Deriving Reconstruction Asymmetries

Gregory M. Kobele

Humboldt Universitat zu Berlin

Abstract

There appears to be a systematic difference in the reconstructabil-
ity of noun phrases and predicates. In this paper I show that recon-
structing the A/A-bar distinction in terms of slash-feature percolation
and movement allows for a simple derivational formulation of the prin-
ciples of binding and scope which derives a generalization very much
along the lines of the one presented by Huang (1993).

1 Introduction

One of the important results of the study of syntactic dependencies is that
different construction types (passive, raising, relative clause formation, wh-
movement, topicalization, etc) have been revealed to systematically cohere in
terms of the properties exhibited by their constitutive dependencies. Movement-
type dependencies typically instantiate one of two attested dependency types,
which are called A movement and A-bar movement. Much work has gone
in to determining which properties movements of either of these two types
have (see figure 1), with the ultimate goal being, of course, an explanation
of why these facts obtain. Even in the absence of an explanation as to why
movement dependencies divide in two, researchers can and have used the
descriptive characteristics of these dependency types to classify other depen-
dencies in other languages (such as scrambling (Mahajan, 1990; Miiller and
Sternefeld, 1993; Tada, 1993)).

1.1 Reconstruction

For a large number of cases, the simple principles of the binding theory and
the basic scope principle (see figure 2) give correct results. There are, how-
ever, a wide variety of exceptions to these principles, as exemplified below.

A A-bar
Reconstruction no yes
is obligatory
Licenses par- no yes
asitic gaps
Induces no yes
crossover
effects
Can escape no yes
tensed clauses

Figure 1: Some A, A-bar Distinctions

(1) Principle A

1. Kwasi criticized himself.

2. Himself, Kwasi criticized.
(2) Principle B

1. *Kwasi; criticized him,.

2. *Criticize him;, Kwasi; did.
(3) Principle C

1. *He,; criticized Kwasi;.

2. *Criticize Kwasi;, he; did.
(4) Scope

1. *He; criticized every boy;.

2. *Every boy;, he; criticized.

According to principle A, reflexive pronouns must be co-indexed with a c-
commanding DP in the same tensed clause. Thus, we correctly predict sen-
tence 1.1 to be well-formed. However, sentence 1.2 is mysterious, as here the
reflexive c-commands its supposed antecedent, violating principle A, but the
sentence is nonetheless well-formed. Principle B states that pronouns must
not be coindexed with a c-commanding DP within the same clause. Thus,

Principle A

A reflexive must be c-commanded by a co-indexed
expression within the same tensed clause.

Principle B

A pronoun must not be c-commanded by a co-
indexed expression within the same clause.

Principle C

A proper noun must not be c-commanded by a
co-indexed expression.

Scope

A quantifier can bind a pronoun only if it c-
commands the pronoun.

Figure 2: Principles of Binding, and of Scope

sentence 2.1 is correctly predicted to be ill-formed. Sentence 2.2 is also ill-
formed, despite the fact that the pronoun and the DP it is co-indexed with
are mutually independent with respect to the c-command relation, and thus
do not violate principle B. The ill-formed sentence 3.1 has a proper noun
c-commanded by a co-indexed DP (he), thus violating principle C. Principle
C is not violated in the nevertheless ill-formed 3.2, as the proper noun and
the pronoun are again mutually independent with respect to the c-command
relation. Finally, it is correctly predicted that the pronoun in 4.1 cannot be
bound by the non-c-commanding quantified noun phrase every boy. However,
in 4.2, the quantified noun phrase does c-command the pronoun, but is still
unable to bind it.

In each of the above cases, the second sentence of the pair can be sub-
sumed under the binding theoretic or scope principles if these are taken not to
apply to the surface structure representations of the mysteriously ill-/well-
formed sentences, but rather to a representation in which the topicalized
constituent is ‘put back’ in its pre-movement position (yielding sentences
identical to the first member of each of the above pairs) (Chomsky, 1976).
The phenomenon above (that the second of each of the above pairs can be
dealt with by a slightly more abstract version of the binding/scope theory)
is called ‘reconstruction’, after the literal reconstruction process proposed to

account for these facts by Chomsky (1976).

1.2 The Predicate/Argument Asymmetry

Huang (1993) notes that whereas moved DPs seem to be able to reconstruct
in non-first-merged positions (as in sentence 5), moved predicates (as in 6)
are much more restricted in their reconstruction possibilities.

(5) Which portrait of himself;;; does Kwasi; believe that Diego;
criticized?

(6) Criticize himself,;/; Kwasi; believes that Diego; did.

In sentence 5, there are two different potential antecedents for the anaphor —
it is semantically ambiguous. In other words, which portrait of himself can
be reconstructed in either its position (sister to V), or in the intermediate
SPEC-CP position. The fronted VP in sentence 6 on the other hand, can be
reconstructed only in its deep structure position, as complement to Infl, as
evidenced by the fact that only the lower subject (Diego) is acceptable as an
antecedent for the anaphor.

Huang proposes to tie this contrast to the presence of an unbound trace
in the fronted constituent. According to Huang (who adopts the VP-internal
subject hypothesis (Koopman and Sportiche, 1991)), the structure of 6 above
is as in 7 below.

(7) [t; criticize himself]; Kwasi believes that Diego; did ¢,

Huang assumes that anaphors must be bound by a binder within the minimal
node containing the expression of which the anaphor is an argument, along
with all other arguments of that expression. In the case of verbs, this is
the vP where all arguments of the verb have been base-generated. As in 7
the fronted element contains all arguments of the verb, the anaphor must be
bound by one of them (in this case, the trace t;), regardless of whether or
where the phrase is ‘reconstructed.’

