Learnability

Greg Kobele

Summer Semester, 2024

1 Categorial grammar

- Expressions are pairs of strings and their categories
- categories have a regular structure that indicates their distribution, and their combinatory options
- Categories CAT are an *infinite set*, constructed out of a finite set of *basic categories*, BASCAT in the following way: for α, β arbitrary categories, so too are the following:

$$- \alpha/\beta$$

 $- \alpha \beta$

• Rules are left and right function application:

$$(u, \alpha/\beta) + (v, \beta) \mapsto (uv, \alpha)$$
 (FA)

$$(u,\beta) + (v,\beta\backslash\alpha) \mapsto (uv,\alpha) \tag{BA}$$

- Each type can be thought as denoting a set (here of strings).
 - associate each basic category with a finite set of strings
 - then we can compositionally define the denotation of any category:

$$\begin{bmatrix} \alpha/\beta \end{bmatrix} = \{ v \mid \forall u \in \llbracket \beta \end{bmatrix}, uv \in \llbracket \alpha \end{bmatrix} \}$$
$$\begin{bmatrix} \beta \land \alpha \end{bmatrix} = \{ u \mid \forall v \in \llbracket \beta \end{bmatrix}, uv \in \llbracket \alpha \rrbracket \}$$

• We can extend this to non-empty *sequences* of categories using concatenation:

$$[\![\alpha \cdot \beta]\!] = \{uv \mid u \in \alpha \land v \in \beta\}$$

• Now we can see that the rules of categorial grammar are *sound*; e.g. if a string w is in the denotation of $\beta \cdot \beta \setminus \alpha$ then it is also in the denotation of α

Theorem 1. For all $\alpha, \beta \in CAT$, $[\![\alpha/\beta \cdot \beta]\!] \subseteq [\![alpha]\!]$.

Proof. let $w \in [\![\alpha/\beta \cdot \beta]\!]$. Then there are strings $u \in [\![\alpha/\beta]\!]$ and $v \in [\![\beta]\!]$ such that w = uv. By the definition of $[\![\cdot/\cdot]\!]$, as $v \in [\![\beta]\!]$, $w \in [\![\alpha]\!]$. \Box

 \square

Theorem 2. For all $\alpha, \beta \in CAT$, $[\![\beta \cdot \beta \setminus \alpha]\!] \subseteq [\![alpha]\!]$.

Proof. The proof is similar.

- A categorial lexicon is a finite assignment of types to strings. For example:
 - string type d/nthe boy ngirl nhappy n/nlaughs $d \backslash s$ loudly $(d \mid s) \setminus (d \mid s)$ praises $fc(d \mid s)d$
 - We can understand this as assigning 'extra' strings to the denotation of certain categories. This is why the previous theorems only talk about *containment* (not identity).
- A grammar is completely determined by a lexicon and the basic category for sentences (usually s), as the grammatical functions are assumed to be constant.
 - The language of a categorial grammar is the set of all derivable sentences of its basic category
- The name of categories is only important in that we restrict who can combine with whom.
 - if we replaced every n with a q in the lexicon, we would still derive the same sentences in the same way.
 - We could even rename every category, without changing things, as long as we didn't accidentally give the same name to two (previously) different categories.
 - 2

2 Substitutions and unification

- A (first-order) term is built out of function symbols each with a particular arity f_1, \ldots, f_k and constant symbols a_1, \ldots, a_j , together with variables for constants (X,Y,Z)
 - g(g(a)), f(a, X), f(g(X), f(Y, g(g(X))))
 - $-\,$ a term without variables is called ground
- each term can be viewed as a tree
 - The *head* of a term is its left-most symbol, i.e. its root
 - the subterm beginning with a particular symbol is the tree rooted at that symbol
- Two terms unify with one another iff there is a way to replace variables with terms that makes them identical; this is called a *substitution*
 - to unify man(X) with man(socrates), we substitute the variable X with the term socrates; this can be written $\{X/socrates\}$, or $[X \mapsto socrates]$
- A substitution can replace multiple (different) variables with terms *simultaneously*

- Let $\theta = \{X/\mathbf{s}(Y), Y/\mathbf{z}\}$, then $\operatorname{sum}(X, Y, X)\theta = \operatorname{sum}(\mathbf{s}(Y), \mathbf{z}, \mathbf{s}(Y))$

