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Interpreted Learning
A framework for investigating the contribution of various information

sources to the learning problem

John Case · Jeffrey Heinz · Gregory M. Kobele

Natural language utterances presents learners with more information about
the underlying grammar than is typically encoded in the orthographic string.
While multiple information sources such as prosody, and semantics can be
encoded as a single object, allowing the results of typical learning frame-
works to apply, this coding obscures the question of exactly how the learner
can draw inferences about a single object from information made available
by these multiple different perspectives. Here we tease apart the contribution
of different information sources to the learning problem by generalizing
Gold’s learning paradigm. The main result is a proof that multiple sources
of information can interact synergistically to facilitate learning of the target
underlying grammar.
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Introduction

For a long time, work on formal learning theory studied (sub)classes of languages
strictly weaker than those considered ‘language-like’ by theoretical (computational) linguists.
Recently, work by Clark (2010) and others (Becerra-Bonache et al. 2010; Yoshinaka 2011)
has discovered classes of string languages which are (feasably) learnable under various
criteria, and which fall within the class of mildly context sensitive languages, a language
family which is thought to be sufficiently rich to describe all natural language patterns (Joshi
1985). Although some of these learning theoretic results are known in linguistic circles, they
are dismissed as being linguistically irrelevant, for the reason that the learned grammars do
not assign the right structures to the strings they generate (emphasis in the original):

it does not address the original POS [‘Poverty of the Stimulus’] question, which
[. . . ] depends on which structures a language generates (i.e., a language’s strong
generative capacity). (Berwick et al. 2011)

The emphasis on the structures generated by grammars (rather than on the strings) is fully
explicit in Chomsky (1990), where the set of strings generated by the grammar is dismissed
as linguistically uninteresting. At first blush this is puzzling, as strings are observables
(more or less), while structures are not. But, of course, arguments for certain structures
often involve semantic considerations (e.g. the syntactic level of LF), and one might suspect
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that what linguists are actually objecting to is the fact that these learning algorithms do not
seem to support compositional semantic interpretation (which, as noted by Berwick et al.
(2011), is recognized already by the authors). Indeed, we suggest that the empirical content
of ‘rightness of structure’ is exhausted by the relevant observable facts about the string, such
as its semantic interpretation, its prosodic structure, etc. If this is in fact the substance of
the objection, one might wonder how to address it. As hinted at above, we believe that the
linguistic deficiencies discussed in Berwick et al. (2011) are due primarily to the fact that
the linguistic arguments for assigning certain structures to strings (and hence for favoring
one from among a number of weakly equivalent grammars) are at least in part based on
non-distributional (i.e. non-syntactic) properties of strings. Accordingly, a natural way to
proceed is to investigate how information about these non-syntactic properties of strings can
be incorporated into the learning setup, and what affects this may have.

In this paper we do just this. We explore the idea that “having the right structure” is
synonymous with “allowing for the derivation of the relevant facts,” propose a variant of
the Gold learning paradigm (‘interpreted learning’) which makes sense of these notions,
and prove some first theorems about learnability in this setup. Note that this is not the
only reasonable way to proceed. It is, in fact, something of a formal retreat. Clark (2013)
has proposed that, instead of assuming that the structures we want to derive require more
than just information about word order to reconstruct, we investigate learnable classes for
which there is a notion of a canonical grammar for each language. We believe, however,
that this sort of proposal does not address the objections of Berwick et al. (2011), who are
not interested in learning a grammar for a language (canonical or not), but rather the right
grammar, which supports semantic interpretation among other things.

1 Mathematical Preliminaries

N is the set of non-negative integers. For n ∈ N, we write [n] for the set {i ∈ N : i < n}.
[0] = /0. A sequence of length n ∈ N over some set A is a function from [n] to A. An infinite
sequence over A is a function from N to A. We write length(s) for the length of a sequence
s (length(s) = ω if s is infinite). Given a sequence s, we write si for the ith element of
s (starting at 0. For s a sequence, and i ∈ N (such that i is less than the length of s, if s is
finite), s[i] denotes the initial segment of s of length i; i.e. the sequence of length i such
that for all k < i, s[i]k = sk. For a sequence s over A, we write content(s) for the range
of s (content(s) = {s(n) : n < length(s)}). We write (short, finite) sequences in the
usual way; aba is the sequence of length 3 whose first element is a, second b, and third a.
We write ε for the empty string. Note that length(aba) = 3, content(abc) = {a,b},
length(ε) = 0, and content(ε) = /0. We write An for the set of all sequences of length
n over A, and A∗ =

⋃
n∈N An for the set of all finite sequences over A. A subset B⊆ A2 is a

(binary) relation over A, and we write aBc to indicate that the sequence ac ∈ B. For any A,
we write ∆A for the identity relation over A; the least reflexive relation over A.

