
Evaluating the complexity of Optimality Theory∗

Jeffrey Heinz, Gregory M. Kobele, and Jason Riggle
U. of Delaware Humboldt University U. of Chicago

Abstract

Idsardi (2006) claims that Optimality Theory (OT; Prince and Smolensky 1993/2004)
is “in general computationally intractable” on the basis of a proof adapted from Eisner
(1997a). We take issue with this conclusion on two grounds. First, the intractability
result holds only in cases where the constraint set is not fixed in advance (contra usual
definitions of OT) and second, the result crucially depends on a particular representation
of OT grammars. We show that there is an alternative representation of OT grammars
that allows for efficient computation of optimal surface forms and provides deeper insight
into the sources of complexity of Optimality Theory. We conclude that it is a mistake
to reject Optimality Theory on the grounds that it is computationally intractable.

Keywords: optimality theory, computational complexity, generation problem

to appear in Linguistic Inquiry

1 Introduction

An Optimality-theoretic (OT) grammar (Prince and Smolensky 1993/2004) can be thought
of as a function that maps underlying forms to surface forms.1 Idsardi (2006), adapting a
proof from Eisner (1997a), claims to have shown that computing optimal surface form(s) can
be as hard as computing solutions to the Hamiltonian-graph problem—that is, NP hard.
Wareham (1998) makes similar claims using a different NP hard problem, Dominating
Set (c.f. Garey and Johnson (1979)).

However, these results are not the whole story. The hardness proofs presented by Eisner,
Idsardi, and Wareham all rely on two assumptions: (1) that the constraint set is not fixed
in advance but instead forms part of the ‘input’ to the optimization problem and (2) that
OT grammars are represented as lists of individual constraints. If the constraint set Con
is fixed and therefore not a variable parameter in the generation task, then optimal surface
form(s) can in fact be computed in linear time (Ellison 1994). Furthermore, even if the
constraint set is not fixed in advance, these hardness results only hold for a constraint-list
representation of the grammar and not necessarily for other representations (we provide
an alternative, efficient, representation below). These qualifications, which we explain in
detail, are important in understanding the kinds of conclusions that can be drawn from
studies of computational complexity of grammars.

∗The authors would like to thank Ed Stabler, Bill Idsardi, and Colin Wilson for useful discussion, and
more generally, all those responsible for the intellectually stimulating environment at UCLA where this paper
was originally conceived.

1Because multiple candidates can have identical sets of violations (i.e. ties), it is more accurate to say
the grammar is a function mapping underlying forms to sets of violation-equivalent candidates.



Evaluating the complexity of OT Heinz, Kobele, and Riggle

Kornai (2006a, 2006b) has already taken issue with Eisner and Idsardi’s NP-hardness
results on the grounds that they hold only if the number of long-distance assimilatory and
dissimilatory constraints is unbounded. If the number of such constraints is fixed a priori
(which follows under most characterizations of OT) then the problem of computing surface
forms cannot be NP hard because the size of the problem instance is dominated by the size
of the underlying form for all but finitely many inputs. This limiting-case perspective is
at the heart of complexity theory and is why Ellison (1994) asserts that OT generation is
efficient. Ellison showed that it is possible to generate optimal surface forms for underlying
forms of length n in n×C steps – where C is a constant contributed by the constraint set.
Thus, regardless of how large C is, it is dwarfed by n in almost every case.

In this paper we focus on clarifying the perspective that computational complexity
theory brings to the analysis of Optimality Theory.2 In addition to drawing distinc-
tions between simple generation problems and universal generation problems (cf. Gary
and Johnson’s (1979) distinction between the membership and the universal membership
problems), we introduce a third category, what we call quasi-universal generation problems,
that we argue best captures the standard definition of OT. As Wareham (1996) points out,
“complexity-theoretic analysis. . . is an ongoing dialogue. . . to fully characterize the problem
by showing which restrictions make the problem tractable and which don’t.” We show that
this parameterization of the problem (cf. Downey and Fellows (1999)) reveals that Eisner
and Idsardi’s hardness results holds only for the universal generation problem. Furthermore,
Eisner and Idsardi’s results, like Wareham’s, depend crucially on assumptions about how
OT grammars are represented. We provide an alternative representation for OT grammars,
that allows efficient computation of optimal surface forms and provides deeper insight into
the complexity of Optimality Theory. Consequently, though these earlier results are unas-
sailable on purely formal grounds, it would be inappropriate to think of them as establishing
that OT is “computationally intractable”.

