
Importing Montagovian Dynamics into
Minimalism

Gregory M. Kobele

University of Chicago
kobele@uchicago.edu

Abstract. Minimalist analyses typically treat quantifier scope inter-
actions as being due to movement, thereby bringing constraints there-
upon into the purview of the grammar. Here we adapt De Groote’s
continuation-based presentation of dynamic semantics to minimalist gram-
mars. This allows for a simple and simply typed compositional interpre-
tation scheme for minimalism.

1 Introduction

Minimalist grammars [33] provide a mildly context sensitive perspective on
mainstream chomskyian linguistic theory. Although semantic interpretation in
chomskyian linguistics is traditionally viewed as operating on derived struc-
tures [17], this was faithfully reformulated in terms of a compositional semantics
over derivation trees in [23]. There, in keeping with the treatment of pronouns
as denoting variables, the standard semantic domains (of individuals E and of
propositions T ) were paramaterized with the set G of assignment functions, and
a function h :

[
EG → TG → EG → TG

]
which behaves in a manner similar to

lambda abstraction was defined. Around the same time, a continuation-based
reinterpretation of dynamic semantics using the simply typed lambda calcu-
lus was presented [8]. Instead of being variables, pronouns are treated there as
(lifted) choice functions over contexts, which parameterize the type o of propo-
sitions.1

In this paper, we adopt the choice function treatment of pronouns [8], and
reformulate the non-canonical semantics of minimalist grammars [23] in these
terms. This allows for a simply typed and variable free (§3.3) presentation of
minimalist semantics, within which constraints on quantifier scoping are most
naturally formulated syntactically. This constrasts with a previous semantic in-
terpretation scheme for (a logical reconstruction of) minimalist grammars [2, 27],
which, using the lambda-mu calculus [29] to represent the meanings of sentences,
treated scope taking as a consequence of different reduction orders. (And which,
as a consequence, was not able to account for the various seemingly syntactic
constraints on scope.)

The main ‘data’ to be covered include the following sentences.
1 A greater similarity with [23] emerges if we do not lift the pronouns of [8], but

instead treat them as denoting functions from contexts to individuals. Then both
propositions and individuals must be parameterized by contexts.



1. Every boy believed that every man believed that he smiled.
2. Some man believed that every woman smiled.
3. Some man believed every woman to have smiled.

The interest in these sentences is as follows. Sentence 1 has a reading in which the
pronoun he is bound by the matrix subject every boy. This can be ‘straightfor-
wardly’ dealt with if he denotes a variable, as long as this variable has a different
name than the one bound by the embedded subject. If we identify variable names
with movement features (as we will here), this cannot be done. Sentences 2 and
3 differ in the scope taking behavior of the quantified noun phrase every woman.
In 2, this QNP must scope under the matrix subject, while in 3 either scope
order is possible.

The remainder of this paper is structured as follows. Section §2 introduces the
minimalist grammar formalism. Section 3 presents a semantics for this formalism
in terms of the simply typed lambda calculus. In §4, a grammar fragment is
presented which allows for quantifiers to scope out of arbitrarily many non-finite
clauses, but not past a tense clause boundary, as is the received wisdom in the
linguistic literature [21]. Section 5 is the conclusion.

2 Minimalist Grammars

Minimalist grammars make use of two syntactic structure building operations;
binary merge and unary move. Merge acts on its two arguments by combining
them together into a single tree. The operation move rearranges the pieces of its
single and syntactically complex argument. The generating functions merge and
move are not defined on all objects in their domain. Whether a generating func-
tion is defined on a particular object in its domain (a pair of expressions in the
case of merge, or a single expression in the case of move) is determined solely
by the syntactic categories of these objects. In minimalist grammars, syntactic
categories take the form of ‘feature bundles’, which are simply finite sequences
of features. The currently accessible feature is the feature at the beginning (left-
most) position of the list, which allows for some features being available for
checking only after others have been checked. In order for merge to apply to
arguments Γ and ∆, the heads of both expressions must have matching first
features in their respective feature bundles. These features are eliminated in the
derived structure which results from their merger. In the case of move, the head
of its argument Γ must have a feature matching a feature of the head of one of
its subconstituents’ ∆. In the result, both features are eliminated. Each feature
type has an attractor and an attractee variant (i.e. each feature is either positive
or negative), and for two features to match, one must be positive and the other
negative. The kinds of features relevant for the merge and move operations
are standardly taken for convenience to be different. For merge, the attractee
feature is a simple categorial feature, written x. There are two kinds of attrac-
tor features, =x and x=, depending on whether the selected expression is to be
merged on the right (=x) or on the left (x=). For the move operation, there is



a single attractor feature, written +y, and two attractee features, -y and 	y,
depending on whether the movement is overt (-y) or covert (	y).

A lexical item is an atomic pairing of form and meaning, along with the
syntactic information necessary to specify the distribution of these elements in
more complex expressions. We write lexical items using the notation 〈σ, δ〉, where
σ is a lexeme, and δ is a feature bundle.