Given a set A, we write B⊆ f in A if B is a finite subset of A (i.e. if B = content(s) for
some finite sequence s over A). We write 2A for the powerset of A.

We write f : A→ B for functions from A to B; injections (where f (a) = f (b) implies
a = b) are sometimes written f : A � B. Given a function f : A→ B, we extend it pointwise
to sequences ( f ∗ : A∗ → B∗) and sets (2 f : 2A → 2B) as usual. We systematically abuse
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notation and abbreviate f ∗ and 2 f as f .
We recall some notions of the identification in the limit learning paradigm (Gold 1967),

adopting the presentation of Kanazawa (1998). A grammar system is a triple 〈Ω,P,L〉,
where Ω is a denumerable set of grammars, P is the set of possible sentences, and L : Ω→
2P is the map assigning to each grammar G∈Ω the language it generates. A text is an infinite
sequence s : N→P ∪{#} where #, a special symbol not in P , is a ‘pause’ indicating the
absence of information. The sequence s is a text for some L⊆P iff content(s)/{#}= L.
A learner A : (P ∪{#})∗→Ω is a function mapping finite sequences to grammars. Given
a text s, A converges to G on s iff there is some n ∈ N such that for all m ≥ n, A(s[m]) =
A(s[n]) = G; i.e. A converges to G on s iff it maps all but finitely many initial segments of s
to G. If s is a text for L, A identifies s iff A converges on s to a grammar for L. A identifies
L iff A identifies every text for L. Finally, A identifies a class of grammars G ⊆ Ω iff A
identifies each L(G), for every G ∈ G . We may say that A identifies a class L of languages
iff A identifies a class G of grammars such that L = {L(G) : G ∈ G }. Gold (1967) proved
that any finite class is identifiable in the limit. He also proved that no learner identifies any
strict superset of the class of all finite languages.

2 Interpreted Grammars

Here we present a variant of the identification-in-the-limit paradigm, which allows for
the incorporation of information about the structure which should be assigned to a datum.
This generalization is based on the linguistic distinction between tecto and pheno structure
(Curry 1961; de Groote 2001; Muskens 2001). According to this view, a grammar generates
tectostructures (derivation or ‘deep’ structures), which are then transduced into phenostruc-
tures (derived or ‘surface’ structures). ‘Syntactic universals’ are viewed as a description of
regularities either in tectostructures or in their translation into phenostructures. In a number
of modern grammar formalisms (for example, tree adjoining grammars, minimalist gram-
mars), the language-specific (i.e. non-universal) aspects of individual grammars are reduced
to a specification of the tecto- and pheno- properties of a finite number of (tecto-)leaves
(the lexical items), with the tecto- and pheno- properties of all other tecto-formatives being
completely determined in terms of these. A grammar, then, is completely determined by
its choice of lexical items. From this perspective, grammar induction is the problem of
identifying a finite set of lexical items through the obscuring effect of the a priori tecto
primitives and their known pheno-properties. In other words, the observed structures are the
result of combining in known ways a finite number of unknown objects.

2.1 Definitions

We formalize this perspective as follows. We let G be a countably infinite set (of
grammars), and T and P countably infinite sets (of tectostructures and phenostructures,
respectively). Given an interpretation scheme f : T →P which interprets tectostructures
as phenostructures, we write A (G) ⊆ T for the set of tectostructures associated with a
grammar G, and O f (G)⊆P for the set of phenostructures generated by G; crucially, we
require that O f (G) = { f (t) : t ∈A (G)}. For a given grammar G, A (G) is its abstract or
tecto-language, and O f (G) is its observable or pheno-language (with respect to f ). We call
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two grammars G1,G2 f -equivalent (written G1 ≡ f G2) iff their observable languages are
identical. We will sometimes suppress the interpretation scheme f when it is clear from
context.

