nor have possible relations between them been
explored. Kim et al. (2011) suggest, with terminology adapted to the slightly different
theory, that the attested acceptability gradients between each of the four conditions in
figure 18 are predictable from the height of the result category of the respective ellipsis
sites; and thus the mismatched VPE conditions (the common highest result category is
VP) are worse than the matched conditions (with highest result categories vP and PassP
respectively), and that the active-active condition is better than the passive-passive one.
Here it is shown that this ‘voice insensitivity’ which has been derived for VPE does not

move

merge

will merge

merge

vact move

merge

agrO eVP

Oda

(a) VPE

move

merge

will merge

seem merge

to merge

be merge

-en merge

praise Oskar

(b) Antecedent

move

merge

will eDP→vP

Oda

(c) vPE

Figure 19: Oskar will seem to be praised. ∗Oda will seem to praise Oskar

extend to sluicing, nor does it apply to non-‘root’ VPE contexts, as per the discussion in
§1.1. Figure 19 presents the structure for a VPE sentence like 5, with mismatched voice
features internal to the antecedent and the desired resolution of the ellipsis site. The
ellipsis sites and their possible antecedents are color-coördinated in the figure; the blue
ellipsis site of type VP in subfigure 19a must take as antecedent something of type VP;
the only possible such being outlined in blue in subfigure 19b. Similarly, the two possible
antecedents of type DP→ vP in subfigure 19b are outlined in red. Inspection of the figure
reveals that the undesired non-‘root’ voice mismatch, which would mean Oda will seem
to praise Oskar, is not possible with these structures. That it is not possible with any

22



structure can be determined as follows. Because oda is overt (i.e. pronounced), oda must
either be outside of the ellipsis site altogether (as in the structure in 19a), or it must be
an argument to it (as in the structure in 19c). If it is an argument to the ellipsis site, the
ellipsis site must take as antecedent a context missing a DP; the only possible such are
those missing oskar, and so there is no way for this to give rise to the undesired reading.
If oda is external to the ellipsis site, it must be merged with a structure containing the
ellipsis site. As the antecedent derivation in 19b has no subtrees with an unchecked *d
feature containing oskar, oda must be merged with a lexical item containing one such;
an active voice head. But then this precludes the ellipsis site from having type vP, and
thus it cannot contain seem. Figure 20 presents possible structures for the mismatching

move

merge

will merge

seem merge

to merge

merge

vact move

merge

agrO merge

praise Oskar

Oda

(a) Antecedent

move

merge

will eDP→vP

Carl

(b) vPE

Figure 20: Oda will seem to praise Oskar. ∗Carl will seem to be praised.

active-passive counterpart of figure 19. The reading which must be blocked is where the
sentence is understood as Carl will seem to be praised. The only way to obtain such a
reading would have carl be an argument to the ellipsis site, and have it take an antecedent
missing the logical object oskar. But the only such antecedents contain the logical subject
oda, and thus by restriction 1 they are disallowed (as the silent Oda would need to move
overtly to spec-TP for case). Instead, the only possible antecedents are where the logical
subject oda is missing, shown in blue, and mean that Carl will praise Oskar and that
Carl will seem to praise Oskar, which are appropriate for discourses of this general type.
Examples with agentive by-phrases will be dealt with in §4.2 (see figure 24), after the
introduction of PPs and adjunction.

〈ε, *t *wh c〉
〈who, d k wh〉

Figure 21: Lexical Entries for wh-movement

As sluicing involves wh-words, an analysis of sluicing must also contain an analysis
of sentences with wh-words. Merchant (2001) argues that the distribution of wh-words
in elliptical contexts parallels the distribution of the same in non-elliptical contexts, and
thus that there should be but a single statement governing the distribution of wh-words

23



across a language. Here it will be assumed that wh-words have the licensee feature wh, and
that a silent CP provides an appropriate landing site. This analysis is a simple version of
the canonical analysis of wh-movement in the generative tradition. More sophisticated
variations on this theme could be investigated as well. These lexical items are in figure
21. A sluiced clause, following Merchant (2001), is analyzed as an actual CP with an
ellipsis site. In the present analysis, a particularity of sluicing, as opposed to, say, VPE,
is that the ellipsis site always has a higher order type – it is always of type c → c′ –
which means that it is a gap which contains some pronounced material (typically the
wh-phrase which ends up moving to SpecCP). It is clear that it must be something of
the rough form c→ 〈t, {wh}〉, as the result is a TP which contains a wh-moving phrase.
But c could be any category which introduces a wh-movement feature; a proper wh-DP,
or a wh-PP, or even some category which only contains a wh-mover.

