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Abstract. Minimalist grammars are a mildly context-sensitive gram-
mar framework within which analyses in mainstream chomskyian syntax
can be faithfully represented. Here it is shown that both the derivation
tree languages and derived tree languages of minimalist grammars are
closed under intersection with regular tree languages. This allows us to
conclude that taking into account the possibility of ‘semantic crashes’
in the standard approach to interpreting minimalist structures does not
alter the strong generative capacity of the formalism. In addition, the ad-
dition to minimalist grammars of complexity filters is easily shown using
a similar proof method to not change the class of derived tree languages.

Minimalist grammars (in the sense of [1]) are a formalization of mainstream
chomskyian syntax. In this paper I will show that both derived and derivation
tree languages of minimalist grammars are closed under intersection with reg-
ular tree languages. The technique used in the proofs of this fact is similar to
that of [2], where non-terminals of context-free derivation trees were paired with
states of an automaton. While the closure of the derived tree languages under
regular intersection can be seen to follow from that of the derivation tree lan-
guages (by virtue of the monadic second order relation between the two), the
proof method extends immediately to cases of linguistic interest where the con-
nection is not as obvious, as in the case of ‘complexity filters’ in the sense of [3].
The closure of derived tree languages under regular intersection guarantees that
the kind of semantic interpretation performed in the minimalist literature [4],
which makes use of only a finite domain of types, cannot in virtue of partiality
(semantic ‘crashes’) lead to sets of semantically well-formed trees which could
not be directly derived by some minimalist grammar.

The remainder of the paper is organized as follows. The next section intro-
duces minimalist grammars, as well as some relevant notation. Section 2 con-
tains the proofs of closure under intersection with regular tree languages of both
derivation and derived tree languages of minimalist grammars. Consequences
and extensions of linguistic relevance are discussed in section 3. Finally, section
4 concludes.

1 Formal Preliminaries

Given a finite set A, A∗ denotes the set of all finite sequences of elements over
A. The symbol ε denotes the empty sequence. A ranked alphabet is a finite set
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F together with a function rank : F → N mapping each symbol in F to a
natural number indicating its arity. Given f ∈ F with arity n = rank(f), I will
sometimes write f (n) to denote f while indicating that it has arity n. The set
T (F ) of terms over a ranked alphabet F is the smallest subset of F ∗ containing
all f (0) ∈ F , and such that whenever it contains t1, . . . , tn, it contains f (n)t1 · · · tn
for each f (n) ∈ F . In lieu of writing f (n)t1 · · · tn, I will insert parentheses and
commas for readability, writing in its stead f(t1, . . . , tn). Regular subsets of
terms over an alphabet F can be given in terms of bottom-up tree automata,
which are tuples A = 〈Q, (δf )f∈F 〉, where each δf is a rank(f)-ary function
over Q. An automaton A = 〈Q, (δf )f∈F 〉 induces a function A : T (F ) → Q in
the following manner: A(f (n)(t1, . . . , tn)) = δf (A(t1), . . . , A(tn)). For each state
q ∈ Q, the set of terms A−1(q) = {t ∈ TF : A(t) = q} mapped by A to the state
q is a regular term language. It will be convenient in the following to treat A as
operating over T (F ∪ Q), where elements of Q are treated as nullary symbols.
In this case, A(f (n)(s1, . . . , sn)) = δf (q1, . . . , qn), where qi = si if si ∈ Q, and
A(si) otherwise.

A partial function f from A to B is a total function from A to B ∪ {�}. If
f : A → B is a partial function, we say it is undefined at a ∈ A if f(a) = �.
The everywhere undefined function is denoted ∅. Given partial functions f, g :
A → B, their union f ⊕ g is defined iff there is no a ∈ A such that both f
and g are defined at a and f(a) 	= g(a). In this case (f ⊕ g)(a) = if f(a) =
� then g(a) else f(a). Given partial f : A → B and a ∈ A, (f/a)(b) = if b =
a then � else f(b). Given a subset B ⊂ A∗ with the property that aw, au ∈ B
implies that w = u, B can be viewed as the partial function fB from A to A∗

such that fB(a) = aw if aw ∈ B and is undefined otherwise. In particular, given
aw ∈ A∗, {aw} : A→ A∗ is the partial function defined only at a.

1.1 Minimalist Grammars

A minimalist grammar is given by a four-tuple G = 〈Σ, sel, lic, Lex〉 where
Σ is a finite set, sel and lic are finite sets of selection and licensing features
respectively which determine a set F := {=x, x, +y, -y : x ∈ sel, y ∈ lic} of
features, Lex ⊂ Σ × F

∗ is a finite set of lexical items. Features of the form
=x are selector features, those of the form +y are licensor features, and those
of the form x (-y) are selectee (licensee) features. Treating elements of Σ as
nullary symbols, we define a ranked alphabet S := Σ ∪ {t(0), •(2)}. A term
t ∈ T (S) is headed by its right-most leaf. Conversely, a term t′ ∈ T (S) is a
maximal projection (of its head) in t iff either t′ = t or there is a unary context
C[x], and some t′′ ∈ T (S) such that t = C[•(t′, t′′)] – in other words, t′ is the
left-daughter of some node. The expressions L(G) generated by a minimalist
grammar G is the smallest subset of (T (S) × F

+)+ which 1) contains Lex, and
2) is closed under the operations presented in inference rule format below. In
the rules below, m,n ≤ |lic|, 1 ≤ i, j ≤ m,n, φi, ψj ∈ Σ × F

+, γ, δ ∈ F
+, and
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s1, s2 ∈ T (S).1 In addition, we require in move1 and move2 that φi is the only
pair whose first feature is -c.2

