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Abstract. Minimalist grammars offer a formal perspective on a popular
linguistic theory, and are comparable in weak generative capacity to other
mildly context sensitive formalism. Minimalist grammars allow for the
straightforward definition of so-called remnant movement constructions,
which have found use in many linguistic analyses. It has been conjectured
that the ability to generate this kind of configuration is crucial to the
super-context-free expressivity of minimalist grammars. This conjecture
is here proven.

In the minimalist program of [2], the well-formedness conditions on movement-
type dependencies of the previous GB Theory [1] are reimplemented deriva-
tionally, so as to render ill-formed movement chains impossible to assemble.
For example, the c-command restriction on adjacent chain links is enforced
by making movement always to the root of the current subtree–a position c-
commanding any other. One advantage of this derivational reformulation of chain
well-formedness conditions is that so-called ‘remnant movement’ configurations,
as depicted on the left in figure 1, are easy to generate. Remnant movement oc-
curs when, due to previous movement operations, a moving expression does not
itself have a grammatical description. Here we imagine that the objects deriv-
able by the grammar in figure 1 include the black triangle and the complex of
white and black triangles, but not the white triangle to the exclusion of the
black triangle. From an incremental bottom-up perspective, the structure on the
left in figure 1 first involves moving the grammatically specifiable black trian-
gle, but then the non-directly grammatically describable white triangle moves.
This is to be contrasted with the superficially similar configuration on the right
in figure 1, in which, again from an incremental bottom-up perspective, both

Fig. 1. Remnant Movement (left) vs Non-Remnant Movement (right)
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movement steps are of grammatically specifiable objects (the first step (here,
the dotted line) involves movement of the complex of white and black triangles,
and the second step (the solid line) involves movement of the black triangle).
In particular, the dependencies generated by remnant movement are ‘crossing’,
while those of the permissible type are nested (in the intuitive sense made evident
in the figure).

The formalism of Minimalist Grammars (MGs) [20] was shown in [15] to be
mildly context-sensitive (see also [10]). The MGs constructed in the proof use
massive remnant movement to derive the non-context-free patterns, inviting the
question as to whether this is necessary. Here we show that it is. MGs without
remnant movement derive all and only the context-free languages. This result
holds even when the SMC (a canonical constraint on movement, see [7]) is relaxed
in such a way as to render the set of well-formed derivation trees non-regular.
In this case, the standard proof [15] that MGs are mildly context-sensitive no
longer goes through.

1 Mathematical Preliminaries

We assume familiarity with basic concepts of formal language theory. We write
2A for the power set of a set A, and, for f : A → B a partial function, dom(f)
denotes the subset of A on which f is defined. Given a set Σ, Σ∗ denotes the set
of all finite sequences of elements from Σ, including the empty sequence ε. Σ+

is the set of all finite sequences over Σ of length greater than 0. For u, v ∈ Σ∗,
u�v is their concatenation. Often we will simply indicate concatenation via
juxtaposition. A ranked alphabet is a set Σ together with a function rank :
Σ → N assigning to each ‘function symbol’ in Σ a natural number indicating
the arity of the function it denotes. If Σ is a ranked alphabet, we write Σi

for the set {σ ∈ Σ : rank(σ) = i}. If σ ∈ Σi, we write σ(i) to indicate this
fact. Let Σ be a ranked alphabet, the set of terms over Σ is written TΣ , and
is defined to be the smallest set containing each σ ∈ Σ0, and for each σ ∈ Σn,
and t1, . . . , tn ∈ TΣ, the term σ(t1, . . . , tn). For X any set, and Σ a ranked
alphabet, Σ ∪ X is also a ranked alphabet, where (Σ ∪ X)0 = Σ0 ∪ X , and
(Σ ∪X)i = Σi for all i > 0. We write TΣ(X) for TΣ∪X . A unary context over
Σ is C ∈ TΣ({x}), such that x occurs exactly once in C. Given a unary context
C and term T , we write C[t] to denote the result of substituting t in for x in
C (x[t] = t, σ(t1, . . . , tn)[t] = σ(t1[t], . . . , tn[t])). A bottom-up tree automaton is
given by a quadruple 〈Q,Σ,→, QF 〉, where Q is a finite set of states, Qf ⊆ Q
is the set of final states, Σ is a ranked alphabet, and →⊂fin Σ × Q∗ → Q. A
bottom-up tree automaton defines a relation ⇒: TΣ(Q)×TΣ(Q). If C is a unary
context over Σ ∪ Q, and 〈σ(n), q1, . . . , qn〉 → q, then C[σ(q1, . . . , qn)] ⇒ C[q].
The tree language accepted by a bottom-up tree automaton A is defined as
L(A) = {t ∈ TΣ : ∃q ∈ QF . t ⇒∗ q}. A set of trees is regular iff it is the
language accepted by some bottom-up tree automaton.
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2 Minimalist Grammars

