
Formalizing Mirror Theory∗

Gregory M. Kobele

1 Introduction

The primary empirical motivation for mirror theory is the linguistic phe-
nomenon known as the mirror principle, which is summarized in (Baker,
1988):

”. . . the characteristic morphology of GF [grammatical function
- e.g. subject, object, etc (GMK)] changing processes always ap-
pears on the main verb in an order that exactly represents the
order that those GF changing processes seem to have applied in.”
((Baker, 1988), p. 363)

In his account of the mirror principle, Baker (1988) relies crucially on head
(X0) movement, to which he (compellingly) argues that the GF changing pro-
cesses can be reduced. This move, along with the head movement constraint
(Travis, 1984), allow Baker to account for the mirror principle. Head move-
ment however, seems to have very different properties from phrasal (XP)
movement. For example, head movement, but not phrasal movement, is a
one-time deal: each head can move at most once (as excorporation is disal-
lowed). Moreover, the domain of locality of heads seems much stricter than
that of phrases (a head can move only to the next higher head position) (see
(Brody, 1997) esp. chap. 3 for more and detailed examples of the differences
between head and phrasal movement).

Mirror theory accounts both for the mirror principle, and for the dif-
ference between phrasal and head movement by its requirement that the

∗This paper has appeared in Grammars 5(3), 2002 in a slightly modified form.
Citations should, when necessary, be made to the official version of this paper. Comments
are welcome!

1

syntactic head-complement relation mirror certain morphological relations
(such as suffix order). This requirement constrains the types of syntactic
structures that can express a given phrase; the morphological constituency
of the phrase determines part of the syntactic constituency, thereby ruling
out other, weakly equivalent, alternatives.

A less fundamental, but superficially very noticeable feature of this theory
is the elimination of phrasal projection. Thus the X-bar structure on the left
becomes the mirror theoretic structure on the right:

XP

YP X′

X ZP

X

Y Z

(Brody calls this systematic collapse of X, X′ and XP nodes ‘telescope’.)
Every node may now have phonetic content, and children are identified as
specifiers or complements depending on their direction of branching; left-
daughters are specifiers and right-daughters are complements (previously,
specifiers were children of XP, and complements were children of X′). Fur-
thermore, the complement relation is a “word-forming” relation, where ac-
cording to the “mirroring” relation, the phonetic content of each head is a
suffix on the phonetic content of its complement.

This paper can be seen as making two contributions. The first, linguis-
tic, one, is that it provides a formalization of Brody’s mirror theory, and
answers questions about the applicability of that theory to natural language
such as whether mirror theory is strong enough to circumscribe the class
of natural languages, and whether it overgenerates excessively. The second,
formal, contribution, is as a case study in adding a certain kind of feature
movement to the framework of minimalist grammars (Stabler, 1997; Stabler
and Keenan, 2000).

2 Mathematical Preliminaries

Let S be a set, and n a natural number. Then Sn denotes the set of sequences
of length n over S. 〈Sn〉m is the set of sequences of length m of sequences of
length n over S. Define S? = S0 ∪ S1, S∗ =

⋃∞
n=0 S

n, and S+ = S∗ − {ε},
where ε is the sequence of length 0. Given sets of sequences S and T , ST =
{st|s ∈ S ∧ t ∈ T}.

2

Fix a domain, D. A relation R ⊆ D × D over D is reflexive iff xRx
for all x ∈ D. It is symmetric iff R = R−1, where xR−1y iff yRx. R is
antisymmetric iff R ∩ R−1 ⊆ ∆, where ∆ denotes the diagonal relation over
D (x∆y iff x = y), and R is asymmetric iff R∩R−1 = ∅. Given R1 ⊆ A×B,
R2 ⊆ B×C, R2 ◦R1 ⊆ A×C denotes their composition, and x(R2 ◦R1)y iff
∃z xR1z and zR2y. Writing R0 for ∆, Rn+1 = Rn ◦R. R+ =

⋃∞
n=1R

n is the
transitive closure of R, and R∗ = R0∪R+ is R’s reflexive transitive closure. R
is transitive when R+ ⊆ R, and connected when every two distinct elements
in D are related by R (∀x, y ∈ D x 6= y → xRy ∨ yRx). A partial order is a
binary relation that is transitive and asymmetric (in which case it is strict),
or transitive, reflexive and antisymmetric (in which case it is weak). A total
order is a connected partial order.

3 Mirror Theoretic Grammars

In this section I present two equivalent derivational descriptions of Mirror
Theory. 1 A tree-based formalism is introduced first, as it bears obvious
similarities to the existing expositions of Mirror Theory, and is thus hoped
to be more readily accessible. The (formally simpler) chain-based formalism
adopted in the remainder of this paper is then motivated and explained.

1Another motivation for mirror theory is the elimination of redundancies in the archi-
tecture of current popular generative syntactic theories. Brody (2000) (and elsewhere)
argues that representational approaches to syntactic representations are to be preferred
on these grounds. I view this debate as independant of the grammatical architecture of
mirror theory, and study this formalism from a derivational perspective in order to facili-
tate comparison with other (and derivational) formalisms on the market. My reasons for
this include the belief that Brody does not want to capture significantly different relations
or structures than those described derivationally (or, perhaps more correctly, than those
described derivationally and ‘weakly’ representationally with additional stipulations to en-
sure that ‘bleeding’ does not occur(see (Brody, 2000))), but instead is making a stand as
to how the relevant grammatical knowledge of these structures is represented in the mind:

”But it seems mistaken to conclude from the assumption that, say, move
captures the properties of chain, that both chain and move are part of the
grammar.” (Brody, 2000)

This purely expository choice should not be taken as a stand on the issue of representations
vs. derivations.

3

3.1 Trees

Trees in mirror theory are ordered by the standard dominance relation (’C’),
as well as by a strict total ordering called (left corner) precedence (’≺≺’).
A child is a left child just in case it precedes its parent, and a right child
otherwise. ≺≺ and C are related by the requirement that all the decendants of
a left (right) child precede (follow) that child’s parent. If a node x dominates
a node z, and if x precedes (follows) z, then all right (left) children of x
dominate z. This forces our trees to be at most binary branching. Note that
if a node A dominates only a single node B, B is regarded as a specifier of
A or a complement of A depending on whether B ≺≺ A or A ≺≺ B.

Example 1
B

A C

Here A ≺≺ B ≺≺ C.

Example 2
D

B

A C

F

E

Here, each node stands in the left corner precedence relation with every
other node it is alphebetically less than (the nodes are labeled according
to their recognition order by a left corner parse, with ‘A’ being recognized
before ‘B’ etc. This is also the order in which the nodes are traversed in an
inorder tree traversal. (See (Gerdemann, 1994))).

Definition 1 A Mirror Theoretic Tree(MTT) is a tuple τ = 〈Nτ , Sτ ,Cτ

,≺≺τ 〉
2 (omitting subscripts when τ is understood) such that

2There is an isomorphism between MTTs as defined above and subsets T ⊆ {0, 1}∗

together with a distinguished subset S ⊆ T such that ∀u, v uv ∈ T → u ∈ T . This
isomorphism is defined so that hx C

∗ hy iff y = xz, for some z. hx ≺≺ hy iff x = u0v
and y = u1w, x = y0v, or y = x1w. x ∈ S ↔ h(x) ∈ S. See (Kobele et al., 2002) for a
presentation in these terms.

4

1. N is a finite and non-empty set (of ’nodes’),

2. S ⊆ N ,

3. C⊆ N ×N , s.t. C
+ is a strict partial order,

4. ≺≺⊆ N ×N is a strict total order,

5. the relations ≺≺ and C satisfy the following axioms over N :

Ax1 ∃x∀y x C
∗ y

Ax2 ∀xyz x C
∗ z ∧ y C

∗ z → x C
∗ y ∨ y C

∗ x

Ax3 ∀xy x C y ∧ y ≺≺ x→ (∀z y C
∗ z ↔ (x C

∗ z ∧ z ≺≺ x))

Ax4 ∀xy x C y ∧ x ≺≺ y → (∀z y C
∗ z ↔ (x C

∗ z ∧ x ≺≺ z))

The set of nodes (N) has a unique least item with respect to dominance (C∗)
(Ax1), which is denoted rootτ , and there is a unique domination path from
the root to each node (Ax2, ’linear branching’). Left corner precedence is
related to dominance in the manner outlined above; a parent’s left (right)
child only dominates nodes that precede (follow) its parent (left to right
direction of the biconditional in Ax3,4), and if a node x dominates and
precedes (follows) a node z, then all of x’s right (left) children dominate z as
well (right to left direction of the biconditional in Ax3,4).

For the sake of perspicuity, MTTs will be often depicted graphically rather
than as tuples. The nodes in S (the strong nodes) will be drawn in cursive
script (see fig. 1).

Figure 1:

A

C B

D

The tree in figure 1 is the graphical depiction

of

τ = 〈{A,B,C,D}, {A,D},Cτ ,≺≺τ 〉, where

Cτ= {〈A,B〉, 〈A,C〉, 〈B,D〉}, and

C ≺≺τ A ≺≺τ D ≺≺τ B

Definition 2 Given τ , let SPECτ = {〈x, y〉|x ≺≺ y∧y C x} and COMPτ =
{〈x, y〉|y ≺≺ x ∧ y C x}.

5

aSPECb (aCOMPb) is read “a is a specifier (complement) of b.”
Proposition 1 guarantees that a node has at most one specifier, and at

most one complement, and thus that a MTT is at most binary branching.
This, along with Ax2, ensures that SPEC and COMP are functional in
both arguments, i.e. SPEC, SPEC−1, COMP , and COMP−1 are all (par-
tial) functions over N .

Proposition 1
For any x, |{y|ySPECx}| ≤ 1, and |{y|yCOMPx}| ≤ 1.

Proof: I show |{y|ySPECx}| ≤ 1. The proof that |{y|yCOMPx}| ≤ 1 is
similar. Let a, b, c ∈ N such that aSPECc and bSPECc. I show a = b:

1. a ≺≺ c ∧ c C a (by definition 2)

2. b ≺≺ c ∧ c C b (by definition 2)

3. ∀z a C
∗ z ↔ (c C

∗ z ∧ z ≺≺ c) (from 1 by Ax3)

4. c C
∗ b ∧ b ≺≺ c (from 2)

5. a C
∗ b (from 3 and 4)

6. ∀z b C
∗ z ↔ (c C

∗ z ∧ z ≺≺ c) (from 2 by Ax3)

7. c C
∗ a ∧ a ≺≺ c (from 1)

8. b C
∗ a (from 6 and 7)

9. a = b (from 5 and 8 by the antisymmetry of C
∗)

2

Given a set L of labels, an expression is defined to be a MTT together with
a function µ : N → L, assigning to each n ∈ N an element of L. Exp is the
set of expressions.

6

Definition 3 (Tree-based Mirror Theoretic Grammar) Following (Sta-
bler, 1997), a Tree-based Mirror Theoretic Grammar(MTG)G = 〈V,Cat, Lex,F〉
is a bare grammar3, where

1. V is a non-empty set (the pronounced elements)

2. Cat is the disjoint union of the following sets:

• base, a non-empty finite set.

• cselect = {=b|b ∈ base}

• sselect = {b= |b ∈ base}

• licensees = {-b|b ∈ base}

• licensors = {+b|b ∈ base}

A label is an element of V ∗Cat∗.

3. Lex is a finite set of expressions 〈τ, µ〉, such that

(a) |Nτ | = 1, and

(b) µ : Nτ → V ∗ cselect? (sselect ∪ licensors)? base licensees∗

4. F = {merge,move}, where

• merge : Exp × Exp → Exp is the union of the following two
functions:
For α, β ∈ V ∗, b ∈ base, δ, γ ∈ Cat∗,

smerge
(E,E ′) ∈ dom(smerge) just in case

(a) The specifier position of the root of τ , the tree component
of E, is vacant. That is, ∀x ∈ Nτ x = rootτ ∨ rootτ ≺≺ x.

3A bare grammar in the sense of (Keenan and Stabler, forthcoming) is a pair G =
〈Lex,F〉 where Lex is a set of generators (called lexical items) and F is a set of functions.
The language generated by a bare grammar (L(G))is the closure of the lexical items under
F . Alternatively, 〈L(G),F〉 is a universal algebra generated by Lex. Sometimes elements
of the language (called expressions) have some internal structure. To draw attention to
this, sometimes the bare grammar 〈Lex,F〉 is rewritten as 〈X1, . . . , Xn, Lex,F〉, where
the Xi’s somehow capture the internal structure of the expressions.

7

(b) The label of the root of τ (µ(rootτ)) begins with an s-
selection feature, and the label of the root of τ ′ (the tree
component of E ′) begins with a base feature of the same
type. That is, µ(rootτ) = α b= δ, and µ′(rootτ ′) = β b γ.

Asume that Nτ and Nτ ′ are disjoint. smerge(E,E ′) = E ′′,
where E ′′ = 〈τ ′′, µ′′〉. τ ′′ is the tree formed by placing τ ′ in
the specifier position of the root of τ . Formally,

Nτ ′′ = Nτ ∪Nτ ′ ,

Sτ ′′ = Sτ ∪ Sτ ′ ,

Cτ ′′=Cτ ∪ Cτ ′ ∪{〈rootτ , rootτ ′〉},

≺≺τ ′′=≺≺τ ∪ ≺≺τ ′ ∪ (Nτ ′ ×Nτ), and

µ′′(rootτ) = α δ, µ′′(rootτ ′) = β γ, and for n ∈ Nτ , µ
′′(n) =

µ(n), for n ∈ Nτ ′ , µ′′(n) = µ′(n).

smerge behaves as schematized below on the tree components
of its arguments:

X + Y =

X

Y

cmerge
(E,E ′) ∈ dom(cmerge) just in case

(a) The complement position of the root of τ , the tree com-
ponent of E, is vacant. That is, ∀x ∈ Nτ x = rootτ ∨ x ≺
≺ rootτ .

