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Abstract

In this paper I use the formal framework of minimalist grammars to im-
plement a version of the traditional approach to ellipsis as ‘deletion under
syntactic (derivational) identity’, which, in conjunction with canonical anal-
yses of voice phenomena, immediately allows for voice mismatches in verb
phrase ellipsis, but not in sluicing. This approach to ellipsis is naturally im-
plemented in a parser by means of threading a state encoding a set of pos-
sible antecedent derivation contexts through the derivation tree. Similarities
between ellipsis and pronominal resolution are easily stated in these terms.
In the context of this implementation, two approaches to ellipsis in the trans-
formational community are naturally seen as equivalent descriptions at dif-
ferent levels: the LF-copying approach to ellipsis resolution is best seen as
a description of the parser, whereas the phonological deletion approach a
description of the underlying relation between form and meaning.

1 Introduction

In the transformational grammar community, analyses of ellipsis which involve re-
constructing a syntactic structure have been proposed (Lees, 1960) and reproposed
(Chung et al., 1995; Merchant, 2001; Kobele, 2009). The structure reconstructed
stands in some, often syntactic, relation to some other syntactic structure, its an-
tecedent. In conjunction with canonical transformational analyses of basic sen-
tence structure, such as a ‘phrasal’ (as opposed to a ‘lexical’) approach to passive
constructions (Jaeggli, 1986), this kind of approach to ellipsis is able to present a
unified theory which neatly captures some differences between elliptical phenom-
ena in the degree to which they are sensitive to syntactic properties of antecedents
(Merchant, 2007, 2008; Tanaka, 2011).

Two mechanisms for dealing with ellipsis are prominent in today’s transfor-
mational literature: deletion and copying. The first views ellipsis as a process of
syntactically conditioned phonological deletion (Merchant, 2001). This approach
must be complemented with an appropriate ‘identity condition’, which allows a
phrase to be deleted just in case it is identical to some other phrase. In this ap-
proach, an ellipsis site might be assigned an arbitrarily complex syntactic structure.
The second approach, more in line with perspectives in other approaches to gram-
mar, views ellipsis as involving a process of LF-copying of an antecedent syntactic
structure into a syntactically atomic empty category (Chung et al., 1995).1

In the context of the formal framework of minimalist grammars (Stabler, 1997),
a mildly context-senstitive (Michaelis, 2001) formalization of the minimalist pro-
gram (Chomsky, 1995), I use the mechanism of deletion to implement a modern

1It may seem that the LF-copying approach is to be preferred on the grounds that it does not re-
quire a seperate ‘identity condition’, and is thus more parsimonious. A more uniform perspective on
the deletion and copying approaches, which renders them equally complex, is had when we view the
copying approach as follows. First, we build a structure with an ellipsis site (a primitive formative).
Next, we replace the ellipsis site with some complex structure, under the condition that this structure
is identical to some other phrase. Thus, LF-copying is here seen as LF-insertion under identity.



version of the ‘derivational identity’ approach to ellipsis of Lees (1960). Borrow-
ing ideas from Kobele (2009) and Lichte and Kallmeyer (2010) I take phonological
deletion to be licensed by exact identity of derivation tree contexts (trees with holes
at the leaves). The main advantages of this approach to deletion are (1) that it is
naturally implemented in a parser (whose job it is to reconstruct derivation trees),
and (2) that in conjunction with a compositional semantics (as in Kobele (2012c))
it allows derivation tree contexts to be replaced by their semantic interpretations.
Furthermore, in the context of this formalization, the deletion and LF-copying ap-
proaches to ellipsis can be viewed as equivalent descriptions at different levels (in
the sense of Marr (1982)): the LF-copying approach describes the algorithmic re-
alization of the deletion approach in a parser. Thus, one of the main contributions
of this paper is to demonstrate that the two main proposals regarding ellipsis in the
transformational literature needn’t be thought of as competitors, but can be viewed
instead as equivalent descriptions of the same thing.