1.3 A and A-bar Movement in the Minimalist Pro-
gram

Some of the properties distinguishing movement types, such as the inability
of A movement to license parasitic gaps, or to escape from tensed clauses,
can be accounted for in purely configurational terms (i.e., without recourse to
the distinction between movement types) (Nunes, 2001; Kobele, 2006, 2008),

and thus are better viewed as an accidental, rather than as an essential
characteristic of movement types. Attempts have been made to deal with
the more semantic differences configurationally as well (Sportiche, 2003), but
these lead to nonstandard analyses of even the most familiar phenomena.

Perhaps the most influential account of the A/A-bar distinction in the
minimalist program is propounded by Lasnik (1999) (see also (Chomsky,
1995; Fox, 2000; Boeckx, 2000)), who suggests that we attribute the different
properties of these two movement types to whether or not a movement step
leaves behind a copy of the moved item, or a simple trace (or nothing). His
goal is to account for the observation that reconstruction into an A position
is not obligatory, whereas reconstruction into an A-bar position is.

His analysis of the difference in behaviour between the two movement
types is conceptually neat, as it traces the difference to a natural theoretical
distinction (the difference between a full copy and an unstructured trace).
However, it necessarily leaves some things to stipulation. First, no explana-
tion seems readily available for the ban on improper movement; if movement
can ‘decide’ to leave behind either a trace or a copy, why does the decision of
a previous movement step influence the decision of the next? Second, why are
the operations of grammar limited to copying and deletion/trace insertion?
In Lasnik’s story, this isn’t derivable from anything else — it must simply be
stipulated. Finally, Lasnik’s idea seems committed to an ‘LF’ perspective on
interpretation, and incompatible with a compositional, Montagovian one.

Lasnik’s theory can be thought of as embodying the intuition that expres-
sions only ‘count as being there’” in their A-bar positions (where they survive
as copies), not in their A positions (where they are traces). Manzini and
Roussou (2000) take this intuition literally, and reformulate Lasnik’s ideas
derivationally. They observe that the ban on improper movement structures
chains in such a manner as to require that as soon as an expression counts
as being there, it must be there in all of its higher chain positions as well
(figure 3). This makes possible a simple ‘timing’ account of the A/A-bar

not there
—_——
ChCh—1 ...CCi—1Ci—2 ...C1
———

there
Figure 3: Chains, as per the ban on improper movement

distinction, if we make the crucial assumption that an expression may be-
gin satisfying dependencies before it is merged. Kobele (2007) shows how
this can be done. He formalizes Manzini and Roussou’s ‘feature attraction’
operation using slash-feature percolation (as in generalized phrase-structure

grammar (Gazdar et al., 1985)), and shows how slash-features and movement
can naturally co-exist in the minimalist grammar formalism (Stabler, 1997),
giving rise without additional stipulation to the ban on improper movement.

The remainder of this paper is structured as follows. First, we introduce
minimalist grammars with slash-feature percolation. Next, we show how the
particular properties of slash-feature percolation force ‘moved’ predicates to
be actually moved, and not introduced via slash-feature percolation. This
fact, in conjunction with a natural theory of reconstruction (presented in the
section thereafter), derives Huang’s generalization.

2 Slash Features and Movement

Slash-feature percolation and movement are two ways of establishing long-
distance dependencies between tree positions. Though they appear to be
‘inverses’ of each other, they have quite different formal properties: minimal-
ist grammars with just slash-feature percolation are context-free, whereas
minimalist grammars with just movement are mildly context-sensitive. As
we will soon see, the reason for this difference lies in the fact that proper bind-
ing condition violating remnant movement is possible only with movement,
and is not simulable with slash-features.

2.1 Features

As the generating functions merge and move are taken to be universal and
invariant, differences between languages reside in the lexicon. Lexical items
have various features, which determine how they behave in the derivation.
In addition to movement being feature driven, I will assume that merger is
as well, and that, moreover, the kinds of features which are relevant for the
merge and the move operations are distinct, and will be called selection
and licensing features, respectively. Each feature has an attractor and an
attractee variant (figure 4), and these must match in order for an operation
to apply. Each time an operation is applied, it checks both an attractor and

‘ H attractor ‘ attractee ‘

merge =X X
move +y -y

Figure 4: Features

an attractee feature, of the appropriate variety.

We will also not attempt here to model inflection or agreement, nor to
make a link between morphological features and the syntactic features of
expressions which we take here to drive derivations. Thus, we make no dis-
tinction between interpretable and uninterpretable features — here all features
behave as though uninterpretable.

2.2 Lexical Items

Syntax relates form and meaning. Lexical items are the building blocks of
this relation, atomic pairings of form and meaning, along with the syntactic
information necessary to specify the distribution of these elements in more
complex expressions. Here, simplifying somewhat, we take lexical items to be
pairings of abstract lexemes such as dog, cat, banky,...with feature bundles.
Feature bundles are taken to be ordered (Stabler, 1997), so that some features
can be available for checking only after others have been checked. We will
represent feature bundles as lists, and the currently accessible feature is at
the beginning (leftmost) position of the list. An example lexical item is
shown in figure 5. Its feature bundle ‘=d V' indicates that it first selects a DP
argument, and then can be selected for as a VP. Treating feature bundles

(praise,=d V)

Figure 5: A lexical entry for praise

as ordered is convenient, as it allows us to take explicit syntactic control of
which arguments get selected when. Certain lexical items, such as the Saxon
genitive 's, are naturally thought of as selecting two syntactic arguments,
an NP complement and a DP specifier. As the notions of ‘complement’ and
of ‘specifier’ reduce to ‘first-merged’ and ‘not-first-merged’ in the context
of the minimalist program, we need a way of ensuring that the first merged
argument of 's is the NP, and not the DP. Here we simply structure the feature
bundle for 's so as to have the noun phrase selected before the determiner
phrase (the lexical entry might have the following form ('s,=n =D D)). One
question which arises at this point is whether this ordering must be taken
as a primitive, or whether it is derivable from some deeper property (or a
conspiracy of such) of grammar.! A second question is whether a substantive
theory of feature bundles can be developed, to which the here hypothesized

!The ordering between selection features (=x) might seem relatable to the semantic
type of an expression, under natural assumptions about the syntax-semantics interface.
However, with no obvious reason to prefer a function f of two arguments to its permuted
counterpart f’, where f'(a)(b) = f(b)(a), this ‘reduction’ would seem to put the cart before
the horse. An interesting approach is suggested by Miiller (2008), where the licensor and

7

linear ordering is perhaps only a rough approximation.? These questions are
non-trivial, and cannot be pursued further here.