(b) The label of the root of τ (µ(rootτ)) begins with a c-
selection feature, and the label of the root of τ ′ (the tree
component of E ′) begins with a base feature of the same
type. That is, µ(rootτ) = α =b δ, and µ′(rootτ ′) = β b γ.

Assume that Nτ and Nτ ′ are disjoint. cmerge(E,E ′) = E ′′.
τ ′′ is the tree formed by placing τ ′ in the complement position
of the root of τ . Formally,

Nτ ′′ = Nτ ∪Nτ ′ ,

Sτ ′′ = Sτ ∪ Sτ ′ ,

Cτ ′′=Cτ ∪ Cτ ′ ∪{〈rootτ , rootτ ′〉},

≺≺τ ′′=≺≺τ ∪ ≺≺τ ′ ∪ (Nτ ×Nτ ′), and

8

µ′′(rootτ) = α δ γ, µ′′(rootτ ′) = β, and for n ∈ Nτ , µ
′′(n) =

µ(n), for n ∈ Nτ ′ , µ′′(n) = µ′(n).

The behaviour of cmerge on the tree component of its argu-
ments is illustrated below:

Z +

X

Y =

Z

X

Y

• move : Exp → Exp is, for α, β, η ∈ V ∗, b ∈ base, and δ, γ, σ ∈
Cat∗, the following function:

move
(E) ∈ dom(move) just in case

(a) The specifier position of the root of τ , the tree component
of E, is not occupied.

(b) The label of the root of τ (µ(rootτ)) begins with a licensor
feature, and there is exactly one proper subtree τ ′ of τ
such that

– the root of τ ′ is the specifier of some node in τ , and

– the label of the root of τ ′ begins with a licensee feature
of the same type.

That is, µ(rootτ) = α +b δ, µ(rootτ ′) = β -b γ, and rootτ ′

is the unique n ∈ {w|∃v wSPECτv} such that µ(n) =
η -b σ.

move(E) = E ′′. τ ′′ is the tree formed by moving τ ′ from its
original position in τ to the specifier position of the root of
τ . Remember that Nτ ′ ⊂ Nτ . Let v be the parent of rootτ ′

(v = SPEC−1(rootτ ′)). Formally,

Nτ ′′ = Nτ ,

Sτ ′′ = Sτ ,

Cτ ′′= (Cτ −{〈v, rootτ ′〉}) ∪ {〈rootτ , rootτ ′〉},

≺≺τ ′′= (≺≺τ −((Nτ −Nτ ′)×Nτ ′))∪ (Nτ ′ × (Nτ −Nτ ′)), and

µ′′(rootτ) = α δ, µ′′(rootτ ′) = β γ, and µ′′(x) = µ(x) for all
other x ∈ Nτ .

9

move acts on the tree component of its argument by selecting a
specifier-rooted subtree and moving it to the specifier of the root
of the tree:

Z

X

Y =

Z

Y X

Definition 4 Let G = 〈V,Cat, Lex,F〉 be a bare grammar. Then the lan-
guage generated by G, L(G), is the closure of Lex under F

L(G) =
⋂

{Y |Lex ⊆ Y ∧ Y is closed under F}

Definition 5 Let E = 〈τ, µ〉 be in L(G). For any c ∈ base, E is a complete
expression of category c if and only if, for all n ∈ Nτ , there is some β ∈ V ∗

such that

µ(n) =

{

β c if n = rootτ
β otherwise

Elements of Sτ are the strong nodes, and are used to determine the place-
ment at spellout of what Brody calls morphological words (MWs).

Definition 6 For x ∈ N , let [x] denote the closure of {x} under COMP and
COMP−1. MW ([x]), the morphological word through [x], is the sequence
〈y1, . . . , y|[x]|〉, where each yi is an element of [x] and for 1 ≤ j < |[x]|,
yj+1 ≺≺ yj.

Figure 2:
A

B

C D

E

F

Here [A] = [E] = {A,E}, [B] = [D] =

{B,D}, [C] = {C}, and [F] = {F}.
MW ([A]) = 〈E,A〉
MW ([B]) = MW ([D]) = 〈D,B〉
MW ([C]) = 〈C〉
MW ([F]) = 〈F 〉

Note that [·] induces an equivalence relation ≈ on Nτ (x ≈ y iff x ∈ [y]).

10

Define pr(·) to be a predicate over Nτ such that pr(·) is true of a node x
just in case either x is the least strong node in [x] with respect to domination
(nearest the root), or there are no strong nodes in [x], and x is the greatest
node in [x] with respect to domination (farthest from the root).

Definition 7 Given a set R, let max(R)/min(R) denote the greatest/least
element of R with respect to C

∗.

pr(x) =

1 if either x is min(S ∩ [x]) and S ∩ [x] 6= ∅,
or S ∩ [x] is empty and x is max([x]).

0 otherwise

In figure 2, pr(E) = pr(B) = pr(C) = pr(F) = 1.
The x in [x] such that pr(x) = 1, is the position of the MW through [x]

at spellout (i.e. where the MW is pronounced). For x, y ∈ [x], x is left of y at
spellout just in case x occurs earlier in the MW through [x] than does y. And
for [x] 6= [y], all members of [x] are left of all members of [y] at spellout just
in case the position of the MW through [x] at spellout left corner precedes
the position of the MW through [y].

Definition 8 x is left of y at spellout, x� y, iff

1. [x] = [y] ∧ y ≺≺ x, or

2. [x] 6= [y] ∧ z ≺≺ w, for z ∈ [x] , w ∈ [y] such that pr(z) = pr(w) = 1

In figure 2, C � D � B � F � E � A.

Proposition 2
∀x, y, z x� y ∧ y � z → x� z

Proof: Let x� y ∧ y � z.

case 1: [x] = [y] = [z]
Then by condition 1 in definition 8, y ≺≺ x and z ≺≺ y. Since ≺≺ is
transitive, z ≺≺ x, and thus x� z.

case 2: The sets[x], [y], and [z] are pairwise distinct.
Let t ∈ [x] , u ∈ [y] , v ∈ [z] be such that pr(t) = pr(u) = pr(v) = 1. By
condition 2 in definition 8, t ≺≺ u and u ≺≺ v. Again, the transitivity
of ≺≺ gives us that t ≺≺ v, whence x� z.

11

case 3: Exactly two of [x], [y], and [z] are identical.
Let t ∈ [x] , u ∈ [y] , v ∈ [z] be such that pr(t) = pr(u) = pr(v) = 1. t
cannot equal v to the exclusion of u, as that would entail that t ≺≺ u
(by x � y), and that u ≺≺ t (by y � z). Assume t = u. Then t ≺≺ v
(as y � z), and thus x � z. Now assume u = v. Then t ≺≺ v (as
x� y), and thus x� z.

2

Proposition 3
∀x, y x 6= y → x� y ∨ y � x

Proof: Let x, y ∈ Nτ be arbitrary such that x 6= y. There are two cases.

case 1: [x] = [y]
Since ≺≺ is total, x ≺≺ y or y ≺≺ x. Thus y � x or x� y by condition
1 of definition 8.

case 2: [x] 6= [y]
Let t ∈ [x] , u ∈ [y] be such that pr(t) = pr(u) = 1. Since ≺≺ is total,
t ≺≺ u or u ≺≺ t. So by condition 2 of definition 8, x� y or y � x.

2

Propositions 2 and 3, together with the asymmetry of the ≺≺ relation,
give that � is a total ordering on Nτ .

Definition 9 For an expression E = 〈τ, µ〉, the yield of E is the concate-
nation of the phonetic features of the sequence 〈y1, . . . , y|Nτ |〉, where for
1 ≤ i, j ≤ |Nτ |, yi ∈ Nτ , and for i < j, yi � yj.

Definition 10 For c ∈ base, the string language of category c, Lc(G), is

{yield(E)|E ∈ L(G) ∧ E is a complete expression of category c}

Given a MTG G, we are normally interested in the string language of G
at a particular category (the start category). In this paper, unless mentioned
otherwise, the start category of our grammars will be c.

12

3.2 An Example Grammar

To illustrate the workings of the formalism given above, I give below a naive
grammar for a fragment of English.
The lexicon consists of the following five expressions (in graphical notation
for convenience):

E1 = 〈τ1, µ1〉, τ1 = N, µ1 : N 7→ who n -wh

E2 = 〈τ2, µ2〉, τ2 = D, µ2 : D 7→ ε =n d -k

E3 = 〈τ3, µ3〉, τ3 = V, µ3 : V 7→ dream d= v

E4 = 〈τ4, µ4〉, τ4 = I , µ4 : I 7→ -s =v +k i

E5 = 〈τ5, µ5〉, τ5 = C, µ5 : C 7→ ε =i +wh c

This grammar generates only the sentence “who dreams”, the derivation
of which is as follows:

cmerge(E2, E1) = E6,

where τ6 =

D

N and µ6 :
D 7→ ε d -k -wh
N 7→ who

smerge(E3, E6) = E7,

where τ7 =

V

D

N and µ7 :
V 7→ dream v
D 7→ ε -k -wh
N 7→ who

cmerge(E4, E7) = E8,

13

where τ8 =

I

V

D

N and µ8 :

I 7→ -s +k i
V 7→ dream
D 7→ ε -k -wh
N 7→ who

move(E8) = E9,

where τ9 =

I

D

N

V

and µ9 :

I 7→ -s i
V 7→ dream
D 7→ ε -wh
N 7→ who

cmerge(E5, E9) = E10,

where τ10 =

C

I

D

N

V

and µ10 :

C 7→ ε +wh c
I 7→ -s
V 7→ dream
D 7→ ε -wh
N 7→ who

move(E10) = E11,

where τ11 :

C

D

N

I

V and µ11 :

C 7→ ε c
I 7→ -s
V 7→ dream
D 7→ ε
N 7→ who

In τ11, [D] = [N] = {D,N}, and [C] = [I] = [V] = {C, I,V}. pr(I) = pr(D) =
1, MW ([D]) = 〈N,D〉, MW ([I]) = 〈V, I,C〉. Since D ≺≺ I, N � D � V �
I � C, and thus yield(E12) = who · ε · dream · −s · ε.

14

3.3 Chains

The tree representation of MTGs is more expressive than we need it to
be from our derivational perspective. The idea behind the more deductive
“chain-based” approach of (Stabler and Keenan, 2000) is to collapse dis-
tinctions made in trees between heads or phrases that have exhausted their
feature strings and will thus remain forevermore adjacent to one another. In
our grammars, we need to keep track of specifier positions relative to the
position of MWs. We do this by splitting the phonetic yield of an expression
into three parts: exhausted specifiers above the current position of the MW,
the MW itself, and exhausted specifiers below the current position of the
MW. Consider the following examples:

Example 3

• E0 = 〈τ0, µ0〉, τ0 = A, µ0 : A 7→ a B= A

• E1 = 〈τ1, µ1〉, τ1 = B, µ1 : B 7→ b B

Then smerge(E0,E1) = E2,

where τ2 =

A

B and µ2 :
A 7→ a A
B 7→ b

Here MW ([rootτ2]) = 〈A〉, and pr(A) = 1. B is a specifier which has no
movement features, and B ≺≺ A. Thus we represent the phonetic yield of E2

as the triple (b, a, ε). Note that B � A, and yield(E2) = b · a.

Example 4

• E3 = 〈τ3, µ3〉, τ3 = C, µ3 : C 7→ c =A C -C

Then cmerge(E3, E2) = E4,

where τ4 =

C

A

B and µ4 :
A 7→ a
B 7→ b
C 7→ c C -C

Now MW ([rootτ4]) = 〈A,C〉, and pr(C) = 1. B is as before, but now C ≺≺ B.
Thus we represent the phonetic yield of E4 as the triple (ε, ac, b). Note again
that A � C � B, and yield(E4) = a · c · b.

15

Example 5

• E5 = 〈τ5, µ5〉, τ5 = D, µ5 : D 7→ d C= D

Then smerge(E5, E4) = E6,

where τ6 =

D

C

A

B and µ6 :

A 7→ a
B 7→ b
C 7→ c -C
D 7→ d D

Here MW ([rootτ6]) = 〈D〉, and pr(D) = 1. Now, even though C ≺≺ D, C
has not exhausted all of its movement features, and must move to a higher
position in order for E6 to be part of a successful derivation. Thus we repre-
sent the phonetic yield of E6 as the triple (ε, d, ε), and keep track of the yield
of the specifier of D in a separate one-tuple, (acb).

An initial chain is an element of V ∗×V ∗×V ∗{::, :::}Cat∗, and represents
the exhausted specifiers and MW as described above, along with the features
of the root. A non-initial chain is an element of V ∗ Cat∗, and represents
those specifiers which have not exhausted their features, and thus whose
relative position in the expression is not yet determined. The expression
representing E6 in example 5 is composed of the initial chain (ε, d, ε) ::: D
(the three colons indicate that D is a strong node), and the non-initial chain
(acb) -C. A chain is either an initial chain or a non-initial chain, and an
expression is an element of E = (initial chain)(non-initial chain)∗.

Definition 11 (Chain-based Mirror Theoretic Grammar) A chain-
based mirror theoretic grammar is a tuple G = 〈V,Cat, Lex,F〉, such that

1. V is a non-empty set (the pronounced elements)

2. Cat is the disjoint union of the following sets:

• base, a non-empty finite set.

• cselector = {=b|b ∈ base}

• sselector = {b= |b ∈ base}

16

• licensee = {-b|b ∈ base}

• licensor = {+b|b ∈ base}

• str = {::, :::}

3. The lexicon

Lex ⊂ {ε}×V ∗×{ε} str cselector?(sselector∪licensor)?base licensee∗

is a finite set (of initial chains), where each has a strength feature
· ∈ {:::, ::} that distinguishes strong initial chains from weak initial
chains, respectively.4 5

4. The generating functions F = {merge,move} are partial functions
from tuples of expressions to expressions. It will be convenient to define
these functions in a deductive format, with the arguments as premises
and the values as the conclusion.

