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Abstract

I show that adding a mechanism of feature percolation (via specifier
head agreement) to Minimalist Grammars (MGs) [Stabler, 1997] takes
them out of the class of context-sensitive grammar formalisms. The
main theorem of the paper is that adding a mechanism of feature
percolation to MGs allows them to implement infinite abaci [Lambek,
1961], which can simulate any Turing Machine computation. As a
simple corollary, I show that, for any computable f : N → N, MGs
thus enhanced can generate the language Laf(n) = {af(n) : n ∈ N}.

1 Features

Complex categories are ubiquitous in linguistic theory. From the attribute
value matrices of HPSG to the algebraic types in categorial grammars, we
have found it incredibly useful to structure the once simplex distributional
information represented by categories. Amongst the offspring of the Govern-
ment and Binding family, categories are viewed as feature bundles, a notion
rarely made precise. There seem to be two intuitions about what this means,
as evidenced by the kinds of operations that deal with features. These will

∗This paper will appear in Research in Language and Computation in a slightly
modified form. Citations should, when necessary, be made to the official version of this
paper. Comments are welcome!
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be called here the ‘features-as-properties’ view, and the ‘features-as-building-
blocks’ view. The latter view is suggested by operations involving features
such as checking, deletion, and especially movement, and is a natural reading
of [Chomsky, 1995, Frampton and Gutmann, 2000, Koopman, 1996, Koop-
man and Szabolcsi, 2000]. The features-as-properties view can be found in
later Chomsky [2001], where dependencies are established between elements
by a long-distance operation of Agree (the abandonment of establishing
syntactic relations under a condition of immediate locality was motivated in
part by participial agreement facts from Icelandic). In the Agree-based the-
ory, operations on features like those described above are exchanged for the
single operation of identity checking (called matching, or valuation). In order
to achieve the level of precision which is an indispensable aid in determining
the predictions of the theory, we need to decide how to formalize the role
features play in the Chomskyian frameworks. It is not immediately obvious
that the there is any real difference between viewing features as properties
of expressions, and viewing features as pieces of expressions - linguists have
long made use of the equivalence between elements of a set and the set of
properties shared by a particular element in moving between individuals to
their type-raised counterparts in a Montagovian semantic theory. The two
intuitions seem to diverge in their answer to the question of whether it is pos-
sible for a feature bundle to have multiple instances of the same feature type
(and if so, whether this is to be distinguished from having a single instance).
So is there any reason to think that having the same feature twice is different
from having it just once? The answer to this is of course bound up with both
the theory of morphology and the morphology-syntax interaction one adopts.
The checking theory advanced by Chomsky [1993] provides us with an ap-
proach which seems committed to this possibility. Recall that according to
the checking theory, words are built up in the lexicon, and are the building
blocks of syntactic derivations. A derivation proceeds by checking off fea-
tures of words against functional (and thus, phonetically empty) heads. The
relation between morphology and syntax is mediated solely by the featural
component of the words built up in the lexicon. Adopting this perspective
for the moment, notice that in a language like Bolivian Quechua with mor-
phological causatives, a word with two causative morphemes is interpreted
differently than a word with just one:1

1Examples are from Stabler [1994]
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(1) Riku
see

-chi
make

-ni
1S

‘I show it’ or ‘I make him see it’

(2) Riku

see
-chi

make
-chi

make
-ni

1S

‘I have it shown’

The sentences (or words) above differ syntactically as well - the ‘doubly
causativized’ form in (2) licenses (up to) four arguments in the clause in
which it occurs (the first causer, the second causer, the underlying subject,
and the object), the form in (1) only three. As we are for the time being
strict-lexicalists, and believe that the construction of both words above pro-
ceeds independently of the machinations of the syntactic component of the
grammar, we need to ask: how is the number of heads introducing causers
(possibly v) enforced (i.e. why do we not see sentences with four arguments
using the form in (1))? One option is to allow the syntax to overgenerate
(i.e. to decide that causative heads do not have features which need to be
checked off in the course of a derivation, and thus can be freely added with
no appreciable syntactic consequences), and for the offending predictions to
be excised from the theory at an interface (one natural account might have it
that the derivations which mismatch arguments with the valency of the verb
won’t be interpretable, given reasonable assumptions about the semantics).
An option more in line with the idea that interface conditions do not act
as filters on derivations [Frampton and Gutmann, 2002] is to allow mutiple
‘causer’ features to be hosted by the verb in (2), each of which licenses up to
one argument introducing projection.

Allowing feature bundles to have multiple token instances of a single fea-
ture type brings the Chomskyian perspective on grammar into line with ideas
on resource sensitivity in logic [Girard, 1987]. Viewing features as resources
in a minimalist setting has been investigated in other works [Michaelis, 1998,
2001, Harkema, 2001, Kobele, 2002],2 as has the relation between minimalist

2This paper also addresses a problem left open by Kobele [2002]. There a formalization
of Mirror Theory [Brody, 2000] was presented, which utilized a sort of feature percolation.
Placing a restriction on the formalism’s feature percolation allowed a proof of the restricted
formalism’s expressive equivalence with Minimalist Grammars. The result in this paper
extends straightforwardly to the unrestricted Mirror Theory formalism. Given a program
p = 〈p1, . . . , pn〉, in which k registers are referenced, we construct a mirror theoretic lexicon
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grammars and resource sensitive logics [Lecomte and Retoré, 1999, Retoré
and Stabler, 2004, Vermaat, 2004]. In the remainder of this paper I study
the results of adding the widely used mechanism of feature percolation when
features are viewed as resources.