Moving from computation to algorithm, a natural way of implementing the li-
censing requirement on deletion (that, namely, an identical antecedent be present)
involves passing a ‘context’ containing information about what antecedents are
present. This can be managed by using monads (Wadler, 1992) (or continuations
(Strachey and Wadsworth, 2000)) to control evaluation. In particular, different hy-
potheses about antecedent availability can be implemented by allowing the context
information to flow in different directions (e.g. the state and the reverse state mon-
ads). Antecedent choice is made by means of a choice operator, which, as in a
continuation-based treatment of pronouns (de Groote, 2006), may be made sensi-
tive to discourse and other factors.

Thus, the formal approach to ellipsis in minimalism presented here clearly sep-
arates various empirical phenomena surrounding ellipsis – factors influencing the
choice of antecedent go in the choice operator, restrictions on availability of an-
tecedents are to be accounted for in the context passing mechanism, and which
antecedents exist at all is the provenance of the syntactic analysis.

The paper is structured as follows. I begin by reviewing some of the main em-
pirical motivations of this paper (§2). Next, I introduce minimalist grammars (§3),
where I explain briefly the notion of derivation tree, and introduce an operation of
deletion. Then I describe how to implement this approach in a parsing algorithm
in §4. Section 5 is the conclusion.

2 Empirical Foundations

One of the biggest stumbling blocks to a unified theory of ellipsis (one which treats
all elliptical phenomena as being the product of a single ‘ellipsis’ mechanism) is the
fact that different ‘sorts’ of ellipsis have different properties (for more information
see Kobele (2012a) and references therein). Most interesting to us here, as I will in
fact be advocating for a theory involving exact syntactic identity, are the differences
between sluicing (see Merchant, 2001, and references therein) and verb phrase



ellipsis (vpe) (see Hardt, 1993, and references therein) with respect to the nature of
the formal relation between antecedent and (supposed) ellipsis site. We focus our
attention on the verbal category of voice (although Kim et al. (2011) works out a
fragment in a related system allowing for mismatches along other dimensions), and
in particular on whether antecedent and (supposed) ellipsis site may differ along
this dimension.

2.1 VPE

Although it was initially thought that verb phrase ellipsis did not allow for voice
mismatches between antecedent and ellipsis site (Sag, 1976), work culminating in
Hardt (1993) made abundantly clear that at least some, corpus attested, examples of
voice-mismatched vpe exist, and sound rather natural. Various psycholinguistic ex-
periments (see Kim et al., 2011, and references therein) have further demonstrated
that mismatched vpe examples are more acceptable than stereotypical ungrammat-
ical sentences.

In such a situation, one can either decide to treat mismatching examples (of
which at least some are unacceptable) as uniformly ungrammatical (Arregui et al.,
2006), or to treat mismatching examples (of which at least some are acceptable) as
uniformly grammatical (Kim et al., 2011). In either case, one ultimately needs to
provide an account of why (adopting the first view) certain ungrammatical exam-
ples sound perfectly fine, or of why (adopting the second view) certain grammatical
examples sound terrible.

Here (following Kim et al. (2011)) I treat voice-mismatched vpe as grammati-
cal. There is no knock-down argument for this, as far as I am aware, but it seems
more promising in terms of ultimately being able to explain both why people pro-
duce mismatching vpe sentences (they are grammatical; the other view must ex-
plain why people produce ungrammatical sentences), and why mismatch is not
attested in sluicing (see below §2.2; the other view must explain why ungrammat-
ical vpe sentences are acceptable and attested, but ungrammatical sluices of the
‘same sort’ are not).

2.2 Sluicing

As noted already in Merchant (2001) (see also Chung, 2006; Merchant, 2007;
Tanaka, 2011), and in contrast to vpe, in (English) sluicing voice mismatches are
uniformly unacceptable. To qualify this statement somewhat, there are no known
sluices in English which are acceptable yet which involve voice mismatches be-
tween the antecedent and the ellipsis site.2 As in the case of vpe, this empirical

2Martı́n González (2010) examines counterexamples to this claim in Spanish. He concludes that
they all stem from underlying copular constructions, and thus that Spanish sluicing also prohibits
voice mismatches. In more theory neutral terms, he observes that all acceptable examples of voice
mismatched sluicing sentences in Spanish alternate with non-elliptical sentences where the sluice is
replaced with a cleft, and that where this is not possible (e.g. with an active antecedent and a passive
ellipsis site), the elliptical sentence is in fact unacceptable.



situation underdetermines the proper theoretical analysis; are voice mismatched
sluices grammatical in English, but just hard to find? Or are they indeed ungram-
matical? Because we have available to us (Merchant, 2007) a neat explanation of
how voice mismatches in vpe can be grammatical, while being in sluicing ungram-
matical, I choose tentatively (but following the authors cited above) to assume that
the reason for the non-forthcomingness of acceptable voice-mismatched sluices is
because there aren’t any, and this because they are uniformly ungrammatical.