• merge : (E×E) → E is the union of the following 4 functions, for
s, t ∈ V ∗, for ·, ·· ∈ {::, :::}, for f ∈ base, γ, ν ∈ Cat∗, δ ∈ Cat+,
and for non-initial chains α1, . . . , αk, ι1, . . . , ιl (0 ≤ k, l)

(s, t, u) · f= γ, α1, . . . , αk (v, w, x) ··f, ι1, . . . , ιl
(vwxs, t, u) · γ, α1, . . . , αk, ι1, . . . , ιl

s-merge1

4Abels (2001) suggests that facts about English verb raising and negation might be
elegantly accounted for if strength can be left unspecified on lexical items. He proposes
that a strengthless lexical item inherit the strength feature of ‘the next affix down’. His
proposal could be implemented in the present system by adding a third strength feature,
‘:’, and extending the merge function with the following two cmerge variants:

(s, t, u) : =fγ, α1, . . . , αk (v, w, x) :: fν, ι1, . . . , ιl

(suv, wt, x) :: γν, α1, . . . , αk, ι1, . . . , ιl
c-merge-unspecified1

(s, t, u) : =fγ, α1, . . . , αk (v, w, x) ::: fν, ι1, . . . , ιl

(s, wt, uvx) ::: γν, α1, . . . , αk, ι1, . . . , ιl
c-merge-unspecified2

This extension would not affect the language theoretic results obtained in the next
section.

5Brody (p.c.) suggests that morphological words be spellt out uniformly in the highest
node in the MW, regardless of strength. This proposal is easily implemented in this
formalization by requiring that all lexical items be strong. Restricting the lexica of MTGs
in this manner does not affect the results of the next section.

17

(s, t, u) · f= γ, α1, . . . , αk (v, w, x) ··fδ, ι1, . . . , ιl
(s, t, u) · γ, α1, . . . , αk, (vwx)δ, ι1, . . . , ιl

s-merge2

(s, t, u) :: =fγ, α1, . . . , αk (v, w, x) · fν, ι1, . . . , ιl
(suv, wt, x) :: γν, α1, . . . , αk, ι1, . . . , ιl

c-merge1

(s, t, u) ::: =fγ, α1, . . . , αk (v, w, x) · fν, ι1, . . . , ιl
(s, wt, uvx) ::: γν, α1, . . . , αk, ι1, . . . , ιl

c-merge2

Note that since the domains of these four functions are disjoint,
their union is a function.

• move : E → E is the union of the following 2 functions, for
s, t ∈ V ∗, f ∈ base, γ ∈ Cat∗, δ ∈ Cat+, and for non-initial chains
α1, . . . , αk (0 ≤ k) satisfying the following condition: (SMC) none
of α1, . . . , αi−1, αi+1, . . . , αk has -f as its first feature.

(s, t, u) · +fγ, α1, . . . , αi−1, (v)-f, αi+1, . . . , αk

(vs, t, u) · γ, α1, . . . , αi−1, αi+1, . . . , αk

move1

(s, t, u) · +fγ, α1, . . . , αi−1, (v)-fδ, αi+1, . . . , αk

(s, t, u) · γ, α1, . . . , αi−1, (v)δ, αi+1, . . . , αk

move2

Notice that the domains of move1 and move2 are disjoint, so their
union is a function. The (SMC) restriction on the domain of move
is a simple version of the “shortest move condition” (Chomsky,
1995).

Definition 12 An expression exp is a complete expression of a category
c ∈ base (exp ∈ LG(c)) iff exp = (σ1, σ2, σ3) · c, for σ1, σ2, σ3 ∈ V ∗, and
· ∈ {::, :::}. The yield of a complete expression (σ1, σ2, σ3) · c is σ1σ2σ3.

Definition 13 Given a MTG G = 〈V,Cat, Lex,F〉, for c ∈ base the strings
of category c are Lc(G) = {yield(exp)|exp ∈ LG(c)}.

Definition 14 The mirror theoretic languages are those in

MTL = {L|∃G ∈MTG such that L is Lc(G) for some c ∈ baseG}

18

3.4 An Example Grammar Revisited

The grammar from section 3.2 is here translated into our chain based formal-
ism, and the sentence “who dreams” is derived again. The reader is advised
to compare each step in the following with the corresponding step in the pre-
vious example, partial depictions of which are included here for convenience.
In the interests of brevity, I leave out the labeling function µ, instead writing
the phonetic features of a node adjacent to it in the tree (thereby obtaining
a representation virtually identical to the one familiar from Brody’s work).

The lexicon consists of the following five expressions:

E1 = (ε,who,ε) :: n -wh

E2 = (ε, ε, ε):::=n d -k

E3 = (ε,dream,ε) :: d= v

E4 = (ε,-s,ε):::=v +k i

E5 = (ε, ε, ε) :: =i +wh c

c-merge2(E2, E1) = E6 = (ε,who,ε) :::d -k -wh

D

N ‘who’

s-merge2(E3, E6) = E7 = (ε,dream,ε) :: v, (who) -k -wh

V ‘dream’

D

N ‘who’

19

c-merge2(E4, E7) = E8 = (ε,dream -s,ε):::+k i, (who) -k -wh

I ‘-s’

V ‘dream’

D

N ‘who’

move2(E8) = E9 = (ε,dream -s,ε) ::: i, (who) -wh

I ‘-s’

D

N ‘who’

V ‘dream’

c-merge1(E5, E9) = E10 = (ε,dream -s,ε) :: +wh c, (who) -wh

C

I ‘-s’

D

N ‘who’

V ‘dream’

move1(E10) = E11 = (who,dream -s,ε) :: c

C

D

N ‘who’

I ‘-s’

V ‘dream’

20

4 Formal Properties of Mirror Theoretic Gram-

mars

The expressive power of certain classes of MTGs is considered in this section.
First the unrestricted formalism given in §3 is shown to be outside of the class
of grammars thought appropriate for linguistic investigations. Then a lexi-
cal restriction called the non-recursiveness condition (NRC) is motivated in
section 4.2. Sections 4.4 and 4.5 establish that MTGs meeting this condition
are weakly equivalent to minimalist grammars (MGs) (Stabler, 1997; Stabler
and Keenan, 2000), and multiple context-free languages (MCFLs) (Seki et
al., 1991) respectively. Next, a subclass of MTGs that doesn’t use movement
features is introduced, and is shown to generate non-context-free languages.

4.1 Mirror Theory and Mild Context Sensitivity

The (language theoretic) complexity of natural languages is often assumed
to be somewhere in between context-sensitive and context-free. Joshi (1985)
gives an intuitive characterization (in the form of a list of conditions) of a
family of languages which depart from the context-free class ‘just enough’ to
adequately describe the structure of natural language sentences. Of partic-
ular interest here is the condition of ‘constant growth’, as mirror theoretic
grammars, as presented in this paper, are able to define languages which
are not of constant growth. This formalism thus does not explain the ap-
parent constant growth property of natural language (though see (Michaelis
and Kracht, 1997) for arguments that natural language is not actually of con-
stant growth). Below is a grammar for the strictly context sensitive language
{b2

n

|n ∈ N}.
The lexicon consists of the following six expressions:

E1. (ε, ε, ε) :: k -k
E2. (ε, ε, ε) :: k= g -k
E3. (ε, ε, ε) :: =k g -k
E4. (ε, ε, ε) :: =g +k k -k
E5. (ε, ε, ε) :: k= c
E6. (ε, b, ε) :: =c +k c

E1−E4 recursively build expressions with base category k such that each
successive cycle doubles the number of movement features from the last cycle.

21

The expressions thus generated have no pronounced material, and function
as ‘counters’ in the next step of the derivation. E5 selects an expression of
category k to get an expression of category c, and then E6 recursively selects
expressions of base category c, each time checking a licensee feature, until all
licensee features are checked. An example derivation of bbbb follows. There
are 2 ‘cycles’ present: 1 – 3, and 4 – 9.

1. s-merge2(E2, E1) = E7 = (ε, ε, ε) :: g -k, (ε)-k
2. c-merge1(E4, E7) = E8 = (ε, ε, ε) :: +k k -k -k, (ε)-k
3. move1(E8) = E9 = (ε, ε, ε) :: k -k -k
4. s-merge2(E2, E9) = E10 = (ε, ε, ε) :: g -k, (ε)-k -k
5. c-merge1(E4, E10) = E11 = (ε, ε, ε) :: +k k -k -k, (ε)-k -k
6. move2(E11) = E12 = (ε, ε, ε) :: k -k -k, (ε)-k
7. c-merge1(E3, E12) = E13 = (ε, ε, ε) :: g -k -k -k, (ε)-k
8. c-merge1(E4, E13) = E14 = (ε, ε, ε) :: +k k -k -k -k -k, (ε)-k
9. move1(E14) = E15 = (ε, ε, ε) :: k -k -k -k -k
10. smerge2(E5, E15) = E16 = (ε, ε, ε) :: c, (ε)-k -k -k -k
11. cmerge1(E6, E16) = E17 = (ε, b, ε) :: +k c, (ε)-k -k -k -k
12. move2(E17) = E18 = (ε, b, ε) :: c, (ε)-k -k -k
13. cmerge1(E6, E18) = E19 = (ε, bb, ε) :: +k c, (ε)-k -k -k
14. move2(E19) = E20 = (ε, bb, ε) :: c, (ε)-k -k
15. cmerge1(E6, E20) = E21 = (ε, bbb, ε) :: +k c, (ε)-k -k
16. move2(E21) = E22 = (ε, bbb, ε) :: c, (ε)-k
17. cmerge1(E6, E22) = E23 = (ε, bbbb, ε) :: +k c, (ε)-k
18. move1(E23) = E24 = (ε, bbbb, ε) :: c

The SMC condition on the domain of the move operation ensures that
all features in a cycle be checked in the next cycle (in the derivation above,
line 6 could not be followed with line 7′. smerge2(E2, E12)), which in turn
guarantees that the number of movement features will double at the close
of each cycle. Note that this grammar does not depend on the particular
implementation of the feature percolation used here, other than the fact that
the ratio of the total number of licensee features to those which are accessible
in any given expression is unbounded (only the first syntactic feature in a
feature string is accessible to any generating function). It is this, in fact,
which provides the crucial tweak to derive languages of non-constant growth.

22

4.2 Placing a Bound on Lexical Recursion

As stated above, the fact that an unbounded number of features can be
added to a MW without increasing the number of features visible to the
move operation is at the heart of the non-constant growth property of the
formalism. Linguistic evidence is presented here which, when analyzed in the
framework of mirror theory, provides support for a restriction on the MTG
formalism which will be seen in later sections to reenforce constant growth.

Stabler (1994) notices that there seems to be an upper bound of about
three on the acceptability of iterated morphological causative markers in nat-
ural languages. This is in surprising contrast with the apparent naturalness
of iteration of periphrastic causatives (such as ‘make’). This difference seems
to persist even when morphological processes in general are considered. To
account for this peculiarity of natural language, only those grammars are
considered which impose a finite bound on the depth of any complement se-
quence (i.e. to those which require that there is an n ∈ N which bounds the
cardinality of all MWs).6 This restriction is most naturally formalized as a
restriction on lexicons.

First I make precise the notion of a ‘sequence of complements’.

Definition 15 Given a MTG G = 〈V,Cat, Lex,F〉,

CS1 = {〈`〉|` ∈ Lex}, and

CSn+1 = {s_〈`〉|s = 〈`1, . . . , `n〉 ∈ CSn ∧ 〈`〉 ∈ CS1 such that `n has a
cselect feature =z, and ` has a base feature z}

Intuitively each CSn contains all n-ary sequences of complements. A naive
formalization of the intuition above would be to require that

⋃∞
n=0CSn be

finite. This requirement however, is equivalent to the following:7 8

6In Mirror Theory, a morphological causative marker would be in the same MW as the
verb, whereas a periphrastic causative would not be.

7Assume that cs ∈ CSn such that csi = csj , for i < j. Then the subsequence csi+1,j ∈
CSj−i+1. However, csi+1,j _ csi+1,j is also a complement sequence, as csi(= csj) has a
cselect feature that matches with the base feature of csi+1. In fact, for any m, csm

i+1,j ∈
⋃

∞

n=0
CSn, whence

⋃

∞

n=0
CSn is infinite.

8This restriction in effect nullifies the formalism’s feature-percolation ability. A similar
formalism without feature percolation is given in (Kobele et al., 2002), which can be proven
to be equivalent to this restricted version.

23

Definition 16 Non-recursiveness Condition (NRC)
A Grammar G = 〈V,Cat, Lex,F〉 meets the non-recursiveness condition iff
for all n, and for all s ∈ CSn, i 6= j implies `i 6= `j for 1 ≤ i, j ≤ n.

The expressive power of this restricted class of MTGs is considered in the
next few subsections.

4.3 Preliminaries

The mirror theoretic languages with grammars meeting the NRC (NRC-
MTGs) are shown to contain the languages generated by minimalist gram-
mars (MGs) (Stabler, 1997; Stabler and Keenan, 2000) in §4.4, and to be
contained in the multiple context-free languages (MCFLs) (Seki et al., 1991)
in §4.5. I use MGs without head movement or affix hopping, as they are
the simplest formally.9 MGs were shown to be equivalent to MCFGs in
(Harkema, 2001; Michaelis, 1998; Michaelis, 2001), and thus, by the results
of §4.4 and §4.5, MG ≡ NRC-MTG ≡ MCFG. In §4.4 and §4.5 I will
sometimes refer to mirror theoretic grammars meeting the non-recursiveness
condition simply as MTGs. All references to MTGs or MTLs in these sec-
tions should be understood to be shorthand for NRC-MTGs or MTLs with
grammars meeting the NRC respectively, unless explicitly stated otherwise.

Both containment proofs map derivations in one grammar to appropri-
ately similar derivations in another. In the remainder of this section I intro-
duce concepts on which the proofs below rely.

The derivation-tree language for a grammar is a subset of the term al-
gebra with elements of the lexicon as constants, and with function symbols
those in F (Γ(G) ⊆ TermAlg(Lex,F)). I help myself to a surjective partial
map from elements of this term algebra to expressions in the language, an
‘interpretation’ function. If t ∈ TermAlg(Lex,F), ev(t) is the expression
generated by the derivation described by t, if one exists.