1.1 Feature Percolation

It has been well-known since Ross [1967] that sometimes the phrase which we
analyze as having undergone movement properly includes the elements which
we think of as introducing the motivation for this movement. Consider the
English prenominal genitive, which is traditionally analyzed with the geni-
tive marked phrase a dependent of the noun so-modified (i.e. in the specifier
of said noun’s phrase). A wh-word, an introducer of features requiring move-
ment, as a genitive marked specifier, is not itself allowed to move to check
its features (4), but instead requires ‘pied-piping’ of the largest noun-phrase
it is a specifier (of a specifier . . . ) of (5).

(3) I saw Mary’s brother’s dentist’s college roommate.

(4) *Who(se) did you see (’s) brother’s dentist’s college roommate?

(and hence the grammar) as follows. For each instruction pm in p, add the following lexical
items:

pm is: lexical items:
w+(k) m= k1 -w

=k1 +w k1 -w
=k1 k

w−(j)(k) m= k1 -w
k1= k2

=k2 +w k
m= k3

=k3 +w j

Now, let a1, . . . , ak be the k registers used in the program. Add the following lexical
items to the lexicon:

a1

...
=a1 a1 -a1 ak−1= ak

a1= a2 =ak ak -ak

... ak= 1
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(5) Whose brother’s dentist’s college roommate did you see?

The phenomenon of pied-piping is standardly analyzed as involving the
transmission of one element’s features to another (see e.g. [Moritz and Val-
ois, 1994]).3 In theories where structure is ultimately projected from the
lexicon, a mechanism of feature percolation allows for a simplification of the
description of certain grammatical phenomena by separating the statement
of which items introduce the features from where these features ultimately
wind up. Feature percolation is limited to certain (local) structural relation-
ships, although exactly which such configurations allow feature percolation
is not universally agreed upon. Most theories of locality agree (though see
[Hallman, 2004]) that the specifier-head relationship is about as local as one
gets, and thus that, if feature percolation happens at all, it can happen in
the spec-head configuration.

1.2 Outline of the Remainder of the Paper

The main purpose of this paper is to show that adding feature percolation to
the MG framework endows MGs with more expressive power than is thought
strictly necessary for the description of natural languages. To show this, I
need to introduce MGs, which I do in § 2.1. In § 2.2 I introduce infinite
abaci, the turing equivalent computing device I show in § 3 that MGs with
feature percolation can simulate.

2 Infinite Minimalism

Let’s begin with a quick review of some basic concepts and abbreviations used
in this paper. N = {0, 1, 2, 3, . . .} is the set of natural numbers. For a finite
set A, |A| denotes its cardinality. The unique set of cardinality 0 is denoted
∅. Given two sets A and B, their difference is A−B = {a : a ∈ A∧ a /∈ B},
and their cross-product A×B = {〈a, b〉 : a ∈ A∧ b ∈ B} is the set of ordered
pairs whose first component is in A and whose second is in B. Given a set

3Whether this featural ‘transmission’ is literal movement of features from one object to
another, or merely an expanding ‘sphere of influence’ of features which haven’t moved at all
is not of vital import for the results obtained herein. A literal feature movement approach
is adopted here because of the resulting simplicity of the statement of the generating
functions. For a presentation in terms of the expanding sphere of influence approach, see
[Kobele et al., 2002].
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A, a string over A is a finite sequence of elements x = x1 . . . xn, xi ∈ A for
1 ≤ i ≤ n. If n = 0 then x is the empty string and is denoted ε. The length
of a string x is denoted |x|. In particular, |ε| = 0. The concatenation of two
strings x and y is denoted by their juxtaposition xy. The n-fold iteration of
a string x is

xn = xx . . . x
︸ ︷︷ ︸

n times

If A and B are sets of strings, then AB = {xy : x ∈ A and y ∈ B} is the set
of strings gotten by concatenating a string in A with a string in B. We set
A0 = {ε} and define An+1 = AnA. An is the n-fold iteration of strings in A.
We define A∗ =

⋃∞
n=0 An, and A+ =

⋃∞
n=1.

2.1 Minimalist Grammars

Linguistic structures are commonly given as (partially ordered sets of) trees,
or as graphs. However, much of this structure seems to be functionally inert,
and there is a very real (and important) question as to what kinds of structure
we actually need to compute in the course of a derivation. Here we adopt
a minimal representation (a null hypothesis), where we keep track of only
those elements that are visible to our syntactic operations. Further work is
needed to determine the full set of needed syntactic operations, as well as the
appropriate level of structural richness necessary for adequate descriptions
of (our knowledge of) natural language.

The minimalist grammars presented here are variants of the chain-based
formalism given in [Stabler and Keenan, 2003].4 A linguistic expression is
understood to be a sequence of bounded length. Each element of the se-
quence represents a linguistic object which has not yet been linearized with
respect to the root. A linguistic object is linearizable only after all of its
licensee features have been checked (i.e. after all of its required dependencies
have been satisfied). The first element of the sequence represents both the
root (that is, the object which projects over everything else) as well as the
(syntactically inert) linguistic material which has already been linearized.