We use the notation of [22]. An MG over an alphabet Σ is a triple G =
〈Lex, sel, lic〉 where sel and lic are finite non-empty sets (of ‘selection’ and
‘licensing’ feature types), and for F = {=s, s : s ∈ sel} ∪ {+l, -l : l ∈ lic},
Lex ⊂fin Σ

∗ × F
∗. Given binary function symbols Δ2 := {mrg1,mrg2,mrg3}

and unary Δ1 := {mv1,mv2}, a derivation is a term in der(G) = TΔ2∪Δ1∪Lex,
where elements of Lex are treated as nullary symbols. An expression is a fi-
nite sequence φ0, φ1, . . . , φn of pairs over Σ∗ × F

∗; the first component φ0 rep-
resents the yield and features of the expression (qua tree) minus any moving
parts, and the remaining components represent the yield and features of the
moving parts of the expression. Thus an expression of the form φ0 = 〈σ, γ〉
represents a tree with no moving pieces; such an expression is called a com-
plete expression of category γ. Eval : der(G) → 2(Σ∗×F

∗)+ is a partial function
mapping derivations to the sets of expressions they are derivations of. Given
� ∈ Lex, Eval(�) = {�}, and Eval(mrgi(d1, d2)) and Eval(mvi(d)) are defined
as {mergei(e1, e2) : ej ∈ Eval(dj)} and {movei(e) : e ∈ Eval(d)} respectively,
where the operations mergei and movei are defined below. In the following,
σ, τ ∈ Σ∗, γ, δ ∈ F

∗, and φi, ψj ∈ Σ∗ × F
∗.

〈σ, =cγ〉 ∈ Lex 〈τ, c〉, ψ1, . . . , ψn

〈σ�τ, γ〉, ψ1, . . . , ψn
merge1

〈σ, =cγ〉, φ1, . . . , φm 〈τ, c〉, ψ1, . . . , ψn

〈τ�σ, γ〉, φ1, . . . , φm, ψ1, . . . , ψn
merge2

〈σ, =cγ〉, φ1, . . . , φm 〈τ, cδ〉, ψ1, . . . , ψn

〈σ, γ〉, φ1, . . . , φm, 〈τ, δ〉, ψ1, . . . , ψn
merge3

〈σ, +cγ〉, φ1, . . . , φi−1, 〈τ, -c〉, φi+1, . . . , φm

〈τ�σ, γ〉, φ1, . . . , φi−1, φi+1, . . . , φm
move1

〈σ, +cγ〉, φ1, . . . , φi−1, 〈τ, -cδ〉, φi+1, . . . , φm

〈σ, γ〉, φ1, . . . , φi−1, 〈τ, δ〉, φi+1, . . . , φm
move2

The SMC is a restriction on the domains of move1 and move2 which render
these relations functional.

no φj = 〈σj , γj〉 is such that γj = -cγ′j unless j = i (SMC)

The (string) language generated at a category c (for c ∈ sel) by a MG G is
defined to be the yields of the complete expressions of category c:1 Lc(G) :=
{σ : ∃d ∈ der(G). 〈σ, c〉 ∈ Eval(d)}.
1 Implicit in [15] is the fact that for any c, domc(Eval) = {d : ∃σ. 〈σ, c〉 ∈ Eval(d)}

is a regular tree language. This is explicitly shown in [13].
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3 A Ban on Remnant Movement

In order to implement a ban on remnant movement, we want to implement a
temporaray island status on moving expressions: nothing can move out of a mov-
ing expression until it has settled down (‘please wait until the train has come
to a complete stop before exiting’). Currently, an expression e = φ0, φ1, . . . , φk

has the form just given, where φ0 is the ‘head’ of the expression, and the other
φi are ‘moving parts’. Importantly, although we view such an expression as a
compressed representation of a tree, there is no hierarchical relation among the
φi. In order to implement a ban against remnant movement, we need to in-
dicate which of the moving parts are contained in which others. We represent
this information by retaining some of the relative dominance relations in the
represented tree: e = φ0, T1, . . . , Tn, where each tree Ti pairs a moving part
with a (possibly empty) sequence of trees (the set of trees T is the smallest set
X such that X = (Σ∗ × F

∗) × X∗). We interpret such a structure as a mov-
ing part (the features of which are represented by φi) which itself may contain
moving subparts (T i

1, . . . , T
i
m). By allowing these moving subparts to become

accessible for movement only after the features of φi have been exhausted, we
rule out the crossing, remnant movement type dependencies. The revised cases
of the operations merge and move, PBC-merge and PBC-move,2 are given be-
low. The function PBC-Eval interprets derivations d ∈ der(G) in ‘PBC-mode,’
such that PBC-Eval(�) = {�}, PBC-Eval(mvi(d)) = {PBC-movei(e) : e ∈
PBC-Eval(d)}, and PBC-Eval(mrgi(d1, d2)) = {PBC-mergei(e1, e2) : ej ∈
PBC-Eval(dj)}.