Definition 17 The derivation-tree language of a bare grammarG = 〈Lex,F〉
is the set Γ(G) =

⋃∞
n=0Γn(G), where

1. Γ0(G) = Lex

9As shown by (Harkema, 2001; Michaelis, 1998; Michaelis, 2001; Stabler, 2001), adding
head movement and/or affix hopping doesn’t change the weak expressive power of the MG
formalism.

24

2. Γn(G) = Γn−1(G) ∪ {σ(t1, . . . , ti)|t1, . . . , ti ∈ Γn−1(G) ∧ σ ∈ F∧
〈ev(t1), . . . , ev(ti)〉 ∈ dom(σ)}

Definition 18 Given d ∈ Γ(G), Subderiv(d), the set of subderivations of d,
is:

for d ∈ Lex, Subderiv(d) = {d}

for d = σ(t1, . . . , ti), Subderiv(d) = {d} ∪
⋃i

n=1 Subderiv(tn)

Definition 19 The root of a derivation tree d is defined to be

d, if d ∈ Γ0(G)

σ, if d = σ(t1, . . . , tn)

In the grammars we are interested in (i.e. MTGs), the features of the
first (linear) argument to the generating functions determine the further be-
haviour of the resultant expression. We are often interested in the particular
lexical item that contributed these features. Given a derivation d of an ex-
pression, we can determine what this lexical item was as follows.

Definition 20 head : Γ(G) → Lex is:

head(`) = `, ` ∈ Lex

head(σ(t1, . . . , tn)) = head(t1), for σ(t1, . . . , tn) ∈ Γ(G)

Where b = head(d), for some d ∈ Γ(G), b is called the head of d.

4.4 A Lower Bound on Weak Generative Capacity

In what follows, a proof will be given showing the inclusion of the minimalist
languages (Stabler, 1997; Stabler and Keenan, 2000) in the mirror theoretic
ones. First, minimalist grammars without head movement or affix hopping
are introduced, as presented in (Stabler and Keenan, 2000). Then an example
MG is given, along with the corresponding MTG by the translation presented
next. Finally, the inclusion proof is presented.

25

4.4.1 Minimalist Grammars

Definition 21 A Minimalist Grammar (Stabler and Keenan, 2000) is a bare
grammar MG = 〈V,Cat, Lex,F〉, where

1. V is a finite set, the pronounced elements,

2. Cat is the disjoint union of the following sets:

• base, a non-empty finite set.

• selector = {=b|b ∈ base}

• licensee = {-b|b ∈ base}

• licensor = {+b|b ∈ base}

3. Lex, a finite set of lexical items, is a subset of

V ∗{::}(selector ∪ (selector ∪ licensor)∗)?base licensee∗

4. F = {merge,move} is a set of partial functions from tuples of expres-
sions to expressions. Expressions E

.
= V ∗{:, ::}Cat∗. Each expression

has a type · ∈ {:, ::} that indicates whether it is simple (::) or complex
(:).

• merge is the union of the following three functions:
for σ, τ ∈ V ∗, γ ∈ Cat∗, δ ∈ Cat+, · ∈ {:, ::},

σ :: =xγ, φ1, . . . , φn τ · x, ψ1, . . . , ψm

στ : γ, φ1, . . . , φn, ψ1, . . . , ψm

mrg1

σ : =xγ, φ1, . . . , φn τ · x, ψ1, . . . , ψm

τσ : γ, φ1, . . . , φn, ψ1, . . . , ψm

mrg2

σ · =xγ, φ1, . . . , φn τ · xδ, ψ1, . . . , ψm

σ : γ, φ1, . . . , φn, τ : δ, ψ1, . . . , ψm

mrg3

• move is the union of the following two functions:
for σ, τ ∈ V ∗, γ ∈ Cat∗,δ ∈ Cat+, and every φi has a different
first feature (the SMC from §1),

σ : +xγ, φ1, . . . , φi−1, τ : -x, φi+1, . . . , φm

τσ : γ, φ1, . . . , φi−1, φi+1, . . . , φm

mv1

σ : +xγ, φ1, . . . , φi−1, τ : -xδ, φi+1, . . . , φm

σ : γ, φ1, . . . , φi−1, τ : δ, φi+1, . . . , φm

mv2

26

The language generated by a Minimalist Grammar G, L(G), is the closure
of the lexicon under the functions merge and move. For any b ∈ base,
the string language of G at b is {σ|σ · b ∈ L(G)}, and is denoted Lb(G).
When b is understood, I sometimes drop the subscript and write simply
L(G). If the first argument to merge is a simple expression (one of type
::), the second argument to merge is a complement. Otherwise, the second
argument is a specifier. Note that though an expression can have at most one
complement, there is no restriction on the number of specifiers it may have
(other than finitude). However, as shown in (Kobele and Kandybowicz, 2001;
Michaelis, 2001), minimalist grammars in which no expression has more than
one specifier yield the same set of languages.10 G is in K normal form (KNF)
just in case no expression in L(G) has more than one specifier per head (i.e.
Lex ⊆ selector?(selector ∪ licensor)? base licensee∗).

4.4.2 A Minimalist Example

The MG G = 〈VG, CatG, LexG,FG〉 below is in K normal form, and generates
the sentence ‘who scream -s’ of type c.
LexG =

E0 = who :: d -k -wh

E1 = scream :: =d v -v

E2 = -s :: =v +v t

E3 = ε :: =t +k agrs

E4 = ε :: =agrs +wh c

1. mrg3(E1, E0) = E5 = scream : v -v, who : -k -wh
2. mrg3(E2, E5) = E6 = -s : +v t, scream : -v, who : -k -wh
3. mv1(E6) = E7 = scream -s : t, who : -k -wh
4. mrg1(E3, E7) = E8 = scream -s : +k agrs, who : -k -wh
5. mv2(E8) = E9 = scream -s : agrs, who : -wh
6. mrg1(E4, E9) = E10 = scream -s : +wh c, who : -wh
7. mv1(E10) = E11 = who scream -s : c

10The proof idea is simple: every lexical item is mapped to a sequence of lexical items
in an equivalent grammar - for every specifier a lexical item in G has past the first (this
can be read off from the shape of the lexical item), an additional item is needed in the
sequence in G′ (to host the specifier position).

27

4.4.3 Transforming MGs into MTGs

With each MG G in K normal form, one can associate with it a MTG T (G)
that will be proven later to be weakly equivalent to it. The idea behind the
transformation is found in (Brody, 1997). Brody notes that the standard X-
bar tree below must be represented in his system as the neighboring mirror
theoretic tree:

XP

YP X1

X0 ZP

AgrX

Y X

Z

Intuitively, the idea behind the proof of equivalence is simply that the
two trees above are functionally equivalent in that YP/Y and ZP/Z are the
only ’movable’ items (ignoring head movement). Thus operations performed
by one can be simulated by the other.

In mirror theory, complements are different from specifiers not only with
respect to precedence relative to a head, but also in that complements form
a tighter unit with the selecting head than do specifiers; complements can-
not extract - specifiers can. Thus, we represent both minimalist specifiers
and complements by mirror theoretic specifiers, as per the picture above.
Proposition 1 requires us to factor each minimalist lexical item that selects
(by merge or move) a complement and a specifier into two mirror theoretic
lexical items that form a morphological word, and each of which select a
specifier. To ensure the minimalist specifier-head-complement pronunciation
order, the least lexical item in the morphological word with respect to dom-
ination (the one which c-selects the other) must be strong. In the above
example, MW ([X]) is pronounced in AgrX; following Y, but preceding Z at
spellout (Y � X � AgrX � Z). The minimalist lexical items are uni-
formly mirrored by two mirror theoretic lexical items in the definitions to
follow, even though not strictly necessary in the case where the minimalist
item has no selection features (i.e. neither YP nor ZP is present).

Definition 22 Let G be a minimalist grammar in KNF, and let enum(·) be
an enumeration of LexG. T (G) = 〈V,CatT (G), LexT (G), FT (G)〉, where

1. baseT (G) = baseG∪{xi|enum(i) ∈ LexG}, xi /∈ CatG for 1 ≤ i ≤ |LexG|

2. LexT (G) = {`|∃i ` ∈ f(enum(i))}, where f(enum(i)) =

28

〈(ε, σ, ε) ::: =xi d -w1 . . . -wn, (ε, ε, ε) ::: xi〉,
if enum(i) = σ :: d -w1 . . . -wn,

〈(ε, σ, ε) ::: =xi d -w1 . . . -wn, (ε, ε, ε) ::: y= xi〉,
if enum(i) = σ :: =y d-w1 . . . -wn

〈(ε, σ, ε) ::: =xi z= d -w1 . . . -wn, (ε, ε, ε) ::: y= xi〉,
if enum(i) = σ :: =y z= d -w1 . . . -wn

〈(ε, σ, ε) ::: =xi +z d -w1 . . . -wn, (ε, ε, ε) ::: y= xi〉,
if enum(i) = σ :: =y +z d -w1 . . . -wn

A lexical item ` in the minimalist grammar is associated with a set S
of lexical items in the mirror theoretic grammar just in case f maps ` to a
sequence containing each member of S. S is the association class of `, f(`)1

is the first element in the sequence f maps ` to, and f(`)2 is the second.
One sees immediately that if c-merge is defined on 〈ev(d), ev(d′)〉, for

d, d′ ∈ Γ(T (G)), then, as head(d) must contain =xi, and head(d′) xi, and
since only members of the same association class share features =xj and xj,
〈head(d), head(d′)〉 must be the image of some ` ∈ LexG under f .

Moreover, if one member of an association class occurs in a derivation
d such that ev(d) begins with some b ∈ baseG, then both members of the
association class must occur in d. Since only the first member of each f(`)
has a category symbol b ∈ baseG, it must occur in d, and because the first
member of an f(`) begins with a complement selection feature =xi, the second
member of f(`) must occur as well, by the previous observation.

4.4.4 An Example Transformation

Given the ‘who scream -s’ grammar in §4.4.2, a MTG T (G) is constructed by
the method described above. In §4.4.6 I introduce the notion of a mapping
between minimalist and mirror theoretic derivations, and then compare the
derivations of ‘who scream -s’ in both grammars.
Take enum : {0, 1, 2, 3, 4} → LexG to map numbers to lexical items of G in
the order given in §4.4.2.

1. baseT (G) = baseG ∪ {x0, x1, x2, x3, x4}

2. LexT (G) = {`|` ∈ f(enum(i)) for some 0 ≤ i ≤ 4}

D0 = f(enum(0))1 = (ε,who, ε) ::: =x0 d -k -wh

29

D1 = f(enum(0))2 = (ε, ε, ε) ::: x0

D2 = f(enum(1))1 = (ε, scream, ε) ::: =x1 v -v

D3 = f(enum(1))2 = (ε, ε, ε) ::: d= x1

D4 = f(enum(2))1 = (ε, -s, ε) ::: =x2 +v t

D5 = f(enum(2))2 = (ε, ε, ε) ::: v= x2

D6 = f(enum(3))1 = (ε, ε, ε) ::: =x3 +k agrs

D7 = f(enum(3))2 = (ε, ε, ε) ::: t= x3

D8 = f(enum(4))1 = (ε, ε, ε) ::: =x4 +wh c

D9 = f(enum(4))2 = (ε, ε, ε) ::: agrs= x4

What follows is a derivation of ‘who scream -s’ in T (G):

1. c-merge2(D0, D1) = D10

= (ε,who, ε) ::: d -k -wh
2. s-merge2(D3, D10) = D11

= (ε, ε, ε) ::: x1, (who) -k -wh
3. c-merge2(D2, D11) = D12

= (ε, scream, ε) ::: v -v, (who) -k -wh
4. s-merge2(D5, D12) = D13

= (ε, ε, ε) ::: x2, (scream) -v, (who) -k -wh
5. c-merge2(D4, D13) = D14

= (ε, -s, ε) ::: +v t, (scream) -v, (who) -k -wh
6. move1(D14) = D15

= (scream, -s, ε) ::: t, (who)-k -wh
7. s-merge1(D7, D15) = D16

= (scream -s, ε, ε) ::: x3, (who) -k -wh

8. c-merge2(D6, D16) = D17

= (ε, ε, scream -s) ::: +k agrs, (who) -k -wh
9. move2(D17) = D18

= (ε, ε, scream -s) ::: agrs, (who) -wh
10. s-merge1(D9, D18) = D19

= (scream -s, ε, ε) ::: x4, (who) -wh
11. c-merge2(D8, D19) = D20

= (ε, ε, scream -s) ::: +wh c, (who) -wh
12. move1(D20) = D21

= (who, ε, scream -s) ::: c

30

4.4.5 Transforming Derivations

To prove the equivalence of G ∈ MG and T (G) ∈ MTG, we define a string
preserving bijection from (a subset of) the derivations of G to (a subset of)
the derivations of T (G). We are interested in the derivations whose heads
have satisfied their selection (x= , =x) and licensor (+x) features, and thus
can themselves be selected for. Intuitively (in GB/Minimalist terms), we are
interested just in the derivations of (completed) maximal projections (XPs).

Definition 23

• For G = 〈V,Cat, Lex,F〉 a MG, and for any c ∈ Cat and
· ∈ {:, ::},

derivec(G) = {d ∈ Γ(G)|ev(d) = σ · cδ, φ1, . . . , φn}

• For G′ = 〈V ′, Cat′, Lex′,F ′〉 a MTG, and for any c ∈ Cat′ and · ∈ str,

derivec(G
′) = {d ∈ Γ(G′)|ev(d) = (σ1, σ2, σ3) · cδ, φ1, . . . , φn}

I define a function relating the structure building minimalist functions
with the mirror theoretic ones. As mentioned above, the intuition is that
minimalist complements (base generated by merge1 or merge3) and speci-
fiers (base generated by merge2 or merge3) are treated uniformly as mirror
theoretic specifiers (base generated by smerge1 or smerge2).

Definition 24

g(mrg1) = g(mrg2) = s-merge1,

g(mrg3) = s-merge2,

g(mv1) = move1, and

g(mv2) = move2.