2.3 Syntactic Objects

We write lexical items using the notation («,d), where « is a lexeme (such
as praise), and ¢ is a feature bundle (such as ‘=d V’). Complex expressions
are written using a labeled bracket notation, as per the following:

[s B

The above represents an expression whose head has feature bundle 9, and
consists of the two immediate sub-expressions a and . As an example, if we
assign the lexical entries ('s,=n =D D) and (brother,n) to the Saxon genitive
and to brother respectively, then the complex expression 's brother, which is
the result of merging brother as the complement of 's, is represented as the
below.

[=pp 's [brother]]

As can be seen, the above expression has feature bundle ‘=D D’, which means
after it merges with an expression of category D (such as (Kwasi, D)), it will
itself be of category D.

[b Kwasi ['s [brotherl]]

selector features of an expression are ordered only with respect to other features of the
same type (and so licensor features are ordered with respect to other licensor features,
but not with respect to selector features). He proposes a general principle which forces
licensor features to be checked as soon as possible.

2Note first that, regardless of the shape of a feature bundle, a derivation imposes a
linear order on the features in each of the feature bundles of the items occurring in it
— this order is simply the order in which those features were checked in that particular
derivation. (Or, if we allow multiple features to be checked en masse, the derivation
imposes an equivalence relation over features in feature bundles, and then imposes a total
order over equivalence classes of features.) A feature bundle, then, stands proxy for a set
of totally ordered feature bundles (or of totally ordered feature equivalence class bundles);
these are given by those total orderings which can be imposed upon it by some derivation in
which it can occur. (In the system here, each feature bundle, being already totally ordered,
stands for the unit set containing just it.) A natural desideratum for a lexicalized grammar
formalism is that it support a type system rich enough to be able to completely account
for the distribution of each expression with a single category (feature bundle). Thus, one
goal of a substantive theory of feature bundles is to be able to derive all and only the
necessary linearly ordered feature bundles which describe the distribution of a lexical item
from a single feature bundle. Another goal is to make those feature bundles which describe
the distribution of linguistically possible lexical items less marked (i.e. simpler) than those
which do not. This ‘markedness’ can take the form either of simply ruling out linguistically
impossible feature bundles, or of abbreviatory conventions (a la Chomsky (1965)) which
make linguistically natural feature bundles more notationally natural.

Note that the features (D) of the head ('s) of the above expression are only
represented once, and on the most maximal projection of that head. When
a pair of brackets no longer has any unchecked features (as is the case with
[brother] and with ['s [brother]] above), we no longer need to make these
constituency distinctions (without features no constituent can move), and
sometimes for convenience will leave those brackets out. The above expres-
sion would under this convention be rendered as per the following.

[b Kwasi 's brother]

Moving expressions are simply sub-expressions which have not checked all of
their features. For example, the expression below is a sentence (IP) which
contains a wh-phrase which has not yet checked its -wh feature.

[; Kwasi |will [praise [y, whol]]]

We will apply our convention on leaving out brackets here as well, eliminating
those brackets around constituents whose heads have no unchecked features.
The expression above would be given as the below.

[1 Kwasi will praise [-y, whol]

2.4 Merge

The merge operation applies to two arguments, A and B, resulting in the
new object A+ B, just in case the head of A has some selector feature =x as
the first unchecked feature in its feature bundle, and the head of B has the
corresponding x as the first unchecked feature in its feature bundle. In the
resulting A+ B, both first features used in this derivational step are checked,
making available the next features of both feature bundles. There are two
cases of the merge operation, depending on whether B will surface as a
specifier or as a complement of A (figure 6). The first case of merge is the

(4 A B] B is a complement

merge(A, B) = { [4 B A] B is a specifier

Figure 6: Cases of merge

merger of a complement, or ‘first-merge’. Let us represent the active voice
head in English (little-v) with the following lexical item: (-¢,=V +k =d v).?

3The symbol € is the empty string. The hyphen in front of it indicates that it is a suffix,
and thus triggers head movement; its complement’s head raises to it.

Because the first feature in the feature bundle of this lexical item is =V, it
can be merged with the expression below (the VP praise Kwasi).

[v praise [-, Kwasil|

Note that the selecting lexical item is a suffix (marked by the hyphen pre-
ceding the lexeme). This triggers head movement from its complement.*

merge((-¢,=V +k =d v), [y praise |- Kwasi]]

= [+x=av praise-e [¢ [Kwasi]]]

praise

head movement

Leaving out the traces, phonetically empty elements, and unnecessary inter-
nal structure, this expression can be abbreviated as the below.

[+k =dv praise [—k KwaS|]]

Note again that both of the matching first features of the arguments to
merge (=V and V) have been checked in (i.e. deleted from) the result.

The second case of merge is merger of a specifier. This happens when-
ever the first argument to merge is not a lexical item (note that ‘first-merge’
happens when the first argument is a lexical item). As can be seen in figure
6, the main difference between first and later merges lies in the position-
ing of the merged item with respect to the head (first merged expressions
come after, later merged expressions before, the head). Thus, we are essen-
tially computing the effects of Kayne’s (1994) Linear Correspondence Axiom
(LCA) incrementally during the derivation of an expression. Readers who
are uncomfortable with this can view it equivalently as a convenient short-
hand for first building an unordered tree, and then applying the best current
linearization algorithm to this unordered tree.