〈s1, =cγ〉, φ1, . . . , φm 〈s2, c〉, ψ1, . . . , ψn

〈•(s2, s1), γ〉, φ1, . . . , φm, ψ1, . . . , ψn
merge1

〈s1, =cγ〉, φ1, . . . , φm 〈s2, cδ〉, ψ1, . . . , ψn

〈•(t, s1), γ〉, φ1, . . . , φm, 〈s2, δ〉, ψ1, . . . , ψn
merge2

〈s1, +cγ〉, φ1, . . . , φi−1, 〈s2, -c〉, φi+1, . . . , φm

〈•(s2, s1), γ〉, φ1, . . . , φi−1, φi+1, . . . , φm
move1

〈s1, +cγ〉, φ1, . . . , φi−1, 〈s2, -cδ〉, φi+1, . . . , φm

〈•(t, s1), γ〉, φ1, . . . , φi−1, 〈s2, δ〉, φi+1, . . . , φm
move2

An element of L(G) is complete iff it is of the form 〈s, c〉. An element of T (S)
is a derived (or surface) tree iff it is the first component of a complete expression.
The derived tree language of G at selectee feature c is defined to be the set of tree
components of complete expressions with feature c, Lc(G) := {s : 〈s, c〉 ∈ L(G)}.

The string language of G at selectee feature c (written Sc(G)) is defined to
be the image of Lc(G) under the mapping y : T (S) → (S0 − {t})∗ which maps
a tree to the string consisting of its leaves in left-to-right order, ignoring traces;
y(t) = ε, y(s(0)) = s, and y(•(t1, t2)) = y(t1)�y(t2).

The following obvious proposition shows that every maximal projection is
headed by some leaf.

Proposition 1. Let G and x ∈ F be arbitrary. Then for every t ∈ Lx(G) there
is a unique maximal decomposition LexProj(t) of t into lexicalized maximal
projections of the form TCon

n
s [t1, . . . , tn], where t 	= s(0) ∈ S, t1, . . . , tn ∈ T (S),

and TCon
n
s is the n-ary context over T (S) defined as follows:

1. TCon
0
s := s

2. TCon
n+1
s := •(xn+1,TCon

n
s )

Proof. This follows from the observation that every occurance of a trace (t) in
the surface tree of a complete expression is already itself a maximal projection
(by inspection of the operations), and thus that every maximal projection is
‘lexicalized’. �

Treating elements of Lex as nullary symbols, we define a ranked alphabet U :=
Lex∪{r(2),v(1)}. The set of derivation (or underlying) terms over G is D(G) :=
T (U). Given d ∈ D(G), we write ev(d) to denote the expression which is the eval-
uation of d in L(G), if it exists (ev : D(G) → L(G) is the partial injective map-
ping ev(	) = 	, ev(v(d)) = move(ev(d)), and ev(r(d1, d2)) = merge(ev(d1), ev(d2)).)

1 In the following rules, all move and merge operations are ‘to the left’. This simpli-
fication made for expository purposes does not affect the results obtained in this
paper.

2 This constraint is called the Shortest Move Constraint (SMC).
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We identify the set of well-formed, or convergent, derivations with the language
(at a particular state) of a bottom up tree automaton AG = 〈Q, (δf )f∈F 〉, which
is defined next. Given Lex we define suf(Lex) = {η : ∃σ ∈ Σ∗, γ ∈ F

∗. 〈σ, γη〉 ∈
Lex} to be the set of suffixes of lexical feature sequences. The states of our
automaton are pairs 〈η, f〉, where η ∈ suf(Lex) and f : {-y : y ∈ lic} →
suf(Lex) is a partial function.3 The functions (δf )f∈F are defined as per the
following.

– For each lexical item 	 = 〈σ, η〉 ∈ Lex, δ� = 〈η, ∅〉.
– Given state s = 〈+yη, f〉 with f(-y) = -yγ, δv is defined at s iff either

1. γ = ε, in which case δv(s) = 〈η, f/-y〉
2. γ = -zη and f is undefined at -z, in which case δv(s) = 〈η, f/-y ⊕ {γ}〉

– Given states s = 〈=xη, f〉 and s′ = 〈xη′, f ′〉 with f ⊕ f ′ defined, δr is defined
at the pair s, s′ iff either
1. η′ = ε, in which case δr(s, s′) = 〈η, f ⊕ f ′〉
2. η′ = -yγ and f ⊕ f ′ is undefined at -y, in which case δr(s, s′) = 〈η, (f ⊕
f ′) ⊕ {η′}〉

A derivation d ∈ D(G) is saturated iff there is some state 〈xη, f〉 beginning
with a selectee feature such that AG(d) = 〈xη, f〉. The convergent derivations at
selectee feature x are defined to be those in Dx(G) := A−1

G (〈x, ∅〉) = {t ∈ T (U) :
AG(t) = 〈x, ∅〉}. It was shown in [5] that for each x, there is a finite copying
top-down tree transducer with regular look-ahead which maps Dx(G) to Lx(G).
This is a simple consequence of the facts that the inference rules above can be
put into the format of a multiple regular tree grammar, that we can restrict our
attention to a finite set of ‘categories’ (as given by suf(Lex)|lic|+1 [6]), and that
a multiple regular tree grammar can be presented in terms of a finite copying
top-down tree transducer with regular look-ahead acting on a regular set [7].

The following facts about convergent derivations will prove useful in the next
section.