Consider a simple example, the case of finite state machines. We fix countable sets
Q and Σ to be the logically possible states and alphabet symbols respectively, and take
a grammar G ∈ G to be a selection of some qG

s ∈ Q, a finite QG
f ⊂ Q, and a finite δ G ⊂

Q×Σ×Q.1 A tectostructure is a possible run, i.e. a sequence of the form t0, . . . , tn, where
each ti = 〈qi,σ ,qi+1〉; the tectostructures associated with a grammar G are those sequences
t0, . . . , tn whose first component is of the form t0 = 〈qG

s ,σ0,q1〉, whose last is of the form tn =
〈qn,σn,q f 〉 for some q f ∈ QG

f , and where each ti ∈ δ G. The standard interpretation scheme
fstr acts homomorphically on tectostructures: fstr(〈q,σ ,q′〉_t) = σ_ fstr(t). The function
fstr is simply the function mapping each run of the machine to the string it recognizes. This is
not the only possible interpretation scheme of course, another is given by fset(〈q,σ ,q′〉_t) =
{σ}∪ fset(t), which treats strings as the sets of letters they contain. Clearly, fstr gives more
information about a tectostructure t than does fset . (This is clear, in this case, because
fset = g ◦ fstr, for the string homomorphism g which maps letters to their unit sets, and
concatenation to set union.)

A (positive) f -interpreted text for grammar G ∈ G is an infinite sequence m ∈ N→
O f (G)∪{#} such that content(m)/{#}= O f (G). A learner is a function A : (O f (G)∪
{#})∗→ N. We say that a learner converges to H on an interpreted text m iff there is some
i ∈ N such that for all j > i, A(m[ j]) = A(m[i]) = H. A learner f -identifies G if it converges
to some f -equivalent H on all texts for G, and it f -identifies a class of interpreted grammars
G if it f -identifies each G ∈ G .

Returning to our example of finite state machines, note that there is a subtle interplay
regarding the amount of information about tectostructures which is preserved by an interpre-
tation scheme f and the requirement that identification be only up to f -equivalence: it is
clear that the class of finite state machines is fset-identifiable (the set O fset (G) for any G is a
finite set), while it is equally clear that this class is not fstr-identifiable (as shown already
by Gold).2 Even though fstr gives more information about tectostructures than does fset ,
fstr-equivalence is much harder to achieve than is fset-equivalence.

2.2 Intuition

The relation between the perspective on natural language grammars described above
in §2 and the formalization in §2.1 is as follows. A grammar G is a finite subset of the
(countable) set of all possible lexical items, and the set T of all possible tectostructures is
given with respect to this set of all possible lexical items. The interpretation scheme f is the
universal mapping associating tecto- with pheno-structures. As such, f offers a perspective
or view of a tectostructure through a phenostructure. Different choices for f can provide
more or less information about the possible tectostructures underlying a given phenostructure.
In the cases we find linguistically interesting, f = g1×·· ·×gk, where each gi represents a
different map from tectostructures into some observable domain (such as semantics, prosody,
etc.). Note that the relation between structures and (pronounced) strings is often taken to be

1We can think of G as a ‘family of grammars’, on par with the more familiar notion of a family of languages.
2These claims are justified in theorem 1.
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a function of structure (see e.g. Morawietz (2003)). Many linguists assume in addition there
to be significant portions of the prosodic properties of an utterance which are determined
by its syntactic structure (Wagner 2005), and there is evidence to suggest that prosodic
information is even emphasized in mother-child interaction (Nelson et al. 1989). While we
do not find the thought that a complete semantic representation is accessible to a human
language learner particularly convincing, it does seem reasonable to grant that some basic
facets of semantics are recoverable from the context of use, such as might be represented
in simple semantic dependency graphs (where are represented argument structural notions
such as agent-of, patient-of, instrument-of, and so on), which are easily represented as
compositions of ‘forgetful’ functions with the standard semantic interpretation maps (Shieber
2006; Kobele 2012).3 Indeed, recent work (Kallmeyer and Kuhlmann 2012) on relating TAG
derivation trees to dependency structures (which might be thought of as encoding just this
kind of reduced semantic information) can be seen as approximating the effects of a lambda
homomorphism (de Groote 2001) which lowers the types of quantified noun phrases (from
(et)t to e) on the lambda term obtained by semantically interpreting the derivation term.