2 Computational Complexity

2.1 Distinguishing the Problems

Complexity theory is about how hard various kinds of problems are to solve. As an exam-
ple, take the problem of deciding whether or not a sentence s is produced by a Lambek
categorical grammar G. In this problem, there are two parameters: the string s, and the
grammar G. If we allow the grammar to vary (i.e. asking the so-called ‘universal’ question
“how hard is it to determine whether an arbitrary string is in the language of an arbitrary
grammar”), this problem is NP-complete (Pentus 2006). On the other hand, we might be
more concerned with a particular grammar G, and want to know how hard it is to deter-
mine whether an arbitrary string is in the language defined by G. In this case, because we

2Smolensky, Legendre, and Tesar (2006) summarize key results, concluding from Tesar (1995, et seq.),
Ellison (1994), Eisner (1997) and Frank and Satta (1998) that efficient generation is possible for any given
OT grammar but not for all OT grammars. Our analysis aims to clarify which generation problems are
potentially hard and how the representation of the grammar matters in these cases.

2



Evaluating the complexity of OT Heinz, Kobele, and Riggle

‘know G in advance’, we are free to perform as much pre-processing on G as we like, and
the problem is solvable in polynomial time. This contrasts starkly3 with the recognition
problem for context-free grammars (which define exactly the same languages as Lambek
categorical grammars (Pentus 1993)), for which both the universal and the non-universal
problems are solvable in polynomial time.

In Optimality Theory, we are often interested in the generation problem: the problem
of finding the optimal output(s) for an input given a ranked set of constraints. Here there
are three relevant parameters: the input (string) s, the constraint set Con, and the ranking
R. It is useful to have names for the three most relevant problems: when only the input
string may vary but the constraint set and ranking are held fixed, we call this the ‘simple’
problem. When all are allowed to vary, we call this the ‘universal’ problem. Finally, when
the string and the ranking are allowed to vary but the constraint set is held fixed, we call
this the ‘quasi-universal’ problem. We summarize these three problems in Table 1, where
GCon,R is the OT grammar which maps underlying forms to surface forms.

Given Input
Simple Con, R x
Quasi-Universal Con R, x
Universal ∅ Con, R, x

Problem: What is GCon,R(x)?

Table 1: Three Generation Problems in OT

All three problems give us insight into the nature of generation in OT. Which ones are
most relevant depends of course on the real-world situation we think humans face. Under
the usual characterization of OT, the constraint set is fixed and universal (i.e. ‘given’), a fact
that makes either the simple problem or the quasi-universal problem, but not the universal
problem, most relevant. However, if we adopt a view of OT in which the constraint set is
learned and language-specific (let us call this version open OT ), then the universal problem
becomes more relevant.

We show that, assuming that all constraints are finite state,4 the first two variants
are efficiently solvable, and that, under conditions to be discussed, the third is as well.
We argue that the conclusion that OT is intractable arises as an artifact of the grammar
representations used by Eisner, Idsardi, and Wareham. We show that, in fact, a different
representation of constraint sets as a single machine, EVAL, not only allows for the universal
problem to be solved efficiently, but is also more natural from a complexity theoretic point
of view.

3Assuming that P != NP .
4As observed by Eisner (1997b), without constraints on what counts as a possible constraint, there are

no limits on the complexity of OT (pick a constraint that assigns a violation to a string just in case it is
not a theorem of first-order logic, and let it outrank all other constraints). The majority of phonological
phenomena seem amenable to finite-state treatment, and most constraints proposed by phonologists working
within OT have natural finite-state analogues. Eisner, Idsardi, and Wareham each adopt constraints that
can be represented individually as finite state machines.