In the below, σ, τ are strings, γ, δ are finite sequences of syntactic features,
Si, Tj are trees of the form 〈〈σ, γ〉, 〈S1, . . . , Sn〉〉.

〈σ, =cγ〉 ∈ Lex 〈τ, c〉, T1, . . . , Tn

〈σ�τ, γ〉, T1, . . . , Tn
PBC-merge1

〈σ, =cγ〉, S1, . . . , Sm 〈τ, c〉, T1, . . . , Tn

〈τ�σ, γ〉, S1, . . . , Sm, T1, . . . , Tn
PBC-merge2

〈σ, =cγ〉, S1, . . . , Sm 〈τ, cδ〉, T1, . . . , Tn

〈σ, γ〉, S1, . . . , Sm, 〈〈τ, δ〉, 〈T1, . . . , Tn〉〉 PBC-merge3

〈σ, +cγ〉, S1, . . . , Si−1, 〈〈τ, -c〉, 〈T1, . . . , Tn〉〉, Si+1, . . . , Sm

〈τ�σ, γ〉, S1, . . . , Si−1, T1, . . . , Tn, Si+1, . . . , Sm
PBC-move1

〈σ, +cγ〉, S1, . . . , Si−1, 〈〈τ, -cδ〉, 〈T1, . . . , Tn〉〉, Si+1, . . . , Sm

〈σ, γ〉, S1, . . . , Si−1, 〈〈τ, δ〉, 〈T1, . . . , Tn〉〉, Si+1, . . . , Sm
PBC-move2

2 The ‘PBC’ is named after the proper binding condition of [6], which filters out surface
structures in which a trace linearly precedes its antecedent. If the antecedent of a
trace left behind by a particular movement step is defined to be the element (trace
or otherwise) in the target position of that movement, the present modification to
the rules merge and move exactly implement the PBC in the minimalist grammar
framework.
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We will continue to require that these rules satisfy (a version of) the SMC.3

Following [12], we define the SMC over PBC-move as follows:

no Tj = 〈〈σj , γj〉, 〈T j
1 , . . . , T

j
n〉〉 is such that γj = -cγ′j unless j = i

(PBC-SMC)

The string language generated in PBC-mode at a category c is defined as
usual: LPBC

c (G) := {σ : ∃d ∈ der(G).〈σ, c〉 ∈ PBC-Eval(d)}.
Observe that the rule PBC-merge3 introduces new tree structure, temporar-

ily freezing the moving pieces within its second argument. The rules PBC-move1
and PBC-move2 enforce that only the root of a tree is accessible to movement
operations, and that its daughter subtrees become accessible to movement only
once the root has finished moving.

Note also that the set of well-formed derivation trees in PBC-mode (the set
dom(PBC-Eval)) is not a regular tree language (this is due to the laxness of
the PBC-SMC). To see this, consider the MG G1 = 〈Lex, {x, y}, {A}〉, where
Lex contains the four lexical items below.

a::=x x -A f::x
c::=y +A y e::=x y

Derivations of complete expressions of category y begin by starting with f, and
repeatedly merging tokens of a. Then e is merged, and for each a, a c is merged,
and a move step occurs. In particular, although the yields of these trees form
the context-free language cneanf, the number of mrg3 nodes must be equal to
the number of mv1 nodes. It is straightforward to show that no finite-state tree
automaton can enforce this invariant.

Our main result is that minimalist grammars under the PBC mode of deriva-
tion (i.e. using the rules just given above) generate exactly the class of context-
free languages.

4 MGs with Hypotheses

Because the elimination of remnant movement guarantees that, viewed from a
bottom-up perspective, we will finish moving a containing expression before we
need to deal with any of its subparts, we can re-represent expressions using ‘slash-
features’, as familiar from GPSG [8]. Accordingly, we replace (PBC-)merge3,
3 There are two natural interpretations of the SMC on expressions e = Φ, T1, . . . , Tn.

First, one might require that no two φi and φj , share the same first feature, regardless
of how deeply embedded within trees they may be. This perspective views the tree
structure as irrelevant for the statement of the SMC. Another reasonable option is to
require only that no two φi and φj share the same first feature, where φi and φj are
the roots of trees Ti and Tj respectively. This perspective views the tree structure
of moving parts as relevant to the SMC, and allows for a kind of ‘smuggling’ [3],
as described in [12]. The results of this paper are independent of which of these
two interpretations of the SMC we adopt. We adopt the second, because it is more
interesting (the derivation tree sets no longer constitute regular tree languages).
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which introduces a to-be-moved expression, with a new (non-functional) oper-
ation, assume, which introduces a ‘slash-feature’, or hypothesis. A hypothesis
takes the form of a pair of feature strings 〈δ, γ〉. The interpretation of a hypothesis
〈δ, γ〉, is such that δ records the originally postulated ‘missing’ feature sequence
(and thus is unchanging over the lifetime of the hypothesis), whereas γ represents
the remaining features of the hypothesis, which are checked off as the derivation
progresses. Move1, which re-integrates a moving part into the main expres-
sion, is replaced with another new operation, discharge. Discharge replaces
‘used up’ hypotheses with the expressions that they ‘could have been.’ These
expressions may themselves contain hypothesized moving pieces. Derivations of
minimalist grammars with hypothetical reasoning in this sense are terms d ∈
Hyp-der(G) over a signature {mrg(2)