Section 2.4 below addresses the learnability of the tectostructures given such a multidi-
mensional f .

2.3 Relations to Gold Learning

The standard Gold paradigm is the special case of this one where the tectostructures
are languages and the function f is the identity function; our f -identification is then simply
identification of an actually equivalent grammar. Given a (language) learning problem in the
standard Gold paradigm (i.e. a class G of grammars, and a mapping L associating grammars
with their languages, we recast it into the terms here by setting G = G , T =

⋃
G∈G L(G),

A (G) = L(G), and f the identity function. Furthermore, this is the special case of the
standard Gold paradigm where the mapping from grammars to languages is factored in
a particular way (into the composition of f and A ). We make this precise by, for a
grammar G and an interpretation scheme f , defining G f to be some grammar such that
A (G f ) := { f (w) : w ∈A (G)} (i.e. A (G f ) = O f (G)). Note that G and G′ are f -equivalent
iff G f and G′f are equivalent. For a set of grammars G , we write G f for the pointwise
extension of · f to G .

Theorem 1. G is f -identifiable if and only if G f is identifiable in the Gold sense.

Proof. Let G be f -identifiable by A, and define A f (s) := A(s) f . Let G f ∈ G f and H a text
for G f be arbitrary. Then H is also an ( f -)text for G, and A converges on it to an f -equivalent
G′ to G, and so A f converges to G′f , which is equivalent to G f .

For the right-to-left direction, let G f be identifiable by A f . To define a learner A for
G , we need to invert · f ; we accordingly set, for G f ∈ G f , (G f )

f to be a fixed element of
{G′ : G′f = G f }. Then A(s) = (A f (s)) f . Let G ∈ G and H an f -text for G be arbitrary. The
H is a text for G f and therefore A f converges on it to an equivalent G′f . But then A converges
to (G′f )

f , which is f -equivalent to G.

3Siskind (1996) explores procedures for associating words with semantic properties in the face of noise,
ambiguity, etc. Kanazawa (2001) recasts this work in a framework more congenial to the setting investigated
here.
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Despite the formal equivalence, making this factorization explicit allows for a different
landscape of relatedness of particular learning problems. As shown in theorems 5 and 6,
this landscape is non-trivial. We think that this is of sufficient importance to justify this
perspective shift.

2.4 The Landscape of Learning

The distinction between the tectostructures generated by the grammar and the phenos-
tructures associated with them gives us an intuitive notion of observable equivalence, which,
in the definition of identification, requires the learner to converge to a grammar which assigns
the right structure to its strings. From the following simple theorem we infer a number of
desirable corollaries.

Theorem 2. Fix G and tectostructures T . Let f : T →P , and h : P � Q an injection.
Then G is f -identifiable iff G is h◦ f -identifiable.

Proof. Let f and h be as in the theorem. Note that for any t, t ′ ∈ T , f (t) = f (t ′) iff
(h◦ f )(t) = (h◦ f )(t ′), and thus f -equivalence and (h◦ f )-equivalence are equivalent, and
that for any grammar G ∈ G , an h◦ f -text for G is an h−1 ◦h◦ f = f -text for G. For the left
to right direction, let A be a learner which f -identifies G . We define a learner B which will
h◦ f -identify G by setting B = A◦h−1 (i.e. (〈a1, . . . ,ak〉) = A(〈h−1(a1), . . . ,h−1(ak)〉). Let
T be a h◦ f -text for G. Then as A converges to some G′ on h−1(T ), B = A◦h−1 converges
to G′ on T . As G′ is f -equivalent to G, they are also (h◦ f )-equivalent. As T and G were
arbitrary, B (h◦ f )-identifies G . For the other direction, we proceed symmetrically; let B
be a learner which (h◦ f )-identifies G, we define A = B◦h. Then for T an f -text for G, B
converges on h(T ) to G′, and thus A converges on T to G′. As B identifies G , G′ ≡h◦ f G,
and so G′ ≡ f G, whence, as T and G were arbitrary, A f -identifies G .

