Learnability

Greg Kobele

Summer Semester, 2024

1 Categorial grammar

Expressions are pairs of strings and their categories

categories have a regular structure that indicates their distribution,
and their combinatory options

Categories CAT are an infinite set, constructed out of a finite set of
basic categories, BASCAT in the following way: for «, 8 arbitrary cat-
egories, so too are the following:

—a/p
—a\p
Rules are left and right function application:
(u,a/B) + (v, B) — (uv, @) (FA)
(u, B) + (v, B\a) — (uv, @) (BA)

Each type can be thought as denoting a set (here of strings).

— associate each basic category with a finite set of strings

— then we can compositionally define the denotation of any cate-
gory:
[/ B] = {v [Vu € [B], uv € [a]}
[6\a] = {u | Vo € [B], uv € [a]}
We can extend this to non-empty sequences of categories using con-

catenation:
[ao- Bl ={wv |ueanv e}

« Now we can see that the rules of categorial grammar are sound; e.g. if
a string w is in the denotation of 8-\« then it is also in the denotation
of a

Theorem 1. For all o, f € CAT, [o/f - 5] C [alpha].

Proof. let w € [a/B-B]. Then there are strings u € [a/f] and v € [5]
such that w = uv. By the definition of [-/-], as v € [B], w € [o]. O

Theorem 2. For all o, 5 € CAT, [- \a] C [alpha].

Proof. The proof is similar. O

e A categorial lexicon is a finite assignment of types to strings. For
example:

string type

the d/n
boy n
girl n
happy n/n
laughs d\s

loudly (d\s)\(d\s)
praises fe(d\s)d

— We can understand this as assigning ’extra’ strings to the deno-
tation of certain categories. This is why the previous theorems
only talk about containment (not identity).

e A grammar is completely determined by a lexicon and the basic cat-
egory for sentences (usually s), as the grammatical functions are as-
sumed to be constant.

— The language of a categorial grammar is the set of all derivable
sentences of its basic category

e The name of categories is only important in that we restrict who can
combine with whom.

— if we replaced every n with a ¢ in the lexicon, we would still derive
the same sentences in the same way.

— We could even rename every category, without changing things,
as long as we didn’t accidentally give the same name to two (pre-
viously) different categories.

2 Substitutions and unification

A (first-order) term is built out of function symbols each with a par-
ticular arity fi,..., fx and constant symbols a1, ..., a;, together with
variables for constants (X,Y,Z)

= 9(9(a)), f(a, X), f(g(X), f(Y;9(9(X))))

— a term without variables is called ground
each term can be viewed as a tree

— The head of a term is its left-most symbol, i.e. its root
— the subterm beginning with a particular symbol is the tree rooted
at that symbol

Two terms unify with one another iff there is a way to replace variables
with terms that makes them identical; this is called a substitution

— to unify man(X) with man(socrates), we substitute the variable
X with the term socrates; this can be written {X/socrates},
or [X + socrates]|

A substitution can replace multiple (different) variables with terms
stmultaneously

— Let 0 = {X/s(Y),Y/z}, then sum(X,Y, X)0 = sum(s(Y), z,s(Y))
substitutions can be composed: A(fp) = (Af)p

— the composed substitution must

1. on X € dom(6), replace this with (X0)p
2. on Y € dom(p) — dom(#), replace this with Xp

- {Xl/S(Yl,XQ),XQ/t}{Yl/U,XQ/’U} = {Xl/s(u,v),Xg/t, Yl/u}

unification is the problem of finding a substitution that makes two
expressions identical

There is a simple algorithm to find a most general unifier mgu(E, F')
for two expressions E and F' (if one exists):

1. set k=0 and 6y = {}
2. if E6;, = F0, stop, and output 0.

— otherwise, find the leftmost subtree E' and F’ where Ef), and
Fo, differ

— if one of E' and F’ is a variable X and the other any term
t, then if X does not occur in ¢, then set 0y 1 = 0 {X/t},
increment k to k4 1, and return to step 2.

* otherwise, they are not unifiable

3 Substitutions and unifications in CG

e We formalize the intuition about renaming categories via substitutions
e Our terms are categories.