3 Minimalist Grammars

Minimalist grammars (Stabler, 1997) are a mildly context-sensitive grammar for-
malism (Michaelis, 2001). Grammar formalisms belonging to this class (such as
tree adjoining grammars, combinatory categorial grammars, and multiple context-
free grammars) are unable to describe an infinite number of recursively enumerable
languages, and are thus restrictive in the sense of ruling out a priori a large number
of computationally possible languages as linguistically impossible. The languages
which are able to be described are all simple in a formally precise sense (Joshi,
1985), which makes it possible to build correct and efficient parsing algorithms for
these grammar formalisms.3

A minimalist grammar has two structure building operations, binary merge
and unary move, whose application to expressions is dependent on the syntactic
categories of these expressions. The language of a particular minimalist grammar
consists of those expressions which can be built up from lexical items by finitely
many applications of the operations merge and move. I first describe categories,
and then move on to a more detailed description of expressions, and the workings
of the merge and move operations.

3.1 Categories

Categories are complex, as in categorial grammar, and are structured as lists of
atomic features, which we will write as sequences f1 · · · fn and call feature bun-
dles. The currently accessible feature is the feature at the beginning (leftmost)
position of the list, which allows for some features being available for checking
only after others have been checked. In order for merge to apply, the heads of its
two arguments must have matching accessible features. These features are elimi-
nated in the derived structure which results from their merger. In the case of move,
the head of its argument must have an accessible feature matching an accessible
feature of the head of one of its subconstituents’ ∆. In the result, both features
are eliminated. Each feature type has an attractor and an attractee variant (i.e. each
feature is either positive or negative), and for two features to match, one must be
positive and the other negative. The kinds of features relevant for the merge and
move operations are standardly taken for convenience to be different. For merge,

3It remains, however, a programatic assumption that this sort of restrictiveness is desirable.



the attractee feature is a simple categorial feature, written x. There are two kinds
of attractor features, =x and x=, depending on whether the selected expression is
to be merged on the right (=x) or on the left (x=). For the move operation, there
is a single attractor feature, written +y, and two attractee features, -y and 	y,
depending on whether the movement is overt (-y) or covert (	y).

3.2 Expressions

A lexical item is a syntactic atom. Intuitively, it represents an atomic pairing of
form and meaning. Here, it consists of an index (a ‘lexeme’) along with the syn-
tactic information necessary to specify the distribution of these elements in more
complex expressions. We write lexical items using the notation 〈σ, δ〉, where σ is
a lexeme, and δ is a feature bundle.

Complex expressions are written using the notation of Stabler (1997) for the
‘bare phrase structure’ trees of Chomsky (1995). These trees are essentially X-
bar trees without phrase and category information represented at internal nodes.
Instead, internal nodes are labeled with ‘arrows’ > and <, which point to the head
of their phrase. A tree of the form [< α β] indicates that the head is to be found
in the subtree α, and we say that α projects over β, while one of the form [> α β]
that its head is in β, and we say that β projects over α. Leaves are labeled with
lexeme/feature bundle pairs (and so a lexical item 〈α, δ〉 is a special case of a tree
with only a single node). The head of a tree t is the leaf one arrives at from the root
by following the arrows at the internal nodes. If t is a bare phrase structure tree
with head H, then we write t[H] to indicate this. (This means we can write lexical
items 〈α, δ〉 as 〈α, δ〉[〈α, δ〉].)