Theorem 2 entails that certain structural ways of combining data sources are equivalent.

Corollary 3. G is

1. f -identifiable iff it is 〈 f , f 〉-identifiable

2. 〈 f ,g〉-identifiable iff it is 〈g, f 〉-identifiable.

3. 〈 f ,〈g,h〉〉-identifiable iff it is 〈〈 f ,g〉,h〉-identifiable.

Proof. By theorem 2, as witnessed by the injections h1(x) = (x,x), h2(x,y) = (y,x), and
h3(x,(y,z)) = ((x,y),z).

Furthermore, adding extra ‘predictable’ information about a source does not change the
learnability of a class.

Corollary 4. Let G be f -identifiable, and let g be arbitrary. Then G is 〈 f ,g◦ f 〉-identifiable.

Proof. By theorem 2, as witnessed by h(x) = (x,g(x)).



96 Case, Heinz & Kobele

We now turn to the main results of this paper. In particular corollary 3 suggests that the
manner in which combination of information sources affects learning is purely structural and
independent of the manner of combination. That this is not so is demonstrated by theorems
5 and 6. Theorem 5 states that the learnability of classes of tectostructures is not necessarily
preserved under increased information about the identity of tectostructures. Theorem 6
states, intuitively, that combining information from multiple sources can have a synergetic
effect on learning.

We recall that a class of languages L has an accumulation point L ∈L iff there is an
infinite sequence of finite sets S1,S2, . . . such that

1. Si ⊆ Si+1, for all i,

2.
⋃

i∈N Si = L

3. for all i, there is some Li ∈L such that Si ⊆ Li and Li ⊂ L

Kapur (1992) proves that a class of languages L is identifiable in the limit iff L does not
have an accumulation point.

Theorem 5. It is not the case that, for every f and g, f - and g-identifiability imply 〈 f ,g〉-
identifiability.

Proof. Let L ⊆ Σ∗ be arbitrary but infinite, and let x0,x1, . . . be an enumeration of the
words of L. We define S0 = {〈x0,x0〉} and Si+1 = Si∪{〈xi+1,xi+1〉,〈x0,xi+1〉}, and define
Li = ∆L∪Si. Let L∞ = ∆L∪ ({x0}×L). We let the set of possible tectostructures T = {Li :
i ∈ N}∪{L∞}. Let G∞ be a grammar such that A (G∞) = L∞, let G = {Gi : i ∈ N}∪{G∞}
and let A (Gi) = Li.

We set f = π1 and g = π2 be the left and right projection functions respectively. Since
every tectostructure contains ∆L, it follows that A (G f ) = {L}= A (Gg), and thus G is both
f - and g-identifiable (by Theorem 1 since {L} is a class of finite cardinality).

We show that L∞ is an accumulation point for G〈 f ,g〉. By construction, it is the case that
Si ⊆ Si+1 and Si ⊂ f in Li for all i. Each Si is contained in L∞ as Si contains pairs of the form
〈x,x〉, which is in ∆L, or of the form 〈x0,y〉, which is in {x0}×L. As each Li is the union
of subsets of L∞, Li ⊆ L∞ for each i. The properness of the inclusion is witnessed by the
pair 〈x0,xi+1〉 for each Li. It remains to show that

⋃
i∈N Si = L∞. The left to right direction

follows from the fact that the left-hand term is the union of subsets of the right-hand term.
For the right to left direction let 〈xi,x j〉 ∈ L∞. Then either i = j or i = 0. In both cases,
〈xi,x j〉 ∈ S j ⊆

⋃
k∈N Sk.

As G〈 f ,g〉 contains an accumulation point L∞, it is not identifiable in the limit, and thus
by Theorem 1 G is not 〈 f ,g〉-identifiable.

We recall that no superfinite class of languages (one which contains all finite languages
and at least one infinite one) is identifiable in the limit, and that the class of all finite
languages is identifiable in the limit.

Theorem 6. It is not the case that, for every f and g, 〈 f ,g〉-identifiability implies f - or
g-identifiability.