Definition 25
Let h :

⋃

b∈baseG
deriveb(G) →

⋃

b∈baseG
deriveb(T (G)) be defined by term

induction as follows:
for a a lexical item, Φ,Ψ ∈

⋃

b∈baseG
deriveb(G), and σ, τ ∈ FG,

31

1. a is α :: b -w1 . . . -wi, and
h(a) = c-merge2(f(a)1, f(a)2)

2. a is α :: =y b -w1 . . . -wi, and
h(σ(a,Φ)) = c-merge2(f(a)1, g(σ)(f(a)2, h(Φ)))

3. a is α :: =x =y b -w1 . . . -wi, and
h(σ(τ(a,Φ),Ψ)) = g(σ)(c-merge2(f(a)1, g(τ)(f(a)2, h(Φ))), h(Ψ))

4. a is α :: =x +y b -w1 . . . -wi, and
h(σ(τ(a,Φ))) = g(σ)(c-merge2(f(a)1, g(τ)(f(a)2, h(Φ))))

The domain of h is the set of maximally projected derivations in G, the range
is the set of maximally projected derivations in T (G) of just the categories
in G.

4.4.6 A Derivation Transformed

The minimalist derivation of ‘who scream -s’ in the grammar G in §4.4.2 is
here reproduced as an element in Γ(G). The morphism h defined above is
applied to it, yielding the derivation tree in Γ(T (G)) corresponding to the
mirror theoretic derivation of ‘who scream -s’ in §4.4.4.

h(mv1(mrg1(E4,mv2(mrg1(E3,mv1(mrg3(E2,mrg3(E1, E0))))))))
= h(mv1(mrg1(E4,Φ)))
= g(mv1)(c-merge2(f(E4)1, g(mrg1)(f(E4)2, h(Φ))))
= move1(c-merge2(D8, s-merge1(D9, h(Φ))))

h(Φ)
= h(mv2(mrg1(E3,mv1(mrg3(E2,mrg3(E1, E0))))))
= h(mv2(mrg1(E3,Ψ))))))
= g(mv2)(c-merge2(f(E3)1, g(mrg1)(f(E3)2, h(Ψ))))
= move2(c-merge2(D6, s-merge1(D7, h(Ψ))))

h(Ψ)
= h(mv1(mrg3(E2,mrg3(E1, E0))))
= h(mv1(mrg3(E2,Υ)))
= g(mv1)(c-merge2(f(E2)1, g(mrg3)(f(E2)2, h(Υ))))
= move1(c-merge2(D4, s-merge2(D5, h(Υ))))

32

h(Υ)
= h(mrg3(E1, E0))
= c-merge2(f(E1)1, g(mrg3)(f(E1)2, h(E0)))
= c-merge2(D2, s-merge2(D3, h(E0)))

h(E0)
= c-merge2(f(E0)1, f(E0)2)
= c-merge2(D0, D1)

4.4.7 ML ⊆MTL

The proof strategy is as follows. First, I show that the derivation tree d′

in Γ(T (G)) gotten from d in Γ(G) by h in the above manner has the same
category and licensee features as d, and also the ‘same’ string component.
Next I show that every d′ in Γ(T (G)) such that d′ ∈ derivec(T (G)) for
c ∈ baseG is the image of h under some d in Γ(G). Finally, using a result
of (Hale and Stabler, 2001), I conclude that two distinct trees in Γ(G) are
mapped by h to distinct trees in Γ(T (G)). This shows the injectivity of
h. The inclusion of the minimalist languages in the mirror theoretic ones is
then a special case of proposition 4, namely, one in which only the complete
expressions of a particular category are relevant.

Proposition 4

1. h is a bijection, and

2. ev(d) = α · γδ, β1 · χ1, . . . , βk · χk if and only if ev(h(d)) = (α1, α2, α3) ·
γδ, (β1)χ1, . . . , (βk)χk, for α = α1α2α3.

Proof: The ‘only if’ direction of part 2 of proposition 4 is shown first. The
‘if’ direction will then follow from the bijectivity of h. The proof is by an
induction on the height of the term d:

base d is a lexical item, and falls under condition 1 in the definition of h.
Since for some b ∈ baseG, d ∈ Subtreeb(G), d = α :: b -w1 . . . -wn =
enum(i), for some i. By the definition of f , f(d) = 〈(ε, α, ε) :::
=xi b -w1 . . . -wn, (ε, ε, ε) ::: xi〉. Then h(d) = c-merge2(f(d)1, f(d)2),
and ev(c-merge2(f(d)1, f(d)2)) is
(ε, α, ε) ::: b -w1 . . . -wn.

33

induction There are ten cases to consider here, corresponding to the pos-
sible instantiations of the function variables σ and τ above. Two are
worked out here; the remainder are left to the interested reader. The
first case is an instance of condition 2 in the definition of h, and the
eighth is one of condition 4.

case 1 d = mrg1(`,Φ), where ` is α :: =y b -w1 . . . -wn, and enum(`) =
k
h(d) then, is c-merge2(f(`)1, g(mrg1)(f(`)2, h(Φ))) =
c-merge2((ε, α, ε) ::: xk b -w1 . . . -wn, s-merge1((ε, ε, ε) :::y= xk, h(Φ))).
As Φ is the second argument to merge1, we know that ev(Φ)
must be of the form: β · y, φ1, . . . , φj and thus ev(d) = αβ :
b -w1 . . . -wn, φ1, . . . , φj. By the inductive hypothesis, we have
that h(Φ) = (β1, β2, β3)·y, φ1, . . . , φj. Then ev(s-merge1((ε, ε, ε) :::
y= xk, h(Φ))) = (β, ε, ε) ::: xk, φ1, . . . ,
φj, and finally ev(h(d)) = (ε, α, β) ::: b -w1 . . . -wn, φ1, . . . , φj

case 2 d = mrg3(`,Φ)

case 3 d = mrg2(mrg1(`,Φ),Ψ)

case 4 d = mrg2(mrg3(`,Φ),Ψ)

case 5 d = mrg3(mrg1(`,Φ),Ψ)

case 6 d = mrg3(mrg3(`,Φ),Ψ)

case 7 d = mv1(mrg1(`,Φ))

case 8 d = mv1(mrg3(`,Φ)), where ` is α :: =z +y b-w1 . . . -wn.
h(d) = move1(c-merge2((ε, α, ε) ::: =xk+y b -w1 . . . -wn,
s-merge2((ε, ε, ε) ::: z= xk, h(Φ)))). As in case 1, we know ev(Φ)
to be β ·z -l1 . . . -li, φ1, . . . , φj−1, γ-y, φj+1, . . . , φm and thus ev(d) =
γα : b -w1 . . . -wn, β-l1 . . . -li, φ1, . . . , φm.

By the inductive hypothesis, h(Φ) = (β1, β2, β3) · z -l1 . . . -li,
φ1, . . . , φj−1, (γ)-y, φj+1, . . . , φm. Then ev(s-merge2((ε, ε, ε) ::: z= xk, h(Φ))) =
(ε, ε, ε) ::: xk, (β)-l1 . . . -li, φ1, . . . , φj−1, (γ)-y,
φj+1, . . . , φm, and thus ev(h(d)) = (γ, α, ε) ::: b -w1 . . . -wn,
(β)-l1 . . . -li, φ1, . . . , φj−1, φj+1, . . . , φm.

case 9 d = mv2(mrg1(`,Φ))

case 10 d = mv2(mrg3(`,Φ))

34

I next show that h is onto.
Let d′ ∈ Subtreeb(T (G)), for some b ∈ baseG. We construct d ∈ Subtreeb(G)

such that h(d) = d′. The construction is via term induction on the height of
d′.

base
Let d′ ∈ Γ1(T (G)) ∩ Subtreeb(T (G)) (By construction, Γ0(T (G)) ∩
Subtreeb(T (G)) is empty)
Then d′ = c-merge2((ε, α, ε) ::: =xi b -w1 . . . -wn, (ε, ε, ε) ::: xi), for
some i. Then by definition 22.2, there is some d ∈ LexG such that
f(d)1 = (ε, α, ε) ::: xi b -w1 . . . -wn and f(d)2 = (ε, ε, ε) ::: xi. Then by
definition 25.1 h(d) = c-merge2(f(d)1, f(d)2) = d′.

induction
Assume that for every d′′ ∈ Γn(T (G)) ∩ Subtreeb(T (G)) there is some
d ∈ Subtreeb(G) such that h(d) = d′′. Let d′ ∈ Γn+1(T (G))∩Subtreeb(T (G)).
We construct d ∈ Subtreeb(G) such that h(d) = d′. By definition 22,
the head of d′ can be one of

• (ε, α, ε) ::: =xk b-w1 . . . -wn,

• (ε, α, ε) ::: =xk y= b-w1 . . . -wn, or

• (ε, α, ε) ::: =xk +z b-w1 . . . -wn

We examine the third of these cases in detail.

case 3 head(d′) = (ε, α, ε) ::: =xk +z b -w1 . . . -wn.
By definition 22, there is a unique ` ∈ LexG such that f(`)1 =
head(d′) and f(`)2 = (ε, ε, ε) ::: y= xk. Again by definition 22,
` = α :: =y +z b-w1 . . . -wn. As both members of an association
class must co-occur, d′ must be σ(c-merge2(head(d′), τ((ε, ε, ε) :::
y= xk,Φ))), for σ ∈ {move1,move2}, and τ ∈ {s-merge1, s-merge2}.
There are four cases, depending on the values of σ and τ . Let
σ = move2 and τ = s-merge1. Then ev(Φ) = (β1, β2, β3) :::
y, φ1, . . . , φi−1, (γ)-l1 . . . -lj, φi+1, . . . ,
φm. By the inductive hypothesis, there is some Φ′ ∈ Γ(G) such
that h(Φ′) = Φ. By the result of the immediately preceding
proof, ev(Φ′) = β : y, φ1, . . . , φi−1, γ : -l1 . . . -lj, φi+1, . . . , φm. Thus

35

mv2(mrg1(`,Φ′)) is defined, and so by definition 25, h(mv2(mrg1(d,Φ)) =
move2(c-merge2(f(d)1, s-merge1(f(d)2, h(Φ

′)))) = d′

Note that if d1, . . . , dn is the sequence of lexical items of some d ∈ Γ(G),
then f(d1), . . . , f(dn) is the sequence of lexical items of h(d) ∈ Γ(T (G)). The
previous proof demonstrated that every lexical sequence of a tree in Γ(T (G))
is the image of some lexical sequence of a tree in Γ(G). To show injectivity,
note that if a, b ∈ Γ(G) are distinct, then so are the lexical sequences of
both, 〈a1, . . . , am〉 and 〈b1, . . . , bm〉 (Hale and Stabler, 2001), and thus so
must be 〈f(a1), . . . , f(am)〉 and 〈f(b1), . . . , f(bm)〉, as ∃i ai 6= bi, and for all
`, `′ ∈ LexG with ` 6= `′, f(`) 6= f(`′). 2

Theorem 1
ML ⊆MTL.

Proof: Let L be an arbitrary language in ML. There is a KNF grammar
G such that Lc(G) = L, for some c ∈ baseG. Let ` ∈ Lc(G). By definition,
` ∈ {δ|δ · c ∈ Cl(LexG,FG)}. Thus there is some d ∈ Γ(G) such that ev(d) =
` · c. By definition 25, h(d) ∈ Γ(T (G)) such that ev(h(d)) = (`1, `2, `3) ::: c.
Then ` ∈ {αβγ|(α, β, γ) · c ∈ Cl(LexT (G),FT (G))}, and thus ` ∈ Lc(T (G)).
Now let ` ∈ Lc(T (G)), for some MG G. By definition 13, ` = σ1σ2σ3 and
for some d ∈ Γ(T (G)) and · ∈ {::, :::}, ev(d) = (σ1, σ2, σ3) · c. By proposition
4.1, ∃d′ ∈ Γ(G) such that h(d′) = d. By proposition 4.2, ev(d′) = σ1σ2σ3 ··c.
Thus ` ∈ Lb(G).

2

4.5 An Upper Bound for MTGs

4.5.1 Multiple Context-Free Grammars

I preface the formal definition of MCFGs below with a more intuitive de-
scription. The reader familiar with MCFGs should skip to §4.5.2.
Take a CFG G = 〈V, T, P, S〉. Each production in P of the form A −→ σ,
for A ∈ V and σ ∈ T ∗, associates with a non-terminal (in this case, ‘A’)
a string (‘σ’), or, equivalently, a function f ∈ [1 → T ∗]. Each production
in P of the form A −→ σ1A1 . . . σnAnσn+1 associates with a non-terminal
(‘A’) a set of strings, which in the case above contains all strings of the form
σ1 concatenated with a string associated with A1, . . ., concatenated with
σn, concatenated with a string associated with An, concatenated with σn+1.

36

Equivalently, A is associated with a function g ∈ [T ∗ × . . .× T ∗ → T ∗], such
that g maps strings of type A1 through An to the string described above. An
MCFG is an extension of the CFG described above, in that the functions f, g
are from tuples of tuples of strings to tuples of strings (i.e. f ∈

[

1 → 〈T ∗〉k
]

,
and g ∈

[

〈T ∗〉k1 × . . .× 〈T ∗〉kn → 〈T ∗〉kn+1

]

). Moreover, g is allowed to be
nearly any function with the appropriate domain and codomain (not just
the concatenation function), as long as it does not ‘copy’ any string in its
input. An m-MCFG places an upper bound of m on the length of the tuples
of strings. Here is a formal definition of MCFGs, from (Seki et al., 1991) :

Definition 26 An m-MCFG G = 〈N,O, F,R, S〉, where

N
N is a finite set of non-terminal symbols. For each A ∈ N , a positive
integer d(A) (the ‘degree’ of A) is associated with it.

O
Letting T (the terminal symbols) be a finite set of symbols disjoint
from N , O =

⋃m

i=1〈T
∗〉i. O is a set of sequences of strings over T .