3.3 Operations

The merge operation is defined on a pair of trees t1, t2 if and only if the head of
t1 has a feature bundle which begins with either =x or x=, and the head of t2 has
a feature bundle beginning with the matching x feature. The bare phrase structure
tree which results from the merger of t1 and t2 has t1 projecting over t2, which is
attached either to the right of t1 (if the first feature of the head was =x) or to the left
of t1 (if the first feature of the head was x=). In either case, both selection features
are checked in the result.

merge(t1[〈α,=xδ〉], t2[〈β, xγ〉]) =
<

t1[�α, δ�] t2[�β, γ�]

merge(t1[〈α, x=δ〉], t2[〈β, xγ〉]) =
>

t2[�β, γ�] t1[�α, δ�]

If the selecting tree is both a lexical item and an affix (which we notate by means
of a hyphen preceding/following the lexeme in the case of a suffix/prefix), then



head movement is triggered from the head of the selected tree to the head of the
selecting tree.

merge(〈-α,=xδ〉, t2[〈β, xγ〉]) =
<

�β-α, δ� t2[��, γ�]

The operation move applies to a single tree t[〈α,+yδ〉] only if there is exactly
one leaf ` in t with matching first feature -y or 	y. This is conceptually related
to (although formally quite different from) the shortest move constraint (Chom-
sky, 1995), and is called the SMC (Stabler, 1997) – it requires that an expression
move to the first possible landing site. If there is competition for that landing site,
the derivation crashes (because the losing expression will have to make a longer
movement than absolutely necessary). If it applies, move moves the maximal pro-
jection of ` to a newly created specifier position in t (overtly, in the case of -y,
and covertly, in the case of 	y), and deletes both licensing features. To make this
precise, let t{t1 7→ t2} denote the result of replacing all subtrees t1 in t with t2, for
any tree t, and let `Mt denote the maximal projection of ` in t, for any leaf `.

move(t[〈α,+yδ]) =
>

t�[�β, γ�] t[�α, δ�]{t� �→ ��, ��}
(where t′ = 〈β,-yγ〉Mt )

move(t[〈α,+yδ]) =
>

��, γ� t[�α, δ�]{t� �→ t�[�β, ��]}
(where t′ = 〈β,	yγ〉Mt )

An expression is complete just in case it has exactly one negative selection feature
– this can be thought of as its ‘category’ in the traditional sense.

3.4 Derivations

A derivation tree is a (complete) description of how to construct an expression.
(Derivation trees are presented here in the style of Kobele (2012b), which im-
poses useful restrictions on deletability.) A derivation tree is a labeled ordered
tree with nodes labeled with lexical items, subject to the condition that the num-
ber of daughters a node with label ` has is the same as the number of positive
selection features ` has. (The first daughter represents the first expression ` was
merged with, the second daughter the second, etc.) The derivation trees which
are well-formed–those which actually represent ‘convergent’ derivations—can be
charactized directly (i.e. they form a regular set (Kobele et al., 2007)), and are the
objects of primary concern in parsing (Harkema, 2001) and semantic interpretation
(Kobele, 2012c).



�will, =v +k s�

�−�, =V +k d= v�

�John, d -k��praise, =d V�

�Harry, d -k�

1

Figure 1: A derivation of the sentence “John will praise Harry”

Figure 1 presents the derivation tree for a transitive sentence given a (simpli-
fied, but fairly standard) minimalist analysis.4 Note that each node in the tree has
exactly as many daughters as it has positive selection features. For example, will
has one positive selection feature (=v), and one daughter, whereas the ‘little-v’
head 〈−ε,=V +k d= v〉 has two positive selection features (=V and d=), and two
daughters.

To determine which derived object is denoted by a given derivation tree is com-
putationally very simple (Hale and Stabler, 2005; Kobele et al., 2007), although ad-
mittedly complex to describe intuitively. Given a derivation tree (such as in figure
1) with root σ with features =x1 ~+y1=x2 · · ·=xn ~+ynx ~-y and daughters t1, . . . , tn,
the derived expression is obtained by merging σ with the expression denoted by t1,
then applying the move operation | ~+y1| times (as many times as σ has positive li-
censing features between its first two positive selection features =x1 and =x2), then
merging the result with t2, then applying the move operation to that | ~+y2| times,
etc. Essentially, the immediate dominance relation mirrors a merge operation, and
the left-to-right order of daughters the derivational order of these merge opera-
tions. The move operation is not explicitly represented, but is uniquely determined
by the features of the root.