Proposition 2. For any G, and any selectee feature x, the following are true:

1. if t ∈ Dx(G) then every leaf of t is of the form 〈σ , ηcγ〉 for η ∈ {=x, +y :
x ∈ sel & y ∈ lic}∗ and γ ∈ {-y : y ∈ lic}∗

2. if t ∈ Dx(G) then every leaf 	 of t occurs in the n-ary context Con�(η),
where n is the number of selector features 	 contains, and η is the initial
sequence of selector and licensor features of 	, and where Con�(·) is defined
as follows:

(a) Con�(ε) = 	

(b) Con�(η +y) = v(Con�(η))
(c) Con�(η =x) = r(Con�(η), xi), where η contains i selector features

3 The SMC condition on the domains of the movement operations allows us to disre-
gard expressions with more than one component beginning with the same feature.
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Proof. 1 is proven by inspection of the definition of the transition functions δf
for the automaton AG; a state 〈+zη, f〉 where f(-z) = xγ, with x /∈ {-y : y ∈ lic}
is not in the domain of any transition function, nor is a state 〈-zη, f〉.

2 is proven by the observations that AG(r(〈η, f〉, 〈γ, g〉)) is defined only if η
begins with some selector feature and γ with some selectee feature, and that
AG(v(〈η, f〉)) is defined only if η begins with some licensor feature. �

Proposition 2 justifies us in restricting our attention to just those lexica which
contain lexical items of the form 〈σ , ηcγ〉, where η is a string of selector and
licensor features, and γ a string of licensee features. In the following, for 	 as
above, we write Con� as an abbreviation for Con�(η).

The equivalent of part two of proposition 2 for surface trees can be proven.

Proposition 3. Let G and selectee feature x be arbitrary. Then for every t ∈
Lx(G), each non-trace leaf s in t occurs in a context TCon

|η|
s , for some lexical

item 〈s , ηcγ〉 ∈ Lex.

Proof. Let G, x, t, and s be as in the statement of the proposition, and let
d ∈ Dx(G) be a derivation of t. As the operations of a minimalist grammar
are linear, non-deleting, and introduce only t and • syncategorimatically, we
can identify for each leaf of t the lexical item in d from which it came. Let
s be derived from an occurrence of the lexical item 	 = 〈s , ηcγ〉 in d. This
item occurs by proposition 2 in the context Con�, and so there are d1, . . . , d|η|
such that d′ = Con�[d1, . . . , d|η|] is the occurrence of (the projection of 	) in d.
By inspection of the operations, ev(d′) = 〈r, cγ〉, φ1, . . . , φk is seen to be such
that r instantiates the context TCon

|η|
s . As no further operations can modify r

internally, r occurs in t. �

Proposition 3 implies that once we know the identity and numerosity of the lexical
items 	1, . . . , 	n in a complete derivation, the derived tree is gotten by putting
their respectiveTCon� together, along with a certain number of syncategorematic
traces (equal to the total number of licensee features across the 	i).

2 Languages

The basic idea of the construction in both proofs is that each attractor feature
of a minimalist lexical item can require that the element whose feature it checks
have a certain property. Furthermore, each attractee feature can indicate that
its lexical item has a certain property. This is done by annotating a feature with
a representation of a particular property. (Then =xp indicates that it is looking
for an x with property p, and -yp indicates that it is a -y which has property
p.) In the cases we will be interested in, P will be the state set of a finite state
automaton.

Given a finite set P of properties, we define a function 〈·〉P which maps a
feature type f ∈ sel ∪ lic to the set {fp : p ∈ P} of its P -variants. Abusing
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notation, we write 〈·〉P for its extension to features (〈*x〉P := {*xp : p ∈ P}), to
sequences (〈aw〉P := 〈a〉P · 〈w〉P ), and to sets (〈X〉P :=

⋃
x∈X〈x〉P ). The set of

P -variants of a lexical item 	 is the set of lexical items whose feature sequences are
P -variants of the feature sequence of 	 (〈〈σ , γ〉〉P := {〈σ , η〉 : η ∈ 〈γ〉P }), and
the P -variant of a grammar G = 〈Σ, sel, lic, Lex〉 is the grammar whose feature
types, and lexicon are P -variants of G’s (〈G〉P := 〈Σ, 〈sel〉P , 〈lic〉P , 〈Lex〉P 〉).
The operation 〈·〉P can be extended in the obvious way to derivation trees,
mapping leaves (lexical items) to their sets of P -variants, and acting pointwise
on non-leaf nodes (〈f(t1, . . . , tn)〉P := {f(s1, . . . , sn) : si ∈ 〈ti〉P for 1 ≤ i ≤ n}).
Proposition 4. For any G, any P , x ∈ F and q ∈ P , if d ∈ Dxq(〈G〉P ), then
〈d〉−1

P ∈ Dx(G). If |P | = 1, then d ∈ Dx(G) implies 〈d〉P ∈ Dxq(〈G〉P ).

Proof. Let AG and A〈G〉P
be the automata over derivations of G and 〈G〉P

described in the previous section. Viewed as a function from derivations to
states, we show that AG = 〈·〉−1

P ◦ A〈G〉P
◦ 〈·〉P . First, we have that suf(Lex) =

〈suf(〈Lex〉P )〉−1
P , and thus that the states of AG and A〈G〉P

are in a one-many
correspondence (via 〈·〉P ). By the definitions of δv and δr, the transitions at non-
leaf nodes of both machines partially commute with 〈·〉P , in the sense that if
δ(s1, . . . , sn) is defined (in A〈G〉P

), then δ(〈s1〉−1
P , . . . , 〈sn〉−1

P ) is defined (in AG)
and is equal to 〈δ(s1, . . . , sn)〉−1

P . Finally, for every 	′ ∈ 〈Lex〉P , 〈δ�′〉−1
P = δ〈�′〉−1

P
.