Features come in attractor/attractee pairs. For an operation to apply
to a (pair of) expression(s), both an attractor and an attractee feature (of
the appropriate type) must be accessible to it. The operations defined on

4See [Stabler, 1997] for a representationally enriched tree-based version.
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expressions check off syntactic features each time they apply (and can thus
only apply if there are features to check).

Let Σ be a finite alphabet. A minimalist grammar over Σ is given by
specifying three things:

1. a finite set sel of selection feature types, where for f ∈ sel, =f is a
selector feature (i.e. =np allows an np to be base generated by the
carrier), and f is a selectee feature.

selector ≡ {=f : f ∈ sel} and selectee ≡ {f : f ∈ sel}

2. a finite set lic of licensing feature types, where for f ∈ lic, +f is a
licensor feature, and -f is a licensee feature.

licensor ≡ {+f : f ∈ lic} and licensee ≡ {-f : f ∈ lic}

3. a finite lexicon of expressions, where

• Feat ≡ selector ∪ licensor ∪ selectee ∪ licensee is the set of
syntactic features

• Σ∗ × Feat∗ is the set of initial chains

• Σ∗ × licensee+ is the set of non-initial chains.

An expression e consists of an initial chain e0 followed by up to n = |lic|
non-initial chains e1, . . . , en, with the restriction that no two non-initial
chains begin with the same licensee feature - this is a strict way of
enforcing a shortest move constraint (SMC) [Chomsky, 1995].5 Exp is
the set of expressions.

For c a chain, c1 is the phonetic component of c and c2 is the syntactic
component of c. If c2 = gγ for g ∈ Feat and γ ∈ Feat∗, then g is the first
feature of c. For f ∈ lic and e an expression, e(f) is the unique chain ei

such that the first feature of ei is -f , if such exists, and is the empty string

5The shortest move constraint is usually formulated in terms like the following:

the move required to meet the demands of some higher projection, e.g. to check
Case, a wh-feature, or a V-feature, must be met by the closest expression that
could in principle meet that requirement [Hornstein et al., 2005]
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otherwise. An expression e is complete iff e is fully linearized (i.e. e has no
non-initial chains), and the root of e (e0) has only a single selectee feature
((e0)2 ∈ selectee).

The SMC is ensured by restricting the domains of the structure-building
operations, merge and move, which means that we can view it as a descriptive
generalization ultimately due to the nature of our rules and/or our expres-
sions, instead of as a filter on completed derivations.

• merge has two cases, given below. In both cases, an expression is
merged into the complement position of the root.6 The cases differ
in whether or not the phonetic features of the new complement are
linearized with respect to the root (merge1 ) or not (merge2 ).
for σ, τ ∈ Σ∗, γ ∈ Feat∗, δ ∈ Feat+, such that every φi and ψj has
a different first feature (the SMC) and (for merge2 ) δ begins with a
different feature from any φi or ψj:

(σ, =xγ), φ1, . . . , φn (τ, x), ψ1, . . . , ψm

(στ, γ), φ1, . . . , φn, ψ1, . . . , ψm

merge1

(σ, =xγ), φ1, . . . , φn (τ, xδ), ψ1, . . . , ψm

(σ, γ), φ1, . . . , φn, (τ, δ), ψ1, . . . , ψm

merge2

• move also has two cases. In both cases, the moved element can be
thought of as moving to a specifier position of the root. The cases
differ again as to whether the new specifier is linearizable (move1 ) or
not (move2 ).
for σ, τ ∈ Σ∗, γ ∈ Feat∗,δ ∈ Feat+, and every φi has a different first
feature (the SMC),

(σ, +xγ), φ1, . . . , φi−1, (τ, -x), φi+1, . . . , φm

(τσ, γ), φ1, . . . , φi−1, φi+1, . . . , φm

move1

6This definition of merge differs from Stabler’s in allowing multiple complements to be
base generated (and disallowing base generated specifiers). A more complete presentation
would add two additional cases to the merge operation, corresponding to the merger
of a specifier, and differing again in whether the new specifier’s phonetic features are
linearized with respect to the root. The version given here is both easier on the eye, and
sufficient for the purposes of this paper. As no lexical item avails itself of the possibility
of multiple complements, the results obtained for this system carry over immediately to
the full system.
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(σ, +xγ), φ1, . . . , φi−1, (τ, -xδ), φi+1, . . . , φm

(σ, γ), φ1, . . . , φi−1, (τ, δ), φi+1, . . . , φm

move2

To capture the operation of Spec-Head agreement in minimalist gram-
mars, I introduce a new pair of licensee/licensor feature-types (alternatively,
a diacritic which may appear on licensee or licensor feature-tokens) with
the interpretation that when movement is triggered by a feature with this
diacritic, the remaining features on the moved head (recall that movement
checks off the involved feature) are transmitted (‘percolated’) onto the root.
There are as many variants of this operation as there are ways to (linearly)
order the features percolated and the features of the root. The result is
independent of the choice of variant. In the following, I offer a variant in-
dependent proof, as well as showing the construction for the variant which
involves placing all of the features percolated before all of the licensee features
of the root preserving the original orders of both sequences (what I will refer
to as ‘stack-based’ percolation). The interest of the stack-based percolation
is that it is independent of the SMC (and thus shows that the general result
is not parasitic on the particular statement of the shortest move constraint).