move

merge

will merge

be merge

-en merge

praise Oskar

(a) Antecedent

move

merge

CQ eDP→TP

who

(b) Sluice

Figure 22: Oskar will be praised, ∗but I don’t know who will praise Oskar

Figure 22 shows a sluicing construction, and its (only possible) antecedent. Note that
this is the surface form that a passive-active voice mismatched sluice would take, which is
here assumed in general to be unacceptable. Instead of being ruled out as ungrammatical
however, the present analysis considers the sentence to be syntactically well-formed. Yet
the reading is not the mismatching voice one of “I do not know who will praise Oskar”,
but rather the matching voice but nonsensical one of “I do not know who will be praised.”
I therefore attribute the unacceptability of this sort of sluice to semantic incongruity.23

In support of this, note that the structurally identical sentence in 16 is well-formed.

16. Someone will be praised, but I don’t know who will be praised.

According to Chung et al. (1995), the ellipsis site in 16 must be fleshed out using the
entire antecedent TP Someone will be praised. However, this entire TP will not ‘fit’ in
the ellipsis site, as the wh-word who needs to bind a trace. They propose a new operation
called merger, whereby a DP like someone is turned into a trace. The basic phenomenon
that merger is intended to describe is that a constituent with a (usually indefinite) DP

23As pointed out by Tue Trinh, the unacceptability of this sentence is not obviously related to Moore’s
paradox, as changing I to Oda does not seem to improve matters. It is worth pointing out that changing
who to who else does seem to make the sentence acceptable, which, depending on one’s assumptions
about the syntactic representation of information structure, suggests that the original sentence should
in fact be generated by the grammar.

24



can serve as an antecedent for an ellipsis site which, intuitively, doesn’t contain that DP.
Of course, if the antecedent is not a constituent, but rather a context which excludes that
DP, then no difficulties arise. In the derivational copying analysis, there is no separate
phenomenon of merger; the offending DP is simply not part of the antecedent.

4.2. Sprouting
The phenomenon of sprouting encompasses sentences like 8–10, repeated below as

17–19:

17. Carl ate, but I don’t know what.

18. Carl ate pancakes, but I don’t know why.

19. Pancakes were eaten, but I don’t know by whom.

In each of the three sentences above, it is not immediately apparent what sort of an-
tecedent context is present which would have type cwh → 〈t, wh〉 (for cwh some wh-
feature containing category). In the LF-copying theory of Chung et al. (1995), according
to which a derived syntactic antecedent is selected, and then manipulated via a set of
transformations before being inserted in the ellipsis site, sprouting is the name of the
transformation which inserts a trace (which can be then bound by the wh-phrase) in
an appropriate place in the antecedent structure. What unifies the sprouting sentences
17–19 is that the relation between antecedent and (syntactically fleshed out) ellipsis site
is one of suppressed and realized optional argument. According to the logic of the theory
proposed here, we need to find an analysis of the above kind of structures which allows a
context of type cwh → 〈t, wh〉 (for cwh some wh-feature containing category) to be found.

This section focusses on the cases of sprouting involving adjuncts (adjunct wh-phrases,
and wh-PPs, which are analyzed in the same way); whether the facts surrounding null
objects (as with the intransitive usage of eat in 17) allow the same analysis to be main-
tained is unclear. The basic idea is that implicit arguments need to be syntactically
represented. In the transformational literature this is often cast in terms of pro or pro.
In the present system, this amounts to having a special formative (which will be called
pro and written as ∅), and to require that phrases which we normally think of as allow-
ing adjunction actually require it. If this adjunct is pro, then it gives the appearance
of optionality.24 Adjunction has been implemented in many (subtly different) ways in
minimalist grammars (Frey and Gärtner, 2002; Hunter, 2010; Fowlie, 2014). For reasons
of space, I simply help myself to without explicitly defining an operation adjoin, and
assume that it applies obligatorily wherever it can. The desired effects of the operation

24It might be objected that this is unnecessarily complex, and ad hoc. However, the same idea is
present even in the Tree Adjoining Grammar (TAG) formalism (Joshi, 1987). A natural perspective to
take on adjunction nodes X in a TAG tree is that they are higher order non-terminals NX . (This is
made explicit in context-free tree grammar (Kepser and Rogers, 2011) or abstract categorial grammar
(de Groote and Pogodalla, 2004) presentations of TAGs.) An adjunct XP of the form t is adjoined at
an adjunction site by means of the rewrite rule NXP (x) → NXP (xp(x, t)). Note that this rule preserves
the ‘adjoinable’ status of the XP by introducing another non-terminal node NXP . In order to have a
well-formed tree, all adjunction sites must be ‘closed off’. This is achieved via the rule NXP (x) → x. The
important thing to note is that choosing not to adjoin something requires doing something (rewriting
using the rule NXP (x) → x).