If |P | = 1, then the states are in a bijective correspondence, the transitions
of both machines at non-leaf nodes commute with 〈·〉P , and 〈δ�〉P = δ〈�〉P

. �

Proposition 5. For any G, any P , and any x ∈ F, it holds for all q ∈ P that
Lx(G) = Lxq(〈G〉P ).

Proof. In the forward direction, let q and x be arbitrary, and let t ∈ Lx(G),
with derivation d ∈ Dx(G). By proposition 4, 〈d〉{q} ∈ Dxq(〈G〉P ). As features
can be renamed arbitrarily (as long as features that are supposed to match
still do) without affecting the identity of the tree derived, 〈d〉{q} evaluates to
t ∈ Lxq(〈G〉P ).

In the reverse direction, let q and x be arbitrary and t ∈ Lxq(〈G〉P ) with
derivation d ∈ Dxq(〈G〉P ). By proposition 4, 〈d〉−1

P ∈ Dx(G). By the reasoning
just above, evaluating 〈d〉−1

P yields t ∈ Lx(G). �

While propositions 4 and 5 show that marking up a lexicon does not change
the derived trees, it does have the effect of multiplying derivations for any given
derived object. By selectively removing lexical items from 〈Lex〉P , we can ipso
facto impose meanings on the property symbols.

Example 6. To require that every derivation include lexical item 	 ∈ Lex, we
take P = {0, 1}, and consider the largest subset X of 〈Lex〉P which satisfies the
following conditions:

1. if 	′ ∈ X and 	′ ∈ 〈	〉P then the property associated with its category feature
z is 1
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2. if 	′ ∈ X and 	′ /∈ 〈	〉P , then the property associated with its category feature
z is the maximum of the properties associated with its selector features =xi.

Then every well-formed derivation tree headed by a lexical item with a category
feature with property 1 contains some 	′ with 	′ ∈ 〈	〉P , and conversely, those
headed by lexical items with some category feature z0 do not contain an 	.

This example can actually be viewed as a special case of a more general con-
struction, which restricts our attention to just those derivations that satisfy some
property defined by a regular tree automaton.

Proposition 7. Let G be a minimalist grammar, x a feature, and L a regular
subset of T (U). There is a minimalist grammar GL, a feature y, and a set P
such that 〈Dy(GL)〉−1

P = Dx(G) ∩ L.

Proof. Let G, x, and L be arbitrary as in the statement of the proposition. Let
A = 〈Q, (δ)f∈U 〉 be a deterministic bottom-up tree automaton such that for some
r ∈ Q, A−1(r) = L. The feature y in the statement of the proposition will be
identified with xr. We will be interested in a particular subset LexA ⊆ 〈Lex〉Q,
in which the annotations on the features of lexical items reflect the behaviour of
A on the well-formed derivation trees they occur in.

First, we define a variant of the Con function from proposition 2, a mapping
V : 〈Lex〉Q → T (U ∪Q) from annotated lexical items to terms over U and Q, in
the following manner. Writing V� for V (	), we define V� := Con〈�〉−1

Q
[q1, . . . , qn],

where 	 = 〈σ , =xq1
1 η1 · · · =xqn

n ηncγ〉, and for 1 ≤ i ≤ n ηi ∈ {+y : y ∈ 〈lic〉Q}∗.
Intuitively, V� calls Con�, and fills in the variables where an argument would be
merged with the state that the automaton must be in when reading the subtree
occuring in that position.

Now, let LexA be the smallest subset of 〈Lex〉Q, such that it contains a lexi-
cal item 	 = 〈σ , *xa1

1 · · ·*xan
n za-yb1

1 · · ·-ybm
m 〉 ∈ LexQ iff a = A(V�). Intuitively,

we are removing all the lexical items from 〈Lex〉Q whose feature annotations
on selector and category features do not accurately reflect the behaviour of A
on the contexts in which they occur. We prove that for d ∈ D(GL) a saturated
derivation tree with first feature zq, A(〈d〉−1

Q ) = q by induction on the heights
of saturated derivation trees. For the base case, let 	 = 〈σ , z-y1 · · · -ym〉, and
let A(	) = q. Then LexA contains an item 	 = 〈σ , za-yb1

1 · · · -ybm
m 〉 ∈ LexQ

iff a = A(V�) = A(〈	〉−1
Q ) = q. Now assume that the proposition holds of sat-

urated derivation trees up to height n − 1, and let saturated d ∈ D(GL) have
height n. Then d = Con〈�〉−1

Q
[d1, . . . , dk] for some 	 = 〈σ , *xr1

1 · · · *xrj

j z
qγ〉 ∈

LexA, and saturated derivation trees d1, . . . , dk. By the inductive hypothesis,
A(〈di〉−1

Q ) = qi, where the first feature of di is zqi

i , for 1 ≤ i ≤ k. Then
A(Con〈�〉−1

Q
[d1, . . . , dk]) = A(Con〈�〉−1

Q
[q1, . . . , qn]) = A(V�) = q.