Formally, let +f̂ , -f̂ , for any f ∈ lic, be understood as in the above
paragraph. Then the move function is extended to include the following
case. Here the new specifier is always linearized with respect to the root (as
it has no more unchecked syntactic features (having percolated them to the
root)).

For f, f ′ ∈ {g, ĝ} such that at least one of f, f ′ is ĝ, for β ∈ Feat∗,
δ ∈ licensee∗, σ, τ ∈ Σ∗, and α1, . . . , αk non-initial chains (and the SMC is
respected):

(σ, +f β), α1, . . . , αi−1, (τ, -f ′ δ), αi+1, . . . , αk

(τσ, β ⊗ δ), α1, . . . , αi−1, αi+1, . . . , αk

move-fp

The realization of the function ⊗ in the definition of move-fp is the factor
distinguishing the feature percolation variants discussed above. In the stack-
based variant, xy ⊗ z = xzy, for x ∈ (Feat − licensee)∗ and y ∈ licensee∗.
For the abacus simulation results below to go through, it is sufficient that ⊗
neither delete nor insert material not in its arguments.7

The expressions generated by a minimalist grammar over Σ are those
which can be built up by a finite number of applications of the operations

7This requirement is very much in the spirit of Chomsky’s Inclusiveness Condition.
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merge and move starting with the lexical items. For X ⊆ Exp any arbitrary
set of expressions,

E(X) =
∞⋃

n=0

En(X)

and

E0(X) = X
En+1(X) = En(X)

∪ {move(e) : e ∈ dom(move) ∩ En(X)}
∪ {merge(e, e′) : 〈e, e′〉 ∈ dom(merge) ∩ (En(X)×En(X))}

2.2 Bringing out the Abaci

An (infinite) abacus [Lambek, 1961] (see also [Minsky, 1961]) is conceptu-
alized as consisting of some (finite) number of labeled/named locations, an
infinite supply of indistinguishable pebbles, and a set of labeled instructions
for manipulating the number of pebbles in each location. There is a desig-
nated start instruction (with label 0), and a special final label t which does
not occur on any instruction. For convenience, we set the labels to be a finite
initial segment L of N, and define t = max(L). An instruction over L has
one of the following two simple forms:

• w+(k) - add one pebble to location w and then execute instruction k

• w−(k)(j) - if location w is empty, execute instruction j, otherwise re-
move one pebble and execute k

for k, j ∈ L, and w ∈ Loc (the finite set of locations). The set of instructions
over L is Ins(L). Given labels L, a program is a map p : (L−{t}) → Ins(L).

I will present a program p in the following format:

0 1 . . . t
p : ↓ ↓ . . .

p(0) p(1) . . .

A pebble configuration specifies how many pebbles are in each location.
We identify pebble configurations with functions c : Loc → N from locations
to the number of pebbles they contain. Abusing notation somewhat, we can
view a program p as a map over pebble configurations such that

p(c) = !p"(0)(c)
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where !p" : L × [Loc → N] → [Loc → N] is a function from instruction
labels and pebble configurations to updated pebble configurations such that
(defining c[w+] (c[w−]) to be the pebble configuration identical to c except
that c[w+](w) = c(w) + 1 (c[w−](w) = c(w) − 1 if c(w) > 0, and undefined
otherwise)):

!p"(i)(c) =










c if i = t
!p"(k)(c[w+]) if p(i) = w+(k)
!p"(k)(c[w−]) if c(w) > 0 and p(i) = w−(k)(j)
!p"(j)(c) if c(w) = 0 and p(i) = w−(k)(j)

For example, the following program ‘zeroes out’ the contents of location
a:

0 t
p : ↓

a−(0)(t)

Given a pebble configuration c such that c(a) = 2 we trace the operation of
!p" on c:

p(c) = !p"(0)(c)
= !p"(0)(c[a−])
= !p"(0)((c[a−])[a−])
= !p"(t)((c[a−])[a−])
= (c[a−])[a−]

Note that ((c[a−])[a−])(a) = ((c[a−])(a)− 1 = c(a)− 2 = 2− 2 = 0. Note
also that this is not simply a lucky choice of initial pebble configuration, but
that for any pebble configuration c′, p(c′)(a) = 0.

Say that a program p computes a function f(x1, x2, . . . , xn) = y just in
case

1. there is some m such that Loc = {x1, . . . , xn, y, t1, . . . , tm}

2. on every c : Loc → N such that c(y) = c(t1) = . . . = c(tn) = 0,

(a) p(c)(y) = f(c(x1), c(x2), . . . , c(xn))

(b) p(c)(x1) = p(c)(x2) = . . . = p(c)(xn) = 0

(c) p(c)(t1) = p(c)(t2) = . . . = p(c)(tm) = 0

Lambek [1961] showed that abaci can compute arbitrary recursive func-
tions.
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3 Minimalist Abaci

I will represent a program as a lexicon, with each program instruction being
effected by one or more lexical items. In an expression, the initial chain
represents the current execution point in the program, and the non-initial
chains represent the number of pebbles (licensee feature tokens) in a given
location (licensee feature types). Relating this to the discussion above, the
arguments to !p" are given by the initial chain (for i), and the non-initial
chains (for c). The lexicon contains the inner workings of !p" itself. For
example, the expression below represents an abacus at point 1 in the program,
with three non-empty locations, a, b, and d, containing one, two, and one
pebbles respectively.