25



adjoin can be simulated with just merge, if we (i) assume that categories which must
be adjoined to are of the form c∗ instead of c, and (ii) make use of the lexical items
〈ε, *c∗ *adj c〉 and 〈ε, *x adj〉, for every category x which can function as an adjunct.
Concretely, it will be assumed that vP is an obligatory adjunction site. For simplicity, the

〈by, *d ~k P〉

Figure 23: Lexical Entries for PPs

adjunct type investigated will be a PP; PPs will be assumed to covertly check the case of
their objects. A P will then select a DP complement and assign it case. This lexical item
is in figure 23. This allows the structure in figure 24 to be assigned to a passive sentence
with an overt agent. With these structures in place, we can consider figures 25 and 26

move

merge

will adjoin

merge

be merge

-en merge

praise Oskar

move

merge

by someone

(a) Antecedent

move

merge

will merge

merge

vact move

merge

agrO eVP

Carl

(b) VPE

Figure 24: Oskar will be praised by someone, ∗but Oda won’t praise Oskar

in light of the discussion in §1.1. In figure 25, the most salient reading is the merger of
who and someone, which is given by the blue context. A (for this sentence) less salient
reading is the merger of who and oskar, given by the red context. The reading that would

move

merge

will adjoin

merge

be merge

-en merge

praise Oskar

move

merge

by someone

(a) Antecedent

move

merge

CQ eDP→TP

who

(b) Sluice

Figure 25: Oskar will be praised by someone, ∗but I don’t know who will praise Oskar

come from a mismatching voice antecedent, who someone praised, is synonymous with
26



the reading given by the red context (who was praised by someone). Still, it is clear that
there is no active antecedent. In figure 26, matters are much clearer. We wish to verify
that the elliptical sentence cannot mean that I do not know who praised Oskar. Observe
that while there is a possible antecedent context, the PP by whom cannot be interpreted
as an agentive by-phrase (as the subject, someone, is present in that context), but must
rather, if at all, be interpreted as a locational PP. Implicit here is the assumption that the
syntactic structure of passives with agentive by-phrases and passives without agentive
by-phrases but with locative by-phrases is identical.25

move

merge

will adjoin

merge

move

merge

vact merge

praise Oskar

someone

∅

(a) Antecedent

move

merge

CQ ePP→TP

merge

by who

(b) Sluice

Figure 26: Someone praised Oskar, ∗but I don’t know by whom Oskar was praised

4.3. No preposition stranding in Sprouting
Chung et al. (1995) observe that, in constrast to the usual case in sluicing, in sprouting

contexts preposition stranding is prohibited. This is illustrated by the sentences below.

20. Carl stood near something, but I don’t know near what.

21. Carl stood near something, but I don’t know what.

22. Carl stood, but I don’t know near what.

23. ∗Carl stood, but I don’t know what.

The ban on preposition stranding in sprouting follows directly from the characterization
of ellipsis antecedents in terms of syntactic contexts. Preposition stranding can only
obtain when the preposition itself is part of the antecedent. In cases of sprouting, there
is no preposition in the antecedent, and thus the ellipsis site cannot contain a preposition
(i.e. it must surface). From the perspective of the theory advanced here, this is a very
general and very straightforward prediction. The categories of overt expressions in an
ellipsis site must match with the type of the available antecedent contexts. A context
that wants a PP cannot be used as the antecedent of an ellipsis site that has a DP
argument. The reason that, in non-sprouting cases, one can either have a PP or a DP
is that the antecedent contains a PP, and so there are available two possible antecedent

25The theory in Kobele (2012c) explains how this might work.

27



Figure 27: Carl was praised by someone, but I don’t know (by) who(m)

(a) Sluice (DP)

move

merge

CQ eDP→TP

who

(b) Antecedent

move

merge

will adjoin

merge

be merge

praise Carl

move

merge

by someone

(c) Sluice (PP)

move

merge

CQ ePP→TP

merge

by who

contexts – one that contains the P, and one that doesn’t. This is illustrated in figure 27.
Here the red and blue ellipsis sites have the same types as the red and blue contexts.
(Note that there is an additional possible context for the red ellipsis site, namely � was
praised by someone; see the discussion surrounding figure 22.) The reason that the same
freedom does not exist in sprouting contexts is because the antecedent does not contain
a (full) PP (but only a pro). There is thus no antecedent context containing a P-head.
This is illustrated in figure 28. The only possible interpretation of the ellipsis site in red
is via the context � was praised (see the discussion of figure 22).