Complex expressions are written using the notation of [33] for the ‘bare phrase
structure’ trees of [5]. These trees are essentially X-bar trees without phrase and
category information represented at internal nodes. Instead, internal nodes are
labeled with ‘arrows’ > and <, which point to the head of their phrase. A tree
of the form [< α β] indicates that the head is to be found in the subtree α, and
we say that α projects over β, while one of the form [> α β] that its head is in
β, and we say that β projects over α. Leaves are labeled with lexeme/feature
pairs (and so a lexical item 〈α, δ〉 is a special case of a tree with only a single
node). The head of a tree t is the leaf one arrives at from the root by following
the arrows at the internal nodes. If t is a bare phrase structure tree with head
h, then I will write t[h] to indicate this. (This means we can write lexical items
〈α, δ〉 as 〈α, δ〉[〈α, δ〉].) The merge operation is defined on a pair of trees t1, t2
if and only if the head of t1 has a feature bundle which begins with either =x
or x=, and the head of t2 has a feature bundle beginning with the matching x
feature. The bare phrase structure tree which results from the merger of t1 and
t2 has t1 projecting over t2, which is attached either to the right of t1 (if the first
feature of the head was =x) or to the left of t1 (if the first feature of the head
was x=). In either case, both selection features are checked in the result.

merge(t1[〈α, =xδ〉], t2[〈β, xγ〉]) =
<

t1[�α, δ�] t2[�β, γ�]

merge(t1[〈α, x=δ〉], t2[〈β, xγ〉]) =
>

t2[�β, γ�] t1[�α, δ�]

If the selecting tree is both a lexical item and an affix (which I notate by means
of a hyphen preceding/following the lexeme in the case of a suffix/prefix), then
head movement is triggered from the head of the selected tree to the head of the
selecting tree.

merge(〈-α, =xδ〉, t2[〈β, xγ〉]) =
<

�β-α, δ� t2[��, γ�]

The operation move applies to a single tree t[〈α, +yδ〉] only if there is exactly
one leaf ` in t with matching first feature -y or 	y.2 This is a radical version of
the shortest move constraint [5], and will be called the SMC – it requires that an
2 Other constraints have been explored in [12].



expression move to the first possible landing site. If there is competition for that
landing site, the derivation crashes (because the losing expression will have to
make a longer movement than absolutely necessary). If it applies, move moves
the maximal projection of ` to a newly created specifier position in t (overtly,
in the case of -y, and covertly, in the case of 	y), and deletes both licensing
features. To make this precise, let t{t1 7→ t2} denote the result of replacing all
subtrees t1 in t with t2, for any tree t, and let `Mt denote the maximal projection
of ` in t, for any leaf `.

move(t[〈α, +yδ]) =
>

t�[�β, γ�] t[�α, δ�]{t� �→ ��, ��}
(where t′ = 〈β, -yγ〉Mt )

move(t[〈α, +yδ]) =
>

��, γ� t[�α, δ�]{t� �→ t�[�β, ��]}
(where t′ = 〈β,	yγ〉Mt )

2.1 The Shortest Move Constraint

Minimalist grammars with the shortest move constraint were proven [28] to
be weakly equivalent to multiple context free grammars [31]. The proof that
minimalist languages are contained in the MCFLs proceeds by constructing an
equivalent MCFG whose derivation trees are identical to those of the minimalist
grammar (modulo a projection). Each component of a derived tuple of strings
in the target MCFG corresponds to either a moving subexpression in the MG
or to the fixed head and non-moving material around it. The shortest move
constraint ensures that there is a finite upper bound on the number of possible
moving subexpressions, and thus on the dimension of the target MCFG.

The derived trees of Minimalist Grammars, while not corresponding to so
natural a class due to non-logical restrictions (such as the distribution of traces),
are contained [26] in the tree languages derivable by multiple regular tree gram-
mars, which are MCFGs where the derived tuples contain trees instead of strings
[10].

These observations motivate the idea that, at least in the context of the
SMC, the natural data structure for the objects derived by minimalist grammars
are tuples, where all positions but the first are indexed by feature types. An
alternative presentation of this data structure is as a store, in the sense of [6],
which is a pair of an object and a finite map from feature types to objects. In
the case of syntax, the objects are trees. In the case of semantics, they will turn
out to be simply typed lambda terms, as explained next.

2.2 Derivations

A derivation tree is an element of the term language over the ranked alphabet
A0 ∪ A1 ∪ A2, where A0 = Lex is the set of nullary symbols, A1 = {move}



is the set of unary symbols, and A2 = {merge} the set of binary symbols. As
a consequence of the translation of minimalist grammars into multiple context
free grammars [28, 16], and as described in [26], the set of derivation trees in
a minimalist grammar of an expression with unchecked feature string γ at the
root and no features anywhere else is regular.

For reasons of space (and because the derivation tree is more informative than
any single derived tree), we will present only derivation trees for the expressions
in this paper.

3 Minimalist Semantics

Here we present a rule-by-rule semantic interpretation scheme for minimalist
grammars. The denotation of a syntactic object t is a pair of a simply typed
lambda term and a quantifier store. A quantifier store is a partial function from
feature types to simply typed terms. The idea is that a syntactic object t with
a moving subexpression t′ = 〈β, -yγ〉Mt has a quantifier store Q such that Q(y)
is the stored meaning of t′.