Now we are in a position to prove the original proposition. Define GL :=
〈Σ, 〈sel〉Q, 〈lic〉Q, LexA〉, and let t ∈ Dxr(GL). By proposition 4, 〈t〉−1

Q ∈ Dx(G).
As we saw in the previous paragraph, A(〈t〉−1

Q ) = r, and thus 〈t〉−1
Q ∈ L. This

establishes the forward containment (⊆). For the reverse direction (⊇), let t ∈
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Dx(G) ∩ L, and let t′ ∈ 〈t〉Q be such that every selector feature on every leaf
in t is annotated with the state that A is in when it has read the corresponding
argument to that feature, and every selectee feature on every leaf in t is annotated
with the state that A is in when it has read the entire subtree of t which is
the instantiation of the context of that leaf. Clearly, t′ ∈ D(GL). As t ∈ L,
t′ ∈ Dxr(GL), which concludes the proof. �

It is worth remarking about the constructed GL in the proof of proposition 7
that its lexical items exhibit only certain dependencies amongst their features. In
particular, if some lexical item 	 ∈ LexA has as its ith feature a licensee feature
-yp, then LexA contains every 	′ like 	 except that instead of -yp, its ith feature
is -yq, for some q ∈ Q. The same holds true of +y features, but not in general
for =x and x features.

From a high-level perspective, proposition 7 shows that we may ‘push’ down
into the features of the leaves the state-annotations on non-terminals in a deriva-
tion tree obtained from Thatcher’s [2] construction of a context-free grammar
from a bottom-up finite state tree automaton.

2.1 Closure under Intersection with Regular Sets

In the previous section we noted that when incorporating regular restrictions on
derivations, we only needed to enforce dependencies among selection features.
Intuitively, all of the information that an automaton traversing a derivation tree
might care about is present already when two expressions are merged together,
and so to ‘keep track’ of this information we only need to encode it on the
features relevant for merger.

By placing constraints on the dependencies between licensing features, we
allow information to be communicated about aspects of the derived objects,
such as whether a particular movement is of an expression that will remain in
its current position, or of one which will continue on (and leave behind a trace).

Proposition 8. Let G be a minimalist grammar, and L ⊆ T (S) a regular tree
language. Then for any x there is a minimalist grammar GL and a feature y
such that Ly(GL) = Lx(G) ∩ L.

Proof. Let G and L and x be arbitrary, and let A = 〈Q, (δs)s∈S〉 be a bottom-up
finite tree automaton such that for some r ∈ Q, A−1(r) = L. As before, we will
identify the y in the statement of the theorem with xr. Define the state t = A(t)
to be the state A is in when it has scanned a trace. As before, we will define a
subset LexA ⊆ 〈Lex〉Q to be our lexicon. First we define a ‘surface counterpart’
of the V mapping from proposition 7, a function R : T (S) × Q∗ → T (S ∪ Q)
from derived tree – state sequence pairs to terms over S and Q, in the following
manner. Writing Rt(w) for R(t, w), we define Rt(w) := TCon

|w|
t [w1, . . . , w|w|],

where TCon
n
t is as in the statement of proposition 1.

Now we define LexA ⊆ 〈Lex〉Q to be the smallest set such that it contains a
lexical item 〈σ , *xa1

1 · · · *xan
n zt-yt

1 · · ·-ya
m〉 ∈ 〈	〉Q iff a ∈ A(Rσ(a1 · · · an)). The

selector and licensor feature annotations are intended to indicate the state the
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automaton is in when it scans the surface item in that position, and the selectee
and licensee feature annotations provide information about what surface term
appears in each of the positions associated with these features. Note that all
but the last selectee and licensee features are annotated with a ‘trace’ – this is
because an expression leaves behind a trace in all but its final position.

Now letX ⊆ L(GL) be the subset of L(GL) containing all and only expressions
φ0, . . . , φk which meet the conditions that

1. for 1 ≤ i ≤ k, the last feature in each φi is annotated with the state that
A is in when it scans the tree component of φi, all other features of each φi

are annotated with t (the state A is in when it scans a trace)
2. φ0 = 〈s, *xa1

1 · · · *xaj

j z
b0-yb1

1 · · ·-ybm
m 〉 is such that A(Rs(a1 · · · aj)) = bm and

b0, . . . , bm−1 = t

We show that X contains LexA and is closed under mergei and movei, for
1 ≤ i ≤ 2, and is therefore equal to L(GL).

– Let 	 = 〈σ , *xa1
1 · · · *xaj

j z
b0-yb1

1 · · ·-ybm
m 〉 ∈ LexA. Then by definition,

b0 . . . , bm−1 = t, and bm = A(Rσ(a1 · · ·aj)).
– Let φ0, . . . , φk ∈ X be in the domain of the move1 operation. Then φ0 =

〈s, +xa1
1 *xa2

2 · · · *xaj

j z
b0-yb1

1 · · · -ybm
m 〉, and for some i, φi = 〈r, -xa1

1 〉, where
by hypothesis a1 = A(r), and bm = A(Rs(a1 · · · aj)). Thenmove1(φ0, . . . , φk)
is the expression φ′0, φ1, . . . , φi−1, φi+1, . . . , φk, where φ′0 has as its first com-
ponent the term •(r, s), and second component the tail of the feature se-
quence of φ0. By the definition of R, we see that A(R•(r,s)(a2 · · · aj)) =
A(Rs(A(r) a2 · · · aj)) = A(Rs(a1 a2 · · · aj)) = bm.

– Let φ0, . . . , φk ∈ X be in the domain of the move2 operation. Then φ0 =
〈s, +xa1

1 *xa2
2 · · · *xaj

j z
b0-yb1

1 · · · -ybm
m 〉, and φi = 〈r, -xa1

1 -zc1
1 · · · -zch

h 〉 for some
i, where by hypothesis a1 = t, c1, . . . , ch−1 = t, ch = A(r), and bm =
A(Rs(a1 · · · aj)). Then the result of applying move2 to φ0, . . . , φk is the ex-
pression φ′0, φ1, . . . , φ

′
i, . . . , φk, where φ′0 has as its first component the term

•(t, s), and second component the tail of the feature sequence of φ0, and φ′i =
〈r, -zc1

1 · · · -zch

h 〉. By the definition of R, we see that A(R•(t,s)(a2 · · · aj)) =
A(Rs(t a2 · · · aj)) = A(Rs(a1 a2 · · ·aj)) = bm.