Figure 28: Carl was praised, but I don’t know (by) who(m)

(a) Sluice (DP)

move

merge

CQ eDP→TP

who

(b) Antecedent

move

merge

will adjoin

merge

be merge

praise Carl

∅

(c) Sluice (PP)

move

merge

CQ ePP→TP

merge

by who

4.3.1. The preposition stranding generalization
Merchant (2001) observes that not all languages allow for preposition stranding in

sluicing, and that there is a strong correlation between whether a language allows prepo-
sition stranding at all, and whether it allows preposition stranding in sluicing. A natural
move, made by Merchant, is to attempt to explain this tendency by lifting it to an ex-
ceptionless universal, analysing away exceptions in some (hopefully) principled manner.
The present theory of sluicing can derive this exceptionless generalization, as long as
optional pied-piping is resolved internal to the PP by some sort of derivational process
(that is, whether a PP will be pied-piped or not is determined before the PP is merged

28



into the larger structure).26

One way to implement this is along the lines of Cable (2010), according to (my reading
of) which a functional projection of P agrees with the wh-feature of its complement
DP, checking it, and which has its own wh-feature. In the present system, this can be
implemented with the lexical item in figure 29. This functional head first selects a PP

〈ε, *p ~wh p wh〉

Figure 29: Lexical Entry for Pied-Piping

(*p), then checks a wh-feature covertly (~wh), and is then selectable as a PP (p) and has
a wh-feature (wh).

Now examine the following English sentences.

24. Carl stood under something, but I don’t know under what.

25. Carl stood under something, but I don’t know what under.

26. Carl stood under something, but I don’t know what.

Sentence 25 is a swiping construction (Merchant, 2002). Sentences 24 and 26 we have
already seen, although we must revisit their structure in light of our focus on pied-piping.
What will be crucial for this analysis is that the PP in the antecedent, under something,
is not a pied-piping structure. That is, whatever process a PP undergoes to be the
target of later wh-movement (in the present analysis, it is the merger of the lexical item
in figure 29), under something did not undergo that. We now continue with an analysis
of 24 and 25. Here, the relevant antecedent context excludes the PP, and so we can
either put a pied-piping PP into the ellipsis site which takes this context as antecedent
and derive 24, or put a non-pied-piping PP into the ellipsis site and derive 25. For 25,
the structure e(under what) has type 〈t, {wh}〉, except that the moving element is the
wh-word what, and not the entire PP under what. Once a wh-C is introduced, and the
wh-word what is moved to its specifier, the desired word order is obtained. This analysis
of 25 predicts that swiping should be possible in sprouting sentences, which seems to be
the case (sentence 27).

27. Carl built a tower, but I don’t know what with.

Now consider what could happen were English a language with obligatory pied-piping.
In this case, there would be only one derivation of the PP under what, which forces under
to pied-pipe to Spec-CP. Sentence 24 is still possible. But the swiped sentence 25 is no
longer derivable for the simple reason that there is no non-pied-piping version of under
what. What about sentence 26? In order to make any sort of determination about this
case we need to improve our understanding of just how obligatory pied-piping works.
We could implement obligatory pied-piping in the present analysis by making use of
derivational constraints (Graf, 2011; Kobele, 2011). In this case, the type of the ellipsis

26What this is meant to exclude is the ‘feature percolation’ implementation of Kobele (2005), which
makes no derivational distinction between pied-piping and non-pied-piping contexts.

29



site c→ c′ would indicate that the input argument of type c must not be something that
would normally require pied-piping.

It is worth reiterating that the account of this half of Merchant’s generalization, from
obligatory pied-piping to lack of preposition stranding in sluicing, is highly dependent
upon a particular array of (non-necessary) assumptions about obligatory pied-piping.
The other half, from optional pied-piping to preposition strandability in sluicing, follows
more straight-forwardly. Considering the space of analytical possibilities, this leads us
as linguists to reserve more subjective degrees of belief to the possibility that a language
might exist which has obligatory pied-piping but allows preposition stranding in sluicing,
than to the possibility that a language might have optional pied-piping yet prohibit
preposition stranding in sluicing.

An apparently correct prediction of the present theory is that swiping should never
be possible in a language with obligatory pied-piping. Another prediction is that swiping
should be grammatically possible whenever a language has optional pied-piping (which
is determined PP-internally) and an ellipsis operation of type PP→ TP. This is counter-
exemplified by Frisian, Icelandic, and Swedish, which have optional pied-piping, and an
appropriately typed ellipsis operation, but which do not allow swiping (in fact, only
Danish, English, and Norwegian allow for swiping). As also noted by Merchant (2002),
swiping is (mostly) limited to monomorphemic wh-phrases, which is also not predicted
by this approach. Although the proper analysis of swiping is orthogonal to the account
of Merchant’s generalization, it is suggestive that swiping emerges so naturally from the
mechanisms already in place. In order to rein in the above-described overgeneration of
the present theory, one might postulate that there is an additional, perhaps prosodic,
constraint which must be satisfied in order for swiping to obtain.