3



Evaluating the complexity of OT Heinz, Kobele, and Riggle

2.2 Key concepts of computational-complexity analysis

Here we introduce the basic concepts needed to measure the complexity of a problem. Stan-
dard formal definitions are provided in an appendix and an informal introduction follows.
Interested readers may consult some of the standard texts on computational complexity
theory, e.g. Papadimitriou (1994)) for more detail.

Informally, a problem is thought of as a function which maps instances of the problem
to its answers. Essentially, a problem is polynomially-time computable iff there is a Turing
machine which implements this function in fewer than f(n) steps where f is a polynomial
function and n is the length of the input to the machine (this input is the problem instance).
Note that there can be multiple ways of representing the same instance and so the standard
definition assumes the adoption of some uniform representational scheme. For problems
whose instances have multiple parameters, only parameters which are allowed to vary are
standardly included as part of the problem instance. It follows immediately that:

1. when measuring the complexity of a problem, the representation of the problem
instance matters because the complexity of the problem is determined partly by
the size of the representation of the problem instance.

2. fixed parameters are not part of a problem instance, and thus the size of fixed pa-
rameters’ representation does not play a role in determining a problem’s complexity.

With respect to the problem of generation in OT, it follows that if a parameter—such
as the constraint set—is fixed, then the size of its representation is irrelevant in determining
the time complexity of the problem. It also follows that in the universal problem, the sizes
of the representations of all three parameters do matter. However, in that case, the choice
of representation matters as well. We elaborate on these points in the subsequent section,
which applies these definitions to the three problems described above.

3 Evaluating the Complexity of OT

3.1 The Simple Problem

The simple generation problem in OT, which asks for the optimal surface form(s) given an
arbitrary underlying form s but a fixed constraint set Con and ranking R is close to linear
in length of s (as shown by Ellison (1994) and noted by (Eisner 1997a)). Ellison’s proof
is simple—he presents a general strategy for constructing a finite state device representing
Con under a total ranking R, for which computing the optimal surface form is linear in
the length of the underlying form. If the constraint set and ranking is given in advance,
and is not a parameter of the problem, it is actually easy to determine the output for any
particular input.

Compared with the universal problem, some might consider the simple problem to be
too simple to be of linguistic interest. Nonetheless, understanding the complexity of the
simple generation task clarifies the scope of any hardness results and helps to clarify the
nature of complexity in the other generation problems for OT.

4



Evaluating the complexity of OT Heinz, Kobele, and Riggle

3.2 The Quasi-universal Problem

We take the quasi-universal problem to be the standard generation problem in OT. Here,
we are asked to generate a surface form given any possible underlying form and any ranking
of a fixed constraint set.5

Considering the definitions in §A, it is clear that Idsardi’s complexity result (likewise
Eisner’s) does not concern the quasi-universal problem any more than it does the simple
problem. In Idsardi’s reduction of the Hamiltonian graph problem, one long distance con-
straint of the form *x...x is included for each phoneme x. Thus, the number of phonemes
is determined by the number of nodes in the graph since each node represents a unique
phoneme.6 Thus, the number of constraints needed in the reduction is not fixed. In the
same way that the number of nodes in the Hamiltonian graph problem is a parameter of
the problem, the number of constraints becomes a parameter of the problem that Idsardi
shows to be NP-hard.

Wareham’s (1998) complexity result relies on a similar recasting of grammars as arbi-
trary graphs. Wareham provides a method whereby constraints represented as finite state
automata are intersected to create graphs in which optimization reveals whether the graph
contains a dominating set of size k (i.e. given a graph with edges E and vertices V , is there
a set of vertices X ⊆ V of size at most k such that every vertex in V is either in X or
adjacent to a vertex in X). As with Idsardi and Eisner’s results, Wareham’s result crucially
requires an open constraint set to be able to pose the dominating set query for arbitrarily
large graphs. Thus Eisner, Wareham, and Idsardi are all investigating the complexity of the
universal generation problem for OT and not the simple nor the quasi-universal generation
problem.