— the start category s and the slashes are treated as symbols
— the other basic categories are treated as variables

— What are the mgus of

* {61/02,63}
x {c1/ca,c1\c2}
* {c1/(c2\e3), (s/cs5)/co}

o Let GO = {(w,ch) | (w,c) € G} be the result of applying 6 to each
lexical category

Theorem 3. If G160 C G2 for any grammars with the same start category
s, then [s]a, C [s]a,-

Proof. Consider any derivation tree of G; with root s. Applying any sub-
stitution to the categories in this tree results in a derivation tree of G with
root s and the same yield. O

4 Elasticity

e Consider the following sets:

1. N={0,1,2,...}, the set of natural numbers
2. E, the set of finite subsets of even numbers

3. O, the set of finite subsets of odd numbers

o It is easy to think of a learner for the class £; = {N}JUEU QO

— if you see e and o, then guess N, else guess exactly what you have
seen

o Theset Lo ={Li ULy | L1, Ly € L} is not identifiable

— it contains all finite subsets of N, together with N

— seeing e and o together does not indicate that you should gener-
alize

Definition 4.1. A class £ has a limit point L iff there are languages
Lo, L1,... € L such that

LoCLlCLQ---
and L € L is such that
L= ULn
neN

e L5 has a limit point N, witness

{0} c{0,1} c{0,1,2} C -+~
e but £; has no limit point

Theorem 4 (Kanazawa, 1998). If £ has a limit point, it is not identifiable.

Proof. Towards a contradiction, assume that ¢ identifies £, which has limit
point L. Then there must be a locking sequence t for ¢ and L. Since t
is finite and L = UnGN L,, there must be some L; which contains all of ¢.
Then on any text for L; which begins with ¢, ¢ converges instead on L, thus
failing to identify Lj;. O

e Why do we care about unions of languages?

— German U English is a rough approximation of my children’s mind

— Note: we are usually comfortable saying High-class EnglishuColloquial English =
English; what’s the difference?

e Code-switching suggests that multilingualism is more than just lan-
guage union

— but it seems a reasonable first approximation

Definition 4.2. A class £ has infinite elasticity iff there is a sequence of
sentences sg, S1, ... and a sequence of languages Lo, L1, ... in £ such that
for all n > O:

o s, ¢ Ly, and

e {50,150} € Lnta
A class has finite elasticity iff it does not have infinite elasticity.

o L£; has infinite elasticity (as does Ls):

0 2 4 6
0 {0} {0,2} {0,2,4}

Theorem 5 (Wright, 1989). If £ has finite elasticity, it is identifiable.

Proof. Let £ have finite elasticity. Assume some sort of ordering on the
sentences of each language (e.g. alphabetical). We show that each L € £
has a distinguished set in Angluin’s sense. Let L € L be arbitrary; here is
its distinguished set:

Dy ={w|3L; € Lw is least in L — L;}

Note that if L; D L, then L — L; = (), and so supersets don’t contribute to
Dy. Now we show that Dy, has the desired properties.

if D, CL' then L' € L: Let L' € L st Dy, C L'. Then the least element
in L but not L’ cannot exist, and so L' O L.

Dy is finite: Now suppose Dy, is infinite (for a contradiction). Then for
any n > 0, some element of Dy is longer than n. Consider some
so € Dy, and some language Lg € L such that sg is least in L — Lg.
There must also be some other language L such that L — L # () and
so € Li; otherwise sop would be the (assumed non-existent) longest
string in Dy,. Thus for every s; € Dy, there is a language L;y; € £
such that L — L; # 0 and {sg,...,s;} € L;11. But then there is
an infinite sequence of sentences sg,si,... and languages Lo, L1,...
witnessing the infinite elasticity of L.

O

Theorem 6 (Wright, 1989; Motoki, Shinohara and Wright, 1989; Kanazawa,
1998). If L1 and Lo have finite elasticity, then so does {L1 U Ly | Ly €
L1 and Ly € ﬁl}

5 Rigid CGs have finite elasticity

Kanazawa [1998] shows that a particular subclass of CGs has finite elasticity.

Definition 5.1. (Rigidity) A grammar is rigid iff there are no two distinct
lexical items with the same string component.

e Derivation trees are written with leaves labeled with strings, and with
internal nodes labeled with categories

— every leaf must be immediately dominated by a unary branching
node, labeled with its category.

— every other internal node must be binary branching, and be li-
censed by either the FA or the BA rule.

e f-structures are binary branching trees with strings at the leaves and
either a right arrow or a left arrow at the internal nodes.

e To go from a derivation tree to a f-structure,

1. erase the unary branching nodes, and
2. for each binary branching node, replace its label with an arrow
pointing to the slash-category

o F(G) is the set of f-structures of derivations of s in G

e G, is the set of rigid grammars over some particular vocabulary V. We
assume they share a common start category, s.

— F, is the set {F(G) |G € G,}
— L, is the set {[s]¢ | G € G,-}

Theorem 7 (Kanazawa, 1998). F, has finite elasticity.
A learner for F, on input t; = {F1,..., F;}
1.

(a) assign s to the root of each
(b) assign unique basic categories to each argument node
(c) determine the categories of the functor nodes

2. Collect the lexical categories to obtain a grammar GF(t;)

3. Unify all the different categories assigned to each individual word
to obtain a rigid grammar RG(t;)

	Categorial grammar
	Substitutions and unification
	Substitutions and unifications in CG
	Elasticity
	Rigid CGs have finite elasticity