5. Conclusion

In the preceding sections, a general theory of ellipsis was introduced, and an analysis
of certain English constructions in the context of this theory was given. It was shown that,
within a certain range of possible analyses of particular constructions, only a restricted
class of elliptical sentences would be derivable, thereby accounting for certain typological
generalizations. The theory presented herein is strongly related to the theory of Kobele
(2009), and embodies the same ideas as that of Barker (2013). All three theories take
derivational structure as basic, but Kobele (2009) and Barker (2013) restrict the kinds
of antecedents to be derivational constituents. This is possible because these latter two
theories have extremely flexible notions of derivations; Kobele (2009) uses a version of
late-merger, and Barker (2013) has access to hypothetical reasoning — these operations
allow for the constituentification of what are for the theory in this paper contexts. This
means, however, that in these other two theories there is a great deal of seemingly spurious
ambiguity, which needs to be resolved to determine whether a particular expression can
be an antecedent for an ellipsis site. This would seem to preclude the same expression
serving simultaneously as an antecedent for different types of elliptical constructions, as
sketched schematically in 28.

28. Antecedent. VPE. Gapping.

29. This story should have been made public. Most magazines chose not to eVP. Only
Gala did eDP→VP the particularly juicy bits.

30



Discourse 29 instantiates the schema in 28. It sounds to my ear a bit strained, but
the predicted grammaticality of this sort of discourse is a formal difference between the
present, derivational context-based, theory of ellipsis, and the other two, derivational
constituent-based, ones.

Many influential topics remain to be considered. Two will be briefly mentioned here.
(1) Antecedent contained deletion, as in a sentence like Sebastian examined every patient
Wolf did, poses a problem if the antecedent contains the ellipsis site. In the present
theory, the antecedent can be chosen to be the context examine � of type DP → VP,
which simply excludes the DP every patient Wolf did containing the ellipsis site. A
moment’s reflection will reveal this to be ‘the same idea’ as moving the DP containing
the ellipsis site out of the desired antecedent, but recast in a theory which treats the
derivation as the only relevant level of syntactic structure, and thus prohibits destructive
modifications of already built syntactic structure. (2) Since Merchant (2001), much
work has been devoted to explaining why island effects do not always appear in elliptical
sentences, especially under the assumption that the ellipsis site houses unpronounced
syntactic structure. A main idea of this line of work has been that ellipsis repairs (some)
islands. This idea requires a particular perspective on (reparable) islands: they must
be syntactically derivable. An island is, under this view, a filter on representations,
which ignores, for whatever reason, anything which has been elided. This idea can be
imported into the derivational theory of ellipsis unchanged. It may however appear
that the derivational theory is unable to enforce the non-reparable island constraints.
This is not the case. The minimalist grammar formalism incorporates a hard constraint
on movement, the SMC, which makes certain derivations non-convergent. The type
assignment system presented herein does not assign types to contexts which would violate
the SMC: a context has types type(i)→ type(C[i]), which is undefined at a given i if C[i]
violates the SMC. This is not an arbitrary decision, but is necessary in order to maintain
a correct link between the type of a context and the meaning associated with it (Kobele,
2012d). Thus, islands whose source is a hard grammatical constraint can and must be
represented by the syntactic type of an antecedent. An island may be irreparable without
necessarily being reducible to a hard grammatical constraint, however. Two reductionist
approaches to islands reduce them to some property of i) the semantic representation or
value of an expression (Szabolcsi and Zwarts, 1992), or ii) the human sentence processor
(Kluender, 1992). Island effects of the first type would also not be reparable in the
present system (or presumably in any other). Those of the second type, however, are
more interesting to speculate about in the context of the derivational theory here; more
than speculation would require a precise theory of parsing elliptical sentences, which has
not been presented in this paper. A predictive parser for the derivational theory of ellipsis
would, upon predicting an ellipsis site, retrieve from the discourse context an antecedent
of the appropriate syntactic type, and interpret the ellipsis site using the meaning of the
antecedent. There is therefore no reason to expect that islands based on the difficulty of
parsing the non-elliptical version of a sentence would appear in an elliptical sentence.