3.5 Deletion

Our deletion operation targets arbitrary connected subparts of the derivation tree.5

Intuitively, we want to be able to ‘draw a circle’ around a connected subpart, which
indicates that this subpart is elided, and under identity with some other subpart
elsewhere in the discourse. We implement this intuition by introducing two new
operations, delete, and elide. Delete is a lexical operation (i.e. it applies to lexical

4The lexical items used are exactly those at the nodes of the derivation tree.
5This is related to the notion of catenae from the dependency grammar literature. As argued by

(Osborne et al., 2013), canonical minimalist analyses of eliptical constructions plausibly allow the
material elided to be conceived of in such a manner.



�will, =v +k s�

�not, =v v�

�−�, =V +k d= v�E

�Mary, d -k��praise, =d V��

�Harry, d -k��

1

Figure 2: A derivation of the elliptical sentence “Mary will not praise Harry”

items, not to arbitrary expressions), and we will write `? instead of the more cum-
bersome delete(`), for ` a lexical item. The interpretation of the operation delete
on a lexical item is simply to delete its phonological exponent. This ensures that
even discontinuous non-deleted material is treated normally by the grammar. The
operation elide delimits a stretch of deleted elements as a single eliptical unit, and
can be applied only to a derivation tree whose root is deleted. It has no other effect.
We write `E(t1, . . . , tn) for the more cumbersome elide(`?(t1, . . . , tn)).6

A derivation tree with a deleted node can be well-formed only if this node is
dominated either by another deleted node or by a node labeled elide. A derivation
tree with a node labeled elide can be well-formed only if the expanse of deleted
nodes ultimately licensed by this elide node is identical (modulo deletion) to some
other part of this derivation tree. (Cross-sentential ellipsis must here be dealt with
by taking discourse and sentence grammar to be identical, as argued for in Web-
ber (2004).) This provides us with a direct description of the form-meaning pairs
licensed by the grammar.7

As a concrete example, consider the derivation in figure 2. In this sentence, the
elided material is the portion of derivation consisting of ‘little-v’, the verb praise,
and its object Harry (all three are marked for deletion), but excluding the subject
Mary. Note that the (local) restrictions on delete and elide are respected in this

6This notation is inspired by the notion of an ‘E’ feature driving ellipsis (Merchant, 2001). Note
that this is not an actual feature in the present system.

7The ability to represent ellipsis in the grammar comes at a computational cost – the identity
condition on ellipsis (that a derivation tree with a node labeled elide is well-formed only if the
expanse of deleted nodes licensed by it is identical (modulo deletion) to some other part of the
derivation tree) is not representable as a regular constraint, and thus the set of well-formed derivation
trees in this system is no longer regular.

This is not a result of the present system, but rather of the inherent complexity of ellipsis, which
must manifest itself in any system dealing with elliptical phenomena. Perhaps one useful aspect of
this paper is making this complexity explicit by putting it all into the grammar.



�will, =v +k s�

��, =v =p v�

�−�, =P p�

�by, =d +k P�

�Susan, d -k�

�be, =pass v�

�−en, =V pass�

�John, d -k��praise, =d V�

�Harry, d -k�

1

Figure 3: The derivation of “Harry will be praised by Susan”

derivation. In order for this derivation to satisfy the identity requirement on ellipsis,
it must be part of a larger derivation which contains a non-elided identical subpart
(such as coördinated with the derivation in figure 1).

3.6 Examples

Here I present some examples to illustrate both the minimalist grammar ellipsis
system and the linguistic analysis. (For more details, the interested reader may
consult Kim et al. (2011), which uses a related system – the analysis is identical.)

Let us examine the following sentences:

(1) Harry will be praised by Susan.

(2) Someone will be praised by Susan, but I do not know whom Susan will
praise.8

Example 1 is presented in figure 3. Comparing the derivation trees in figure 3
and in figure 2, one sees that they share a common subpart, consisting of the verb
praise and its argument Harry (but not the voice head immediately dominating
praise). This common subpart (I’ll call it the ‘VP’) suffices to license VP-deletion
despite the mismatch in voice. (Kim et al. (2011) attempt to link the smaller identi-
cal subpart (VP versus vP) to the lower acceptability ratings assigned to sentences
containing mismatched as opposed to matched vpe.)