1 ,mrg(2)
2 , assm(1),mv(1)

2 ,dschrg(2)}∪Lex,
and Hyp-Eval partially maps such terms to expressions in the by now familiar
manner.

In the below, σ, τ are strings over Σ, γ, δ, ζ are finite sequences of syntactic
features, φi, ψj are pairs of the form 〈δ, γ〉.

〈σ, =cγ〉 ∈ Lex 〈τ, c〉, ψ1, . . . , ψn

〈σ�τ, γ〉, ψ1, . . . , ψn
merge1

〈σ, =cγ〉, φ1, . . . , φm 〈τ, c〉, ψ1, . . . , ψn

〈τ�σ, γ〉, φ1, . . . , φm, ψ1, . . . , ψn
merge2

〈σ, =cγ〉, φ1, . . . , φm

〈σ, γ〉, φ1, . . . , φm, 〈cδ, δ〉 assume

〈σ, +cγ〉, φ1, . . . , φi−1, 〈δ, -c〉, φi+1, . . . , φm 〈τ, δ〉, ψ1, . . . , ψn

〈τ�σ, γ〉, φ1, . . . , φi−1, ψ1, . . . , ψn, φi+1, . . . , φm
discharge

〈σ, +cγ〉, φ1, . . . , φi−1, 〈ζ, -cδ〉, φi+1, . . . , φm

〈σ, γ〉, φ1, . . . , φi−1, 〈ζ, δ〉, φi+1, . . . , φm
move2

We subject the operations move2 and discharge to a version of the SMC:

no φj = 〈ζj , γj〉 is such that γj = -cγ′j unless j = i (Hyp-SMC)

The language of a minimalist grammar G at category c using hypothetical
reasoning is defined to be:

LHyp
c (G) := {σ : ∃d ∈ Hyp-der(G). 〈σ, c〉 ∈ Hyp-Eval(d)}

The operation discharge constrains the kinds of assumptions introduced by
assume which can be part of a well-formed derivation to be those which are of
the form 〈cδ, δ〉, where there is some lexical item 〈σ, γcδ〉. As there are finitely
many lexical items, there are thus only finitely many useful assumptions given
a particular lexicon. It will be implicitly assumed in the remainder of this paper
that assume is restricted so as to generate only useful assumptions. We hence-
forth index assm nodes with the features of the hypotheses introduced (writing
thus assmcγ for an assume operation introducing the hypothesis 〈cγ, γ〉).
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Theorem 1. For any G, and any c ∈ selG, the set domc(Hyp-Eval) = {d :
∃σ. 〈σ, c〉 ∈ Hyp-Eval(d)} is a regular tree language.

Proof. Construct a nondeterministic bottom-up tree automaton whose states are
(|lic| + 1)-tuples of pairs of suffixes of lexical feature sequences. The Hyp-SMC
allows us to devote each component of such a sequence beyond the first to the
(if it exists, unique) hypothesis beginning with a particular -c feature, and thus
we assume to be given a fixed enumeration of lic. The remarks above guarantee
that there are only a finite number of such states needed. Given an expression,
φ0, φ1, . . . , φn, the state representing it has as its ith component the pair 〈ε, ε〉 if
there is no φj beginning with the ith -c feature, and the unique φj beginning with
the ith -c feature otherwise. The 0th component of a state is always of the form
〈ε, γ〉, where γ is the feature sequence of φ0. As we are interested in derivations
of complete expressions of category c, the final state is 〈〈ε, c〉, 〈ε, ε〉, . . . , 〈ε, ε〉〉.
The transitions of the automaton are defined so as to preserve this invariant: at
a lexical item � = 〈σ, γ〉, the automaton enters the state 〈〈ε, γ〉, 〈ε, ε〉, . . . , 〈ε, ε〉〉,
and at an internal node σ(n)(q1, . . . , qn), the automaton enters the state q just
in case there are expressions e1, . . . , en represented by states q1, . . . , qn which
are mapped by the operation denoted by σ to an expression e represented by
state q.

We use the facts that linear homomorphisms preserve recognizability and that
the yield of a recognizable set of trees is context-free [4] in conjunction with
theorem 1 to show that minimalist grammars using hypothetical reasoning define
exactly the context-free languages.