More generally, the present work can be seen as addressing a more refined version
of the debate about the syntactic representation of ellipsis sites. Instead of a boolean
‘is there structure or not,’ here the focus has been on how much structural information
is needed to account for the relevant linguistic phenomena. One aim of this paper has
been to show that information about syntactic type is already sufficient. Another point
of dispute in the literature is whether the relation between ellipsis site and antecedent is

31



syntactic or semantic. The present theory has it that the meaning of an ellipsis site is the
same as the meaning of its antecedent, and thus it is on the semantic side of this divide.
On the other hand, possible antecedents must have a certain syntactic property (having
the same syntactic type) in order to be eligible for antecedence. Thus antecedents in the
derivational theory are semantic objects which are characterized syntactically. This is in
contrast to theories like that of Dalrymple et al. (1991) or Hardt (1993), in which an
antecedent is a piece of a larger semantic representation, whose connection to syntax has
been long since lost. From the derivational perspective, the syntax sensitivity of ellipitical
processes comes not from reconstructing a syntactic structure, but rather from a strong
syntactic filter on semantic antecedents. The fundamental claim of the derivational
perspective is that there is only a fixed finite amount of syntactic information (here
encoded as a syntactic type) to which elliptical processes need refer.

Acknowledgments

I am grateful for the criticism of an anonymous reviewer, to Jason Merchant for
comments on an earlier draft, to John Hale and Tim Hunter for discussion, as well as
to audiences at the ELLIPSIS conference in Vigo, HPSG 19, and the Identity in Ellipsis
conference in Leiden, who have seen various incarnations of the ideas contained herein.
I am also grateful to Marcus Kracht, Uwe Mönnich, and Ed Stabler, for their prescient
suggestions at a much earlier stage of this work. As always, the responsibility for the
shortcomings of this paper lies with me.

References

References

Adger, D., 2003. Core Syntax. Oxford University Press.
Bach, E. W., 1980. In defense of passive. Linguistics and Philosophy 2, 297–341.
Baker, M., 1988. Incorporation: a theory of grammatical function changing. MIT Press, Cambridge,

Massachusetts.
Barker, C., 2013. Scopability and sluicing. Linguistics and Philosophy 36 (3), 187–223.
Beesley, K. R., Karttunen, L., 2003. Finite State Morphology. CSLI Publications.
Brody, M., 2000. Mirror theory: Syntactic representation in perfect syntax. Linguistic Inquiry 31 (1),

29–56.
Cable, S., 2010. The Grammar of Q. Oxford University Press.
Chomsky, N., 1995. The Minimalist Program. MIT Press, Cambridge, Massachusetts.
Chung, S., Ladusaw, W. A., McCloskey, J., 1995. Sluicing and logical form. Natural Language Semantics

3 (3), 239–282.
Clark, A., Giorgolo, G., Lappin, S., 2013. Statistical representation of grammaticality judgements: the

limits of n-gram models. In: Proceedings of the Fourth Annual Workshop on Cognitive Modeling and
Computational Linguistics (CMCL). Association for Computational Linguistics, Sofia, Bulgaria, pp.
28–36.

Comon, H., Dauchet, M., Gilleron, R., Jacquemard, F., Lugiez, D., Tison, S., Tommasi, M., 2002. Tree
automata techniques and applications, available at http://www.grappa.univ-lille3.fr/tata.

Dalrymple, M., Shieber, S. M., Pereira, F. C. N., 1991. Ellipsis and higher-order unification. Linguistics
and Philosophy 14 (4), 399–452.

de Groote, P., Pogodalla, S., 2004. On the expressive power of Abstract Categorial Grammars: Repre-
senting Context-Free formalisms. Journal of Logic, Language and Information 13 (4), 421–438.

Fowlie, M., 2014. Adjuncts and minimalist grammars. In: Morrill, G., Muskens, R., Osswald, R., Richter,
F. (Eds.), Formal Grammar. Vol. 8612 of Lecture Notes in Computer Science. Springer, pp. 34–51.

32



Fox, D., 2002. Antecedent-contained deletion and the copy theory of movement. Linguistic Inquiry 33 (1),
63–96.

Frey, W., Gärtner, H.-M., 2002. Scrambling and adjunction in minimalist grammars. In: Jäger, G.,
Monachesi, P., Penn, G., Wintner, S. (Eds.), Proceedings of Formal Grammar 2002. pp. 41–52.

Graf, T., 2011. Closure properties of minimalist derivation tree languages. In: Pogodalla, S., Prost, J.-P.
(Eds.), LACL 2011. Vol. 6736 of Lecture Notes in Artificial Intelligence. pp. 96–111.

Halle, M., Marantz, A., 1993. Distributed morphology and the pieces of inflection. In: Hale, K., Keyser,
S. J. (Eds.), The View from Building 20. MIT Press, Cambridge, Massachusetts, pp. 111–176.