- substitutions can be composed: $A(\theta \rho) = (A\theta)\rho$
 - the composed substitution must
 - 1. on $X \in \mathsf{dom}(\theta)$, replace this with $(X\theta)\rho$
 - 2. on $Y \in \mathsf{dom}(\rho) \mathsf{dom}(\theta)$, replace this with $X\rho$
 - $\{X_1/\mathbf{s}(Y_1, X_2), X_2/t\}\{Y_1/u, X_2/v\} := \{X_1/\mathbf{s}(u, v), X_2/t, Y_1/u\}$
- *unification* is the problem of finding a substitution that makes two expressions identical
- There is a simple algorithm to find a most general unifier mgu(E, F) for two expressions E and F (if one exists):

1. set k = 0 and $\theta_0 = \{\}$

2. if $E\theta_k = F\theta_k$ stop, and output θ_k .

- otherwise, find the leftmost subtree E' and F' where $E\theta_k$ and $F\theta_k$ differ
- if one of E' and F' is a variable X and the other any term t, then if X does **not** occur in t, then set $\theta_{k+1} = \theta_k \{X/t\}$, increment k to k+1, and return to step 2.
 - $\ast\,$ otherwise, they are not unifiable

3 Substitutions and unifications in CG

- We formalize the intuition about renaming categories via substitutions
- Our terms are categories.
 - the start category \boldsymbol{s} and the slashes are treated as symbols
 - the other basic categories are treated as variables
 - What are the mgus of
 - $* \{c_1/c_2, c_3\}$
 - $* \{c_1/c_2, c_1 \setminus c_2\}$
 - * { $c_1/(c_2 \setminus c_3), (s/c_5)/c_6$ }
- Let $G\theta = \{(w, c\theta) \mid (w, c) \in G\}$ be the result of applying θ to each lexical category

Theorem 3. If $G_1 \theta \subseteq G_2$ for any grammars with the same start category s, then $[\![s]\!]_{G_1} \subseteq [\![s]\!]_{G_2}$.

Proof. Consider any derivation tree of G_1 with root s. Applying any substitution to the categories in this tree results in a derivation tree of G_2 with root s and the same yield.

4 Elasticity

- Consider the following sets:
 - 1. $\mathbb{N} = \{0, 1, 2, \ldots\}$, the set of natural numbers
 - 2. \mathbb{E} , the set of finite subsets of even numbers
 - 3. \mathbb{O} , the set of finite subsets of odd numbers
- It is easy to think of a learner for the class $\mathcal{L}_1 = \{\mathbb{N}\} \cup \mathbb{E} \cup \mathbb{O}$

- if you see e and o, then guess $\mathbb N,$ else guess exactly what you have seen
- The set $\mathcal{L}_2 = \{L_1 \cup L_2 \mid L_1, L_2 \in \mathcal{L}\}$ is not identifiable
 - it contains all finite subsets of \mathbb{N} , together with \mathbb{N}
 - seeing e and o together does not indicate that you should generalize

Definition 4.1. A class \mathcal{L} has a **limit point** L iff there are languages $L_0, L_1, \ldots \in \mathcal{L}$ such that

$$L_0 \subset L_1 \subset L_2 \cdots$$

and $L \in \mathcal{L}$ is such that

$$L = \bigcup_{n \in \mathbb{N}} L_n$$

• \mathcal{L}_2 has a limit point \mathbb{N} , witness

$$\{0\} \subset \{0,1\} \subset \{0,1,2\} \subset \cdots$$

• but \mathcal{L}_1 has no limit point

Theorem 4 (Kanazawa, 1998). If \mathcal{L} has a limit point, it is not identifiable.

Proof. Towards a contradiction, assume that ϕ identifies \mathcal{L} , which has limit point L. Then there must be a locking sequence t for ϕ and L. Since t is finite and $L = \bigcup_{n \in \mathbb{N}} L_n$, there must be some L_i which contains all of t. Then on any text for L_i which begins with t, ϕ converges instead on L, thus failing to identify L_i .