Proof. Fix a non-empty alphabet Σ. Set G to be the set of all pairs 〈L1,L2〉 such that one of
the following (mutually exclusive) conditions holds:
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1. L1 = {ε} and L2 = Σ∗

2. L1 = Σ∗ and L2 = {ε}

3. L1 and L2 are finite subsets of Σ∗ distinct from {ε}

We define f = π1 and g = π2. Then G f = Gg = {L : L⊂ f in Σ∗}∪{Σ∗}, and thus by theorem
1 G is neither f - nor g-identifiable.

The following learner will 〈 f ,g〉-identify G . On 〈u1,v1〉, . . . ,〈un,vn〉, the learner conjec-
tures 〈{ε},Σ∗〉 if u1 = . . .= un = ε , the learner conjectures 〈Σ∗,{ε}〉 if v1 = . . .= vn = ε ,
and the learner conjectures 〈{u1, . . . ,un},{v1, . . . ,vn}〉 otherwise.

The implications of these theorems are discussed in the conclusion.

3 Learning from Szilard Languages

In this section we consider how to recast the result of Mäkinen (1992) into the present
framework. Mäkinen, in work very much anticipating this one, investigates learning context-
free grammars from structural information (as an alternative to Sakakibara (1992), who
investigated learning with structural information in the form of unlabeled derivation trees).
Recasting this work into the present framework provides a useful perspective not only on
how the present framework works, but also on the result itself. We will see that the present
framework forces one to be very explicit about the distinction between the properties which
are shared by the entire class of grammars (linguistic universals) and those which must be
learned (language particulars).

Mäkinen defines texts for a grammar G to consist of pairs 〈yield(t),sz(t)〉, where t is
a derivation tree generated by G, and where yield is the standard yield mapping and sz
is the Szilard mapping which takes a derivation tree to the sequence of production names
encountered in a preorder traversal. He observes that the Szilard languages of CFGs are very
simple, and are thus efficiently identifiable (Yokomori 2003).4 As the language of a CFG
in GNF is the image of a symbol-to-symbol mapping applied to its Szilard language,5 the
efficient identifiability of GNF grammars in Mäkinen’s setting is straightforward.

It is instructive to consider how to present this learning scenario in our setting. We
help ourselves to an countably infinite set N (of possible non-terminals), and a countably
infinite set Σ (of possible terminals), in terms of which we define the countable alphabet
R = N × (N ∪Σ)∗ (of possible rules). In order to describe Mäkinen’s learning problem,
we need to provide a definition of the Szilard mapping, the kernel of which associates a rule
with its (unique) name. One possibility would be to take the Szilard kernel to be antecedently
given (i.e., for some infinite set S of szilard names, sz : R � S ). This however would
give the learner complete information about the identity of each production of the target
grammar; the learner has access to the functions in terms of which observable languages are
defined. Once the learner knows that the rule named ‘o’ was used, he may simply look up
that the rule r ∈R is that rule, which makes the learning problem trivial.

4A CFG in GNF is very simple iff for every terminal symbol a, there is exactly one rule with that terminal
symbol (recall that a CFG is in GNF iff all of its rules are of the form A→ aB1 . . .Bn).

5A slightly more complex mapping mediates between the Szilard language of a grammar in CNF and its
yield.
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Instead, we must somehow parameterize the Szilard mapping on the grammar. We
do this by defining a grammar to be a triple G = 〈S,R,ker〉 where S ∈N , R ⊂ f in R and
ker : R � S . This means that the learner must do more than simply identify a context-free
grammar (up to equivalence); he must also ‘decode’ the names used to refer to the rules,
which is represented as ker.