(ε, 1), (ε, -â), (ε, -b̂-b̂), (ε, -d̂)

More explicitly, an expression e corresponds to a pebble configuration c
just in case8

1. for each w ∈ Loc, if c(w) = 0, then e(w) = ε, otherwise (e(w))2 =
(-ŵ)c(w)

2. (e1)2 ∈ selectee

The idea of the proof that MGs with feature percolation can implement
infinite abaci is as follows. First, I show that every initial configuration of
pebbles in locations can be generated. This will involve providing a set of
lexical items – Lex(x) – which can generate all expressions that have any
number of pebbles in n locations, where the only feature in their initial chain
is x (which I will later call ‘being of category x’). The next step is to show how
the abacus operations above can be implemented in a MG. For an arbitrary
operation of the form w+(k) I add a set of lexical items Lex(x, w, k) to
Lex(x) that construct an expression of category j and with one more pebble
in location w from each expression of category x. The crucial observation is
that the set Lex(x, w, k) can be viewed as a function with domain the set

8This definition is for the generic variant. The first condition should be changed for
the stack-based (or queue) variants as follows:

1. for each w ∈ Loc, if c(w) 1= 0 then (e(w))2 = (-ŵ)c(w)
-ẑw and e(zw) = ε, otherwise

e(w) = ε and (e(zw))2 = -ẑw.
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of expressions of category x generated by Lex(x) (the function being (very
nearly) λy.!p"(x)(y)). If the set Lex(x, w, k) is added not to Lex(x) but to
some other set of lexical items, then its domain is effectively limited to just
those expressions of category x generated by that other set. This allows us
to ‘string together’ commands. Similarly, operations of the form w−(k)(j)
are represented by a set of lexical items Lex(x, w, k, j) which are added to
Lex(x). A definition of the sets Lex(x), Lex(x, w, k), and Lex(x, w, k, j)
follows.

Lex(x) = {(ε,+1), (ε,+1 -â1)}
∪ {(ε,=+i +ai +i -âi -âi) : 1 ≤ i ≤ |Loc|}
∪ {(ε,=+i +i+1), (ε,=+i +i+1 -âi+1) : 1 ≤ i < |Loc|}
∪ {(ε,=+|Loc| x)}

Lex(x, w, k) = {(ε,=x x0 -ŵ)}
∪ {(ε,=x +w x0 -ŵ -ŵ)}
∪ {(ε,=x0 k)}

Lex(x, w, k, j) = {(ε,=x +w x0)}
∪ {(ε,=x0 k)}
∪ {(ε,=x x1 -ŵ)}
∪ {(ε,=x1 +w j)}

An entire program can be embedded in a lexicon in the following manner;
for p : (L − {t}) → Ins(L) a program,

1. Lex(0) ⊆ Lexp

2. for p(i) = w+(k), Lex(i, w, k) ⊆ Lexp

3. for p(i) = w−(k)(j), Lex(i, w, k, j) ⊆ Lexp

4. Nothing is in Lexp if not by virtue of the above.

Before the statement of the main theorem, I work through an example,
using the following program:

0 1 t
p : ↓ ↓

a+(1) b−(0)(t)
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I begin by constructing Lex(0) for a program with two locations – a and
b. The first column is for the stack-based variant of feature percolation, in
the second column I give a set of lexical items that will work for every variant
(including the stack-based one):

stack generic

(ε, +1 -ẑa) (ε, +1)
(ε, +1 -â -ẑa) (ε, +1 -â)
(ε, =+1 +a +1 -â -â) (ε, =+1 +a +1 -â -â)
(ε, =+1 +2 -ẑb) (ε, =+1 +2)
(ε, =+1 +2 -b̂ -ẑb) (ε, =+1 +2 -b̂)
(ε, =+2 +b +2 -b̂ -b̂) (ε, =+2 +b +2 -b̂ -b̂)
(ε, =+2 0) (ε, =+2 0)

I give an example derivation using the generic lexical items – derivations
are represented as trees labeled with expressions. A unary branch indicates
that the mother is derived from the daughter by an application of move, and
a binary branching node is derived by an operation of merge over its children
(the left child is the first argument to merge, and the right child the second)
– of an expression of category 0 with no pebbles in location a, and two in
b. There is exactly one derivation of each expression of category 0 with this
lexicon.

(ε,0), (ε,-b̂ -b̂)

(ε,=+2 0) (ε,+2 -b̂ -b̂)

(ε,+b +2 -b̂ -b̂), (ε,-b̂)

(ε,=+2 +b +2 -b̂ -b̂) (ε,+2 -b̂)

(ε,=+1 +2 -b̂) (ε,+1)

Note that while the generic lexical items construct the expression just
described, the stack based items generate an expression with -ẑi’s in each
component. The intuition is that when the operation ⊗ is simple enough,
it allows for marking of the ‘end’ of the list of features (the ‘z’ is for ‘zero
(pebbles)’), and then later operations can refer explicitly to this end (i.e. can
determine whether there are zero pebbles in a location explicitly; the generic
approach relies on the SMC to weed out any derivation that mistakenly
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assumes that a particular location is not empty).9

Next, I construct Lex(0, a, 1), which implements the instruction, a+(1):

Stack Generic

(ε, =0 +za 00 -â -ẑa) (ε, =0 00 -â)
(ε, =0 +a 00 -â -â) (ε, =0 +a 00 -â -â)
(ε, =00 1) (ε, =00 1)

Combining Lex(0, a, 1) with Lex(0) allows the continuation of the deriva-
tion above by adding one pebble to location a.