– the proof for merge1 is similar to that of move1 and is omitted.
– the proof for merge2 is similar to that of move2 and is omitted.

Now let GL := 〈Σ, 〈sel〉Q, 〈lic〉Q, LexA〉. In the forward direction, let t ∈
Lxr(GL). By proposition 5 we have that t ∈ Lx(G). As t ∈ Lxr(GL), it holds
that 〈t, xr〉 ∈ L(GL), which has properties 1 and 2 above, whence t ∈ A−1(r) =
L. In the reverse direction, let t ∈ Lx(G) ∩ L with derivation d ∈ Dx(G).
For each non-trace leaf s in t identify the lexical item 	s in d from which it
came (as per proposition 3), and associate s with its annotated surface con-
text Rs(A(t1), . . . , A(tn)), for t1, . . . , tn ∈ T (S) such that TCon

n
s [t1, . . . , tn] ∈

LexProj(t). Define 	′s ∈ 〈Lex〉Q to be like 	s but where the selector and licen-
sor features are annotated from left to right with A(t1) throught A(tn), the last
feature with A(Rs(A(t1), . . . , A(tn))), and all remaining feautres with t. Clearly,
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	′s ∈ LexA, and the d′ obtained by replacing all leaves in d in this manner is
a derivation in D(GL). That it is a complete derivation of category xr follows
from its construction, whence ev(d′) = 〈t, xr〉, and t ∈ Lxr(GL), as desired. �

As an application of proposition 8, we show the known result that the string lan-
guages of minimalist grammars are closed under intersection with regular string
languages. We do this by generating a finite state tree automaton recognizing
all trees with yields in the given regular string language, which can then by 8 be
‘intersected’ with an arbitrary minimalist grammar.

Example 9. Let M = 〈QM , qM
0 , ζ, qM

f 〉 be a regular string automaton, with state
set QM , initial and final states qM

0 and qM
f , respectively, and transition function

ζ : QM ×Σ → QM . The set of trees over T (S) whose yield is in L(M) is given by
the regular nondeterministic tree automaton AM = 〈QA, QA

f , (δf )f∈Σ〉 (where
QA

f is the set of final states) defined as follows:

1. QA =
[
QM → QM

]

2. QA
f = {q ∈ QA : q(qM

0 ) = qM
f }

3. For t(0), δt(q) = q
4. For σ ∈ Σ0, δσ(q) = λx.ζ(q(x), σ)
5. For •(2), δ•(q1, q2) = q1 ◦ q2

Define L :=
⋃

q∈QA
f
A−1

M (q). Then for G a minimalist grammar and x a selectee

feature, there is a feature y such that, Sy(GL)) = Sx(G) ∩ L(M).

Example 9 can be viewed as a particular instance of a much more general
fact.4

Proposition 10. (Courcelle [8])

1. The inverse image of a (MSO) definable set of structures under a (MSO)
definable transduction is (MSO) definable

2. The composition of two (MSO) definable transductions is (MSO) definable.

In particular, if φ : T (S) → Δ∗ is an MSO definable spell-out mapping,
associating trees with strings over Δ, and L ⊆ Δ∗ is a regular string language
of ‘what might have been just said’, then φ−1[L] = {t ∈ T (S) : φ(t) ∈ L} is by
proposition 10 a regular tree language, and thus for any minimalist grammar
G, we can construct another minimalist grammar Gφ−1[L] which derives exactly
those trees in φ−1[L] which are derived by G. As an example, mirror-style head

4 In fact, proposition 8 follows from propositions 7 and 10 as a corollary, as was
pointed out by an anonymous reviewer. Let L be a regular tree language, and φL a
MSO formula defining exactly L. Let G be an arbitrary minimalist grammar, and
let Δ be the MSO definable transduction taking exactly Dx(G) to Lx(G). Then by
proposition 10, S = Δ−1[L] is a regular (i.e. MSO-definable) subset of Dx(G) which
contains a derivation tree d iff d is the derivation of some tree t ∈ L, and thus by
proposition 7, GS exists, and is such that for some y, Ly(GS) = Lx(G) ∩ L.



Minimalist Tree Languages Are Closed Under Intersection 139

movement, as implemented by [9], can be treated in terms of a non-standard
(but MSO definable) spell-out mapping from minimalist trees into strings.

More generally, given a minimalist grammar G, any sequence φ1, . . . , φn of
MSO-definable mappings φi : Ai → Ai+1, where A0 = L(G) and An+1 = Δ∗

can be ‘undone’, in the sense that for any MSO-definable subset L ⊆ Δ∗, (φn ◦
· · · ◦ φ1)−1(L) is a regular subset of L(G), and there is therefore a minimalist
grammar G(φn◦···◦φ1)

−1(L) which generates exactly this regular subset.
Not only does this yield a guarantee of mild-context sensitivity, as the string

languages generable from finitely many MSO transductions applied successively
to a regular tree language is exactly the set of multiple context free languages
(see [10]), this also gives a sort of ‘parsing as intersection’ result [11] for any
extension of the basic framework of minimalist grammars by MSO means.

3 Applications

In this section I discuss three applications of propositions 7 and 8 above.5 I
begin by discussing conditions under which semantic type mismatches (and the
consequent deviance of an utterance) can be incorporated into the grammar.
Next I introduce Koopman’s ‘complexity filters’, and show that they do not
increase the tree generating power of minimalist grammars. Finally, I offer a
formalization of distributed morphology, and show that it is weakly equivalent
to minimalist grammars.