It is easy to see that the passive example 1 has no subpart in common with an
active sentence which includes both the main verb and the finite auxiliary. This

8This is an extremely marked sentence of English. It is included here for illustrative purposes, as
it allows me to ignore complications associated with sprouting (Chung et al., 1995) and pied-piping.



simple fact blocks voice mismatches in sluicing, understood as ellipsis including
the finite auxiliary and the main verb (and usually one or more arguments of the
verb, as well). Example 2 does not permit ellipsis of the part Susan will praise; the
present analysis is straightforwardly able to account for this.

4 Computation

I adopt a ‘levels’ approach to understanding complex information processing sys-
tems (a seminal work in this area is Marr, 1982). Our abilities to use language can
be viewed in this context as systems for transforming sounds to meanings and vice
versa. To fully understand such a system, we need describe it at (at least) three
different levels. The first (what Marr calls the computational) level is a specifica-
tion of the transformation effected (a description of which sounds are associated
with which meanings). The second (what Marr calls the algorithmic) level is a
description of an algorithm which realizes this specification.9 The third (Marr’s
implementational) level is a description of how the algorithm is realized in the
physical medium (our brains). The levels approach offers a natural perspective on
the relation between grammar and parser; the grammar is a specification of the
parser, which is the algorithm computing the form-meaning relation described by
the grammar.

The above account of ellipsis is stated at Marr’s computational level, which
describes what is being computed but not how. The most natural way of imple-
menting the recognition of ellipsis in this context is to separate the detection of
ellipsis sites from their resolution, at least logically (Kobele, 2012a) (although this
separation can and should be ‘parallelized’ on-line). This allows perfectly standard
minimalist grammar parsing algorithms (Harkema, 2001) to be used to construct
parse trees with unresolved ellipsis sites, which are written in fraktur as E (upper
case ‘E’).10 Note that because we allow for deletion of contexts, not just subtrees,
unresolved ellipsis sites take the form of relation symbols with rank arbitrary (but
bound by a function of the length of the sentence), as in figure 4, which represents
the derivation tree in figure 2 with its ellipsis site unresolved.

A theory neutral way of stating an ellipsis resolution algorithm is the following.
We are given a type of a context and a selection function sel which determines

9Peacocke (1986) suggests that linguistic theory is actually at a mid-point between levels one and
two (what he appropriately calls level 1.5), where not only the sound-meaning relation is described,
but also the major data structures (Marr’s representations) used in its computation.

10This is actually a consequence of the fact (mentioned in footnote 7) that the distributional re-
strictions on delete and elide operations are, modulo the identity condition, regular, together with
the fact that the maximum rank of an ellipsis symbol is bounded by the number of words in a sen-
tence. (This bound requires us to take empty lexical items into account – a better approach would be
to somehow determine an a priori upper bound.) This also raises an interesting question about the
proper place for ellipsis in a grammatical theory, one which is borne upon by data such as vehicle
change (Fiengo and May, 1994) and split antecedence (Hardt, 1993). Here, my goal is to examine
the relation between deletion and copying theories of ellipsis, and I will not consider this question
further.



�will, =v +k s�

�not, =v v�

E

�Mary, d -k�

1

Figure 4: A derivation tree with unresolved ellipsis site for “Mary will not”

the best resolution to a particular ellipsis site given a context. We traverse a tree
with unresolved ellipsis sites and use sel to resolve any ellipsis sites encountered
based on the current context.

Two things are of particular interest about this setup. First, this is the same ba-
sic framework as the one developed by (de Groote, 2006) for pronoun resolution,
and, as noted there, the selection function sel can be parameterized by arbitrary
contextual information. Thus, the parallels between ellipsis resolution and pro-
noun resolution (cf. (Hardt, 1993)) are hereby partially explained by treating them
in terms of the same (or a similar) mechanism. Second, taking the goal of parsing
to be the recovery not of a parse tree but of a semantic interpretation, the context
can simply record semantic denotations (paired with syntactic categories) instead
of derivation tree contexts. This follows from the existence of a variable free in-
terpretation scheme for minimalist grammars (Kobele, 2012c), which can assign
semantic interpretations to arbitrary derivation tree contexts. Thus, although this
is an implementation of a syntactic identity theory of ellipsis, we are free to ‘leave
syntax behind’, and work at the level of meanings.