The quasi-universal problem, like the simple problem, can be solved in linear time.
Riggle (2004) shows how to represent Con as a finite state device independently of any
ranking.7 In this way, Riggle’s finite state representation differs from Ellison’s representation
which encodes both Con and the ranking. Riggle’s device can be thought of as a kind of
meta-EVAL because, once given a ranking, it instantiates that particular EVAL. Riggle
(2004) shows that from this meta-EVAL, computing the optimal surface forms given an
arbitrary underlying form and an arbitrary ranking can be done in linear time. This means
that it is possible to generate optimal candidates for any (or all) of the grammars under

5It is true that, as Idsardi (2006) points out, OT analyses which adopt lexical item or morpheme class
specific constraints are in conflict with the assumption of a closed constraint set. To the extent that such
analyses are necessary and cannot be recast as language-specific parameterizations of constraints drawn from
a closed universal set they question the utility of this assumption.

6At first glance, this suggests that Idsardi’s proof requires an unbounded number of phonemes contra
the traditional assumption of a fixed set of features. However, it is possible to recast Idsardi’s proof with
a finite number of phonemes in two steps. First, in graphs with more nodes than phonemes each node
can be represented with sequences of phonemes. Second, adopt constraints *x...x where now x represents
a sequence of phonemes used to represent some node. There is precedent for this kind of sequence-based
markedness constraint in the literature (Evans 1995; Yip 1995).

7This representation of Con is necessary for generating complete sets of non-harmonically-bounded can-
didates in Riggle’s Contenders algorithm.

5



Evaluating the complexity of OT Heinz, Kobele, and Riggle

factorial permutation of Con without needing to recompute EVAL. Thus the quasi-universal
problem, where the constraint set but not the ranking is fixed, is efficiently computable.

3.3 The Universal Problem

Eisner’s, Wareham’s, and Idsardi’s results apply to the universal problem. In this problem
neither the constraint set, nor the ranking, nor the underlying form are known in advance.
This problem is most relevant for those who want to write programs to aid phonologists
who use OT or for those who do not subscribe to the idea of a bounded constraint set.

Recall from §2.2 that the representations of parameters matter when determining bounds
on time complexity. For this reason, what Eisner, Idsardi, and Wareham have shown should
be interpreted more narrowly. They have shown the universal generation problem under a
particular representation of OT grammars—where grammars are represented by a sequence
of finite state constraints—is NP hard. Note that because the size of the representation of
the grammar forms part of the argument to the complexity function, the choice of represen-
tation plays a crucial role in the complexity of universal problems. In other words, whether
a universal generation problem is computable in polynomial time depends (in part) on the
representation of the grammar.

For instance, given an arbitrary enumeration of finite state transducers, we can represent
OT grammars as sequences of natural numbers (where the first number corresponds to the
first occurrence of the highest ranked constraint in the enumeration, the second to the first
occurrence of the next highest, and so on). If the enumeration is not computable, then
neither is the universal generation problem (as we will not be able to decode the grammar
from its representation). Idsardi and Eisner have shown that if grammars are represented as
sequences of finite state transducers (in effect, precompiling the decoding necessary given
the above representation), then the universal generation problem is computable, though
NP-hard. On the other hand, if an OT grammar is represented, as suggested by Ellison
(1994), as a single finite-state transducer (the result of combining the individual constraints
into a single evaluating function, e.g. Riggle’s (2004) meta-Eval), then even the universal
generation problem is efficiently computable.

The difference between Ellison’s proposed representation of the grammar and Eisner’s
is that in Ellison’s representation some of the work has already been done by combining
all of the constraints into a single function via an operation similar to intersection. It is
easy to see why this representation makes such a striking difference in the hardness of the
problem. Eisner’s hard cases are hard precisely because they necessitate the intersection of
a large number of finite state machines—a process whose difficulty is well known for growing
explosively in the worst cases (Hopcroft et al. 2001).