F
F is a finite set of partial functions from O×O× . . .×O to O, in other
words, functions from sequences of sequences of strings, to sequences of
strings. Fq is the subset of F in [Oq → O]. F must satisfy the following
conditions:

1. for each f ∈ Fq, there are positive integers r(f), and di(f) (for
1 ≤ i ≤ q) which are not greater than m (the maximum length
of sequences in O), such that f is a function from (T ∗)d1(f) ×
(T ∗)d2(f) × . . . (T ∗)dq(f) to (T ∗)r(f). Intuitively, r(f) is the length
of the sequence which is the output of f , and each di(f) is the
length of the ith argument of f .

2. For 1 ≤ h ≤ r(f), let fh denote the hth component of f (that
is, fh on any input returns the hth coordinate of f on the same
input). Now let

xi = (xi1, xi2, . . . , xip)

and
X = {xij|1 ≤ i ≤ p & 1 ≤ j ≤ di(f)}

37

Here xi is the ith argument of f (which is a p-ary sequence of
strings over T), and X is the set of all strings in each sequence of
f ’s arguments. Now

fh[x1, . . . , xp] = αh0zh1αh1zh2 . . . zhvh(f)αhvh(f)

where αhk ∈ T ∗ (0 ≤ k ≤ vh(f)) and zhk ∈ X (1 ≤ k ≤ vh(f)).
That is to say, each coordinate of the output of f is the concate-
nation of constant strings and strings in the input to f .

3. Moreover, each xij can only occur in at most one coordinate of
the output of f , and then only once. (The non-copying condition)

R
R is a finite subset of

⋃

q(Fq × N q+1). For (f,A0, . . . , Aq) ∈ P , write
A0 → f [A1, . . . , Aq]. If q = 0, it is a terminating rule - then f is a
nullary function, and denotes a sequence of strings over T . Moreover, if
A0 → f [A1, . . . , Aq] is a rule in R, then d(A0) = r(f), and for 1 ≤ i ≤ q,
d(Ai) = di(f). That is, the sequences that are given as input to f must
be in the domain of f , and the non-terminal the rule wants to assign
the output of f to must be the right ‘size’.

S
S ∈ N is the start symbol, and d(S) = 1.

For A ∈ N , LG(A) is the smallest set such that:

1. if a terminating rule A→ f [] is in R and f(∅) = θ, then θ ∈ LG(A);

2. if A→ f [A1, . . . , Aq] ∈ R, for 1 ≤ i ≤ q, θi ∈ LG(Ai), and f(θ1, . . . , θq)
is defined, then f(θ1, . . . , θq) ∈ LG(A)

The language generated by a MCFG G is L(G) =def LG(S). As d(S) was
made equal to 1, L(G) is a set of strings over T .

Example 6 Below is a MCFG for the language {ww|w ∈ {a, b}∗}. The
non-terminals (N) are W and S (the start symbol), the terminals (T) are
a and b, F contains A,B, con, and (ε, ε) such that A,B ∈ [〈T ∗〉2 → 〈T ∗〉2],
con ∈ [〈T ∗〉2 → T ∗], and (ε, ε) ∈ [1 → 〈T ∗〉2].

38

A(x, y) = (ax, ay), B(x, y) = (bx, by), con(x, y) = xy, and (ε, ε)(∅) = (ε, ε).
The rules are the following:

S → con[W]
W → A[W]
W → B[W]
W → (ε, ε)[]

LG(W) = {〈w,w〉|w ∈ {a, b}∗}, and LG(S) = {ww|w ∈ {a, b}∗}.
The string baba is derived in four steps:

S → con[W]
→ con[B[W]]
→ con[B[A[W]]]
→ con[B[A[(ε, ε)[]]]]

Note that
con(B(A((ε, ε)(∅)))) = con(B(A(〈ε, ε〉)))

= con(B(〈a, a〉))
= con(〈ba, ba〉)
= baba

For comparison, and because we already have a characterization of deriva-
tion languages for bare grammars, I provide a Bare Grammar characteriza-
tion of MCFGs.

Definition 27
An MCFG G = 〈N,O, F,R, S〉 can be viewed as a bare grammar G′ =
〈V,Cat, Lex,F〉, where V = T , Cat = N , Lex = ∅, and F = R, s.t. for f =
n0 → σ [n1, . . . , ni] ∈ F , f : 〈N ×O〉i → N×O s.t. f(〈n1, o1〉, . . . , 〈ni, oi〉) =
〈n0, σ(o1, . . . , oi)〉 (‘n0 → σ [n1, . . . , ni]’ is the name of a function which be-
haves as described above). For f ∈ F0, f : 1 → N × O, and f = n0 → σ.
Thus f(∅) = 〈n0, σ(∅)〉. L(G′) = {o|〈S, o〉 ∈ Cl(Lex,F)}.

Let d be an arbitrary MCFG derivation. fst(ev(d)), the first component
of ev(d), is the category of ev(d), and snd(ev(d)) is the string component of
ev(d).

Example 7 The MCFG in example 6 above gives us the following grammar:
G = 〈{a, b}, {S,W,X}, ∅, {S → con[W],W → A[W],W → B[W],

39

W → (ε, ε)[]}〉.
Below is a derivation tree for the string baba.

d = S → con[W](W → B[W](W → A[W](W → (ε, ε)[](∅))))

ev(d) = 〈S, baba〉

4.5.2 MTG Embedding in MCFGs

Throughout this section I follow closely (Michaelis, 1998). The general idea of
the embedding is to, for an arbitrary NRC-MTG G with m licensee features,
represent each expression by a m+1-tuple, which contains the features of the
initial chain and the non-initial chains. Each of these m+1-tuples is taken as
a non-terminal symbol. The SMC guarantees that each successful derivation
never has a subderivation with more than one non-initial chain headed by a
particular -li feature. Thus each of the non-initial coordinates in the m+ 1-
tuple are taken to be a non-initial chain headed by -li, for 1 ≤ i ≤ m. The
merge and move operations are further decomposed into cases, depending on
the particular feature the merged/moved item is headed with. From the sets
defined in definition 28 (from (Michaelis, 1998)),11our non-terminal symbols
are built; suf(Cat) is defined to be the set of feature strings that are suffixes
of a lexical item, and suf(-li) the subset of that set which begin with -li.

Definition 28
suf(Cat) =
{κ ∈ Cat∗G|∃κ

′ ∈ Cat∗G ∃σ0, σ1, σ2 ∈ Σ∗ ∃· ∈ str (σ0, σ1, σ2) · κ
′κ ∈ LexG}

suf(-li) = {κ ∈ suf(Cat)|κ = ε ∨ ∃λ ∈ Cat∗ κ = -liλ}

11Why doesn’t this work for arbitrary MTGs? suf(Cat) doesn’t suffice to describe
the possible features of an initial chain. Consider the following example with a simple
grammar for the context-free language {anbn|n ∈ N}:

Example 8 The lexicon consists of the following four lexical items:
E1. (ε, ε, ε) ::: A
E2. (ε, a, ε) ::: =A A -A
E3. (ε, ε, ε) ::: A= B
E4. (ε,b, ε) ::: =B +A B

This grammar derives the string aabb.

40

In order to allow for the feature percollation given rise to by the c-merge
function, I define the set of possible sequences of inherited licensee features.
For n = |Lex|, I define inhrt(Cat) to be the set of sequences in suf(-li1) ·
. . . · suf(-lin). Note inhrt(Cat) is finite as it is the finite concatenation of
finite sets.

Definition 29 Given a MTG G with |licensee| = m, an enumeration of
the features in licensee and c ∈ base a distinguished feature, its MCFG
image G′ is the m+3-MCFG 〈N,O, F,R, S〉 below. Essentially, we split the
MTG merge and move operations into two parts. F deals with the string
components, and R with the features.

N
every n ∈ N is either ’S’ or an m+1-tuple 〈µ̂0, µ1, . . . , µm〉, where µ̂0 =
〈µ0, aµ〉, with µ0 ∈ suf(Cat) · inhrt(Cat), µi ∈ suf(−li) · inhrt(Cat),
and aµ ∈ {s, w}.
Intuitively, aµ records the strength (s, w) of the initial chain. µ0 records
the features of the initial chain, and µi those of the non-initial chains.
Most of the non-terminals defined in this manner are useless, and will
be ignored in examples.

O
O = Σ∗ ∪ 〈Σ∗〉m+3

1. c-merge2(E2, E1) = E5 = (ε, a, ε) ::: A -A
2. c-merge2(E2, E5) = E6 = (ε, aa, ε) ::: A -A -A
3. s-merge2(E3, E6) = E7 = (ε, ε, ε) ::: B, (aa) -A -A
4. c-merge2(E4, E7) = E8 = (ε,b, ε) ::: +A B, (aa) -A -A
5. move2(E8) = E9 = (ε,b, ε) ::: B, (aa) -A
6. c-merge2(E4, E9) = E10 = (ε,bb, ε) ::: +A B, (aa) -A
7. move1(E10) = E11 = (aa,bb, ε) ::: B

suf(Cat) for the above grammar is the set

{〈A〉, 〈=A,A, -A〉, 〈A, -A〉, 〈-A〉, 〈A=,B〉, 〈B〉, 〈=B,+A,B〉, 〈+A,B〉, ε}

But to represent expression E6 we would need a non-terminal with the shape 〈A, -A, -A〉,
which is not in suf(Cat) because of the feature inheritance in the definition of the c-merge
functions. Moreover, as the number of licensee features a particular derived expression
may have in this grammar is unbounded, no finite extension of suf(Cat) will suffice to
capture all the possible suffixes of chains in this grammar.

41

F
con ∈

[

〈Σ∗〉m+3 → Σ∗
]

,

cmerge1 ∈
[

〈Σ∗〉m+3 × 〈Σ∗〉m+3 → 〈Σ∗〉m+3], as are cmerge2,
smerge1, and, for all 1 ≤ j ≤ m, smerge2j,
for 1 ≤ j ≤ m, move1j ∈

[

〈Σ∗〉m+3 → 〈Σ∗〉m+3], as are
move2jk, for all 1 ≤ j, k ≤ m,
and 〈σ0, σ1, σ2, ε, . . . , ε〉 ∈

[

1 → 〈Σ∗〉m+3], for every (σ0, σ1, σ2) · φ ∈
LexG, for · ∈ {::, :::},

s.t.

con[(π0, . . . , πm+2)] = π0 . . . πm+2

cmerge1[(σ0, . . . , σm+2), (τ0, . . . , τm+2)]
= (σ0σ2τ0, τ1σ1, τ2, κ1, . . . , κm)

cmerge2[(σ0, . . . , σm+2), (τ0, . . . , τm+2)]
= (σ0, τ1σ1, σ2τ0τ2, κ1, . . . , κm)

smerge1[(σ0, . . . , σm+2), (τ0, . . . , τm+2)]
= (τ0τ1τ2σ0, σ1, σ2, κ1, . . . , κm), where κi = σi if σi 6= ε, and τi other-
wise

smerge2j[(σ0, . . . , σm+2), (τ0, . . . , τm+2)]
= (σ0, σ1, σ2, κ1, . . . , κm), where κi = σi if σi 6= ε, τi otherwise, and
κj = τ0τ1τ2

move1j[(σ0, . . . , σm+2)]
= (σj+2σ0, . . . , σj+1, ε, σj+3, . . . , σm+2)

movejk[(σ0, . . . , σm+2)]
= (σ0, σ1, σ2, κ1, . . . , κm), where κi = σi, κj = ε, and κk = σj

〈σ0, σ1, σ2, ε, . . . , ε〉[] = (σ0, σ1, σ2, ε, . . . , ε)

R

1. (a) 〈〈φ,w〉, ε, . . . , ε〉 −→ 〈σ0, σ1, σ2, ε, . . . , ε〉[], for every

42

(σ0, σ1, σ2) :: φ ∈ LexG

(b) 〈〈φ, s〉, ε, . . . , ε, 〉 −→ 〈σ0, σ1, σ2, ε, . . . , ε〉[], for every
(σ0, σ1, σ2) ::: φ ∈ LexG

2. S −→ con[〈〈c, y〉, ε, . . . , ε〉], for y ∈ {s, w} and c ∈ base the distin-
guished feature

3. (a) T0 −→ cmerge1[T1, T2]
where T1 = 〈µ̂0, µ1, . . . , µm〉, T2 = 〈ν̂0, ν1 . . . , νm〉 s.t. µ0 =
=zγ, aµ = w, ν0 = zδ, and for 1 ≤ i ≤ m µi = ε if νi 6= ε and
T0 = 〈κ̂0, κ1 . . . , κm〉, where κ̂0 = 〈γδ, w〉, and for 1 ≤ i ≤ m
κi = µi if νi = ε, else κi = νi

(b) T0 −→ cmerge2[T1, T2]
where T1 = 〈µ̂0, µ1, . . . , µm〉, T2 = 〈ν̂0, ν1 . . . , νm〉 s.t. µ0 =
=zγ, aµ = s, ν0 = zδ, and for 1 ≤ i ≤ m µi = ε if νi 6= ε and
T0 = 〈κ̂0, κ1 . . . , κm〉, where κ̂0 = 〈γδ, s〉, and for 1 ≤ i ≤ m
κi = µi if νi = ε, else κi = νi

(c) T0 −→ smerge1[T1, T2]
where T1 = 〈µ̂0, µ1 . . . , µm〉, T2 = 〈ν̂0, ν1 . . . , νm〉 s.t. µ0 =
z=γ, ν0 = z, and for 1 ≤ i ≤ m µi = ε if νi 6= ε and
T0 = 〈κ̂0, κ1 . . . , κm〉, where κ̂0 = 〈γ, aµ〉, and for 1 ≤ i ≤ m
κi = µi if νi = ε, else κi = νi

(d) T0 −→ smerge2j[T1, T2]
where T1 = 〈µ̂0, µ1, . . . , µm〉, T2 = 〈ν̂0, ν1, . . . , νm〉 s.t. µ0 =
z=γ, ν0 = z-ljδ, µj = νj = ε, and for 1 ≤ i ≤ m µi = ε if
νi 6= ε and T0 = 〈κ̂0, κ1 . . . , κm〉, where κ0 = γ, κj = -ljγ, and
for 1 ≤ i ≤ m κi = µi if νi = ε, else κi = νi