4.1 Resolving Ellipsis

As noted above, I concieve the processing of minimalist grammars with ellipsis (as
described in §3) in two steps. In the first step, we ignore the difficulty of resolv-
ing ellipsis, and focus on finding structures for sentences which may contain spe-
cial ellipsis symbols (E). The second step, which I describe briefly here, involves
‘fleshing out’ hypothesized ellipsis sites (E) with possible antecedents, which then
permits a standard computation of meaning (in the sense of compositional seman-
tics). (Note that this step can be viewed as iterated (OI (Engelfriet and Schmidt,
1977)) second-order language substitution.11) Note that this step is necessary for

11‘Iterated’ because an E may be replaced with a structure which itself contains an E (a possibility
which would allow a natural account of certain data (Tomioka, 2008)), and ‘OI’ because different Es
may be replaced by different structures. This is second-order substitution because we are substituting



resolving the membership problem (‘is this string generated by the grammar’), as
a string could be accepted by the first step of the parser (i.e. the parser says ‘if you
can find an antecedent for this ellipsis site, the answer is yes’), yet there might be
no possible antecedent (i.e. there is no derivation which actually gives rise to that
string).

It is instructive to consider a naı̈ve ‘two step’ approach to the ellipsis resolution
problem, whereby we first traverse the derivation tree to flesh out our context,
and then next replace ellipsis sites with appropriate antecedents as given by the
context.12 We first need to be a little more explicit about what, exactly, a context
is. An ellipsis site E occurs in a derivation as a daughter to some node c, and
with immediate subtrees t1 through tn. Any legitimate fleshing out of this ellipsis
site must therefore be by some object C[x1, . . . , xn] with n ‘holes’ (for subtrees
t1 through tn), and moreover the hole xi for subtree ti must be able to be filled
by something with the featural make-up of subtree ti, for each 1 ≤ i ≤ n, and
the result of plugging subtrees t1, . . . , tn into holes x1, . . . , xn must be something
with the appropriate featural make-up to occur in the original derivation tree as
the daughter of node c. We can represent such an object as a typed lambda term
λxT1

1 , . . . , x
Tn
n .C(xT1

1 ) · · · (xTn
n ) of type T1 → · · · → Tn → T , where the types

reflect the featural make-up of an object.13 A context should then be a map from
types to sets of terms of that type. I define the spine sp(t) of a term t to be the
set of second order T (excluding the identity function) such that there are some
t1, . . . , tnT such that T (t1) · · · (tnT ) = t. Then the set [[t]] of all antecedents in a
given derivation tree t (viewed as a lambda term) is simply the set sp(t), if t is a
constant, and [[M ]] ∪ [[N ]] ∪ sp(MN), if t = MN .

A first option is to simply set our context to be the function from a type to the
set of terms of that type in [[t]]. This has the consequence that there are no (logical)
constraints on accessibility for antecedents – an ellipsis site can take as antecedent
something on its right, something above it, something beneath it, etc. Any empir-
ical constraints would then need to be implemented in terms of restrictions on the

not (only) trees but contexts. Viewing this as substitution actually requires us to use different versions
of E depending on the categories of its arguments and the category it ‘produces’. (Bringing us into a
many-sorted algebra, or, more generally, a typed lambda calculus.)

12I will make use of the simply typed lambda calculus in this section (Hindley and Seldin, 2008).
A type is either atomic a, or an implicaiton αβ for types α and β. A lambda term of type α is either
a constant cα (from some set of constants), or a variable xα, or an application (MN) of one term
M of type βα to another N of type β, or, if α = βζ an abstraction λxβ .M of variable xβ of type
β in term M of type ζ. I make use of the standard notions of α, β, η reduction and equivalence, and
consider terms in η long form (those where every argument position is saturated with a variable).
A term is second order if every variable which occurs in it is of atomic type. It is first order if no
variable occurs in it. A first order term can be thought of as a tree, and a second order term can be
thought of as a function from trees to trees. I am concerned only with terms which are closed (which
means that every variable occuring in them is bound) and linear (which means that every variable
occuring in them occurs exactly once as an argument). Finally, I write Mα to indicate that M is a
term of type α.