We use lower case greek letters (α, β, . . .) to stand for denotations of syn-
tactic objects (pairs of simply typed lambda terms and quantifier stores), and
the individual components of these denotations will be referred to with the cor-
responding roman letters in lowercase for the lambda term component, and in
uppercase for the store component.3 Thus, α = 〈a,A〉.

We treat lexical items as being paired with the empty store.

Quantifier stores With ∅ we denote the empty quantifier store, such that for
all feature types f, ∅(f) is undefined. If two quantifier stores Q1,Q2 have disjoint
domains,4 then Q1 ∨Q2 denotes the store such that:

Q1 ∨Q2(f) :=
{
Q1(f) if defined
Q2(f) otherwise

Let Q be a quantifier store, and f,g feature types. Then Q/f is the quantifier
store just like Q except that it is undefined on f, Q[f := α] is the store just like
Q except that it maps f to α, and Qf←g is the store just like Q/g except that
it maps f to whatever Q mapped g to.

Variable naming Our approach to variable naming is from [32], and is based
on the observation that, in the context of the SMC, the type of the next feature
of a moving expression uniquely identifies it. We will thus need no free individual
variables (those of type e) other than these, and thus we subscript them with
feature types.
3 Lower case greek letters also have been used to stand for feature sequences, lexemes,

etc. This overloading is hoped to be clear from context.
4 If this is not the case, then the syntactic expressions they correspond to cannot be

syntactically merged, as this would result in a violation of the SMC.



3.1 Merge

There are two possible semantic reflexes of syntactic merger. The first case is
function application from one argument to the other (in a type driven manner).
In the second case one of the arguments is a moving expression, and the other
denotes a function from individuals. Here we insert it into the store indexed
by the next licensee feature type it will move to check. The other argument is
applied to a variable of the same name as the index under which the moving
argument was stored. We denote these two semantic operations mergeApp and
mergeStore.5

mergeApp(α, β) =

 〈a(b), A ∪B〉
or

〈b(a), B ∪A〉

mergeStore(α, β) = 〈a(xf ), A ∪B[f := b]〉
(where β’s next feature is -f)

3.2 Move

There are multiple possible semantic reflexes of syntactic movement as well.6

The first, moveEmpty, is used when the moving expression has previously
taken scope. The second, moveLater, will be used when the moving expression
is going to take scope in a later position. The third, moveNow, is used when the
moving expression is going to take scope in this position. Here, the appropriate
variable is abstracted over, and the resulting predicate is given as argument to
the stored expression. In the below, we assume -f to be the feature checked by
this instance of move.

moveEmpty(α) = 〈a,A〉
where A is undefined at f

moveLater(α) = 〈(λxf .a)(xg), Ag←f 〉
for -g the next feature to check

moveNow(α) = 〈A(f)(λxf .a), A/f〉
5 Note that the condition on mergeStore refers to the features of the moving expres-

sion. This information is present in the categories used in the MCFG translation of
a minimalist grammar, and is a finite state bottom up relabeling of the standard
minimalist derivation tree. Thus while not a homomorphic interpretation of mini-
malist derivations, it is a homomorphic interpretation of a finite state relabeling of
minimalist derivations, or a transductive interpretation of minimalist derivations.

6 [24] argues for the inclusion of function composition, in order to account for inverse
linking constructions, which are beyond the scope of this paper.



3.3 Going Variable Free

As observed in [23], remnant movement wreaks havoc with the interpretation
of movement dependencies presented here. The problem is that we can end up
with a term in which variables remain free, with the lambda which was supposed
to have bound them to their right. The reason this problem exists is that the
semantics presented here treats each moving expression independently of all
others, while the existence of remnant movement forces us to ‘coordinate’ the
interpretations of two moving expressions where one contains the base position of
the other. There are various strategies for resolving this difficulty [23], however,
the one which suggests itself in the present simply typed context is nice because
it simply eliminates free variables (named after features or not).

The basic idea is straightforward: an expression α = 〈a,A〉 ‘abbreviates’
an expression α′ = 〈λxf1 , . . . , xfn

.a, A〉, where the domain of A is exactly the
set of features f1, . . . , fn. In other words, we take the ‘main denotation’ of an
expression to have the variables expressions in the store may have introduced
in it already and always bound. For any store A, define var(A) to be a fixed
enumeration of the domain of A (viewed as variables), and Λ(A). φ to be a
prefix of lambda abstractions over the domain of A viewed as variables. Then
the mergeApp rule can be given as follows:

mergeApp(α, β) =

Λ(A ∪B). a(var(A))(b(var(B))), A ∪B〉
or

〈Λ(B ∪A).b(var(B))(a(var(A))), B ∪A〉

The rules moveEmpty and moveLater are also simply recast in these terms.

moveEmpty(α) = 〈Λ(A).a(var(A)), A〉
moveLater(α) = 〈Λ(Aj←i).(λxi.a(var(A)))(xj), Aj←i〉