Theorem 2. For any G, and any c ∈ selG, LHyp
c (G) is context-free.

Proof. Let G and c be given. By theorem 1, D = domc(Hyp-Eval) is recogniz-
able. Let E = f [D], where f is the homomorphism defined as follows (f maps
nullary symbols to themselves):

f(σ(e1, . . . , en)) =
{
σ(f(e2), f(e1)) if σ ∈ {mrg2,dschrg}
σ(f(e1), . . . , f(en)) otherwise

Inspection of f reveals that it is merely putting sister subtrees in the order
in which they are pronounced (à la Hyp-Eval) and thus, for any d ∈ D,
Hyp-Eval(d) contains 〈σ, c〉 iff yield(f(d)) = σ. As f is linear, E is recognizable,
and thus yield(E) = LHyp

c (G) is context-free.

5 Relating the PBC to Hypothetical Reasoning

To show that minimalist grammars in PBC mode are equivalent to minimalist
grammars with hypothetical reasoning we will exhibit an Eval-preserving bi-
jection between complete derivation trees of both formalisms.4 The gist of the
4 A complete derivation tree is just one which is the derivation of a complete expres-

sion. I will in the following use the term in conjunction with derivations in der(G)
to refer exclusively to expressions derived in PBC-mode.
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mv1

mrg1

c mv1

mrg1

c mrg3

e mrg3

a mrg1

a f

dschrg

mrg1

c dschrg

mrg1

c assmx-A

e assmx-A

a mrg1

a f

Fig. 2. Derivations in G1 of afcace

transformation is best provided via an example. Consider the trees in figure 2,
which are derivations over the MG G1 in PBC mode and using hypothetical
reasoning respectively of the string afcace.

The dotted lines in the derivation trees in figure 2 indicate the implicit depen-
dencies between the unary operations and other expressions in the derivation.
For example, mv nodes are connected via a dotted line to the subtree which
‘moves’. Similarly, assmγ nodes are connected via a dotted line to the expres-
sion which ultimately discharges the assumption they introduced. The subtree
connected via dotted line to a mv1 node I will call the subtree targeted by that
move operation, and is that subtree whose leftmost leaf introduces the -c fea-
ture checked by this move step, and which is the right child of a mrg3 node.
Note that if the derivation is well-formed (i.e. is in the domain of PBC-Eval)
there is a unique subtree targeted by every mv1 node. The right daughter of a
dschrg node connected via dotted line to a assmγ node is called the hypothesis
discharged by that discharge operation, and is connected to the assmγ node
which introduces the hypothesis which is discharged at its parent node. Again,
if the derivation is well-formed, the assmγ node in question is the unique such.
Note, however, that it is only in the case of complete derivation trees that to ev-
ery assmγ node there corresponds the hypothesis-discharging discharge node.
The major difference between PBC and Hyp MG derivations is that expres-
sions entering into multiple feature checking relationships during the course of
the derivation are introduced into the derivation at the point their first feature
checking relationship takes place in the case of PBC (and MG derivations more
generally), and at the point their last feature checking relationship obtains in
the case of Hyp MGs.

The relation between the two trees in figure 2, and more generally between
PBC derivations and hypothetical derivations, is that the subtree connected via
dotted line to mv1 becomes the second argument of dschrg, and the second
argument of mrg3 becomes the subtree connected to assm via a dotted line.
This is shown in figure 3.
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mv1
≈ dschrg

mrg3
≈ assm

Fig. 3. Relating PBC derivations and hypothetical derivations

We define a relation Trans ⊂ der(G)×Hyp-der(G) in the following manner:

1. Trans(mv1(d),dschrg(d1, d2)), where, for d′ is the (unique) subtree tar-
geted by this instance of mv1, trans(d, d1) and Trans(d′, d2)

2. Trans(mrg3(d1, d2),assmγ(d)), where PBC-Eval(d2) = {φ0, φ1, . . . , φn},
φ0 = 〈σ, γ〉, and Trans(d1, d)

3. Trans(σ(d1, . . . , dn), σ(d′1, . . . , d
′
n)), where Trans(di, d

′
i), for all 1 ≤ i ≤ n

By inspection of the above case-wise definition, it is easy to see that

Theorem 3. Trans is a function.

The point of defining Trans as per the above is to use it to show that the
structural ‘equivalence’ sketched in figure 3 preserves relevant aspects of weak
generative capacity. Expressions denoted by derivations in both ‘formalisms’
have been represented here as sequences. However, only the type of the first
element of such sequences (a pair 〈σ, γ〉 ∈ Σ∗×F

∗) is identical across formalisms
(the other elements are trees with nodes pairs of the same type in the PBC MGs,
but are pairs of feature sequences in Hyp MGs). Accordingly, the relation I will
show Trans to preserve is the identity of the first element of the yield of the
source and target derivation trees.

