
Learnability
Greg Kobele

Summer Semester, 2024

1 Categorial grammar
• Expressions are pairs of strings and their categories

• categories have a regular structure that indicates their distribution,
and their combinatory options

• Categories Cat are an infinite set, constructed out of a finite set of
basic categories, BasCat in the following way: for α, β arbitrary cat-
egories, so too are the following:

– α/β

– α\β

• Rules are left and right function application:

(u, α/β) + (v, β) 7→ (uv, α) (FA)
(u, β) + (v, β\α) 7→ (uv, α) (BA)

• Each type can be thought as denoting a set (here of strings).

– associate each basic category with a finite set of strings
– then we can compositionally define the denotation of any cate-

gory:

[[α/β]] = {v | ∀u ∈ [[β]], uv ∈ [[α]]}
[[β\α]] = {u | ∀v ∈ [[β]], uv ∈ [[α]]}

• We can extend this to non-empty sequences of categories using con-
catenation:

[[α · β]] = {uv | u ∈ α ∧ v ∈ β}

1



• Now we can see that the rules of categorial grammar are sound; e.g. if
a string w is in the denotation of β ·β\α then it is also in the denotation
of α
Theorem 1. For all α, β ∈ Cat, [[α/β · β]] ⊆ [[alpha]].

Proof. let w ∈ [[α/β ·β]]. Then there are strings u ∈ [[α/β]] and v ∈ [[β]]
such that w = uv. By the definition of [[·/·]], as v ∈ [[β]], w ∈ [[α]].

Theorem 2. For all α, β ∈ Cat, [[β · β\α]] ⊆ [[alpha]].

Proof. The proof is similar.

• A categorial lexicon is a finite assignment of types to strings. For
example:

string type
the d/n
boy n
girl n
happy n/n
laughs d\s
loudly (d\s)\(d\s)
praises fc(d\s)d

– We can understand this as assigning ’extra’ strings to the deno-
tation of certain categories. This is why the previous theorems
only talk about containment (not identity).

• A grammar is completely determined by a lexicon and the basic cat-
egory for sentences (usually s), as the grammatical functions are as-
sumed to be constant.

– The language of a categorial grammar is the set of all derivable
sentences of its basic category

• The name of categories is only important in that we restrict who can
combine with whom.

– if we replaced every n with a q in the lexicon, we would still derive
the same sentences in the same way.

– We could even rename every category, without changing things,
as long as we didn’t accidentally give the same name to two (pre-
viously) different categories.

2



2 Substitutions and unification
• A (first-order) term is built out of function symbols each with a par-

ticular arity f1, . . . , fk and constant symbols a1, . . . , aj , together with
variables for constants (X,Y,Z)

– g(g(a)), f(a,X), f(g(X), f(Y, g(g(X))))

– a term without variables is called ground

• each term can be viewed as a tree

– The head of a term is its left-most symbol, i.e. its root
– the subterm beginning with a particular symbol is the tree rooted

at that symbol

• Two terms unify with one another iff there is a way to replace variables
with terms that makes them identical; this is called a substitution

– to unify man(X) with man(socrates), we substitute the variable
X with the term socrates; this can be written {X/socrates},
or [X 7→ socrates]

• A substitution can replace multiple (different) variables with terms
simultaneously

– Let θ = {X/s(Y ), Y/z}, then sum(X,Y,X)θ = sum(s(Y ), z, s(Y ))

• substitutions can be composed: A(θρ) = (Aθ)ρ

– the composed substitution must
1. on X ∈ dom(θ), replace this with (Xθ)ρ

2. on Y ∈ dom(ρ)− dom(θ), replace this with Xρ

– {X1/s(Y1, X2), X2/t}{Y1/u,X2/v} := {X1/s(u, v), X2/t, Y1/u}

• unification is the problem of finding a substitution that makes two
expressions identical

• There is a simple algorithm to find a most general unifier mgu(E,F )
for two expressions E and F (if one exists):

1. set k = 0 and θ0 = {}
2. if Eθk = Fθk stop, and output θk.

3



– otherwise, find the leftmost subtree E′ and F ′ where Eθk and
Fθk differ

– if one of E′ and F ′ is a variable X and the other any term
t, then if X does not occur in t, then set θk+1 = θk{X/t},
increment k to k + 1, and return to step 2.

∗ otherwise, they are not unifiable

3 Substitutions and unifications in CG
• We formalize the intuition about renaming categories via substitutions

• Our terms are categories.

– the start category s and the slashes are treated as symbols
– the other basic categories are treated as variables
– What are the mgus of

∗ {c1/c2, c3}
∗ {c1/c2, c1\c2}
∗ {c1/(c2\c3), (s/c5)/c6}

• Let Gθ = {(w, cθ) | (w, c) ∈ G} be the result of applying θ to each
lexical category

Theorem 3. If G1θ ⊆ G2 for any grammars with the same start category
s, then [[s]]G1 ⊆ [[s]]G2.

Proof. Consider any derivation tree of G1 with root s. Applying any sub-
stitution to the categories in this tree results in a derivation tree of G2 with
root s and the same yield.