2.5 Move

The move operation applies to a single syntactic object A just in case it
contains a subexpression expression B with first unchecked feature -y, and
the first unchecked feature of A is +y. In order to rule out nondeterminacy,
move will only be defined if there is exactly one such subexpression beginning
with a matching -y feature.® Just as with the merge operation, move checks

4See Stabler (2001) for more details. The basic idea is that head movement is not
syntactic (i.e. feature-driven) movement (see Matushansky (2006)).

°This is a radical version of the shortest move constraint (Chomsky, 1995), and will
be called the SMC - it requires that an expression move to the first possible landing

10

the matching features of the expression to which it applies. As an example,
consider the expression below (which is similar to praise Kwasi derived above,
but with who having been merged instead of Kwasi).

[+ =a v praise-€ [-x -z Who]]

The move operation applies to this expression, as the main expression has
as its first feature a licensor +k, and there is exactly one subexpression with
first feature the matching licensee -k.

Move([+x =q v Praise-€ [-x —yn Whol|) = [zqv [-un Who| [praise-€ ¢, ||

Again, leaving out traces and internal structure, we write the expression
above as per the below. Note again that both features involved in the move
operation (+k and -k) are deleted/checked in the result.

[=av [-wn Who] praise]

2.6 Slash-Feature Percolation

The intuition behind Manzini and Roussou’s (2000) feature attraction mech-
anism is that features which need to be checked can be ‘piled up’, and checked
en masse by a newly merged expression, provided that the source positions
of the features form an appropriate movement chain with the newly merged
expression. The slash-feature percolation mechanism introduced into mini-
malist grammars by Kobele (2007) is designed to minimize the bookkeeping
necessary to ensure that the features which are piling up do indeed form a
legitimate chain. As the move operation already builds movement chains,

site. If there is competition for that landing site, the derivation crashes (because the
losing expression will have to make a longer movement than absolutely necessary). Note
that the SMC plays on the fact that structuring feature bundles as lists allows features
to be temporarily ‘hidden’. Using the SMC as a constraint on movement has desirable
computational effects (such as guaranteeing efficient recognizability — see (Harkema, 2001;
Michaelis, 2001)), although other constraints have been explored in Gartner and Michaelis
(2007).

There are well-known ‘counter-examples’ to this restriction on movement. Notable
among them are the multiple-wh fronting constructions familiar in the Slavic languages
(Rudin, 1988). To deal with such phenomena, it seems natural to introduce a wh-cluster
forming operation, which ‘saves’ otherwise SMC violating configurations by fusing together
the offending expressions (Grewendorf, 2001) (see also fn. 20 in (Gértner and Michaelis,
2005)). The wh-in-situ strategy of multiple questions (as in English) is dealt with by
imposing a restriction on wh-cluster formation in such languages which requires that the
phonological matrices of all fused wh-items but one be null — forcing spell-out of these
wh-chains in their base (or case) positions.

11

Kobele introduces a ‘dummy’ expression (an assumption), with content just
a list of features. The move operation then treats this dummy expression
just like a real one, thereby ensuring that the features that are ‘piling up’
do indeed stand in an appropriate relation to one another. The second step
involves merging in an expression with appropriate features, i.e. one that
could have taken the place of the dummy expression (thereby discharging
the assumption). To do all this, two new operations are introduced: assume
and discharge.

2.6.1 Assume

The operation assume takes a single argument, the first feature of whose
head is =x, and results (non-deterministically) in an expression where the =x
feature of the head has been satisfied by the assumption of an expression with
initial feature sequence xé (for some ¢), as shown in figure 7. Assumptions are

[y A s xd]]

assume([=x“/ A]) - { [“{ [5 Xé] A]

Figure 7: Cases of assume

written just as are normal expressions (i.e. in brackets notated with active
features), however instead of containing tree structure, all that is represented
is the originally assumed feature sequence. For example, the below represents
an assumed expression with a single feature (-wh) left to be checked, where
the original assumption was d -k -wh.

[n d —k -wh]

For example, given the lexical item (praise,=d V), one possible output of
applying the assume operation is given below.

[v praise [-x d -K]]

2.6.2 Discharge

Once an assumption is made, it needs eventually to be discharged. The dis-
charge operation provides a means of doing this. The discharge operation
takes as its two arguments an expression containing an assumption, and an
expression which will replace, or ‘cash out’, this assumption. The assump-
tion to be discharged must have exactly one unchecked feature remaining,

12

and the original assumption must be an initial segment of the feature bundle
of the expression replacing it.° As an example, consider the instance of the
discharge operation below.

discharge([y praise [-x d —k|], [4 -k -un Which boy]) =
[v praise [-x —yn Which boy]]

Note first that all features of the discharging element are deleted up to (but
not including) the remaining feature in the assumption’s feature bundle (in
this case, it is just the one d feature). Note also that the discharging expres-
sion actually replaces the assumption in the original expression.

2.7 On Locality

The reader will have noticed that the move and discharge operations have
been presented ‘by example’, instead of being given a general definition as
have been merge and assume. Let us denote by As an expression of the form
[s B3], and by A(B) an expression A which contains designated occurrence
of B. Then if A(B) and C are expressions, A(C) is the result of replacing
the occurrence of B in A by C. We define move and discharge as per figure
8. In this figure, we see that both move and discharge have a non-local

move(A+ys(B-yy)) = [s By A(t,)]

discharge(A([-; 6-y]), Bs-yy) = A(B-y,)
Figure 8: move and discharge

character in the following sense: in order to determine whether they can
apply to an expression A, and, if so, what the result is, one must conduct a
search of unbounded depth inside A (in the case of move for an expression B
which is to be moved, and in the case of discharge, for a hypothesis which
is featurally compatible with the second argument). However, because of
the SMC, we can keep a finite list of which expressions internal to the main
expression have which features. The representation of an expression praise

6That there be at least one feature remaining is to ensure that the assumption is still
‘active’ at the point it is discharged. That there be at most one feature remaining is to
make sure that not both move and discharge can be applied to the same hypothesis at
any given time.