3.1 Semantics

Semantics is often couched in a typed system. In this kind of framework, a
structure might be unable to be assigned a meaning due to a type mismatch,
and thus a semantic interpretation function might be partial. In such a case the
meaningful structures generated by a grammar might be a proper subset of the
structures it generates. Does the possibility of semantic type mismatch render the
problem of finding meaningful parses for strings computationally more difficult?
This question is especially salient in the context of the extended standard theory
[13] and its decendents, where semantic interpretation is of the derived structure,
and not of the structure of the derivation.

Propositions 7 and 8 tell us that, if we can represent the property of be-
ing semantically well-formed in terms of a bottom-up tree automaton, then we
can transform a minimalist grammar generating possibly semantically uninter-
pretable surface trees into one which directly generates only the subset of the first
which are semantically interpretable. This will hold true whether we interpret
surface structures (as do [4]) or derivation trees (as is done in [14]).

While it is not in general true that given a set of typed constants, there are only
finitely many types derivable from them, the textbook of [4] (which is the locus
classicus for semantics in the chomskyian vein) eschews more than application
5 Another application which I do not discuss is to work on economy constraints in

minimalist grammars [12].
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(αβ ⊕ α⇒ β) and (sometimes) ‘predicate modification’ (αt⊕ αt ⇒ αt), closing
any finite set of types under which results in a finite set of types.

3.2 Complexity Filters

[15] analyze verbal complexes in Dutch, German and Hungarian in a syntactic
framework much like the one presented here. They propose to treat these lan-
guages as similar for the purposes of this construction, with the primary locus
of cross-linguistic variation being that some configurations are filtered out in
certain languages. In general, the approach of [15], following [16], is to postu-
late a great number of silent terminal nodes, and that syntactic terminals get
moved about repeatedly in a great number of ways. While this sort of approach
allows for the ‘discovery’ of similar structures underlying very different surface
strings (and in different languages), it tends to overgenerate. ‘Complexity fil-
ters’, as proposed by [15] (and expanded upon in [17,3]), are a way of reigning
in this overgeneration. Koopman proposes that each lexical item 	 may impose
requirements on the size of the surface expressions t1, . . . , tn which may occur
in TCon�[t1, . . . , tn]. The size of a tree ti is defined in terms of the length of
and labels along the path from the most deeply embedded phonetically overt
terminal in ti to its root. As a concrete example, [3] proposes that the Germanic
prenominal genitive is structurally identical to the English Saxon genitive. The
well-known restrictions on the prenominal genitive in German (that, for exam-
ple, coordinated structures cannot appear) are not due to a different syntax from
the superficially similar English construction, but to a lexical idiosyncracy of the
German ’s counterpart, which prohibits DPs with more than a small amount of
pronounced structure (predominantly proper names and pronouns) to appear in
its specifier. This is as shown in figure 1 (from [17]).

At the end of the derivation, the specifier of gen may not contain a DP more
complex than:

DP

DP

D

gen

Fig. 1. Complexity filter associated with the German prenominal genitive

Importantly, all of the postulated complexity filters can be stated in terms
of MSO logic over trees;6 expressing that the length from the root to the most
deeply embedded overt node is at most n is a simple universally quantified
sentence to the effect that all nodes which are overt have depth less than or

6 This is somewhat overkill, when compared to the attested complexity filters. The
important thing is that the linguist appealing to complexity filters may propose any
recognizable constraint, secure in the knowledge that he is not increasing the strong
generative capacity of minimalist grammars.
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equal to n. Conversely, requiring that a tree have a pronounced node deeper
than some depth n is the negation of the previous statement.

To see that koopmanian complexity filters are admissible in the minimalist
grammar formalism (in the sense that any MG with complexity filters may be
reformulated as one with the same strong generative capacity without such), it
is important to note first that these filters are not quite filters on the surface
tree. As is indicated in figure 1, a complexity filter applies a regular filter to the
surface trees in a particular geometric relationship to a particular lexical item,
not just any head with a particular phonological form.

Toward a formalization, let L1, . . . , Ln be the n complexity filters used in a
minimalist grammar G. We will take each Li 1 ≤ i ≤ n to define a regular tree
language over T (S), and will allow each selector and licensor feature of every
lexical item to be associated with one of these filters. During a derivation, we
check that the filters (if any) associated with a particular feature are respected.
Below are presented two of the additional generating functions needed to take
complexity filters associated with features into account.

〈s1, =cLγ〉, φ1, . . . , φm 〈s2, c〉, ψ1, . . . , ψn s2 ∈ L

〈•(s2, s1), γ〉, φ1, . . . , φm, ψ1, . . . , ψn
mergeFilter

1

〈s1, +cLγ〉, φ1, . . . , φi−1, 〈s2, -cδ〉, φi+1, . . . , φm t ∈ L

〈•(t, s1), γ〉, φ1, . . . , φi−1, 〈s2, δ〉, φi+1, . . . , φm
moveFilter

2

To recast this in ‘standard’ minimalist grammars, we will take a new lexicon
LexFilter ⊆ 〈Lex〉Q, where Q := Q1×· · ·×Qn∪{1} is the state set of the disjoint
union of the product automaton A1 ⊗ · · · ⊗ An of the automata Ai such that
A−1

i (ri) = Li, 1 ≤ i ≤ n, and the ‘unit’ automaton A1 with one state recognizing
all of T (S). We require that each Ai is total, in that every δi

f is defined on every
input. We want the feature annotations to respect the transitions of A, and so we
are interested in the smallest subset X of LexA ⊆ 〈Lex〉Q meeting the following
conditions, which we will call LexFilter :