The Szilard mapping itself, as a mapping from tectostructures to strings over S , does
not make any reference to the grammar, and so information about names must already
be present in the tectostructures. The possible tectostructures should then be the subset
T ⊂ (R×S )∗ of local trees containing a subterm 〈(N→ w0N1w1 . . .Nkwk),o〉(t1, . . . , tn)
iff n = k and the root of each ti = 〈(Ni→ ui),oi〉, and the set of tectostructures of a grammar
G are the possible tectostructures containing only nodes of the form 〈r,ker(r)〉, and whose
roots are of the form 〈(S→ w),o〉.6

Now we can define the given mappings yield : T → Σ∗ and sz : T →S ∗ in the
obvious (and standard) way.7 It follows, as Mäkinen points out, from the fact that Szilard
languages are very simple that the class of context-free grammars is sz-learnable. It is
equally clear that the class of context-free grammars is not yield-learnable (they are a
strict superset of the class of finite languages). Mäkinen shows that two subclasses of
context-free grammars (those in GNF and those in CNF) are in fact 〈yield,sz〉-learnable.
Note that this does not (quite) follow from corollary 4, because even though yield is in fact
definable in terms of the Szilard mapping in the following way: yield= h◦ker−1 ◦sz, for
h(N→ aw) = a, ker is not accessible to the learner, being dependent on the particular choice
of grammar. It is, however (as Mäkinen observes), very easy to determine what ker must be,
given the a priori restrictions on grammar form, and the input 〈yield(t),sz(t)〉. Indeed,
for a grammar in GNF, for each tectostructure t, length(yield(t)) = length(sz(t)),
and for ri the rule with name ker(sz(t)i), the unique nonterminal on its right-hand side is
yield(t)i. The remainder of each rule, its shape and the identity of the left- and right-hand
nonterminals, is exactly the same as that of the very simple grammar for its Szilard language,
which is obtained by Yokomori’s algorithm.8

We see then that Mäkinen’s result just barely avoids falling under the purview of corollary
4; the yield perspective on tectostructures is almost completely predictable given the sz
perspective.

Conclusion

We have made some first steps toward a better understanding of how combining multiple
sources of information about the same objects can affect learning, and thus to the goal
of meeting the challenges by linguists to the relevance of the learning results mentioned
in the introduction to linguistics. Theorems 5 and 6 demonstrate that whether adding or
removing information sources about the underlying objects affects learning depends on the

6For the sake of readability, we write throughout N→ w for the rule 〈N,w〉.
7The mapping sz is simply the preorder traversal of the second projection function extended over trees:

sz(〈r,o〉(t1, . . . , tk)) = o_sz(t1)_ . . ._sz(tk). The mapping yield is the composiiton of the standard
one with the first projection function (as the nodes of our trees are pairs), which satisfies yield(〈(N →
w0N1w1 . . .Nkwk),o〉(t1, . . . , tk)) = w_

0 yield(t1)_w_
1 . . ._yield(tk)_wk

8If the grammar is in CNF this procedure is more complicated (but still efficient); see Mäkinen (1992) for
more details.
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way in which the objects in effect coordinate these sources.9 In the proof of Theorem 5,
the complexity of the tectostructures was only visible when viewed simultaneously through
two information sources. On the other hand, in Theorem 6, the underlying simplicity of the
tectostructures was obscured when viewed from only a single perspective. Theorem 2 and
its corollaries demonstrate that the addition of ‘completely predictable’ information does not
influence the outcome of learning, as is to be expected.

In other words, there is a trade-off between the amount of information we have about
some objects, and the complexity of that set of objects. The proof of theorem 5 works
because we have a complex set of objects, but the information the individual projections give
about that set is minimal, and that of theorem 6 works because, although we have a simple
set of objects, the individual projections make it look more complicated than it is.

From a linguistic perspective, the proof of theorem 5 is interesting precisely because
the tectostructures exhibit a degree of arbirtrariness that we do not expect to find in natural
language. Indeed, linguists often assume that the computation of the prosodic form of
an utterance and the computation of its logical form proceed in a similarly compositional
manner and that these relations are constrained in nontrivial ways. While in the interpreted
learning setting explicated here, these computations are expressed by the function f , it is not
unreasonable to expect that complex tectostructures will be similarly constrained.

We plan to investigate desirable kinds of coordination between linguistically-motivated
information sources in future work. We anticipate that the advances in distributional learning
and the grammatical inference of mildly context-sensitive languages more generally, when
augmented with additional sources of information plausibly available to children, will be
able to assign the ‘right structures’ to the observed strings. We also hope that the present
framework will help us understand at a deeper level recent advances in supervised learning
of sound-meaning mappings (Zettlemoyer and Collins 2005; Kwiatkowksi et al. 2010).
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