(ε, 1),(ε,-â),(ε,-b̂ -b̂)

(ε,=00 1) (ε, 00 -â),(ε,-b̂ -b̂)

(ε,=0 00 -â) (ε, 0),(ε,-b̂ -b̂)

Next, I construct Lex(1, b, 0, t) implementing the instruction b−(0)(t):

Stack Generic

(ε, =1 +b 10) (ε, =1 +b 10)
(ε, =10 0) (ε, =10 0)
(ε, =1 +zb 11 -ẑb) (ε, =1 11 -b̂)
(ε, =11 t) (ε, =11 +b t)

Adding Lex(1, b, 0, t) to Lex(1) will generate both expressions of category
0 and expressions of category t. The generated expressions of category t will
all have zero pebbles in location b.

As the expression derived above is generated by Lex(1), we can continue
the derivation as shown below. First we derive an expression of category 0
by deleting a pebble from location b. Note that after the pebble is removed
from b, the remaining licensee feature percolates onto the initial chain.

9When x⊗ y = xy (the ‘queue-based’ variant), refering to the edge is still possible, but
is less efficient (i.e. it requires more lexical items to effect the translation of a program)
than the generic variant. Referring to the edge does, however, remove reliance on the SMC
when testing for zero.

15



(ε, 0),(ε,-b̂),(ε,-â)

(ε,=10 0) (ε, 10 -b̂),(ε,-â)

(ε, +b 10),(ε,-â),(ε,-b̂ -b̂)

(ε,=1 +b 10) (ε, 1),(ε,-â),(ε,-b̂ -b̂)

Now that we again have an expression of category 0, we may use the
lexical items introduced in Lex(0, a, 1) to derive an expression of category 1
with an additional pebble in location a.

(ε, 1),(ε,-â -â),(ε,-b̂)

(ε,=00 1) (ε, 00 -â -â),(ε,-b̂)

(ε, +a 00 -â -â),(ε,-b̂),(ε,-â)

(ε,=0 +a 00 -â -â) (ε, 0),(ε,-b̂),(ε,-â)

Once more we remove a pebble from location b . . .

(ε, 0),(ε,-â -â)

(ε,=10 0) (ε, 10),(ε,-â -â)

(ε, +b 10),(ε,-â -â),(ε,-b̂)

(ε,=1 +b 10) (ε, 1),(ε,-â -â),(ε,-b̂)

. . . and add one to a. Notice again the feature percolation in the move
step.
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(ε, 1),(ε,-â -â -â)

(ε,=00 1) (ε, 00 -â -â -â)

(ε, +a 00 -â -â),(ε,-â -â)

(ε,=0 +a 00 -â -â) (ε, 0),(ε,-â -â)

Finally, there are no more pebbles in location b, and so we cannot con-
tinue the derivation using the same lexical items (this is the crucial factor).
In order to continue the derivation, we must use the other lexical items in-
troduced in Lex(1, b, 0, t). Note that we could not have used them earlier -
the SMC would have prohibited the second merge step.

(ε, t),(ε,-â -â -â)

(ε, +b t),(ε,-b̂),(ε,-â -â -â)

(ε,=11 +b t)
(ε, 11 -b̂),(ε,-â -â -â)

(ε,=1 11 -b̂)
(ε, 1),(ε,-â -â -â)

Note that once you have finished ‘setting the pebbles up’ (have finished
with Lex(0)), there is at most one derivation until you have reached category
t. That is, every derivation tree of category 0 generated by Lex(0) is a subtree
of at most one derivation tree of category t.

The central claim of this paper is that:

Theorem 1 For any abacus program p there is a minimalist grammar Gp

such that for any pebble configurations c, c′, and corresponding expressions
e, e′ ∈ E(Gp) with (e0)2 = 0 and (e′0)2 = t, p(c) = c′ iff there is a derivation
in Gp from e to e′.

The proof of theorem 1 is deferred to the appendix. A simple corollary
shows how to translate this strong generative capacity into weak generative
capacity:

17



Corollary 1 Let f : N → N be an arbitrary recursive function. Then there
is a minimalist grammar G such that the string language of G is {af(n) : n ∈
N}.

Proof: As f(x) = y is a recursive function, there is a program p over m + 1
locations that computes it [Lambek, 1961]. By theorem 1 there is a mini-
malist grammar Gp such that every expression e of category t that, for some
n ∈ N, has exactly f(n) tokens of -ŷ features, and for every n ∈ N, there is
some expression e of category t has exactly f(n) -ŷ feature tokens. Let G be
constructed from Gp by adding the lexical item:

(a, =t +ŷ t)

Set the string language of G to be the yields of the complete expressions of
category t:

L(G) = {w : ∃e ∈ E(G). e0 = (w, t) ∧ ∀f ∈ lic. e(f) = ε}

!