Not everything is so straightforward, unfortunately. What are we to do with
the mergeStore rule, when the expression whose denotation is to be stored
itself contains moving pieces? An example is verb phrase topicalization (in a
sentence like “Use the force, Luke will”). In a typical minimalist analysis of this
construction, the lexical item will merges with the verb phrase tk use the force,
which itself contains a moving expression, the subject Lukek. Thus, under our
‘variable free’ view, we have a VP with main denotation of type et (because its
store contains the denotation of Luke), but will is of type tt. There is a natural
resolution to this (self-inflicted) problem, which implements the transformational
observation that ‘remnant movement obligatorilly reconstructs’ [4]. We split the
mergeStore rule into mergeStoreMB,7 which simply stores expressions with
empty stores, and mergeStoreHO,8 which stores the denotation of a merging

7 For ‘Monadic Branching’ [22].
8 For ‘Higher Order’.



expression with moving pieces, and inserts a higher order variable.

mergeStoreMB(α, 〈b, ∅〉) = 〈Λ(X). a(var(A))(xi), X〉
(for X = A[i := b], and ty(b) = (ty(xi)→ γ)→ δ.)

mergeStoreHO(α, β) = 〈Λ(X). a(var(A))(xi(var(B))), X〉
(for X = A ∪B[i := b], and ty(xi) = ty(b).)

The quantifier store holds both generalized quantifiers, as before, as well as
relations like λx.x uses the force. This latter type of expression seems to be
used as an argument of some operator (such as a focus operator). Accordingly,
we adjust the moveNow rule to allow a type driven retrieval scheme:

moveNowFunc(α) = 〈Λ(X). A(i)(λxi.a(var(A)), X〉 (for X = A/i)
moveNowArg(α) = 〈Λ(X). λxi.a(var(A))(A(i)), X〉 (for X = A/i)

This is not a particularly interesting semantic treatment of remnant movement,
as it simply implements obligatory ‘semantic reconstruction’ [7]. To properly im-
plement linguistic analyses, it seems that some lexical items need access to the
stores of their arguments. This would allow us to assign the following interpreta-
tion to a topicalization lexical item, which checks the topic feature of a moving
expression, and returns a bipartite structure of the form top(φ)(ψ), which asserts
that ψ is the topic of φ: [[〈ε, =t +top c〉]](α) = Λ(A).top(λxtop.a(v(A)))(xtop).
This and alternatives need to be worked out further.

3.4 Determining Quantifier Scope

It is natural to view the minimalist grammar operations as pairs of syntactic
and semantic functions. Thus, for example, we have both 〈merge,mergeApp〉
and merge,mergeStore〉. The semantic interpretation rules implement a re-
construction theory of quantifier scope [19], according to which the positions in
which a quantified noun phrase can take scope are exactly those through which
it has moved.

A shortcoming of this proposal as it now stands is that the yield language of
the well formed derivation trees is ambiguous (in contrast to the uninterpreted
minimalist grammar system [15]). Because minimalist grammar derivation tree
languages are closed under intersection with regular sets [14, 25], any regular
strategy for determining which of the possible positions a quantified noun phrase
should be interpreted in can be used to give control over scope taking back to the
lexicon. A simple such strategy is to assign to a licensee feature which may be
used at moveNow a particular diacritic. A moving expression is then required
to take scope at the highest (derivational) position permitted in which it checks
its features, or in its merged position, should no other possibility obtain. We
will adopt this proposal here, writing a licensee feature of type f which requires
scope taking with a hat (-f̂ or 	f̂), and one which does not without (-f or 	f).
This move restores the functionality of the relation between sequences of lexical



items and well-formed derivations, at the cost of increasing the size of the lexicon
(by an additive factor).

3.5 Lexical Interpretations

A model is given by a set of atomic individuals E, a set of propositional inter-
pretations T , and an interpretation function I assigning to each lexical item a
model theoretic object in a set built over E and T . We assume throughout that I
assigns to lexical items denotations of the ‘standard’ type; common nouns denote
functions from individuals to propositions, n-ary verbs functions from n individ-
uals to propositions, determiners relations between common noun denotations,
etc.

We call the type of atomic individuals e, and that of propositions as o. Follow-
ing [8], let the type of a (discourse) context be γ, and a sentence (to be revised
shortly) to evaluate to a proposition only in a context (i.e. to be a function
from contexts to propositions). Contexts will serve here to provide the input to
pronoun resolution algorithms. For simplicity, we will treat them as lists of indi-
viduals (with [8], but see [3] for a more sophisticated treatment). The operation
of updating a context c ∈ γ with an individual a is written a :: c. Pronoun res-
olution algorithms select individuals from contexts, and are generically written
sel.9 We will assume that the individual selected from the context is actually
present in the context (sel(γ) ∈ γ), leaving aside the question of empty contexts,
and more precise conditions on the identity of the selected individual.

To deal with dynamic phenomena in his system, [8] lifts the type of a sentence
once again to be a function from contexts (of type γ) and discourse continuations
(functions of type γo) to propositions; an expression of type γ(γo)o, which we
will abbreviate as t. The idea is that a sentence is interpreted as a function from
both its left context c and its right context φ to propositions.

With the exception of verb denotations, and expressions (such as relative
pronouns) which are analysed there as taking verb denotations as arguments,
we are able to simply take over the denotations assigned to lexical items from
[8].