1. if 	 ∈ Lex, then X contains every 	′ ∈ LexA such that for n the number of
selector and licensor features of 	, and for 1 ≤ i ≤ n,
– if the ith feature of 	 is associated with complexity filter Lj , then the ith

feature of 	′ is annotated with some state q ∈ Q1 × · · · ×Qj−1 × {rj} ×
Qj+1 × · · · ×Qk

– if the ith feature of 	 is not associated with any complexity filter, then
the ith feature of 	′ is annotated with some state q ∈ Q− {1}

2. for each 	′ ∈ X with no licensee features, X contains the lexical item 	′′,
which is identical to 	′ except that its selectee feature is annotated with the
state 1.

Crucially, the state annotation 1 does not appear on any selector or licensor
feature. Note also that because we are drawing lexical items from LexA, the last
feature of a lexical item is annotated with a state which accurately reflects its
structure.
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Proposition 11. For G a minimalist grammar with complexity filters, and
GFilter the minimalist grammar with lexicon LexFilter, for every selectee fea-
ture x it holds that Lx(G) = Lx1(GFilter).

The proof is similar to that of proposition 8 and is suppressed.

3.3 Distributed Morphology

Distributed Morphology is a theory of the relation between a surface tree and
its yield developed in [18]. There are two particularly salient aspects of this
theory that are relevant here. First, the surface tree may be deformed prior to
computing its yield. These deformations take the following form (from [18]):

morphological merger: a head X may be lowered to the head Y of its com-
plement, forming the complex •(X,Y )

fusion: a node •(X,Y ), where X , Y are heads, may be replaced by a new node
Z

fission: a head Z may be replaced by the node •(X,Y )
impoverishment: A head X may be replaced by a head Y
morpheme addition: A term t ∈ L may be replaced by •(t,X)

Clearly, each of the above operations is a regular tree transduction, for any
particular selection of heads X,Y, Z, and regular tree language L.

The second salient aspect of the theory is that ‘lexical insertion takes place
during spell-out’. This means (essentially) that the lexicon is a function from Σ
to feature sequences (i.e. each lexical item is associated with a unique name);
we might as well identify Σ with an initial subset of the natural numbers.7 The
surface tree is then a hierarchical arrangement of natural numbers. Each natural
number can be realized as one of a finite number of strings over Δ∗, depending
on which of a finite number of regular contexts it occurs in. Thus, each lexical
item is associated with an MSO-definable transduction that ‘realizes’ it.

A distributed morphology grammar consists of a minimalist grammarG, along
with a finite sequence of transductions φ1, . . . , φn, where φi is either a lexical
insertion transduction, or a transduction of one of the five types given above. A
string s ∈ Δ∗ belongs to Lx(G,φ) (the language of a grammar G,φ1, . . . , φn at
category x) iff s is the yield of φn ◦ · · · ◦ φ1(t), for some t ∈ Lx(G). As Lx(G) is
the image of a regular set (Dx(G)) under a (direction preserving) MSO-definable
transduction [19], we have that Lx(G,φ) is a multiple context-free language for
anyG, φ, and x [20]. Moreover, as by proposition 10 we have that for any s ∈ Δ∗,
(φn ◦ · · ·◦φ1)−1(s) is a regular tree language, we can directly define a minimalist
grammar defining exactly the set Lx(G) ∩ (φn ◦ · · · ◦ φ1)−1(s) by proposition 8,
making in principle available a parsing-as-intersection view of recognition and
parsing in distributed morphology.
7 In ‘reality’, one associates with each lexical item a (non-recursive) attribute value

matrix, and with a subset of the lexical items (the contentful lexical items) a unique
name (dog, cat, etc). The operation of fusion is the unification of AVMs, fission is
splitting one AVM into two, and impoverishment is the removal of certain attribute-
value pairs from an AVM. This is not particularly important for the present purposes.
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4 Conclusion

We have shown that both derived and derivation tree languages of minimal-
ist grammars are closed under intersection with recognizable sets of trees. This
is non-trivial, as neither the derivation tree languages nor the derived tree lan-
guages constitute a well-known family of languages (the derivation tree languages
are a proper subset of the recognizable sets, and the derived tree languages are
a proper subset of the multiple regular tree languages).

These closure results are immediately translatable into results of direct lin-
guistic interest. We can view the linguistic results in terms of the admissibility of
a certain kind of grammar factorization. This is clearest in the case of the exam-
ple of semantic types. We have shown there to be no impact on strong generative
capacity whether we treat semantic type information syntactically, giving us a
direct characterization of the semantically well-typed grammatical sentences, or
semantically, characterizing the semantically well-typed grammatical sentences
in terms of a filter. Whereas it is common consensus that we need to perform
the work of semantic type-checking somewhere in the natural language pipeline,
the complexity filters of Koopman are more controversial. By showing them to
be merely notational devices, we have demonstrated that any rational debate
about their adoption into minimalist grammars must revolve around something
other than syntax, or semantics (perhaps learning).

Courcelle’s results give us access to a weak generative capacity preseving ar-
ray of extensions to a basic theory, and in conjunction with the closure under
intersection results, access to an in-principle parsing method. As however the
size of an automaton recognizing a tree language is not bounded by any elemen-
tary function in the size of the smallest MSO formula defining that language,
and the size of the minimalist grammar recognizing the intersection language is
directly related the number of states of the automaton, the size of the gram-
mar recognizing the intersection is potentially much larger than the original
grammar.8
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