(e) T0 −→ move1j[T1]
where T1 = 〈µ̂0, µ1, . . . , µm〉, s.t. µ0 = +ljγ, µj = -lj, and
T0 = 〈κ̂0, κ1, . . . , κm〉, where κ̂0 = 〈γ, aµ〉, κj = ε, and for
1 ≤ i ≤ m κi = µi

(f) T0 −→ move2jk[T1]
where T1 = 〈µ̂0, µ1, . . . , µm〉, s.t. µ0 = +ljγ, µj = -lj-lkδ,
µk = ε, and T0 = 〈κ̂0, κ1, . . . , κm〉, where κ̂0 = 〈γ, aµ〉, κj = ε,
κk = -lkδ and for 1 ≤ i ≤ m κi = µi

4. Nothing is in R if not by virtue of the above

43

4.5.3 An Example Grammar Re-revisited

The ‘who dreams’ grammar of §1 is here translated into a 5-MCFG by means
of the algorithm above. For reasons of space, not all non-terminals are given;
only those which are used in the derivation will be explicit.
The following enumeration is used:

[

1 → -k
2 → -wh

]

and take c as our distinguished feature.
First, corresponding to each MTG lexical item we get a non-terminal, and a
terminating rule:

(ε,who, ε) :: n -wh

1. T1 = 〈〈n -wh, w〉, ε, ε〉

2. T1 −→ 〈ε,who, ε, ε, ε〉[]

(ε, ε, ε):::=n d -k

1. T2 = 〈〈=n d -k, s〉, ε, ε〉

2. T2 −→ 〈ε, ε, ε, ε, ε〉[]

(ε,dream,ε) :: d= v

1. T3 = 〈〈d= v, w〉, ε, ε〉

2. T3 −→ 〈ε, dream, ε, ε, ε〉[]

(ε,-s,ε):::=v +k i

1. T4 = 〈〈=v +k i, s〉, ε, ε〉

2. T4 −→ 〈ε, -s, ε, ε, ε〉[]

(ε, ε, ε) :: =i +wh c

1. T5 = 〈〈=i +wh c, w〉, ε, ε〉

2. T5 −→ 〈ε, ε, ε, ε, ε〉[]

The following non-terminals and non-terminating rules are also in the
MCFG.

44

1. (a) T6 = 〈〈d -k -wh, s〉, ε, ε〉

(b) T6 −→ cmerge2[T2, T1]

2. (a) T7 = 〈〈v, w〉, -k -wh, ε〉

(b) T7 −→ smerge21[T3, T6]

3. (a) T8 = 〈〈+k i, s〉, -k -wh, ε〉

(b) T8 −→ cmerge2[T4, T7]

4. (a) T9 = 〈〈i, s〉, ε, -wh〉

(b) T9 −→ move212[T8]

5. (a) T10 = 〈〈+wh c, w〉, ε, -wh〉

(b) T10 −→ cmerge1[T5, T9]

6. (a) T11 = 〈〈c, w〉, ε, ε〉

(b) T11 −→ move12[T10]

7. (a) S

(b) S −→ con[T11]

The rules above are applied in the obvious way to yield an element of
category S.

terminating rules

L(T1) = (ε,who, ε, ε, ε)

L(T2) = L(T5) = (ε, ε, ε, ε, ε)

L(T3) = (ε, dream, ε, ε, ε)

L(T4) = (ε, -s, ε, ε, ε)

non-terminating rules

L(T6) = L(T1)

L(T7) = (ε, dream, ε,who, ε)

L(T8) = (ε, dream -s, ε,who, ε)

L(T9) = L(T10) = (ε, dream -s, ε, ε,who)

L(T11) = (who, dream -s, ε, ε, ε)

L(S) = L(G) = (who dream -s)

45

4.5.4 NRC-MTL ⊆MCFL

In this section I prove the inclusion of the languages defined by MTGs sat-
isfying the NRC in the languages defined by MCFGs. I show that for any
NRC compliant MTG G, the MCFG G′ gotten from it via the above shares
its weak generative power. First, some definitions:

In Γ(G) there are derivation trees which are not subderivations of any
successful derivation. As these are irrelevant for my purposes, and only
complicate matters, I define the relevant derivations of G, R(G):

Definition 30 For d ∈ Γ(G), d ∈ R(G) iff

1. ev(d) = (α, β, γ) · c, for c a distinguished feature, and · ∈ {::, :::}

2. there is some d′ s.t. ev(d′) = (α, β, γ) · c, and d ∈ subderiv(d′)

d ∈ R(G) is said to be in Rn(G) iff d ∈ Γn(G).

Proposition 5
If d ∈ R(G) then each licensee feature -l is the first feature in at most one
chain c ∈ ev(d).

Proof: Assume it were not the case. Then for some d ∈ R(G), there are
distinct chains c1, c2 in ev(d) s.t. both begin with the same -l ∈ licensee.
This leads immediately to the contradiction that d /∈ R(G): ev(d) 6= (α, β, γ)·
c, as there are at least two unchecked features: -l on c1 and on c2. Nor is d a
subderivation of some successful derivation d′, as to check either -l feature,
d′ must contain a subderivation d′′ of which d is a subderivation, whose root
is move, and whose immediate proper subderivation t1 is such that the initial
chain of ev(t1) begins with +l. This cannot happen, as ev(t1) is not in the
domain of move (it violates the SMC). 2

Now we are ready to show the containment of NRC-MTGs by Multiple
Context-Free Grammars. Theorem 2 shows that the language generated by
a MTG G is a subset of the language generated by its MCFG counterpart.
The idea is to establish that for every MTG derivation d, and value ev(d) =
(σ1, σ2, σ3)·γ0, (σi)-liγi, . . . , (σj)-ljγj, there is some MCFG derivation T with
corresponding value ev(T) = 〈µ, s〉, such that

1. µ = 〈〈γ0, x〉, δ1, . . . , δm〉, and

46

2. s = 〈σ1, σ2, σ3, . . . , σi, . . . , σj, . . . , σm+3〉

Proposition 6 establishes the link between µ and ev(d), stating that every δi

in µ records the features of the appropriate chain in ev(d), and that every
chain in ev(d) has its features recorded in the appropriate position in µ.
Proposition 6 also ensures that every chain has its phonetic features recorded
in the appropriate position in s. Proposition 7 shows it to be the case that
the only phonetic features in s are those had by ev(d), by showing that
only positions in s which correspond to non-empty positions in µ can be
non-empty.

Proposition 6
for G an NRC-MTG, and G′ its associated MCFG by the transform above,
for each d ∈ R(G), there exists some T ∈ Γ(G′) s.t., for s = 〈s1, . . . , sm+3〉 =
snd(ev(T)), n = 〈µ̂0, µ1, . . . , µm〉 = fst(ev(T)),

1. the initial chain of ev(d) is (s1, s2, s3) :: µ0 if aµ = w and
(s1, s2, s3) ::: µ0 otherwise, and

2. for each 1 ≤ i ≤ m, if µi 6= ε there is a non-initial chain c in ev(d), s.t.
c = (si+3)µi , and

3. for every non-initial chain c = (α)-liγ in ev(d), µi = -liγ and si+3 = α.

Proof: by induction on the height of d.

basis: d ∈ R0(G)
Then d = ev(d), and is a lexical item. Wlg, let it be (σ0, σ1, σ2) :: γ.
By definition, T = 〈〈γ, w〉, ε, . . . , ε〉 −→ 〈σ0, σ1, σ2, ε, . . . , ε〉[] ∈ R, and
s = snd(ev(T)) = 〈σ0, σ1, σ2, ε, . . . , ε〉.

induction: assume for d ∈ Rn−1(G) the claim holds. Show for d ∈ Rn(G)
the same holds.
There are six cases, corresponding to the six cases of the generat-

ing functions. I set out only one in detail, the other cases are not

interestingly different...

d = smerge2(d′, d′′)
ev(d′) = (α, β, γ) · x= ρ, φ1, . . . , φn

ev(d′′) = (ζ, η, θ) ··x-liδ, ψ1, . . . , ψk

ev(d) = (α, β, γ) · ρ, φ1, . . . , φn, (ζηθ) · -liδ, ψ1, . . . , ψk

47

By the induction hypothesis, 〈ev(d′), d′〉 and 〈ev(d′′), d′′〉 correspond to
〈s′, T ′〉 and 〈s′′, T ′′〉 respectively. Then d corresponds to T = n −→
smerge2i[n′, n′′](T ′, T ′′). Here n′ = 〈µ̂0, µ1, . . . , µm〉 = fst(ev(T ′))
and n′′ = 〈ν̂0, ν1, . . . , νm〉 = fst(ev(T ′′)), where µ̂0 = 〈x= ρ, aµ〉, ν̂0 =
〈x-lδ, aν〉, and n = 〈κ̂0, κ1, . . . , κi−1, -liδ, κi+1, . . . ,
κm〉, where κ0 = 〈ρ, aµ〉 and for 1 ≤ j ≤ m, κj = µj if νj = ε, and
κj = νj otherwise. That for no j are both νj and µj not equal to ε is
given by proposition 5. By looking back to part R3d in definition 29,
one verifies that T ∈ R. Now,

1. By the definition of smerge2i, s1 = s′1 = α, s2 = s′2 = β, and
s3 = s′3 = γ. Thus the initial chain of ev(d) = (s1, s2, s3) · ρ.

2. Let k such that 1 ≤ k ≤ m be arbitrary. If k = i, then si+3 =
s′′1s

′′
2s

′′
3 = ζηθ, κi = -liδ, and we see there is a non-initial chain

in ev(d) such that it is (si+3)κi. If k 6= i, then either κk = µk

or κk = νk, in both cases (si+3)κk is a non-initial chain in ev(d)
(because it is a non-initial chain in either ev(d′) or ev(d′′)).

3. Let c = (χ)-ljξ be a non-initial chain in ev(d). Either j = i, in
which case χ = si+3 and -ljξ = κi, or j 6= i, in which case c was
a non-initial chain in either ev(d′) or ev(d′′). Then by assumption
χ = sj+3 and -ljξ = κj.

2

Proposition 7
For G the image of some NRC-MTG G′, and for every ev(T) =
〈〈µ̂0, µ1, . . . , µm〉, s〉, s.t. T ∈ Γ(G), si = ε if µi−3 = ε, for 4 ≤ i ≤ m+ 3

Proof: By induction on the height of the derivation tree.

base case: T ∈ Γ0(G)
Then T = 〈〈φ, y〉, ε, . . . , ε〉 −→ 〈σ1, σ2, σ3, ε, . . . , ε〉[], and
snd(ev(T)) = 〈σ1, σ2, σ3, ε, . . . , ε〉 by construction.

inductive step: assume for T ∈ Γn−1(G) for 4 ≤ i ≤ m + 3, si = ε if
µi−3 = ε. Show the same holds for T ∈ Γn(G). As the cases are very

similar, I show only one.

T = n −→ move1i[n′](T ′). Note that n differs from n′ (n′ is fst(ev(T ′)))
at µ̂0, and at µi. We are here concerned with only µi, which is now

48

ε. We must verify that si+3 = ε. As defined in F, move1i maps any
s ∈ 〈Σ∗〉m+3 to that s′ which differs from s in particular in that s′i+3 = ε.

2

Theorem 2
for G an NRC-MTG, and G′ its associated MCFG, if ` ∈ Lc(G) for c ∈ baseG

a distinguished feature, then ` ∈ L(G′).

Proof: Let ` ∈ Lc(G), and let d ∈ Γ(G) be a derivation of (σ0, σ1, σ2) · c, s.t.
σ0σ1σ2 = `. As per proposition 6, there is a T ∈ Γ(G′) s.t. ev(T) = 〈n, s〉,
where n = 〈µ̂0, µ1, . . . , µm〉, with µ̂0 = 〈c, y〉, and 1 ≤ i ≤ m, µi = ε. Thus
n is in the domain of S −→ con[n], hence S −→ con[n](T) ∈ Γ(G′), and
ev(S −→ con[n](T)) = 〈S, con(s)〉. By proposition 7, s = 〈τ0, τ1, τ2, ε, . . . , ε〉.
By proposition 6, τ0 = σ0, τ1 = σ1, τ2 = σ2, so con(s) = `, and thus ` ∈ L(G′)
2

Theorem 3 shows that the language generated by the MCFG counterpart
of a MTG is a subset of that MTG. The general strategy is the same as the
one used in proving theorem 2 - proposition 8 below is the mirror image of
proposition 6. Proposition 7 applies ‘as is’.

Proposition 8
for G an NRC-MTG, and G′ its associated MCFG, for each T ∈ Γ(G′), there
exists some d ∈ Γ(G) s.t. for s = snd(ev(T)), and n = 〈µ̂0, µ1, . . . , µn〉 =
fst(ev(T)), such that

1. the initial chain of ev(d) is (s1, s2, s3) · µ0

2. for each non-initial chain c in ev(d), there is an i s.t. c = (si+2)µi, and

3. for each 1 ≤ i ≤ m, if µi 6= ε, then for some non-initial chain c in ev(d),
c = (si+2)µi

Proof: by induction on the height of T.

basis: T ∈ Γ0(G
′)

Then T = n −→ 〈σ0, σ1, σ2, ε, . . . , ε〉, where n = 〈〈φ, y〉, ε, . . . , ε〉, and
by construction there is some ` = (σ1, σ2, σ3) · φ ∈ LexG, and thus also
in Γ0(G).

49

induction: assume that the claim holds for every T ∈ Γn−1(G
′). Show for

T ∈ Γn(G) the same holds.
There are six cases, corresponding to the six cases of the generat-

ing functions. I set out only one in detail, the other cases are not

interestingly different...