13

Kwasi then looks as per the below, where the finite list of feature sequences
to the right of the e indicates which moving pieces the expression contains.

[v praise [-x Kwasi]] ® (-k)

In other words, we can simply enrich our representations of expressions with
the information about which moving subcomponents they contain. This rep-
resentational enrichment then completely eliminates the non-locality we ob-
served in determining whether move and discharge can apply to an expres-
sion.

The other source of non-locality (that of computing the result of move
or discharge) can be similarly eliminated if, instead of representing just the
features of the moving expressions internal to another after the o, we display
the expressions themselves.

[v praise trcuasi] ® ([-x Kwasi])

We can redefine merge so that, if its second argument is going to move later
on (i.e. if it has licensee features), a trace of it is merged in its place, and it
is placed into the list of the first argument.

merge([=q v praise] ® (), [4 -x Kwasi] e ()) = [y praise txwasi] ® {[-x Kwasi])

The same strategy of representing them external to the main expression can
be applied to assumptions. The general case of merging a to be moved
expression is given in figure 9. Note that the lists of moving expressions in

merge(A=x~/ L ¢7 Bx-y5 L4 ¢) = [’Y A tB] hd (¢<B_y5>w>

Figure 9: Merging an expression which will later move

the arguments to merge are put together (denoted by juxtaposition) in the
result, which results in something like slash-feature percolation (but with
moving expressions instead of (or in addition to) slash-features).

With this augmented representation, the superficial non-locality of move
and discharge has been eliminated. Figure 10 shows the definitions of these
operations on the augmented representations. One might wonder whether
and to what extent our augmented representations are ‘the same’ as the old
ones (and thereby whether we have really shown that the non-locality of
move and discharge is only apparent). As this augmented representation
changes neither the derivations, nor the thing we ultimately derive, and is

14

[s B Al ® (¢1¢02) if y=e
move(A+ys ® (¢1(B-y,)02)) = { [j t, Al e (¢1(B,)ds) otIZerwise

discharge(A o (¢1([-y 0-y])2), Bs-y, @ V) = A @ (¢1(B-y,)$20)

Figure 10: move and discharge, locally

moreover easily obtainable from the original representation, it is not clear
what kind of empirical content could be given to the claim that the aug-
mented representations constitute a significantly different claim about the
nature of our linguistic faculty. Indeed, all that we have done is identify
where our operations have to do some extra work, determine that this extra
work is in fact unnecessary, and change our representations so as to eliminate
this extra work. It is like switching from decimal to binary representations
of numbers, because we see that we have to multiply by two more often than
by ten. That being said, I will continue to use the ‘non-local’ representation
in the rest of this paper. It has the advantage of looking familiar.

2.8 Movement and Slash-Features

Adding slash-feature percolation (in the form of the operations assume and
discharge) to the minimalist grammar framework results in an explosion
of syntactic ambiguity. Even simple sentences like Kofi smiled, previously
unambiguous, now have (at least) two derivations: one where the DP Kofi
is merged with the verb smiled, and one where the DP Kofi discharges an
assumption of the form [, d -k|]. However, although every derivation using
slash-features has a corresponding derivation using movement, the reverse is
not true.” In particular, slash-feature percolation cannot describe cases where
a remnant ‘moves’ over something that has been extracted out of it (violating
the proper binding condition (Fiengo, 1977)),% as in the configuration below.

lypoityp...]...XP ...t

Y P

"The system in Kobele (2007) uses a slightly different formulation of the discharge
operation, which, allowing for smuggling (in the sense of Collins (2005)), can no longer be
simulated in every case by movement.

8The slash-feature mechanism here thus implements a (restricted, as there is no down-
ward movement) version of the trace-binding algorithm sought after by Pullum (1979).

15

The reason for this is that at the point in the derivation where XP is put into
its surface position, its source position (inside YP) doesn’t yet exist. Instead,
only an assumption that we will have a YP has been made — nothing has been
said about whether we will also have an XP. Contrasting this with the case
of movement, in the case of movement, both XP and YP are present in the
derivation before either of them needs to move. What this means is that if
we can find examples in language of remnant movement, then we will be able
to analyze them only in terms of actual movement, not using slash-feature
percolation. In terms of the theory in the following section, remnants must
reconstruct below the lowest expression extracted out of them.

3 A Theory of Reconstruction

Minimalist grammars with slash-feature percolation give us a natural way
of dealing with reconstruction phenomena, one that takes advantage of the
sudden multiplicity of derivations for sentences. What the hybrid merge-
move and assume-discharge system does is to allow moving elements to
be introduced into the derivation at any point between their chain-initial and
chain-final positions (figure 11). It is thus a natural move to make to tie the
point at which an expression is inserted into the derivation to its reconstruc-
tion possibilities. We can think of two obvious ways to do this. First, we
might demand that an expression be reconstructed into the position at which
it enters the derivation. This approach minimizes as much as possible the
potential spurious ambiguity introduced into the minimalist grammar system
by having both movement and slash-feature percolation. The other option is
a relaxation of the first, requiring only that an expression be reconstructed
no lower than the position at which it enters the derivation. Only with the
first approach however will we be able to derive Huang’s generalization with-
out making any further assumptions.” We restate Principle A of the Binding
Theory in the following terms (whether and how the other principles in fig-
ure 2 should be relativized to positions in which the talked about elements
entered the derivation is orthogonal to the present issue).

Principle A (revised)

A reflexive must be c-commanded by a co-indexed expression
within the first tensed clause above the point at which it entered
the deriwvation.

9We can think of both of these options as similar to Epstein and Seely’s (2006) ideas
on syntactic relations, whereby relations such as c-command are incrementally specified
during the derivation, with each derivational step potentially adding new relata to the
relation.

16

Clol
merge
assume assume
Infl
merge merge
criticize Diego criticize Diego criticize Diego

Figure 11: Three derivations for the sentence Who criticized Diego?