The style of analysis popular in the minimalist syntactic literature (and fol-
lowed here), makes less straightforward a homomorphic relation between syn-
tactic and semantic types. For example, the subject of a sentence is typically
selected by a ‘functional head’, i.e. a lexical item other than the verb.

Relations We first look at the denotations of n-ary relation denoting lexical
items, such as nouns and verbs. While nouns are treated here just as in [8], we
treat verbs as on par with nouns, not, as does [8], as functions which take gen-
eralized quantifier denotations as arguments. This is because, in the minimalist
grammar system, scope is dealt with by movement, not by modifying the verbal
denotation (as is standard in categorial approaches to scope [18]).
9 [9] gives pronoun resolution algorithms an additional property argument, and pro-

poses that they select an individual with that property from the context.



A common noun, such as monkey, which is interpreted in the model as a
function monkey of type eo mapping entities to true just in case they are
monkeys, denotes a function of type et:

[[monkey]](x)(c)(φ) := monkey(x) ∧ φ(c)

Similarly, a transitive verb, such as eat, interpreted as a function eat : eeo
mapping pairs of entities to true just in case the second ate the first, denotes a
function of type eet:

[[eat]](x)(y)(c)(φ) := eat(x)(y) ∧ φ(c)

In general, given a function f : e · · · e︸ ︷︷ ︸
n times

o, we lift it to lift(f) : e · · · e︸ ︷︷ ︸
n times

t:

lift(f)(x1) · · · (xn)(c)(φ) := f(x1) · · · (xn) ∧ φ(c)

The conjunction and conjunct φ(c) common to all such predicates cashes out
the empirical observation that propositions in a discourse combine conjunctively
[30].

We adopt the following convention regarding arguments of type o (propo-
sitions): they are lifted to arguments of type t, and are passed as arguments
the left and right context parameters of the lifted lexical item. As an example,
take believe to be interpreted as a function of type oeo; a relation between a
proposition (the belief) and an individual (the believer).

lift(believe)(S)(x)(c)(φ) := believe(S(c)(φ))(x) ∧ φ(c)

This illustrates a difficulty with the dynamic aspects of the system; it is not
obvious how to allow a context to pick up referents contained in a different branch
(here the propositional argument to believe) than which the continuation is
(here in a position ‘c-commanding’ this argument). Should the propositional
argument to believe contain a proper name, for example, this should be able
to be found in the context of the remainder of the sentence. We do not dwell
further on this difficulty here (though see footnote 11).

Noun phrases Traditional noun phrases (which are here, in line with [1], called
‘determiner phrases’, or DPs) such as Mary, he, or every monkey, denote func-
tions g : (et)t. Proper names are interpreted as generalized quantifiers of type
(eo)o, which are then lifted to the higher type via the operation gq:

gq(G)(P )(c)(φ) = G(λxe. P (x)(c)(λd.φ(x::d)))

Note that the individual ‘referred to’ by the generalized quantifier is incorporated
into the context (x::c) of the continuation of the sentence (φ). This permits
future pronouns to pick up this individual as a possible referent. As an example,
Mary = λPeo.P (m). And so gq(Mary) = λc, φ.P (m)(c)(λd.φ(m::d)).

As mentioned above, we interpret pronouns, not as variables, but as noun
phrase denotations involving pronoun resolution algorithms: sel : γe.

[[pro]](P )(c)(φ) := P (sel(c))(c)(φ(c))



Determiners The system presented in [8] is limited to quantifiers of type
〈1〉.10,11 Accordingly, we restrict ourselves to the standard universal and exis-
tential quantifiers ∀,∃ : (eo)o. Determiners every and some are of type (et)(et)t,
and denote the following functions.

[[every]](P )(Q)(c)(φ) := ∀(λx.¬P (x)(c)(λd.¬Q(x)(x :: d)(λd.>)) ∧ φ(c))
[[some]](P )(Q)(c)(φ) := ∃(λx.P (x)(c)(λd.Q(x)(x :: d)(φ)))

As explained by De Groote, the negations inside of the lambda term representing
the denotation of every make the conjunctive meanings of the properties P and
Q equivalent to the desired implication. As an example, take P = [[man]] =
λx, c, φ.man(x) ∧ φ(c) and take Q = [[smile]] = λx, c, φ.smile(x) ∧ φ(c). Then
[[every]]([[man]])([[smile]])(c)(φ) β-reduces to the following lambda term, taking
A→ B as an abbreviation for ¬(A ∧ ¬B).

∀(λx.man(x)→ smile(x) ∧ >) ∧ φ(c)

Finally, > stands for the always true proposition. As it always occurs as part of
a conjunction, we simply and systematically replace A∧> everywhere with the
equivalent A.

Everything Else All other lexical items are interpreted as the identity function
of the appropriate type. While some (such as auxiliaries) should be assigned a
more sophistiated denotation in a more sophisticated fragment, others (such as
most of the ‘functional’ lexical items) play no obvious semantic role, and are
there purely to express syntactic generalizations.

4 A Fragment

There are two main constructions addressed in this section. First (in §4.1), we
show the necessity of de Groote’s discourse contexts (or something like them)
for the variable naming scheme adopted here. Then (in §4.2), as advertised in
the abstract, we illustrate the ‘tensed-clause boundedness’ of quantifier raising.