Representing the grammars as ranked individual finite state constraints is more compact
and can, as Eisner (1997) demonstrates, facilitate some optimizations, but this represen-
tation results in intractability for the universal generation problem because computing the
intersection of arbitrary sets of finite state machines cannot be done efficiently. On the
other hand, representing the grammar as a single finite state transducer may yield a less
concise representation, but compensates for this by eliminating the intractability arising

6



Evaluating the complexity of OT Heinz, Kobele, and Riggle

from the run-time combination of all of the constraints into a single machine.
The representation of an OT grammar as EVAL—a single finite state machine that

combines the whole constraint set and ranking into one evaluation function—is more than
just a clever ‘padding out’ of the input to the universal generation problem in order to
ensure that there is enough time to perform a number of steps exponential in the length of
the size of the constraint-list representation; it shows us something deep about the problem
of generation in OT. While the number of steps needed to compute an answer to a particular
instance of the universal generation problem is upward bounded by an exponential function
of the size of the constraint-list representation (plus the length of the input), the actual
number of steps needed may vary wildly below this upper bound, depending on the specific
constraints involved. When the grammar is represented as EVAL, on the other hand, the
number of steps needed to compute an answer to a particular instance of the universal
generation problem is tightly related to the size of the grammar. In other words, the size
of EVAL is a much better predictor of the actual number of steps needed to solve the
generation problem than is the size of the constraint-list representation.

For a concrete example, let us define the size of a constraint-list representation of an OT
grammar to be the sum of the number of states in the constraints, and the size of the EVAL
representation to be the number of states in EVAL.8 Let us assume that simple markedness
constraints like *x, *xy, and *x...x (where x, y are phonemes) require one-, two- and two-
states for their respective representations.9 Now consider the following three grammars. G1
consists of 20 markedness constraints of the form *x where x is a different phoneme in each
constraint. G2 consists of 10 markedness constraints of the form *xy where x is a different
phoneme in each. G3 consists of 10 markedness constraints of the form *x...x where x is a
different phoneme in each. Under the constraint-list representation these three grammars
are all the same size: 20 states. On the other hand, under the EVAL representation, G1
has one state, G2 has 11 states, and G3 has 1,024 states. In each case the complexity of
the universal generation problem is linear in the size of the underlying form plus EVAL.10

The fact that the EVAL representation can be much larger than the constraint-list
representation is not especially relevant. Though less compact, it has two advantages:

1. if Con is represented as a single device the universal problem is efficiently solvable
2. the EVAL representation is more natural from a computational point of view because

it is a better predictor of the number of steps needed to solve a given instance of
the universal generation problem

8We can omit the arcs from the size of the machines when all constraints are deterministic because in
such a case the number of arcs will be a multiple of the number of states. If constraints are nondeterministic
the number of arcs should figure into the size as well.

9For details and justification see Ellison (1994), Eisner (1997), Albro (2005), and Riggle (2004).
10Each state in EVAL corresponds to a unique phonological environment that the grammar is sensitive

to. Consequently, constraints which refer to the same environments do not increase the size of EVAL in the
intersection process, but constraints which refer to different environments can multiply the number of states
in EVAL. In this way, this representation of EVAL makes concrete for OT a notion from SPE (Chomsky and
Halle 1968): that the introduction of a phonological rule which refers to the same environment as another
rule is less costly in terms of the size of the grammar than a rule which introduces a new environment.

7



Evaluating the complexity of OT Heinz, Kobele, and Riggle

In short, the reason that the size of the constraint-list representation is such a poor predictor
of the number of steps required to solve a particular instance of the universal generation
problem is because it is a poor predictor of the size of EVAL, which is directly correlated
with this number. Thus the NP-hardness results of Idsardi, Eisner, and Wareham should not
be viewed as properties of Optimality Theory per se, but rather as reflecting the difficulty
of translating the constraint-list representation into the EVAL representation.