Now that we have specified both a syntactic theory (minimalist grammars
with both slash-feature percolation and movement) and an interpretative the-
ory (the revision of Principle A above), we are finally in a position to derive
Huang’s generalization. Let us fix our analysis of a tiny fragment of English
consisting of transitive verbs like criticize, and of sentential complement verbs
like believe, as in figure 12. The lexicon given in figure 12 generates many

(will, =v +k S) (-¢,=V =d v)
(criticize,=d +k V) (believe, =S =d v)
(Kwasi, d -k) (himself, d -k)
(€,=v v —top) (€,=8 +top S)

Figure 12: A fragment of English
non-sentences, such as Himself will criticize Kwasi. These will be ruled out

by principle A of the binding theory, which acts as a restriction on the distri-
bution of the lexical item himself. With the syntactic operations our grammar

17

formalism permits us, the only derivation of a sentence like Criticize himself,
Kwasi will is one where the verb phrase criticize himself is first merged as
sister to will.'° First, we give a well-formed derivation of this sentence.

We begin by merging together criticize and the anaphor himself.

1. merge({criticize,=d +k V), (himself,d -k))

[+x v criticize [himself]]

Next the verb assigns case to its object. Note that both +k and -k features
of the verb and its object are checked by the move operation.

2. move(1)

[v [himself] [criticize ¢, .,.]]

In the next step, little-v merges with the previous expression. Note that this
triggers head movement of the V criticize.

3. merge((-¢,=V =d v),2)

[=q v criticize-¢ [[himself] [t

criticize thimself]]]
Then the agent argument is selected.
4. merge(3,(Kwasi,d -k))

[V [‘k KwaSi] [criticize—e [[himself] [tcr'iticize thimself]]]]

Next, the vP is marked as requiring topicalization.
5. merge((¢,=v v -top),4)
[V ~top € [[_k KwaSI] [CrItICIZe_E [[hlmself] [tcriticize thzmself]]]]]
Then will selects the above vP.

6. merge((will,=v +k S),5)

s Will [eop € [Kwasi] [criticize-c ([himself] [¢_..,... #,.,...;)]

10As we shall see, this is not a good description of what happens, as it is not the v’
criticize himself which is sister to will, but rather the vP Kwasi criticize himself.

18

At this point, the expression derived is getting too big to be written on a
single line, and so we abbreviate it using the convention discussed earlier as
the below.

[+x s Will [-top [-x Kwasi] criticize himself]]

The next step of the derivation is to move the subject Kwasi for case. Note
again that both +k and -k features are checked.

7. move(6)

[s [Kwasi] will [-¢op criticize himself]]

Kwasi

Next, a head hosting a +top feature merges with the expression thus far
derived.

8. merge((¢, =S +top S),7)

[+top s € [[Kwasi] will [-¢op criticize himself]]]

Kwasi

Finally, the vP moves to check its -top feature.

9. move(8)

[S [tKwasi CrItICIZe hlmself] [6 [[KwaSI] Wl” tcriticize himself]]]

Abbreviating the expression derived in 9 as per our conventions, we obtain
the below.
s criticize himself Kwasi will]

As per our theory of reconstruction, because in the derivation of this sen-
tence the fronted predicate was merged low, it behaves for the purposes of
reconstruction as though it were in its base position.

A (short and unsuccessful) derivation which attempts to use slash-feature
percolation to deal with the topicalized VP follows. This shows this sentence
to be derivationally unambiguous (at least with respect to the fronted predi-
cate), and thus (generalizing a little) that the only reconstructive possibilities
available to sentences with fronted predicates, are those in which the predi-
cate is interpreted in its base position.

The previous derivation introduced the vP in its lower chain position, to
introduce it (via discharge) in its higher chain position, the to-be-moved
vP is first introduced as an assumption.

1. assume({will,=v +k S))

[+xs Will [-s0p v —top]]

19

Already at this point, the derivation can continue no further, as there is no
subexpression with matching feature -k which can be used to check the +k
feature of will. In other words, while we have assumed that we will find some
expression with feature bundle v -top, we do not know that it will itself
contain a moving expression waiting to check its -k feature.!!

We can compare the derivation of predicate fronting sentences to those
with fronted DPs, like Which portrait of himself did Kwasi believe that Diego
criticized?, which allow for the fronted DP which portrait of himself to be
reconstructed either in its base position (thereby giving rise to the reading
in which himself is coreferent with Diego) or in the intermediate SPEC-CP
position (giving rise to the reading where himself and Kwasi are coreferent).

Here we will see only two derivations of the (shorter) sentence Which
portrait of himself did Kwasi criticize, which serves to illustrate the fact that
the fronted DP is not restricted in its reconstruction possibilities.'?

We first extend our lexicon in figure 12 with the complex wh-anaphor
which portrait of himself, to which we assign the type d -k -wh,'® and a
+WH Comp position.

(which portrait of himself, d -k -wh)
(-€,=S +wh S)

In the first derivation of interest to us, the wh-phrase is introduced in its
case position via the operation discharge. This derivation will correspond
to a reading of the sentence where the anaphor is bound by its co-argument.

We begin by assuming the existence of an appropriate DP for criticize.

1Tt is instructive to consider how to extend the system to allow this kind of derivation.
In other words, why can’t we simply make our hypotheses more explicit (so, not just ‘we
have some expression with feature bundle v -top’, but rather ‘we have some expression
with feature bundle v -top, which itself contains an expression with feature bundle -k’)?
The reasoning is subtle, and revealing of an important but oft neglected fact. The an-
swer is, simply put, that there are no expressions with feature bundle -k derivable in our
grammars! The DP moving for case (with feature bundle -k) does not exist in isolation,
but only as a part of a larger containing expression. This is true not just of minimalist
grammars, but in all variants of minimalism. Formally speaking, we are confronted with
the distinction between derivational and derived constituents. A DP with feature bundle
-k is a derived constituent, but the discharge operation (and grammatical operations in
general) are defined only over derivational constituents.