We draw lexical items mostly unchanged from [23] (see figure 1). The frag-
ment derives the following sentences, with the indicated scope relations.

4. Some man believed that every woman smiled. (∃ > ∀)
5. Some man believed every woman to have smiled. (∃ > ∀, ∀ > ∃)

Although the number of lexical items (especially in the verbal domain) may
look at first blush imposing, there are two things to bear in mind. First, most of
them are (intended to be) ‘closed class’ items, meaning that they needn’t ever
10 A quantifier of type 〈n1, . . . , nk〉 takes k predicates of arities n1,. . . , nk respectively,

and returns a truth value.
11 The extension to quantifiers of type 〈n〉 for any n is straightforward, but how it

should be extended to handle binary quantifiers (of type 〈1, 1〉) is non-obvious.



name features pronunciation meaning
that =s t “that” id

-ed =p +k +q s “-ed” id

to =p t “to” id

have =en p “have” id

-en =v en “-en” id

Asp =v p “ε” id

Qv =v +q v “ε” id

v =V =d v “ε” id

AgrO =V +k V “ε” id

smile =d v “smile” lift(smile)
praise =d V “praise” lift(praise)
believe =t V “believe” lift(believe)

(a) verbal elements

name features pronunciation meaning
dD =D d -k 	q “ε” id

dQ =D d -k 	q̂ “ε” id

every =n D “every” [[every]]
some =n D “some” [[some]]
man n “man” lift(man)
woman n “woman” lift(woman)
pro D “he” [[pro]]
j D “John” gq(John)
b D “Bill” gq(Bill)

(b) nominal elements

Fig. 1: Lexical items

R(a)(b) = merge(a, b)
V (a) = move(a)

ObjK(v) = V (R(AgrO)(v))
ObjQ(v) = V (R(Qv)(v))
Sub(s)(v) = R(R(v)(v))(s)

tv(s)(v)(o) = ObjQ(Sub(s)(ObjK(R(v)(o))))

iv(s)(v) = R(v)(s)
to(v) = R(to)(R(have)(R(-en)(v)))
pst(v) = V (V (R(-ed)(R(Asp)(v))))

c = R(that)
d = R(dD)
q = R(dQ)

Fig. 2: Abbreviations

be added to as more novel words are encountered. Second, these closed class
items in fact participate in a very regular way in derivations. We introduce some
abbreviations (figure 2), so as to be able to concisely describe derivations of
sentences.12

The sentence in 6 has the two (semantically equivalent) derivations repre-
sented in 7, and interpretation as in 8.

6. Some man smiled.
7. pst(iv(f(some)(man))(smile)), for f ∈ {D,Q}
8. λc, φ. ∃(λx. man(x) ∧ smile(x) ∧ φ(c))

The transitive sentence in 9 has the derivation in 10, which corresponds to
the object wide scope reading in 11, and the derivation in 12 which corresponds
to the subject wide scope reading in 13.

9. Some woman praised every man.
10. pst(tv(d(some)(woman))(praise)(q(every)(man)))
11. λc, φ.∀(λx.man(x)→ ∃(λy.woman(y) ∧ praise(x)(y))) ∧ φ(c)
12. pst(tv(q(some)(woman))(praise)(q(every)(man)))
13. λc, φ.∃(λy.woman(y) ∧ ∀(λx.man(x)→ praise(x)(y)) ∧ φ(y :: c))
12 The ‘abbreviations’ in figure 2 are λ-terms over derivation trees. The naming of

bound variables is purely mnemonic, as they are all of atomic type.



4.1 Pronouns are not variables

The idea that pronouns are to be rendered as variables in some logical language is
widespread in the semantic literature (though see [11, 20] for some alternatives).
However in the present system, where possible binders (DPs) bind variables
according to the reason for their movement (of which there are only finitely
many), sentences like the below prove an insurmountable challenge to this näıve
idea.

14. Every boy believed that every man believed that he smiled.

In sentence 14, the pronoun can be bound either by every boy or by every man.
However, if it ‘denotes’ a variable, it must be one of xk or xq, and both of these
are bound by the closer DP, every man, leaving no possibility for the reading
in which every boy smiles.13 Here we see that treating pronouns as (involving)
pronoun resolution algorithms provides a simple way to approach a resolution
to this problem.14

Sentence 14 has its equivalent derivations in 15, with meaning representation
in 16.

15. pst(iv (f(every)(boy))
(R(believe)(c(pst(iv (g(every)(man))

(R(believe)(pst(iv(h(pro)(smile))))))))))
for f, g, h ∈ {d, q}

16. λc, φ.∀(λx. boy(x)→
believe(∀(λy. man(y)→

believe(smile(sel(y :: x :: c)))(y))(x)) ∧ φ(c)

Crucially, in every context, the input to the pronoun resolution algorithm
includes the (bound) variables x and y, the choice of which would result in the
bound reading of the pronoun for every boy and every man respectively.

4.2 The tensed-clause boundedness of QR

Now we present derivations for sentences 4 and 5 (repeated below as 24 and 17).
We begin with 17, which has two surface scope readings which correspond to de
re (19) and de dicto (21) beliefs, and an inverse scope reading (in 23).