4 Choosing Between Representations

The EVAL representation and the constraint-list representation are different modes of pre-
sentation of the same function. There is no a priori way to decide which of the possible
representations for a grammar is ‘right’ (it is not even clear what form an answer to this
question would take). Instead, we need to ask which representation is most useful or rele-
vant for a particular situation. Investigating the complexity of many different problems is
useful precisely because it allows us to focus our linguistic investigation on those situations
where complexity is reasonable.

Consider the problem of learning an OT grammar. If we think that a learner deals
with constraints directly (perhaps by inventing new ones), then we will not be able to
circumvent the costly computation of EVAL from constraints. The results from Idsardi,
Eisner, and Wareham tell us that in this case it will be important that such a learner does
not hypothesize arbitrary constraints, because doing so may require unreasonable amounts
of work in the construction of EVAL. Instead, we should look for restrictions on the kinds
of constraints hypothesized, which make their combination ‘easy’. However, if we are able
to state the relevant steps in the learning process directly over a machine representation of
EVAL,11 then their results are not relevant for this case. In other words, since we know
(thanks to Eisner, Idsardi, and Wareham) that doing optimization with EVAL built from
lists of individual constraints is hard, we should think of ways to avoid having to postulate
that it gets done.

4.1 Is it Problematic to Represent a Grammar as EVAL?

Finally we address some of the concerns that have been raised about representing an OT
grammar as finite-state implementation of EVAL. Eisner (1997a) gives three reasons as to
why this might be problematic.

Two of these concerns are of a more practical nature, focusing as they do on the current
feasibility of large-scale implementation of OT grammars on computers. The first is that
although the complexity function is polynomial (or even linear), there may be very large
constants (due to the large size of this representation of the grammar) which make the

11For instance, if it were possible to efficiently add and subtract constraints in EVAL constructed incre-
mentally over several observations, then, if the number of new constraints for any given generation task was
bounded, the complexity of each modification to EVAL would be bounded as well.

8



Evaluating the complexity of OT Heinz, Kobele, and Riggle

computation impractical. The second is related: not all candidate sets may be concisely
represented by finite state automata.

We agree that these are real concerns, relevant to the purpose that Eisner has in mind
(which is, in this case, large-scale implementation of OT grammars so as to provide practical
assistance to phonologists and corporations). However, as the questions we are asking here
relate more to stable complexity theoretic properties than those worried about by Eisner
(in this particular section of the cited paper), and as our interests are not limited to what is
currently technologically feasible, but rather what may ultimately become so, these concerns
are of no concern to us. 12

Only the final point raised by Eisner is addressed at the high level of investigation at
which work on complexity theory, and generative linguistics, is conducted. Eisner suggests
that representing the grammar as a list of ranked constraints instead of as EVAL is more
relevant to a theory of phonology, because “the grammar is not fixed in all circumstances:
both linguists and children crucially experiment with different theories.” We agree that the
NP-hardness results of Eisner, Idsardi, and Wareham have real ramifications for a theory of
learning in OT. Their results should be taken together with Ellison’s to point the direction
that future learning models should explore; we should look for learning algorithms that do
not compute EVAL from arbitrary constraints often (note that learning algorithms that
just rank a fixed set of constraints meet this condition).

5 Conclusions

Computational complexity theory investigates how the difficulty of solving particular prob-
lems grows as the size of the problem instances grow. Applying complexity theoretic anal-
yses to computational theories can give us insight into how we should move forward with
them, as well as into the kinds of data structures we should use to implement them (Marr
1982). Garey and Johnson (1979: 3) write that “discovering that a problem is NP-complete
is usually just the beginning of work on that problem.” It is in this spirit that we have
endeavored in this paper to precisely identify the sources of complexity in OT and to explore
versions of the generation problem in OT that do not run afoul of intractable complexity.