4 Elasticity
• Consider the following sets:

1. N = {0, 1, 2, . . .}, the set of natural numbers
2. E, the set of finite subsets of even numbers
3. O, the set of finite subsets of odd numbers

• It is easy to think of a learner for the class L1 = {N} ∪ E ∪O

4



– if you see e and o, then guess N, else guess exactly what you have
seen

• The set L2 = {L1 ∪ L2 | L1, L2 ∈ L} is not identifiable

– it contains all finite subsets of N, together with N
– seeing e and o together does not indicate that you should gener-

alize

Definition 4.1. A class L has a limit point L iff there are languages
L0, L1, . . . ∈ L such that

L0 ⊂ L1 ⊂ L2 · · ·

and L ∈ L is such that
L =

∪
n∈N

Ln

• L2 has a limit point N, witness

{0} ⊂ {0, 1} ⊂ {0, 1, 2} ⊂ · · ·

• but L1 has no limit point

Theorem 4 (Kanazawa, 1998). If L has a limit point, it is not identifiable.

Proof. Towards a contradiction, assume that ϕ identifies L, which has limit
point L. Then there must be a locking sequence t for ϕ and L. Since t
is finite and L =

∪
n∈N Ln, there must be some Li which contains all of t.

Then on any text for Li which begins with t, ϕ converges instead on L, thus
failing to identify Li.

• Why do we care about unions of languages?

– German∪English is a rough approximation of my children’s mind
– Note: we are usually comfortable saying High-class English∪Colloquial English =

English; what’s the difference?

• Code-switching suggests that multilingualism is more than just lan-
guage union

– but it seems a reasonable first approximation

5



Definition 4.2. A class L has infinite elasticity iff there is a sequence of
sentences s0, s1, . . . and a sequence of languages L0, L1, . . . in L such that
for all n ≥ 0:

• sn /∈ Ln, and

• {s0, . . . , sn} ⊆ Ln+1

A class has finite elasticity iff it does not have infinite elasticity.

• L1 has infinite elasticity (as does L2):

0 2 4 6 . . .
∅ {0} {0, 2} {0, 2, 4} . . .

Theorem 5 (Wright, 1989). If L has finite elasticity, it is identifiable.

Proof. Let L have finite elasticity. Assume some sort of ordering on the
sentences of each language (e.g. alphabetical). We show that each L ∈ L
has a distinguished set in Angluin’s sense. Let L ∈ L be arbitrary; here is
its distinguished set:

DL = {w | ∃Li ∈ L.w is least in L− Li}

Note that if Li ⊃ L, then L − Li = ∅, and so supersets don’t contribute to
DL. Now we show that DL has the desired properties.

if DL ⊆ L′ then L′ 6⊆ L: Let L′ ∈ L st DL ⊆ L′. Then the least element
in L but not L′ cannot exist, and so L′ ⊃ L.

DL is finite: Now suppose DL is infinite (for a contradiction). Then for
any n > 0, some element of DL is longer than n. Consider some
s0 ∈ DL, and some language L0 ∈ L such that s0 is least in L − L0.
There must also be some other language L1 such that L−L1 6= ∅ and
s0 ∈ L1; otherwise s0 would be the (assumed non-existent) longest
string in DL. Thus for every si ∈ DL, there is a language Li+1 ∈ L
such that L − Li 6= ∅ and {s0, . . . , si} ⊆ Li+1. But then there is
an infinite sequence of sentences s0, s1, . . . and languages L0, L1, . . .
witnessing the infinite elasticity of L.

Theorem 6 (Wright, 1989; Motoki, Shinohara and Wright, 1989; Kanazawa,
1998). If L1 and L2 have finite elasticity, then so does {L1 ∪ L2 | L1 ∈
L1 and L1 ∈ L1}.

6



5 Rigid CGs have finite elasticity
Kanazawa [1998] shows that a particular subclass of CGs has finite elasticity.

Definition 5.1. (Rigidity) A grammar is rigid iff there are no two distinct
lexical items with the same string component.

• Derivation trees are written with leaves labeled with strings, and with
internal nodes labeled with categories

– every leaf must be immediately dominated by a unary branching
node, labeled with its category.

– every other internal node must be binary branching, and be li-
censed by either the FA or the BA rule.

• f-structures are binary branching trees with strings at the leaves and
either a right arrow or a left arrow at the internal nodes.

• To go from a derivation tree to a f-structure,

1. erase the unary branching nodes, and
2. for each binary branching node, replace its label with an arrow

pointing to the slash-category

• F(G) is the set of f-structures of derivations of s in G

• Gr is the set of rigid grammars over some particular vocabulary V . We
assume they share a common start category, s.

– Fr is the set {F(G) | G ∈ Gr}
– Lr is the set {[[s]]G | G ∈ Gr}

Theorem 7 (Kanazawa, 1998). Fr has finite elasticity.

A learner for Fr on input ti = {F1, . . . , Fi}

1.
(a) assign s to the root of each
(b) assign unique basic categories to each argument node
(c) determine the categories of the functor nodes

2. Collect the lexical categories to obtain a grammar GF (ti)

3. Unify all the different categories assigned to each individual word
to obtain a rigid grammar RG(ti)

7


	Categorial grammar
	Substitutions and unification
	Substitutions and unifications in CG
	Elasticity
	Rigid CGs have finite elasticity