17. Some man believed every woman to have smiled.
18. pst(tv(f(some)(man))(believe)(to(iv(d(every)(woman))(smile)))),

where f ∈ {d, q}
19. λc, φ.∃(λx.man ∧ believe(∀(λy.woman(y)→ smile(y)))(x) ∧ φ(x :: c))
20. pst(tv(q(some)(man))(believe)(to(iv(q(every)(woman))(smile))))

13 In response to this problem, [23] abandons the idea of [32] that variables are named
after movement dependencies, and with it the simply typed lambda calculus.

14 It is not in itself an answer to this problem, as it introduces an unanalyzed ‘unknown’
in the form of a pronoun resolution algorithm.



21. λc, φ.∃(λx.man ∧ ∀(λy.woman(y)→ believe(smile(y))(x)) ∧ φ(x :: c))
22. pst(tv(d(some)(man))(believe)(to(iv(q(every)(woman))(smile))))
23. λc, φ.∀(λy.woman→ ∃(λx.man(x) ∧ believe(smile(y))(x))) ∧ φ(c)

Now we turn to 24. Here the inverse scope reading is not available for the
simple reason that a tensed clause (one with the lexical item -ed) forces a q
feature to be checked. Thus the embedded DP every woman does not enter into
a movement relationship with anything after the matrix subject is present.

24. Some man believed that every woman smiled.
25. pst(iv(f(some)(man))(R(believe)(c(pst(iv(g(every)(woman))(smile)))))),

for all f, g ∈ {q, d}
26. λc, φ.∃(λx.man ∧ believe(∀(λy.woman(y)→ smile(y)))(x) ∧ φ(x :: c))

The tensed-clause boundedness of quantifier scope is a fragile and analysis
dependent property; a simple ‘splitting’ of the -ed lexical item into one of the
form 〈−ed, =p +k s〉 and another of the form 〈ε, =s +q s〉 suddenly makes the
inverse scope reading in sentence 24 derivable. There are two things to say at
this point. First, the ‘actual’ generalization about scope taking inherent in (this
version of) the minimalist grammar framework is that an expression may take
scope over only those others dominated by a node in the derivation tree with
which it enters into a feature checking relationship. This happens to coincide
in our fragment with tensed clauses. Second, the intuitive generalizations this
fragment is making are (1) that scope can be checked at the VP and at the S level,
and (2) that scope must be checked as soon as possible. If this latter condition
is formulated as a transderivational constraint [13], and applied to derivations
in the alternative fragment (in which the -ed lexeme is ‘split’ as per the above
remarks), the present fragment can be viewed as the result of ‘compiling out’
the effect of the constraint on the alternative fragment.

5 Conclusion

We have shown how De Groote’s simply typed account of dynamic phenomena
can be used in a minimalist grammar. This allows us to maintain Stabler’s
ideas about variables in movement dependencies, as well as to use nothing but
the simply typed lambda calculus to deliver the same meanings as the more
standard ‘LF’ interpretative accounts of semantics in the chomskyian tradition
(modulo pronouns). What is doing the work here is the rejection of the pronouns-
as-variables view, in favor of a pronouns-as-functions-from-contexts view. This
latter seems to be a novel perspective on the the pronouns-as-definite-description
view [11] (especially in the light of [9]).

In order to preserve the functional relation between derivations and meanings,
we have incorporated information into the feature system (whether or not a
licensee feature has a hat diacritic). However, this strategy seems non-ideal, as
it results in cases of spurious ambiguity (the worst offender in this paper was
example 1, with six equivalent derivations).



Finally, we have noted that there are open questions regarding the best way of
incorporating sentential complement embedding verbs and type 〈1, 1〉 quantifiers
into the dynamism-via-continuation framework used here [8].

References

1. Abney, S.P.: The English Noun Phrase in its Sentential Aspect. Ph.D. thesis, Mas-
sachusetts Institute of Technology (1987)

2. Amblard, M.: Calculs de représentations sémantiques et syntaxe générative: les
grammaires minimalistes catégorielles. Ph.D. thesis, Université Bordeaux I (2007)

3. Asher, N., Pogodalla, S.: A montagovian treatment of modal subordination. In:
Li, N., Lutz, D. (eds.) Semantics and Linguistic Theory (SALT) 20. pp. 387–405.
eLanguage (2011)

4. Barss, A.: Chains and Anaphoric Dependence: On Reconstruction and its Impli-
cations. Ph.D. thesis, Massachusetts Institute of Technology (1986)

5. Chomsky, N.: The Minimalist Program. MIT Press, Cambridge, Massachusetts
(1995)

6. Cooper, R.: Quantification and Syntactic Theory. D. Reidel, Dordrecht (1983)

7. Cresti, D.: Extraction and reconstruction. Natural Language Semantics 3, 79–122
(1995)

8. de Groote, P.: Towards a montagovian account of dynamics. In: Gibson, M., Howell,
J. (eds.) Proceedings of SALT 16. pp. 1–16 (2006)