The results of Eisner, Wareham, and Idsardi show us that, even if constraints are finite
state and ‘natural looking’, the universal generation problem is intractable when grammars
are represented as lists of constraints. We have identified the process of combining the con-
straints (intersection) as the source of hardness. Given that complexity theory should be
used to help determine how the theory should develop, we are led to ask what other condi-

12Regarding constant factors, a textbook on complexity theory has this to say:

“Constants are, of course, of great interest to computer science. Unfortunately, it does not
seem possible to build an elegant theory that accounts for them. Furthermore, advances in
hardware have in the past improved the performance of computers so rapidly, that algorithm
designers can compete only by improving the rate of growth of the time requirements of their
algorithms.” [emphasis in original] (Papadimitriou 1994, p32)

9



Evaluating the complexity of OT Heinz, Kobele, and Riggle

tions or formulations make the universal problem not hard. Idsardi offers some suggestions,
such as placing restrictions on Gen. Likewise, Wareham suggests placing additional resric-
tions on Con. Here we have brought to light another interesting alternative. Namely, that
tractability can be maintained in the universal problem if we are willing to avoid learners
which compute EVAL from individual constraints. This is simply done if we stick to OT
in which constraints are antecedently given, (i.e. the quasi-universal problem), but is ap-
plicable even if we move to open OT (where the learner is free to invent constraints). In
this latter case, generation in open OT might remain tractable if learning algorithms are
stated directly over an EVAL-like representation. We hope these remarks spur interest in
such learners, in finite-state approaches to Optimality Theory and phonology, and in formal
investigations of linguistic theory more generally.

A Formal Definitions

We first define polynomial-time computability over problems with one parameter and then
generalize the definition to problems with multiple parameters. We identify problems p
with functions γ : A → B, where A is the set of instances of p, and B is the set
of possible answers to the problem (‘yes’ and ‘no’, in the simplest case). A function
γ : A → B is said to be polynomial-time computable in f : N → N under the represen-
tation r : A ∪ B → Σ∗ iff there is some turing machine Mγ over alphabet Σ, and an
encoding ra = r(a) of each a ∈ A and rb = r(b) of each b ∈ B into the language of the
turing machine (i.e. r is a one-to-one function), such that when Mγ is started with a repre-
sentation ra of any a ∈ A on its input tape, it stops after no more than f(|ra|) steps where

1. |ra| is the length of ra, and
2. f is a polynomial function, and
3. either (a) the machine Mγ is in a rejecting state if γ is not defined on a, or

(b) Mγ is in an accepting state with rb on its output tape and γ(a) = b

Note that the time complexity function f is determined with respect to the length of the
representation of an instance a and that there can be different representational schemes r
for the set A∪B. In other words the time complexity function is dependent not only on γ,
but also on the choice of the representation r.

When there are multiple parameters in our problem p, as is the case in the OT generation
problem, we treat the domain A of the function γ representing the problem as the set of
sequences A = A1×· · ·×An, where Ai is the set of possible instances of the ith parameter of p.
Given a function γ : A1×· · ·×An → B, the problem obtained by ‘holding the first parameter
constant (with the value ā)’ is represented by the function γā : A2×· · ·×An → B, such that,
on input a2, . . . , an, γā behaves just as γ does on input ā, a2, . . . , an (i.e.γā(a2, . . . , an) =
γ(ā, a2, . . . , an)). (Holding other parameters constant is defined analogously.) Definitionally,
parameters that are held constant are not part of the problem instance.

This matters in determining what bounds (if any) exist over the time complexity function
f . When there are multiple parameters, the length of the representation of the vector

10



Evaluating the complexity of OT Heinz, Kobele, and Riggle

a = (a1, a2, . . . an) ∈ A is equivalent to the sum of the length of its parts: |ra| = |r1(a1)| +
|r2(a2)| + . . . + |rn(an)|. Note that this means if the first parameter is held constant with
the value ā, then the length of the representation of ā (i.e. |r1(ā)|) does not figure into
the length of the representation of the problem ra, which forms the argument to the time
complexity function f . Consequently, parameters that are held constant (i.e fixed) are not
included as part of the problem instance, and thus the size of their representation is not a
factor in determining the time complexity of the problem itself.

References

Downey, Rod G., and Michael R. Fellows. 1999. Paramterized Complexity . Springer-
Verlag, Berlin.

Eisner, Jason. 1997a. Efficient generation in primitive Optimality Theory. In Proceed-
ings of the 35th Annual ACL and 8th EACL, 313–320. Madrid.