13More precisely, the ‘types’ here are the (finitely many) categories of the MCFG (Seki et al.,
1991) obtained by translating a MG in the manner of Michaelis (2001).



antecedent selection function sel.
Another option is to take the set of antecedents which are available to a par-

ticular ellipsis site to be a function of that ellipsis site’s position in the derivation
tree.14 This is really a family of options, as there are a great many ways of indexing
antecedent availability to position. The advantage of this is that it removes some of
the burden that the previous option puts on the selection function, but of course it
can only be empirically adequate if there are indeed hard restrictions on antecedent
availability. The most interesting way of indexing antecedent availability to po-
sition is one which can be linked to a particular traversal of the derivation tree
(Gerdemann, 1994); this can then be implemented by incrementally updating the
context during a traversal, and allowing an ellipsis site to take as antecedent only
those terms in the context when the ellipsis site is encountered. This would seem
to lend itself naturally to an incremental parsing strategy, which resolves ellipsis
sites in an online manner.

4.2 The competence hypothesis

One question which may arise at this point is the precise relation between the gram-
mar of ellipsis (using deletion under derivational identity) and its processing (us-
ing ‘LF-copying’). My claim is that this relation satisfies even the strong compe-
tence hypothesis of Bresnan (1982). I assume there is no doubt that the parsers
(Harkema, 2001) for minimalist grammars without ellipsis satisfy this constraint
(for otherwise MGs with ellipsis fail to satisfy strong competence for uninteresting
reasons). The question, then, is whether LF-copying is reasonably thought of as an
algorithmic implementation of deletion under derivational identity. As the ques-
tion of when two algorithms are the same is still unresolved (Blass et al., 2009),
this question can only here be answered by appeal to intuitions. The main work
which needs to be done in parsing minimalist grammars with ellipsis is, once an
ellipsis site has been postulated, to find an appropriate antecedent and verify that
the content of the ellipsis site is identical to this antecedent (this is a side condition
on the application of the operation elide). There are two natural ways of proceed-
ing. One is the ‘generate-and-test’ method, according to which a possible fleshing
out of the ellipsis site is created, and checked against the antecedent. The other
option is to, making use of the constraint on the nature of the legitimate fleshings
out of the ellipsis site imposed by the grammar, use the antecedent to compute an
appropriate one such. This option can be seen as a guided version of the generate-
and-test method, in a manner similar to how top-down parsing can be seen as a(n
input-) guided version of a generate-and-test parsing algorithm. In fact, the copy-
ing of the antecedent is similar to memoization (Johnson, 1995); as we have already
gone through the steps of constructing the antecedent, we can simply re-use them
en masse.15 Finally, the argument for strong competence comes down to this: if

14Position in the surface structure can be computed on the basis of position in the derivation tree.
15Indeed, the procedures alluded to in §4.1 for computing the possible antecedents can be thought

of as constructing memo-tables of type-indexed subterms.



we do not balk at calling memoized or input-guided generate-and-test algorithms
realizations of a grammar, why should we hesitate here?16

5 Conclusions

I have presented a formalization of some common themes in the minimalist litera-
ture regarding ellipsis, where there is a debate between proponents of a LF-copying
approach to ellipsis and those of a PF-deletion approach to the same. I have shown
that, under the assumption that the identity condition governing ellipsis is formula-
ble in terms of identity of derivations, the differences between the two approaches
disappear. Keeping syntactic identity at the level of the derivation (instead of the
derived tree), allows for some flexibility regarding suface antecedent-ellipsis mis-
matches. One such which has been worked out is the differential acceptability of
voice mismatches in VP ellipsis and sluicing (following Merchant, 2007). Other
well-known surface mismatches (such as ‘vehicle change’ (Fiengo and May, 1994),
or split antecedence (Hardt, 1993)) do not appear to have a natural syntactic char-
acterization, but do nevertheless seem amenable to treatment at the algorithmic
level if we ‘deforest’ the trees and use instead semantic terms (vehicle change by
means of ‘copying’ the pronoun selection function instead of the pronoun and split
antecedence by allowing the ellipsis selection function to choose simultaneously
multiple antecedents, and then combine them semantically using either pointwise
conjunction or some other operator). This move, however, takes us away from a
syntactic identity theory, and is left to future work. It is hoped that this formal
presentation will serve to make clear the commitments, prospects, and difficulties
faced by a deletion under identity theory of ellipsis.
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