Theorem 4. For d ∈ der(G), such that {φ0, T1, . . . , Tn} = PBC-eval(d), if
ψ0, ψ1, . . . , ψk ∈ Hyp-Eval(Trans(d)), then φ0 = ψ0, n = k, and for 1 ≤ i ≤ n,
Ti = 〈〈σi, γi〉, T i

1, . . . , T
i
m〉 and ψi = 〈ζi, γi〉.

Proof. By induction. For the base case, let d be a lexical item. PBC-Eval(d)
and Hyp-Eval(d) are both equal to {d}, which by case 3 of the definition of
Trans, is equal to Hyp-Eval(Trans(d)). Now let d1 and d2 be appropriately
related to Trans(d1) and Trans(d1) respectively. There are five cases to con-
sider (mrgi,mvj, for 1 ≤ i ≤ 3 and 1 ≤ j ≤ 2).

1. Let d = mrg1(d1, d2). Then by case 3 of the definition of Trans, Trans(d) =
mrg1(Trans(d1),Trans(d2)). PBC-Eval(d) is defined if and only if both
PBC-Eval(d1) = {〈σ, =cγ〉} and PBC-Eval(d1) = {〈τ, c〉, T1, . . . , Tn}, in
which case it is {〈σ�τ, γ〉, T1, . . . , Tn}. By the induction hypothesis, we con-
clude that Hyp-Eval(Trans(d1)) = {〈σ, =cγ〉} and Hyp-Eval(Trans(d2))
= {〈τ, c〉, ψ1, . . . , ψn}, which are in the domain of merge1, and thus, by
inspection of the definition of this latter, that d and Trans(d) are appro-
priately related as well.
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2. The case where d = mrg2(d1, d2) is not interestingly different from the
above.

3. Let d = mrg3(d1, d2). Then by case 2 of the definition of Trans, Trans(d)
= assmγ(Trans(d1)). As d1 and Trans(d1) are appropriately related (by
the induction hypothesis), and as both merge3 and assumeγ define the first
component of their result to be the same as the first component of their left-
most argument minus the first feature, d and Trans(d) are appropriately
related as well.

4. Let d = mv1(d1), and let d2 be the unique subtree targeted by this in-
stance of mv1. For PBC-Eval(d) to be defined, PBC-Eval(d1) must be
equal to {〈σ, +cγ〉, S1, . . . , Si−1, 〈〈τ, -c〉, 〈T1, . . . , Tn〉〉, Si+1, . . . , Sm}. In this
case, PBC-Eval(d2) = {〈τ, δ-c〉, T1, . . . , Tn}. By the induction hypothe-
sis, Hyp-Eval(Trans(d1)) = {〈σ, +cγ〉, φ1, . . . , 〈δ, -c〉, φi+1, . . . , φm}, and
in addition Hyp-Eval(Trans(d2)) = {〈τ, δ-c〉, ψ1, . . . , ψn}. Thus, we can
see that the discharge operation is defined on these arguments, and is equal
to {〈τ�σ, γ〉, φ1, . . . , φi−1, ψ1, . . . , ψn, φi+1, . . . , φm}. Applying the operation
move1 to PBC-Eval(d1) we obtain the unit set consisting of the single ele-
ment 〈τ�σ, γ〉, S1, . . . , Si−1, T1, . . . , Tn, Si+1, . . . , Sm, and thus establish that
d is appropriately related to Trans(d).

5. Finally, let d = mv2(d1). By case 3, Trans(d) = mv2(Trans(d1)). If
PBC-Eval(d) is defined, then there is a unique moving component Ti of
PBC-Eval(d1) which an appropriate first feature. By the induction hypoth-
esis, there is a unique corresponding ψi in Hyp-Eval(Trans(d1)), allow-
ing move2(Hyp-Eval(Trans(d1))) to be defined, and us to see that d and
Trans(d) are appropriately related in this case too.

Note that whenever d ∈ der(G) is complete, so too is Trans(d) ∈ Hyp-der(G).

Corollary 1. Trans preserves completeness.

Furthermore, by inspecting the cases of the proof above, we see that the hypoth-
esis introduced by a particular assmγ node which is the translation of a mrg3

node, is discharged at the dschrg node which is the translation of the mv1 node
which targets the right daughter of that mrg3 node.

From theorem 4 follows the following

Corollary 2. For every G, and any feature sequence γ, LPBC
γ (G) ⊆ LHyp

γ (G).