Hankamer, J., Sag, I. A., 1976. Deep and surface anaphora. Linguistic Inquiry 7 (3), 391–428.
Hardt, D., 1993. Verb phrase ellipsis: Form, meaning, and processing. Ph.D. thesis, University of Penn-

sylvania.
Harkema, H., 2001. Parsing minimalist languages. Ph.D. thesis, University of California, Los Angeles.
Hunter, T., 2010. Relating movement and adjunction in syntax and semantics. Ph.D. thesis, University

of Maryland.
Jaeggli, O. A., 1986. Passive. Linguistic Inquiry 17 (4), 587–622.
Jäger, G., 2005. Anaphora and Type Logical Grammar. Vol. 24 of Trends in Logic. Springer, Dordrecht,

The Netherlands.
Joshi, A. K., 1985. Tree adjoining grammars: How much context-sensitivity is required to provide

adequate structural descriptions. In: Dowty, D., Karttunen, L., Zwicky, A. (Eds.), Natural Language
Processing: Theoretical, Computational and Psychological Perspectives. Cambridge University Press,
NY, pp. 206–250.

Joshi, A. K., 1987. An introduction to tree adjoining grammars. In: Manaster-Ramer, A. (Ed.), Mathe-
matics of Language. John Benjamins, Amsterdam, pp. 87–115.

Keenan, E., 1980. Passive is phrasal not (sentential or lexical). In: Hoekstra, T., van der Hulst, H.,
Moortgat, M. (Eds.), Lexical Grammar. Vol. 3 of Publications in Language Sciences. Foris Publica-
tions, Dordrecht, Ch. 7, pp. 181–214.

Kehler, A., 2002. Coherence, Reference, and the Theory of Grammar. No. 104 in CSLI Lecture Notes.
CSLI Publications, Stanford.

Kepser, S., Rogers, J., 2011. The equivalence of Tree Adjoining Grammars and monadic linear context-
free tree grammars. Journal of Logic, Language and Information 20, 361–384.

Kertz, L., 2010. Ellipsis reconsidered. Ph.D. thesis, University of California, San Diego.
Kim, C. S., Kobele, G. M., Runner, J. T., Hale, J. T., 2011. The acceptability cline in VP ellipsis. Syntax

14 (4), 318–354.
Kluender, R., 1992. Deriving island constraints from principles of predication. In: Goodluck, H.,

Rochemont, M. (Eds.), Island constraints: theory, acquisition, and processing. Vol. 15 of Studies
in Theoretical Psycholinguistics. Kluwer Academic Publishers, Dordrecht, NL, Ch. 8, pp. 223–258.

Kobele, G. M., 2002. Formalizing mirror theory. Grammars 5 (3), 177–221.
Kobele, G. M., 2005. Features moving madly: A formal perspective on feature percolation in the mini-

malist program. Research on Language and Computation 3 (4), 391–410.
Kobele, G. M., 2006. Generating copies: An investigation into structural identity in language and

grammar. Ph.D. thesis, University of California, Los Angeles.
Kobele, G. M., 2009. Syntactic identity in survive minimalism: Ellipsis and the derivational identity

hypothesis. In: Putnam, M. T. (Ed.), Towards a purely derivational syntax: Survive-minimalism.
John Benjamins, pp. 195–230.

Kobele, G. M., 2011. Minimalist tree languages are closed under intersection with recognizable tree
languages. In: Pogodalla, S., Prost, J.-P. (Eds.), LACL 2011. Vol. 6736 of Lecture Notes in Artificial
Intelligence. pp. 129–144.

Kobele, G. M., 2012a. Eliding the derivation: A minimalist formalization of ellipsis. In: Müller, S.
(Ed.), Proceedings of the 19th International Conference on Head-Driven Phrase Structure Grammar,
Chungnam National University Daejeon. CSLI Publications, Stanford, pp. 307–324.

Kobele, G. M., 2012b. Ellipsis: computation of. WIREs Cognitive Science 3 (3), 411–418.
Kobele, G. M., 2012c. Idioms and extended transducers. In: Proceedings of the Eleventh International

Workshop on Tree Adjoining Grammars and Related Frameworks (TAG+11), Paris. pp. 153–161.
Kobele, G. M., 2012d. Importing montagovian dynamics into minimalism. In: Béchet, D., Dikovsky,

A. (Eds.), Logical Aspects of Computational Linguistics. Vol. 7351 of Lecture Notes in Computer
Science. Springer, Berlin, pp. 103–118.

Koizumi, M., 1995. Phrase structure in minimalist syntax. Ph.D. thesis, Massachusetts Institute of
Technology.

Koopman, H., Sportiche, D., 1991. The position of subjects. Lingua 85, 211–258.