12The fact that the anaphor will be unbound in the second derivation is not of concern
to us here.

130f course, this is a complex expression composed (at least) of the lexical items which,
portrait, and himself. As the internal structure of this expression isn’t relevant for our
purposes here (which are simply to investigate the reconstruction possibilities allowed to
sentences containing it), we can safely ignore these niceties.

20

1. assume({criticize,=d +k V))

[+kV criticize [—k d _k]]

Next, we discharge the assumption by replacing it with which portrait of
himself.

2. discharge(1,(which portrait of himself,d -k -wh))

[+x v criticize [-x —un Which portrait of himself]]

Case is then assigned to the object.

3. move(2)

[v [-en Which portrait of himself] [criticize ¢, .]]

Next the little-v head selects the VP thus derived.
4. merge((-¢,=V =d v),3)

[=q v criticize-¢ [[-un which portrait of himself] [t

criticize which]]]
We then merge the agent Kwasi.
5. merge(4,(Kwasi, d -k))

[v [-x Kwasi] [criticize-€ [[-4n Which portrait of himself] [t ...t . 1]]]

As our derived expression is rapidly becoming unwieldy, we abbreviate it as
per our convention as the below.

[v [-x Kwasi] criticize [~ which portrait of himself]]
In the next derivational step, will selects the expression derived thus far.
6. merge((will,=v +k S).5)

[+ s will [[-x Kwasi] criticize [~ which portrait of himself]]]

Next the subject raises to check its case features.

7. move(6)

s [Kwasi] [will [t,.... criticize [, which portrait of himself]]]]

21

The next derivational step is to introduce a + WH Comp, the merger of which
induces head movement of the infl element will.

8. merge((-¢,=S +wh S8).,7)

[+un s Will-€ [[Kwasi] [t ., [fx,.. Criticize [~z which portrait of himself]]]]]

Finally, the wh-phrase moves to check its wh feature.
9. move(8)

[s [which portrait of himself] [will-e [[Kwasi] [t [t criticize ¢ ,. . 1]]]]

will Kwasi

In this derivation, the wh-anaphor is introduced early enough to be bound
by its co-argument, Kwasi, as depicted in the tree on the left in figure 13.

which portrait
of himself

which portrait
of himself
criticize criticize

Figure 13: Two derivations of the sentence which portrait of himself will
Kwasi criticize?

Introducing the wh-anaphor after the S containing its co-argument has
been completed (as depicted in the tree on the right in figure 13) would force
it to be bound by an argument in a higher clause. This second derivation
begins with the assumption of a +wh DP as the object of criticize.

22

1. assume({criticize,=d +k V))

[+x v criticize [y —yn d —k —wh]]

Next, case is assigned to the hypothetical object.

2. move(1)
[v [-wn d —k —wh] [criticize ¢ _ __]]

Next, little-v is merged, triggering head movement of criticize.
3. merge((-¢,=V =d v),2)

[=av criticize-€ [[-un d ~k -wh] [t

criticize d—k—wh]]]
The agent is merged.
4. merge(3,(Kwasi,d -k))

[v [-x Kwasi] [criticize-€ [[-sn 4 ~k -wh] [t

criticize td_k_wh]]]]
Next will is merged with the vP.
5. merge((will,=v +k S),4)

[+xs Will [[-x Kwasi] [criticize-€ [[- d -k -wh] [t_ ... t.__]]]]]

Abbreviating, we obtain the below.
[+x s Will [Kwasi] criticize [d ~k —wh]]
The subject moves to receive case.

6. move(5)
s [Kwasi] [will ¢, . criticize [d —k —wh]]]

Next, a +WH position is made available, and will head-moves to the new
head.

7. merge((-¢,=S +wh S),6)

[+un s Will-e [[Kwasi] [t .. t criticize [y, d -k —wh]]]]

will “Kwasi

Now, the expression which portrait of himself discharges the assumption made
earlier. Note that the anaphor is outside the binding domain of the subject
Kwasi.

23

8. discharge(7,(which portrait of himself, d -k -wh))

T rwae: Criticize [—un which portrait of himself]]]]

Kwasi

[+un s Will-¢ [[Kwasi] [t

Finally, the wh-phrase moves to check its wh feature.

9. move(8)

s [which portrait of himself] [will-€ [[Kwasi| [t ., t,...; criticize ¢, 1]]]

will “Kwasi

4 Conclusion

We have seen that under a natural account of the syntax-semantics interface
according to which the position into which elements are reconstructed de-
pends on the point at which they are inserted into the derivation, Huang’s
generalization can be derived as a consequence of the architecture of the
hybrid merge-move/assume-discharge minimalist grammar system.

Nothing has been said in this paper about where slash-features stop and
movement begins — in other words, we have been simply looking at the archi-
tecture of the system, and have abstracted away from questions like which
dependencies should be A dependencies, and which A-bar. Although it is
natural to stipulate, in the context of DPs, that they be introduced via
assumptions, and discharged in their case positions (recovering the tradi-
tional perspective on the A/A-bar distinction), this is not necessary to de-
rive Huang’s generalization, and has in fact been argued against by Sportiche
(2003), who notes that reconstruction is sometimes possible into what are tra-
ditionally considered A positions. An interesting alternative made possible
by this formal system is to view the reconstruction differences between A and
A-bar movement as the result, not of a grammatical prohibition, but rather
of a parsing preference. If we assume that both slash-feature percolation
and movement are always available at each derivational step, but that the
parser first pursues parses involving slash-feature percolation, we derive that,
in traditional cases of A movement, derivations without reconstruction in A
positions are recovered first. Note that this doesn’t affect our derivation of
Huang’s generalization, as in cases of remnant movement, the only available
derivations are those which involve reconstruction into lower chain positions.