- Why do we care about unions of languages?
 - German \cup English is a rough approximation of my children's mind
 - Note: we are usually comfortable saying High-class English∪Colloquial English = English; what's the difference?
- *Code-switching* suggests that multilingualism is more than just language *union*
 - but it seems a reasonable first approximation

Definition 4.2. A class \mathcal{L} has **infinite elasticity** iff there is a sequence of sentences s_0, s_1, \ldots and a sequence of languages L_0, L_1, \ldots in \mathcal{L} such that for all $n \geq 0$:

- $s_n \notin L_n$, and
- $\{s_0,\ldots,s_n\}\subseteq L_{n+1}$

A class has **finite elasticity** iff it does not have infinite elasticity.

• \mathcal{L}_1 has infinite elasticity (as does \mathcal{L}_2):

Theorem 5 (Wright, 1989). If \mathcal{L} has finite elasticity, it is identifiable.

Proof. Let \mathcal{L} have finite elasticity. Assume some sort of ordering on the sentences of each language (e.g. alphabetical). We show that each $L \in \mathcal{L}$ has a distinguished set in Angluin's sense. Let $L \in \mathcal{L}$ be arbitrary; here is its distinguished set:

$$D_L = \{ w \mid \exists L_i \in \mathcal{L}. w \text{ is least in } L - L_i \}$$

Note that if $L_i \supset L$, then $L - L_i = \emptyset$, and so supersets don't contribute to D_L . Now we show that D_L has the desired properties.

- if $D_L \subseteq L'$ then $L' \not\subseteq L$: Let $L' \in \mathcal{L}$ st $D_L \subseteq L'$. Then the least element in L but not L' cannot exist, and so $L' \supset L$.
- D_L is finite: Now suppose D_L is infinite (for a contradiction). Then for any n > 0, some element of D_L is longer than n. Consider some $s_0 \in D_L$, and some language $L_0 \in \mathcal{L}$ such that s_0 is least in $L - L_0$. There must also be some other language L_1 such that $L - L_1 \neq \emptyset$ and $s_0 \in L_1$; otherwise s_0 would be the (assumed non-existent) longest string in D_L . Thus for every $s_i \in D_L$, there is a language $L_{i+1} \in \mathcal{L}$ such that $L - L_i \neq \emptyset$ and $\{s_0, \ldots, s_i\} \subseteq L_{i+1}$. But then there is an infinite sequence of sentences s_0, s_1, \ldots and languages L_0, L_1, \ldots witnessing the infinite elasticity of \mathcal{L} .

Theorem 6 (Wright, 1989; Motoki, Shinohara and Wright, 1989; Kanazawa, 1998). If \mathcal{L}_1 and \mathcal{L}_2 have finite elasticity, then so does $\{L_1 \cup L_2 \mid L_1 \in \mathcal{L}_1 \text{ and } L_1 \in \mathcal{L}_1\}$.

5 Rigid CGs have finite elasticity

Kanazawa [1998] shows that a particular subclass of CGs has finite elasticity.

Definition 5.1. (Rigidity) A grammar is **rigid** iff there are no two distinct lexical items with the same string component.

- Derivation trees are written with leaves labeled with strings, and with internal nodes labeled with categories
 - every leaf must be immediately dominated by a unary branching node, labeled with its category.
 - every other internal node must be binary branching, and be licensed by either the FA or the BA rule.
- *f-structures* are binary branching trees with strings at the leaves and either a right arrow or a left arrow at the internal nodes.
- To go from a derivation tree to a f-structure,
 - 1. erase the unary branching nodes, and
 - 2. for each binary branching node, replace its label with an arrow pointing to the slash-category
- $\mathcal{F}(G)$ is the set of f-structures of derivations of s in G
- \mathcal{G}_r is the set of rigid grammars over some particular vocabulary V. We assume they share a common start category, s.
 - $-\mathcal{F}_r$ is the set $\{\mathcal{F}(G) \mid G \in \mathcal{G}_r\}$
 - $-\mathcal{L}_r$ is the set $\{ \llbracket s \rrbracket_G \mid G \in \mathcal{G}_r \}$

Theorem 7 (Kanazawa, 1998). \mathcal{F}_r has finite elasticity.

A learner for \mathcal{F}_r on input $t_i = \{F_1, \ldots, F_i\}$

1.

- (a) assign s to the root of each
- (b) assign unique basic categories to each argument node
- (c) determine the categories of the functor nodes
- 2. Collect the lexical categories to obtain a grammar $GF(t_i)$
- 3. Unify all the different categories assigned to each individual word to obtain a rigid grammar $RG(t_i)$