33



Lasnik, H., 1981. Restricting the theory of transformations: A case study. In: Hornstein, N., Lightfoot, D.
(Eds.), Explanations in Linguistics: The logical problem of language acquisition. Longmans, London,
pp. 152–173.

Lavelli, A., Stock, O., 1990. When something is missing: ellipsis, coordination and the chart. In: Pro-
ceedings of COLING-90. pp. 184–189.

Lobeck, A., 1995. Ellipsis: Functional Heads, Licensing, and Identification. Oxford University Press,
New York.

Luo, Z., 1994. Computation and Reasoning: A Type Theory for Computer Science. Oxford University
Press.

Martin-Löf, P., 1984. Intuitionistic Type Theory. Bibliopolis, Napels.
Merchant, J., 2001. The Syntax of Silence: Sluicing, Islands, and the Theory of Ellipsis. Vol. 1 of Oxford

Studies in Theoretical Linguistics. Oxford University Press, New York.
Merchant, J., 2002. Swiping in Germanic. In: Zwart, C. J.-W., Abraham, W. (Eds.), Studies in Germanic

Syntax. John Benjamins, Amsterdam, pp. 289–315.
Merchant, J., 2004. Fragments and ellipsis. Linguistics and Philosophy 27 (6), 661–738.
Merchant, J., 2008. Variable island repair under ellipsis. In: Johnson, K. (Ed.), Topics in Ellipsis. Oxford

University Press, Oxford, Ch. 6, pp. 132–153.
Merchant, J., 2013. Voice and ellipsis. Linguistic Inquiry 44 (1), 77–108.
Michaelis, J., 2001. On formal properties of minimalist grammars. Ph.D. thesis, Universität Potsdam.
Müller, G., 2010. On deriving CED effects from the PIC. Linguistic Inquiry 41 (1), 35–82.
Plank, F. (Ed.), 1995. Double Case: Agreement by Suffixaufnahme. Oxford University Press.
Potsdam, E., 1997. English verbal morphology and VP ellipsis. In: Proceedings of the 27th Meeting of

the North East Linguistic Society. Amherst, Massachusetts, pp. 353–368.
Rooth, M., 1992. Ellipsis redundancy and reduction redundancy. In: Berman, S., Hestvik, A. (Eds.),

Proceedings of the Stuttgart Ellipsis Workshop. No. 29 in Arbeitspapiere des SFB 340.
Ross, J. R., 1969. Guess who? In: Binnick, R., Davison, A., Green, G., Morgan, J. (Eds.), Papers from

the Fifth Regional Meeting of the Chicago Linguistics Society (CLS). Vol. 5. Chicago, pp. 252–286.
Sag, I. A., 1976. Deletion and logical form. Ph.D. thesis, Massachusetts Institute of Technology, Cam-

bridge, Massachusetts.
Salvati, S., 2011. Minimalist grammars in the light of logic. In: Pogodalla, S., Quatrini, M., Retoré, C.

(Eds.), Logic and Grammar: Essays Dedicated to Alain Lecomte on the Occasion of his 60th Birthday.
Vol. 6700 of Lecture Notes in Artificial Intelligence. Springer, pp. 81–117.

SanPietro, S., Xiang, M., Merchant, J., 2012. Accounting for voice mismatch in ellipsis. In: Arnett, N.,
Bennett, R. (Eds.), Proceedings of the 30th West Coast Conference on Formal Linguistics. Cascadilla
Proceedings Project, Somerville, MA, pp. 303–312.

Stabler, E. P., 1997. Derivational minimalism. In: Retoré, C. (Ed.), Logical Aspects of Computational
Linguistics. Vol. 1328 of Lecture Notes in Computer Science. Springer-Verlag, Berlin, pp. 68–95.

Stabler, E. P., 2011. Computational perspectives on minimalism. In: Boeckx, C. (Ed.), The Oxford
Handbook of Linguistic Minimalism. Oxford Handbooks in Linguistics. Oxford University Press, New
York, Ch. 27, pp. 616–641.

Stabler, E. P., 2013. Two models of minimalist, incremental syntactic analysis. Topics in Cognitive
Science 5 (3), 611–633.

Stump, G. T., 2001. Inflectional Morphology: A Theory of Paradigm Structure. Cambridge University
Press.

Szabolcsi, A., Zwarts, F., 1992. Weak islands and an algebraic semantics for scope taking. Natural
Language Semantics 1, 235–284.

Tanaka, H., 2011. Voice mismatch and syntactic identity. Linguistic Inquiry 42 (3), 470–490.
Yoshida, M., 2010. Antecedent contained sluicing. Linguistic Inquiry 41 (2), 348–356.

34