Let T = n −→ move1i[n′](T ′). Then ev(T ′) = 〈n′, s′〉, and ev(T) =
〈n,move1i(s′)〉, where n′ = 〈〈+liγ, y〉, µ1, . . . , µi−1, -li, µi+1, . . . ,
µm〉, n = 〈〈γ, y〉, µ1, . . . , µi−1, ε, µi+1, . . . , µm〉, s

′ = 〈σ1, σ2, σ3, . . . ,
σi+3, . . . , σm+3〉, and move1i(s′) = 〈σi+3σ1, σ2, σ3, . . . , ε, . . . ,
σm+3〉. By hypothesis, d′ ∈ Γ(G) corresponds to T ′, whence ev(d′)
= (σ1, σ2, σ3) · +liγ, c1, . . . , ck, such that for each non-initial chain cj,
there is some p, 1 ≤ p ≤ m, s.t. cj = (σp+3)µp, and that every
µp 6= ε is related suchly to some cj. In particular, µi corresponds to
some cf = (σi+3)-li. Thus, d′ ∈ dom(move1). By definition of move1,
move1(d′) = (σi+3σ1, σ2, σ3) · γ, c1, . . . , cf−1, cf+1, . . . , ck. We see imme-
diately that for every cj ∈ move1(d′), it is related to the same µp as
before (the only µp that changed was µi, which now equals ε), and,
likewise, to every µp 6= ε in n, there corresponds the same cj as before
(only cf was deleted).

2

Theorem 3
for G an NRC-MTG, and G′ its associated MCFG, if ` ∈ L(G′) then ` ∈
Lc(G), for c ∈ baseG the distinguished feature.

Proof: Let ` ∈ L(G′). Then 〈S, `〉 ∈ Cl(Lex,F ′), and so there is some
S −→ con[n](T) ∈ Γ(G′), where n = fst(ev(T)) = 〈〈c, y〉, ε, . . . , ε〉. By
proposition 7, snd(ev(T)) = 〈σ1, σ2, σ3, ε, . . . , ε〉, and ` = con(s) = σ1σ2σ3.
By proposition 8 there is some d ∈ Γ(G) s.t. ev(d) = (σ1, σ2, σ3)
·c. Thus, σ1σ2σ3 = ` ∈ Lc(G). 2

Corollary 1
for G an NRC-MTG, G′ its associated MCFG, and c ∈ baseG a distinguished
feature, L(G′) = Lc(G).

Proof: By Theorem 1, if ` ∈ Lc(G) then ` ∈ L(G′). By Theorem 2, if ` ∈
L(G′) then ` ∈ Lc(G). Thus ` ∈ L(G′) iff ` ∈ Lc(G), and so L(G′) = Lc(G).
2

50

4.6 The MTG Merge Fragment

In this section, the question is raised as to how much expressive power we
obtain by employing a non-standard spellout function over our trees. To this
end, I consider the formalism without the movement operation, as phrasal
restructuring seems tangential in determining the power of the spellout func-
tion. The merge fragment of MTGs (i.e. when F = {merge}, or, equiva-
lently, when no lexical item has a movement feature) contains grammars that
define non-context-free languages. For example, the grammar below defines
the language {aibjcidj|i, j ∈ N} which is not context-free. It is simple to
show that every context-free language (1-MCFL) is definable by a grammar
in the merge fragment of MTGs, as well as that the languages definable by
such MTGs are contained in the class of languages definable by 3-MCFGs.
The question remains, however, as to just how powerful the merge fragment
actually is. The following grammar is believed to be illustrative of context
sensitive languages definable by the merge fragment of MTGs. The intuition
is that one can link two grammars for {anbn|n ∈ N} by adding a lexical item
that c-selects sentences of the one, and is in turn c-selected by a ‘starting’
lexical item of the other. If the only strong node in the new grammar is this
linking lexical item, then the MW is pronounced between the two linked sen-
tences in reverse order, yielding a crossing dependency. The lexicon consists
of the following eight expressions:

E1. (ε, b, ε) :: =B D= B E6. (ε, c, ε) :: =Z A= C
E2. (ε, b, ε) :: D= B E7. (ε, c, ε) :: =C A= C
E3. (ε, d, ε) :: D E8. (ε, a, ε) :: A

E4. (ε, ε, ε) ::: =B Z
E5. (ε, ε, ε) ::: Z

E1 −E3 constitute the lower grammar, and E6 −E8 the higher. E4 −E5

are the linking lexical items. A derivation of aabccd follows:

1. s-merge1(E2, E3) = E11 = (d, b, ε) :: B
2. c-merge2(E4, E11) = E12 = (ε, b, d) ::: Z
3. c-merge1(E6, E12) = E13 = (ε, bc, d) :: A= C
4. s-merge1(E12, E8) = E14 = (a, bc, d) ::: C
5. c-merge1(E7, E14) = E15 = (a, bcc, d) ::: A= C
6. s-merge1(E15, E3) = E16 = (aa, bcc, d) :: C

51

5 Extensions

The mirror principle found in (Baker, 1985) does not require that the order
of application of GF-changing processes be realized as suffix order on the
finite verb, only that the syntactic and morphological processes proceed in
tandem (with the conclusion being that they are two sides of the same coin).
According to such an interpretation of the mirror principle, the syntactic
complement relation might mirror morphological constituency (of which suf-
fix order is a special case) by allowing the edge of alignment to be specified
lexically. This could be implemented immediately in the chain based MTGs
by adding a new kind of selection feature (c′selection = {==b|b ∈ base}), and
the following pair of c′-merge rules:

(s, t, u) :: ==fγ, α1, . . . , αk (v, w, x) · fν, ι1, . . . , ιl
(suv, tw, x) :: γν, α1, . . . , αk, ι1, . . . , ιl

c′-merge1

(s, t, u) ::: ==fγ, α1, . . . , αk (v, w, x) · fν, ι1, . . . , ιl
(s, tw, uvx) ::: γν, α1, . . . , αk, ι1, . . . , ιl

c′-merge2

The above rules merely allow for a member of a MW to be spellt out
to the right (c-merge) or to the left (c′-merge) of its complement. We can
see immediately that this extension does not affect the results obtained for
the NRC fragment of MTGs. However, with the above modification, it is
straightforward to create a grammar for the copy language in the merge-
fragment of MTGs. Thus, adding the option of prefixation or suffixation
seems to give the merge fragment more similarity to TAGs, and other 2-
MCFGs. To implement this extension in the tree-based version of MTGs, it
is easiest to add yet another set into the tuple of a MTT, the interpretation
of which is that a node is in this set iff it is ordered before its complement
at spellout (it is a ‘prefixing’ node). We adjust the definitons of spellout and
of c-merge accordingly.

It is a short step from allowing the syntactic complementation relation
to be ambiguous between morphological left-edge alignment and right-edge
alignment (rather, the syntactic complementation relation is the morpholog-
ical constituency relation), to attempting to implement the morphological
processes (e.g. reduplication, Ablaut, truncation, infixation) in the syntax.
We let the phonetic part of an expression be interpreted as a function over
strings, and we reinterpret the operation of concatenation in morphological

52

words as function application. The most conservative extension of this type
is to only reinterpret concatenation as application in the morphological word:

(s, t, u) :: =fγ, α1, . . . , αk (v, w, x) · fν, ι1, . . . , ιl
(suv, t(w), x) :: γν, α1, . . . , αk, ι1, . . . , ιl

c-merge1

(s, t, u) ::: =fγ, α1, . . . , αk (v, w, x) · fν, ι1, . . . , ιl
(s, t(w), uvx) ::: γν, α1, . . . , αk, ι1, . . . , ιl

c-merge2

Though less obvious, such an extension does not affect our language the-
oretic results even with arbitrary morphological functions,12 though it is ob-
vious that, with arbitrary functions, the complexity of MTGs without the
NRC is not even recursively enumerable.

Pushing in a slightly different direction, we might keep the ‘suffixation’
interpretation of the mirror principle, but separate the morphological word-
forming relation from direction of syntactic branching. Again, this could
be implemented lexically with the addition of ‘MW forming’ selection fea-
tures (=f̂ , f̂=). This move pushes us further towards allowing both left-
and rightward movement (somewhat analogously to pre-minimalist theories
which parameterized the spec - head and head - complement orders) (with
+f for leftward and f+ for rightward movement). On a more linguistic note,
one might try accounting for cliticization by allowing moved items to form
morphological words with their attractors (-f̂).

Finally, there have been various proposals for eliminating the copy-delete
theory of movement in favour of simply a copy theory (Chomsky, 1998; Pe-
setsky, 2000), where ‘deletion’ takes place during spellout . This is similar in
spirit to, but requires more machinery (in the form of chains) than, a mul-
tiple domination theory (Gärtner, 2002), where one position is chosen to be
the surface position of the moved phrase. Both theories require additional
complications at (say) the S-M interface (i.e. which copy gets spellt out,
or which position is the surface position). However, mirror theory already
has the requisite machinery, and thus can replace movement with multiple
domination at no extra cost. The strength features used in determing the

12MTGs meeting the NRC only allow finitely many combinations of functions (i.e. only
provide each function with a finite number of possible inputs). If every possible morpho-
logical word (functional output) is represented by a unique sequence of lexical items, then
the standard MTG can simulate the function-MTG.

53

spellout positions of MWs might here be made to serve double duty - the
spellout position of a chain (or multiply dominated phrase) is in the specifier
of the highest strong node immediately dominating it. This modification of
the theory presented herein might have interesting consequences for learning
as the learner can bring additional evidence to bear regarding the strength
features of lexical items.

References

Abels, Klaus. 2001. Move? ms. University of Connecticut, Storrs.

Baker, Mark. 1985. The mirror principle and morphosyntactic explanation.
Linguistic Inquiry, 16:373–416.

Baker, Mark. 1988. Incorporation: a theory of grammatical function chang-
ing. MIT Press, Cambridge, Massachusetts.

Brody, Michael. 1997. Mirror theory. ms. University College London.

Brody, Michael. 2000. On the status of representations and derivations. ms.
University College London.

Chomsky, Noam. 1995. The Minimalist Program. MIT Press, Cambridge,
Massachusetts.

Chomsky, Noam. 1998. Minimalist inquiries: the framework. MIT. Forth-
coming.

Gärtner, Hans-Martin. 2002. Generalized Transformations and Beyond: Re-
flections on Minimalist Syntax. Akademie Verlag, Berlin.

Gerdemann, Dale. 1994. Parsing as tree traversal. In Proceedings of COL-
ING 94, vol. I, pages 396–400.

Hale, John and Edward P. Stabler. 2001. Notes on unique readability. ms.
UCLA.

Harkema, H. 2001. A Characterization of Minimalist Grammars. In
P. de Groote, G.F. Morrill, and C. Retoré, editors, Logical Aspects of
Computational Linguistics (LACL 2001), volume 2099 of Lecture Notes
in Artificial Intelligence. Springer Verlag, Berlin, Heidelberg, Germany.

54

Joshi, Aravind. 1985. How much context-sensitivity is necessary for char-
acterizing structural descriptions. In D. Dowty, L. Karttunen, and
A. Zwicky, editors, Natural Language Processing: Theoretical, Computa-
tional and Psychological Perspectives. Cambridge University Press, NY,
pages 206–250.

Keenan, Edward L. and Edward P. Stabler. forthcoming. Bare Grammar.
CSLI Publications, Stanford University. Cambridge University Press, NY.

Kobele, Gregory M., Travis Collier, Charles Taylor, and Edward P. Sta-
bler. 2002. Learning mirror theory. In Proceedings of the Sixth Interna-
tional Workshop on Tree Adjoining Grammars and Related Frameworks
(TAG+6), Venezia.

Kobele, Gregory M. and Jason Kandybowicz. 2001. A normal form theorem
for minimalist grammars. ms. UCLA.

Michaelis, J. 1998. Derivational Minimalism is Mildly Context-Sensitive.
In M. Moortgat, editor, Logical Aspects of Computational Linguistics,
(LACL ’98), volume 2014 of Lecture Notes in Artificial Intelligence.
Springer Verlag, Berlin, Heidelberg, Germany.

Michaelis, J. 2001. Transforming Linear Context-Free Rewriting Systems
into Minimalist Grammars. In P. de Groote, G.F. Morrill, and C. Re-
toré, editors, Logical Aspects of Computational Linguistics (LACL 2001),
volume 2099 of Lecture Notes in Artificial Intelligence. Springer Verlag,
Berlin, Heidelberg, Germany.

Michaelis, Jens and Marcus Kracht. 1997. Semilinearity as a syntactic in-
variant. In Christian Retoré, editor, Logical Aspects of Computational
Linguistics, pages 37–40, NY. Springer-Verlag (Lecture Notes in Com-
puter Science 1328).

Pesetsky, David. 2000. Phrasal movement and its kin. MIT Press, Cam-
bridge, Massachusetts.

Seki, Hiroyuki, Takashi Matsumura, Mamoru Fujii, and Tadao Kasami.
1991. On multiple context-free grammars. Theoretical Computer Sci-
ence, 88:191–229.

55

Stabler, Edward P. 1994. The finite connectivity of linguistic structure. In
C. Clifton, L. Frazier, and K. Rayner, editors, Perspectives on Sentence
Processing. Lawrence Erlbaum, NJ, pages 303–336.

Stabler, Edward P. 1997. Derivational minimalism. In Christian Retoré, ed-
itor, Logical Aspects of Computational Linguistics. Springer-Verlag (Lec-
ture Notes in Computer Science 1328), NY, pages 68–95.

Stabler, Edward P. 2001. Recognizing head movement. In Philippe
de Groote, Glyn Morrill, and Christian Retoré, editors, Logical Aspects
of Computational Linguistics, Lecture Notes in Artificial Intelligence, No.
2099. Springer, NY, pages 254–260.

Stabler, Edward P. and Edward L. Keenan. 2000. Structural similarity. In
A. Nijholt, G. Scollo, T. Rus, and D. Heylen, editors, Algebraic Methods in
Language Processing, AMiLP 2000, University of Iowa. Revised version
forthcoming in Theoretical Computer Science.

Travis, Lisa. 1984. Parameters and effects of word order variation. Ph.D.
thesis, Massachussets Institute of Technology, Cambridge, Massachusetts.

56