4 Conclusions

We have seen that, viewing features as resources, adding a simple kind of
feature percolation to minimalist grammars increases their expressive power
far beyond anything believed necessary for the description of natural lan-
guage. This result is predicated on assuming that features are percolated
linearly (i.e. on the assumption that ⊗ neither add nor delete material not
in its arguments). We could of course abandon this assumption, or feature
percolation, or even the minimalist grammar framework. None of this is re-
quired of us, even if we do not believe strictly r.e. string sets to be lurking
somewhere in the shadowy unexplored nether regions of the world. The Min-
imalist Program [Chomsky, 1995] is based on the idea that the explanation
for the observed linguistic diversity lies not just on the shoulders of syntax,
but is able to be distributed over interactions between ‘modules’. We might
constrain our super-powerful syntax with a semantic theory that refuses to
interpret many of the syntactically ‘well-formed’ structures, or with a theory
of learning that makes large swathes of syntactically possible languages un-
learnable from primary linguistic data [Angluin, 1980, Kanazawa, 1998]. An
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expressivity result of the sort contained herein serves to make explicit the
role (or lack thereof) the syntactic component of the grammar will be able
to play in delimiting the class of possible human languages. Thus, if we want
to do feature percolation linearly, we know that there’s a lot of explanatory
slack which will need to be picked up somewhere.
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Appendix

The following sets of expressions will prove useful. For n > 1, and for 1 <
i ≤ |Loc| (in the following I implicitly restrict attention to those elements
which are in the domains of the various partial functions applied to them):

g0
1 = {(ε,+1)}

g1
1 = {(ε,+1 -ŵ1)}

gn
1 = {move(merge((ε,=+1 +w1 +1 -ŵ1 -ŵ1), e)) : e ∈ gn−1

1 }
g0

i = {merge((ε,=+i−1 +i), e) : ∃m. e ∈ gm
i−1}

g1
i = {merge((ε,=+i−1 +i -ŵi), e) : ∃m. e ∈ gm

i−1}
gn

i = {move(merge((ε,=+i +wi +i -ŵi -ŵi), e)) : e ∈ gn−1
i }

z = {merge((ε,=+|Loc| 0), e) : ∃m. e ∈ gm
|Loc|}

Proposition 1 z = E(Lex(0)) ∩ {e : (e0)2 = 0}

Proof:

⊆:
Let e ∈ z be arbitrary. Clearly, (e0)2 = 0. If gm

|Loc| ⊆ E(Lex(0)), then
we would be able to conclude that e ∈ E(Lex(0)), and the proof would be
complete. I show gn

i ⊆ E(Lex(0)), for 1 < i ≤ |Loc|, and for n ∈ N. I
first show that gn

1 ⊆ E(Lex(0)), all n. This is immediate for g0
1 and g1

1, as
they are subsets of Lex(0) itself. Now assume that gm

1 ⊆ E(Lex(0)) for some
m ≥ 1, and let e ∈ gm

1 be arbitrary (note that e0 = (ε,+1 (-ŵ1)m)). Then
move(merge((ε,=+1 +w1 +1 -ŵ1 -ŵ1), e)) ∈ E(Lex(0)).

Now assume that for all n ∈ N, gn
k ⊆ E(Lex(0)), and let n ∈ N and

e ∈ gn
k be arbitrary. Note that e0 = (ε,+k (-ŵk)n). Then

1. merge((ε,=+k +k+1), e) ∈ E(Lex(0)), and

2. merge((ε,=+k +k+1 -ŵk+1), e) ∈ E(Lex(0))

Now assume that gm
k+1 ⊆ E(Lex(0)), for some m ≥ 1, and let e ∈ gm

k+1

be arbitrary (again, e0 = (ε,+k+1 (-ŵk+1)m)). Then, completing the proof,
move(merge((ε,=+k+1 +wk+1 +k+1 -ŵk+1 -ŵk+1), e)) ∈ E(Lex(0))
⊇:
I show instead that for 1 ≤ i ≤ |Loc|,

⋃∞
n=0 gn

i ⊇ E(Lex(0))∩{e : e0 begins with +i},
from whence the original claim will follow. We start with i = 1. Let e ∈
E(Lex(0))∩{e : e0 begins with +1} be arbitrary. If e ∈ E0(Lex(0)) = Lex(0),
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then e is either in g0
1 or g1

1. Otherwise, let e ∈ En+1(Lex(0)). The only derived
items in E(Lex(0)) which begin with +1 are of the form move(merge((ε,=+1

+w1 +1 -ŵ1 -ŵ1), e′)), and thus e ∈
⋃∞

n=0 gn
1 .

Now if
⋃∞

n=0 gn
j ⊇ E(Lex(0)) ∩ {e : e0 begins with +j}, for 1 ≤ j <

|Loc|, then any e ∈ E(Lex(0)) ∩ {e : e0 begins with +j+1} must be one of
merge((ε,=+j +j+1), e′), or merge((ε,=+j +j+1 -ŵj+1), e′), or move(merge((ε,=+j+1

+wj+1 +j+1 -ŵj+1 -ŵj+1), e′′)) for e′ such that e′0 begins with +j and e′′ such
that e′′0 begins with +j+1. In either of the first two cases, e is straightforwardly
in g0

j or g1
j , respectively. And in the third case, e′′ is generated by a finite

number of applications of merge and move to ever simpler expressions until
an expression in g1

j is reached, which means that e′′ ∈ gk
j+1, and e ∈ gk+1

j+1 ,
some k. !

Proposition 2 For every pebble configuration c : Loc → N there is an
expression e ∈ E(Lex(0)) of category 0 which corresponds to c, and vice
versa.