To prove the inclusion in the reverse direction, I will show that for every complete
d′ ∈ Hyp-der(G) there is a d ∈ der(G) such that Trans(d) = d′. I define a func-
tion snarT which takes a pair consisting of a derivation tree d′ ∈ Hyp-der(G)
and a set M of pairs of strings over {0, 1}∗ and derivation trees in der(G). We
interpret a pair 〈p, d〉 ∈M as stating that we are to insert tree d as a daughter of
the node at address p. (Recall that in translating from Hyp MG derivation trees
to PBC trees we need to ‘lower’ expressions introduced at a dschrg node into
the position in which they were assumed.) Given a set of such pairs M , I denote
by (i)M (for i ∈ {0, 1}) the set {〈p, d〉 : 〈ip, d〉 ∈ M}. I will use this notation to
keep track of where the trees in M should be inserted into the translated struc-
ture. Basically, when an item 〈ε, d〉 ∈ M , it indicates that it should be inserted
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as a daughter of the current root. I will use the notation M(ε) to denote the
unique d such that 〈ε, d〉 ∈M , if one exists.

1. for d = dschrg(d1, d2), and p the address in d of the assmγ node whose
hypothesis is discharged at this dschrg node, we define snarT(d,M) =
mv1(snarT(d1, (0)(M ∪ {〈p, snarT(d2, (1)M)〉})))

2. for d = assmγ(d1), snarT(d,M) = mrg3(snarT(d1, (0)M),M(ε))
3. snarT(σ(d1, . . . , dn),M) = σ(snarT(d1, (0)M), . . . , snart(dn, (n−1)M))

Note that, although snarT is not defined on all trees in Hyp-der(G) (case 2 is
undefined whenever there is no (unique) 〈ε, d〉 ∈M), it is defined on all complete
d ∈ Hyp-der(G).

Theorem 5. For all complete d ∈ Hyp-der(G), snarT(d, ∅) ∈ der(G).

Proof. Case 2 is the only potential problem (as is undefined whenever M(ε)
is). However, in a complete derivation tree, every assmγ node is dominated
by a dschrg node, at which is discharged the hypothesis introduced by this
former. Moreover, no dschrg node discharges the hypothesis of more than one
assmγ node. Thus, we are guaranteed in a complete derivation tree that at each
occurrence of an assmγ node M(ε) is defined.

That the range of snarT is contained in der(G) is verified by simple inspec-
tion of its definition.

Of course, we want not just that snarT map derivations in Hyp-der(G) to ones
in der(G), but also that a derivation d in der(G) to which a complete derivation
d′ in Hyp-der(G) is mapped by snarT maps back to d′ via Trans. This will
allow us to conclude the converse of corollary 2.

Theorem 6. For all complete d ∈ Hyp-der(G), d = Trans(snarT(d, ∅)).
Proof. In order to have a strong enough inductive hypothesis, we need to prove
something stronger than what is stated in the theorem. Let d ∈ Hyp-der(G),
and M be a partial function with domain {0, 1}∗ and range der(G), such that
p is the address of an assmγ node in d without a corresponding dschrg node
iff there is some d′ such that M(p) = d′. (In plain English, M tells us how to
translate ‘unbound’ assmγ nodes in d.) Then d = Trans(snarT(d,M)). Note
that the statement of the theorem is a special case, as for d complete there are
no unbound assmγ nodes, and thus M can be ∅.

For the base case, let d be a lexical item (and thus complete). Then by case
3 of the definition of snarT, snarT(d, ∅) = d, and by case 3 of the definition
of Trans, Trans(d) = Trans(snarT(d)) = d. Now let d1, d2, be as per
the above such that for appropriate M1,M2, Trans(snarT(d1,M1)) = d1 and
Trans(snarT(d2,M2)) = d2. There are again five cases to consider.

1. Let d = mrg1(d1, d2), and M an assignment of trees in der(G) to unbound
assmγ nodes in d. Then Trans(snarT(d,M)) is, by case 3 of the def-
inition of snarT, Trans(mrg1(snarT(d1, (0)M), snarT(d2, (1)M))). By
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case 3 of the definition of Trans, this is easily seen to be identical to
mrg1(Trans(snarT(d1, (0)M)),Trans(snarT(d2, (1)M))). As, for any i,
(i)M is an assignment of trees to unbound assmγ nodes in di, the inductive
hypothesis applies, and thus Trans(snarT(d,M)) = d, as desired.

2. The case where d = mrg2(d1, d2) is not interestingly different from the
above.

3. Let d = assmγ(d1), and let M assign trees to its unbound assmγ nodes
(in particular, M(ε) is defined). Then by case 2 of the definition of snarT,
Trans(snarT(d,M)) = Trans(mrg3(snarT(d1, (0)M),M(ε))). Now, ac-
cording to case 2 of the definition of Trans, this is seen to be identical
to assmγ(Trans(snarT(d1, (0)M))), which according to our inductive hy-
pothesis is simply assmγ(d1) = d.