9. De Groote, P., Lebedeva, E.: Presupposition accommodation as exception han-
dling. In: Fernandez, R., Katagiri, Y., Komatani, K., Lemon, O., Nakano, M. (eds.)
The 11th Annual Meeting of the Special Interest Group on Discourse and Dialogue
- SIGDIAL 2010. pp. 71–74. Association for Computational Linguistics, Tokyo,
Japan (2010)

10. Engelfriet, J.: Context-free graph grammars. In: Rozenberg, G., Salomaa, A. (eds.)
Handbook of Formal Languages, vol. 3: Beyond Words, chap. 3, pp. 125–213.
Springer Verlag (1997)

11. Evans, G.: Pronouns. Linguistic Inquiry 11(2), 337–362 (1980)

12. Gärtner, H.M., Michaelis, J.: Some remarks on locality conditions and minimalist
grammars. In: Sauerland, U., Gärtner, H.M. (eds.) Interfaces + Recursion = Lan-
guage?, Studies in Generative Grammar, vol. 89, pp. 161–195. Mouton de Gruyter,
Berlin (2007)

13. Graf, T.: A tree transducer model of reference-set computation. UCLA Working
Papers in Linguistics 15, Article 4 (2010)

14. Graf, T.: Closure properties of minimalist derivation tree languages. In: Pogodalla,
S., Prost, J.P. (eds.) LACL 2011. Lecture Notes in Artificial Intelligence, vol. 6736,
pp. 96–111 (2011)

15. Hale, J.T., Stabler, E.P.: Strict deterministic aspects of minimalist grammars. In:
Blache, P., Stabler, E.P., Busquets, J., Moot, R. (eds.) Logical Aspects of Compu-
tational Linguistics, Lecture Notes in Computer Science, vol. 3492, chap. 11, pp.
162–176. Springer (2005)

16. Harkema, H.: Parsing Minimalist Languages. Ph.D. thesis, University of California,
Los Angeles (2001)

17. Heim, I., Kratzer, A.: Semantics in Generative Grammar. Blackwell Publishers
(1998)



18. Hendriks, H.: Studied Flexibility: Categories and types in syntax and semantics.
Ph.D. thesis, Universitaet van Amsterdam (1993)

19. Hornstein, N.: Movement and chains. Syntax 1(2), 99–127 (1998)
20. Jacobson, P.: Towards a variable-free semantics. Linguistics and Philosophy 22(2),

117–184 (1999)
21. Johnson, K.: How far will quantifiers go? In: Martin, R., Michaels, D., Uriagereka,

J. (eds.) Step by Step: Essays on Minimalist Syntax in Honor of Howard Lasnik,
chap. 5, pp. 187–210. MIT Press, Cambridge, Massachusetts (2000)

22. Kanazawa, M., Michaelis, J., Salvati, S., Yoshinaka, R.: Well-nestedness properly
subsumes strict derivational minimalism. In: Pogodalla, S., Prost, J.P. (eds.) Logi-
cal Aspects of Computational Linguistics, LACL 2011. Lecture Notes In Computer
Science, vol. 6736, pp. 112–128. Springer, Berlin (2011)

23. Kobele, G.M.: Generating Copies: An investigation into structural identity in lan-
guage and grammar. Ph.D. thesis, University of California, Los Angeles (2006)

24. Kobele, G.M.: Inverse linking via function composition. Natural Language Seman-
tics 18(2), 183–196 (2010)

25. Kobele, G.M.: Minimalist tree languages are closed under intersection with recog-
nizable tree languages. In: Pogodalla, S., Prost, J.P. (eds.) LACL 2011. Lecture
Notes in Artificial Intelligence, vol. 6736, pp. 129–144 (2011)

26. Kobele, G.M., Retoré, C., Salvati, S.: An automata theoretic approach to minimal-
ism. In: Rogers, J., Kepser, S. (eds.) Proceedings of the Workshop Model-Theoretic
Syntax at 10; ESSLLI ’07. Dublin (2007)

27. LeComte, A.: Semantics in minimalist-categorial grammars. In: de Groote, P. (ed.)
FG 2008. pp. 41–59. CSLI Press (2008)

28. Michaelis, J.: On Formal Properties of Minimalist Grammars. Ph.D. thesis, Uni-
versität Potsdam (2001)

29. Parigot, M.: λµ-calculus: An algorithmic interpretation of classical natural de-
duction. In: Voronkov, A. (ed.) Logic Programming and Automated Reasoning.
Lecture Notes in Computer Science, vol. 624, pp. 190–201. Springer-Verlag, Berlin
Heidelberg (1992)

30. Pietrowski, P.M.: Events and Semantic Architecture. Oxford University Press
(2005)

31. Seki, H., Matsumura, T., Fujii, M., Kasami, T.: On multiple context-free grammars.
Theoretical Computer Science 88, 191–229 (1991)

32. Stabler, E.P.: Computing quantifier scope. In: Szabolcsi, A. (ed.) Ways of Scope
Taking, chap. 5, pp. 155–182. Kluwer, Boston (1997)

33. Stabler, E.P.: Derivational minimalism. In: Retoré, C. (ed.) Logical Aspects of
Computational Linguistics, Lecture Notes in Computer Science, vol. 1328, pp. 68–
95. Springer-Verlag, Berlin (1997)