Proof: I exhibit a bijection h : z → [Loc → N] such that e corresponds to
h(e). First I define the relation ‘is a constituent of’ as CON =

⋃∞
n=0 CONn,

where for all e, e′ ∈ Exp,

eCON0e
eCON1e′ iff e′ = move(e) ∨ ∃e′′. e′ = merge(e, e′′) ∨ merge(e′′, e)
eCONn+1e′ iff ∃e′′. eCONne′′ ∧ e′′CON1e

Then h(e) = ce, where ∀i ∈ Loc. ce(i) = max({n : ∃e′ ∈ gn
i . e′CONe}).

1. h is a function, as for every e ∈ z, and every 1 ≤ j ≤ |Loc|, there is a
unique e′ ∈ gn

j such that e′CONe and for any other m such that there
is a e′′ ∈ gm

j which e′′CONe, e′′CONe′ as well.

2. h is 1-1, as if e 1= e′, then wlg. e has more -ŵi features than does e′,
which means that h(e)(i) > h(e′)(i).

3. h is onto, as for c ∈ [Loc → N] arbitrary, the e ∈ z which corresponds

to c has as maximal constituents ei ∈ gc(i)
i . Such an e exists, as the

choice of the eis is independent.

!
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Now we are ready to prove

Theorem 1 For any abacus program p there is a minimalist grammar Gp

such that for any pebble configurations c, c′, and corresponding expressions
e, e′ ∈ E(Gp) with (e0)2 = 0 and (e′0)2 = t, p(c) = c′ iff there is a derivation
in Gp from e to e′.

Proof: Let p be a program, and Lexp as described above. By proposition 2,
we see that we have access to all possible pebble configurations via Lex(0).
Now we will see that the sets Lex(i, w, k) and Lex(i, w, k, j) map configura-
tions to configurations in the appropriate ways.

Let p(i) = w+
m(k). Then for any c, !p"(i)(c) = !p"(k)(c[w+

m]). By defini-
tion, Lex(i, wm, k) ⊂ Lexp, and so the following lexical items are in Lexp:

1. (ε, =i +wm ii -ŵm -ŵm)

2. (ε, =i ii -ŵm)

3. (ε, =ii k)

I show that for arbitrary e with (e0)2 = i, the only (successful) derivation
it may enter into is one in which e(wm) increases by 1. First observe that
lexical items one and two are the only ones in Lexp which are able to combine
with e. There are two cases, according to whether e(wm) = ε or not.

case 1 e(wm) = ε
It should be clear that the derivation will crash (i.e. not be able to
continue) if lexical item one merges with e. (merge(=i ii -ŵm, e))2 = ii
-ŵm, which is merged with lexical item three to get e′ of category k
with exactly one -ŵm feature. Note that (e′)2 = k.

case 2 (e(wm))2 = (-ŵm)r

For similar reasons to case 1, merging the second lexical item above
with e causes the derivation to crash. Now, let e′ be the result of
merging the first lexical item with e. Then (e′)2 = +ŵm ii -ŵm -ŵm,
and for e′′ be the result of applying move to e′, (e′′)2 = ii (-ŵm)r+1.
Merging lexical item three to e′′ results in e′′′ of category k with exactly
r + 1 -ŵm features. Note that (e′′′)2 = k.

Let p(i) = w−
m(k)(j). Then for any c, !p"(i)(c) = !p"(k)(c[w−

m]) if
c(wm) > 0, and !p"(i)(c) = !p"(j)(c) otherwise. Lex(i, wm, k, j) ⊂ Lexp

by definition, and so the following lexical items are in Lexp:
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1. =i +wm ik

2. =ik k

3. =i i1 -ŵm

4. =i1 +wm j

Observe again that lexical items one and three are the only ones in Lexp

which are able to combine with e. There are two cases, according to whether
e(wm) = ε or not.

case 1 e(wm) = ε
As the derivation will crash if lexical item one is used, let instead
e′ = merge(=i i1 -ŵm, e). When item four is merged to e′, the -ŵm is
checked again, yielding e′′ of category k with no -ŵm features. Again,
(e′′)2 = j.

case 2 (e(wm))2 = (-ŵm)r

It is clear that item one will merge with e, one -ŵm feature will be
checked, and then item two will result in some e′ of category k. The
fact of interest is why the derivation will crash if lexical item three is
merged with e instead. Let e′′ be the result of merging lexical item
three with e. Then (e′′0)2 = i1 -ŵm. Because (e′′(wm))2 = (-ŵm)r,
lexical item four, the only expression in Lexp with a =i1 feature, cannot
select e′′ – merge is not defined in this case.

!
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Aspects of Computational Linguistics (LACL 2001), volume 2099 of Lecture
Notes in Artificial Intelligence. Springer Verlag, Berlin, Heidelberg, Germany,
2001.

J. Michaelis. Derivational Minimalism is Mildly Context-Sensitive. In M. Moort-
gat, editor, Logical Aspects of Computational Linguistics, (LACL ’98), volume
2014 of Lecture Notes in Artificial Intelligence. Springer Verlag, Berlin, Heidel-
berg, Germany, 1998.

Marvin Minsky. Recursive unsolvability of Post’s problem of ‘tag’ and other topics
in theory of Turing machines. Annals of Mathematics, 74:437–454, 1961.

Luc Moritz and Daniel Valois. Pied-piping and specifier-head agreement. Linguistic
Inquiry, 25(4):667–707, 1994.
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