4. Let d = dschrg(d1, d2), and let M assign trees in der(G) to all and only
unbound assmγ nodes in d. By case 1 of the definition of snarT, we
have that Trans(snarT(d,M)) is equal to Trans(mv1(snarT(d1, (0)(M∪
{〈0p, snarT(d2, (1)M)〉})))), where 0p is the address of the assmγ node in
d bound by the dschrg node at its root. Next, we apply the first case of
the definition of Trans. This gives us dschrg(Trans(snarT(d1, (0)(M ∪
{〈0p, snarT(d2, (1)M)〉}))),Trans(d′)), where d′ is the unique subtree tar-
geted by the mv1 node at the root of the translated expression. This is
the right daughter of the mrg3 node which the assmγ node at position
p in d1 translates as, namely, snarT(d2, (1)M). As (0)M assigns trees to
all unbound assmγ nodes in d1 except for the one at location p, (0)(M ∪
{〈0p, snarT(d2, (1)M)〉}) assigns trees to all of d1’s unbound assmγ nodes.
Therefore, the induction hypothesis applies, and Trans(snarT(d,M)) is
seen to be identical to dschrg(d1, d2).

5. Finally, let d = mv2(d1), and M as assignment of trees to unbound assmγ

nodes in d. By case 3, snarT(d,M) = mv2(Trans(snarT(d1,M))), which,
by the induction hypothesis, is equal to d.

Theorem 4 allowed us to conclude that for every d ∈ der(G) deriving a complete
expression, there was a complete d′ ∈ Hyp-der(G) deriving the same complete
expression (whence corollary 2). From theorem 6 we are able to conclude the
reverse as well.

Corollary 3. For every G, and any feature sequence γ, LPBC
γ (G) = LHyp

γ (G).

As Hyp MGs were shown in theorem 2 to be context free, we conclude that MGs
subject to the proper binding constraint are as well.

6 Conclusion

We have demonstrated that movement by itself is not enough to describe non-
context free languages; the super-CFness of the MG formalism is essentially tied



172 G.M. Kobele

to remnant movement. This result confirms the intuition of several (cf. [15,21]),
and seems related to the results of [18] in the context of the formalism of the
GB theory presented therein.

Stabler [21] conjectures that:

Grammars in MG can define languages with more than 2 counting de-
pendencies only when some sentences in those languages are derived with
remnant movements.

As we have shown here that MGs without remnant movement can only define
context-free languages, we have proven Stabler’s conjecture. However, we can in
fact show a strengthened version of this conjecture to be true. Beyond the mere
existence of remnant movement, where at item moves from which has already
been moved another, we can identify hierarchies of such movement, depending
on whether the item moved out of the ‘remnant mover’ is itself a remnant, and
if so, whether the item moved out of that item is a remnant, and so on. We
could place an upper bound of k on the so-defined degree of remnant movement
we were willing to allow by, using the tree-structured representation of moving
subpieces from our definition of PBC-MGs, allowing the move operations to
target -c features of up to depth k in the tree. In this case, however, we could
simply enrich the complexity of our hypotheses in the corresponding Hyp-MGs
by a finite amount, which would not change their generative capacity. Thus,
in order to derive non-context free languages, MGs must allow for movement of
remnants of remnants of remnants. . . , in other words, a MG can define languages
with more than two counting dependencies only when there is no bound k such
that every sentence in the language is assigned a structure with remnant degree
less than k.

Given that MGs can analyze non-CF patterns only in terms of unbounded
remnant movement, one question these results make accessible is which such
patterns in human languages are naturally so analyzed? Perhaps the most fa-
mous of the supra CF constructions in natural language is given by the relation
between embedded verb clusters and their arguments in Swiss German [19]. [14]
have provided an elegant analysis of verbal clusters in Germanic and Hungar-
ian using remnant movement.5 Patterns of copying in natural language [5,17,11]
on the other hand, do not seem particularly naturally treated in terms of un-
bounded remnant movement. [11] shows how the addition of ‘copy movement’
(non-linear string manipulation operations) to the MG formalism allows for a
natural treatment of these patterns, one that is orthogonal to the question of
whether our grammars for natural language should use bounded or unbounded
remnant movement.

5 Not every linguist working in this tradition agrees that verb clusters are best treated
in terms of remnant movement. [9] argues that remnant movement approaches to
verb clustering are inferior to one using head movement. Adding head movement
to MGs without remnant movement allows the generation of non-context free lan-
guages [16].



Without Remnant Movement, MGs Are Context-Free 173

References

1. Chomsky, N.: Lectures on Government and Binding. Foris, Dordrecht (1981)
2. Chomsky, N.: The Minimalist Program. MIT Press, Cambridge (1995)
3. Collins, C.: A smuggling approach to the passive in English. Syntax 8(2), 81–120

(2005)
4. Comon, H., Dauchet, M., Gilleron, R., Jacquemard, F., Lugiez, D., Tison, S., Tom-

masi, M.: Tree automata techniques and applications (2002),
http://www.grappa.univ-lille3.fr/tata

5. Culy, C.: The complexity of the vocabulary of Bambara. Linguistics and Philoso-
phy 8(3), 345–352 (1985)

6. Fiengo, R.: On trace theory. Linguistic Inquiry 8(1), 35–61 (1977)
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