Eisner, Jason. 1997b. What constraints should OT allow? Talk handout, Linguistic
Society of America, Chicago. ROA#204-0797. Available at http://roa.rutgers.edu/.

Ellison, Mark. 1994. Phonological derivation in Optimality Theory. In COLING 94 ,
vol. 2, 1007–1013. Kyoto, Japan.

Evans, Nick. 1995. Current issues in the phonology of Australian languages. In The
Handbook of Phonological Theory , edited by John Goldsmith, 723–761. Cambridge,
Mass.: Blackwell.

Frank, Robert, and Giorgo Satta. 1998. Optimality Theory and the generative com-
plexity of constraint violability. Computational Linguistics 24:307–315.

Garey, M. R., and D. S. Johnson. 1979. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman.

Hopcroft, John, Rajeev Motwani, and Jeffrey Ullman. 2001. Introduction to Automata
Theory, Languages, and Computation. Addison-Wesley.

Idsardi, William. 2006. A simple proof that Optimality Theory is computationally
intractable. Linguistic Inquiry 37:271–275.

Kornai, Andras. 2006a. Guarded optimism. ROA#841-0606. Available at
http://roa.rutgers.edu/.

Kornai, Andras. 2006b. Is OT NP-hard? ROA#838-0606. Available at
http://roa.rutgers.edu/.

Marr, David. 1982. Vision. W.H. Freeman and Company.
Papadimitriou, Christon. 1994. Computational Complexity. Addison Wesley.
Pentus, Mati. 1993. Lambek grammars are context free. In Proceedings of the 8th

Annual IEEE Symposium on Logic in Computer Science, 429–433. Los Alamitos,
California: IEEE Computer Society Press.

11



Evaluating the complexity of OT Heinz, Kobele, and Riggle

Pentus, Mati. 2006. Lambek calculus is NP-complete. Theoretical Computer Science
357:186–201.

Prince, Alan, and Paul Smolensky. 1993. Optimality Theory: Constraint interaction in
generative grammar. Tech. Rep. 2, Rutgers University Center for Cognitive Science.

Prince, Alan, and Paul Smolensky. 2004. Optimality Theory: Constraint Interaction in
Generative Grammar . Blackwell Publishing.

Riggle, Jason. 2004. Generation, recognition, and learning in finite state Optimality
Theory. Doctoral dissertation, University of California, Los Angeles.

Smolensky, Paul, Géraldine Legendre, and Bruce Tesar. 2006. Optimality Theory:
The structure, use, and acquisition of grammatical knowledge. In The Harmonic
Mind: From Neural Computation to Optimality-Theoretic Grammar , edited by Paul
Smolensky and Géraldine Legendre, vol. 1: Cognitive Architecture, chap. 12, 453–
544. The MIT Press.

Tesar, Bruce. 1995. Computational Optimality Theory. Doctoral dissertation, Univer-
sity of Colorado at Boulder.

Wareham, H.T. 1996. The role of parameterized computational complexity theory in
cognitive modeling. AAAI-96 Workshop Working Notes: Computational Cognitive
Modeling: Source of the Power.

Wareham, H.T. 1998. Systematic parameterized complexity analysis in computational
phonology. Doctoral dissertation, University of Victoria.

Yip, Moira. 1995. Repetition and its avoidance: The case of Javanese. In South Western
Optimality Theory Workshop, edited by Keiichiro Suzuki and Dirk Elzinga, 238–
262. Tuscon: University Of Arizona, Department of Linguistics.

Jeffrey Heinz Gregory M. Kobele Jason Riggle
Linguistics and Cognitive Institut für deutsche Linguistics Department
Science Department Sprache und Linguistik
University of Delaware Humboldt University University of Chicago
42 E. Delaware Avenue Unter den Linden 6 1010 E. 59th St.
Newark, DE 19716 10099 Berlin Chicago, IL 60637
heinz@udel.edu kobele@rz.hu-berlin.de jriggle@uchicago.edu

12