Finally, note that Heycock (1995) has argued against the adequacy of
Huang’s generalization. On the basis of examples such as the below, she offers
a new generalization based on referentiality, according to which “referential”
phrases, but not “non-referential” ones, may be reconstructed into positions
other than their base positions.

24

(8) Which stories about Diana; did she; most object to?
(9) *How many stories about Diana; is she; likely to invent?

As discussed above, in the present framework, there are no constraints on
what can be first merged where save for those imposed by the inability of
slash-feature percolation to support remnant movement. Heycock’s insight
surrounding the referentiality distinction can be implemented here to restrict
the otherwise spurious ambiguity engendered by the addition of hypothetical
reasoning to the minimalist grammar system.

References
Boeckx, C. A. (2000). A note on contraction. Linguistic Inquiry 31(2), 357-366.

Chomsky, N. (1965). Aspects of the Theory of Syntar. Cambridge, Massachusetts:
MIT Press.

Chomsky, N. (1976). Conditions on rules of grammar. Linguistic Analysis 2,
303-351.

Chomsky, N. (1995). The Minimalist Program. Cambridge, Massachusetts: MIT
Press.

Collins, C. (2005). A smuggling approach to the passive in English. Syntaz 8(2),
81-120.

Epstein, S. D. and T. D. Seely (2006). Derivations in Minimalism, Volume 111 of
Cambridge Studies in Linguistics. Cambridge University Press.

Fiengo, R. (1977). On trace theory. Linguistic Inquiry 8(1), 35-61.

Fox, D. (2000). Economy and Semantic Interpretation. Cambridge, Massachusetts:
MIT Press.

Géartner, H-M. and J. Michaelis (2005). A note on the complexity of constraint
interaction: Locality conditions and minimalist grammars. In P. Blache, E. Sta-
bler, J. Busquets, and R. Moot (Eds.), Logical Aspects of Computational Lin-
guistics, Volume 3492 of Lecture Notes in Computer Science, pp. 114-130.
Berlin: Springer.

Gértner, H.-M. and J. Michaelis (2007). Some remarks on locality conditions and
minimalist grammars. In U. Sauerland and H.-M. Gértner (Eds.), Interfaces
+ Recursion = Language?, Volume 89 of Studies in Generative Grammar, pp.
161-195. Berlin: Mouton de Gruyter.

25

Gazdar, G., E. Klein, G. Pullum, and I. Sag (1985). Generalized Phrase Structure
Grammar. Cambridge, MA: Harvard University Press.

Grewendorf, G. (2001). Multiple wh-fronting. Linguistic Inquiry 32(1), 87-122.

Harkema, H. (2001). Parsing Minimalist Languages. Ph. D. thesis, University of
California, Los Angeles.

Heycock, C. (1995). Asymmetries in reconstruction. Linguistic Inquiry 26(4),
547-570.

Huang, C.-T. J. (1993). Reconstruction and the structure of VP: Some theoretical
consequences. Linguistic Inquiry 24 (1), 103-138.

Kayne, R. (1994). The Antisymmetry of Syntax. Cambridge, Massachusetts: MIT
Press.

Kobele, G. M. (2006). Generating Copies: An investigation into structural identity
in language and grammar. Ph. D. thesis, University of California, Los Angeles.

Kobele, G. M. (2007). A formal foundation for A and A-bar movement in the min-
imalist program. In M. Kracht, G. Penn, and E. P. Stabler (Eds.), Mathematics
of Language 10. UCLA.

Kobele, G. M. (2008). Across-the-board extraction in minimalist grammars. In
Proceedings of the Ninth International Workshop on Tree Adjoining Grammar
and Related Formalisms (TAG+9), pp. 113-128.

Koopman, H. and D. Sportiche (1991). The position of subjects. Lingua 85,
211-258.

Lasnik, H. (1999). Chains of arguments. In S. D. Epstein and N. Hornstein (Eds.),
Working Minimalism, Number 32 in Current Studies in Linguistics, Chapter 8,
pp- 189-215. Cambridge, Massachusetts: MIT Press.

Mahajan, A. (1990). The A/A-bar Distinction and Movement Theory. Ph. D.
thesis, Massachusetts Institute of Technology.

Manzini, M. R. and A. Roussou (2000). A minimalist theory of A-movement and
control. Lingua 110(6), 409-447.

Matushansky, O. (2006). Head movement in linguistic theory. Linguistic Inquiry
37(1), 69-1009.

Michaelis, J. (2001). On Formal Properties of Minimalist Grammars. Ph. D.
thesis, Universitat Potsdam.

Miiller, G. (2008). On deriving CED effects from the PIC. ms., Universitit Leipzig.

26

Miiller, G. and W. Sternefeld (1993). Improper movement and unambiguous bind-
ing. Linguistic Inquiry 24(3), 461-507.

Nunes, J. (2001). Sideward movement. Linguistic Inquiry 32(2), 303-344.

Pullum, G. K. (1979). The nonexistence of the trace-binding algorithm. Linguistic
Inquiry 10(2), 356-362.

Rudin, C. (1988). On multiple questions and multiple WH fronting. Natural
Language and Linguistic Theory 6(4), 445-501.

Sportiche, D. (2003). Reconstruction, binding and scope. available at:
http://ling.auf.net/1lingBuzz/000017.

Stabler, E. P. (1997). Derivational minimalism. In C. Retoré (Ed.), Logical As-
pects of Computational Linguistics, Volume 1328 of Lecture Notes in Computer
Science, pp. 68-95. Berlin: Springer-Verlag.

Stabler, E. P. (2001). Recognizing head movement. In P. de Groote, G. F. Morrill,
and C. Retoré (Eds.), Logical Aspects of Computational Linguistics, Volume
2099 of Lecture Notes in Artificial Intelligence, Berlin, pp. 254-260. Springer
Verlag.

Tada, H. (1993). A/A-bar Partition in Derivation. Ph. D. thesis, Massachusetts
Institute of Technology.

27

