Learnability

Greg Kobele

Summer Semester, 2024

1 Categorial grammar

- Expressions are pairs of strings and their categories
- categories have a regular structure that indicates their distribution, and their combinatory options
- Categories Cat are an infinite set, constructed out of a finite set of basic categories, BASCAT in the following way: for α, β arbitrary categories, so too are the following:

$$
\begin{aligned}
& -\alpha / \beta \\
& -\alpha \backslash \beta
\end{aligned}
$$

- Rules are left and right function application:

$$
\begin{align*}
(u, \alpha / \beta)+(v, \beta) & \mapsto(u v, \alpha) \tag{FA}\\
(u, \beta)+(v, \beta \backslash \alpha) & \mapsto(u v, \alpha) \tag{BA}
\end{align*}
$$

- Each type can be thought as denoting a set (here of strings).
- associate each basic category with a finite set of strings
- then we can compositionally define the denotation of any category:

$$
\begin{aligned}
& \llbracket \alpha / \beta \rrbracket=\{v \mid \forall u \in \llbracket \beta \rrbracket, u v \in \llbracket \alpha \rrbracket\} \\
& \llbracket \beta \backslash \alpha \rrbracket=\{u \mid \forall v \in \llbracket \beta \rrbracket, u v \in \llbracket \alpha \rrbracket\}
\end{aligned}
$$

- We can extend this to non-empty sequences of categories using concatenation:

$$
\llbracket \alpha \cdot \beta \rrbracket=\{u v \mid u \in \alpha \wedge v \in \beta\}
$$

- Now we can see that the rules of categorial grammar are sound; e.g. if a string w is in the denotation of $\beta \cdot \beta \backslash \alpha$ then it is also in the denotation of α
Theorem 1. For all $\alpha, \beta \in C A T, \llbracket \alpha / \beta \cdot \beta \rrbracket \subseteq \llbracket a l p h a \rrbracket$.
Proof. let $w \in \llbracket \alpha / \beta \cdot \beta \rrbracket$. Then there are strings $u \in \llbracket \alpha / \beta \rrbracket$ and $v \in \llbracket \beta \rrbracket$ such that $w=u v$. By the definition of $\llbracket \cdot / \cdot \rrbracket$, as $v \in \llbracket \beta \rrbracket, w \in \llbracket \alpha \rrbracket$.
Theorem 2. For all $\alpha, \beta \in C A T, \llbracket \beta \cdot \beta \backslash \alpha \rrbracket \subseteq \llbracket a l p h a \rrbracket$.
Proof. The proof is similar.
- A categorial lexicon is a finite assignment of types to strings. For example:

string	type
the	d / n
boy	n
girl	n
happy	n / n
laughs	$d \backslash s$
loudly	$(d \backslash s) \backslash(d \backslash s)$
praises	$f c(d \backslash s) d$

- We can understand this as assigning 'extra' strings to the denotation of certain categories. This is why the previous theorems only talk about containment (not identity).
- A grammar is completely determined by a lexicon and the basic category for sentences (usually s), as the grammatical functions are assumed to be constant.
- The language of a categorial grammar is the set of all derivable sentences of its basic category
- The name of categories is only important in that we restrict who can combine with whom.
- if we replaced every n with a q in the lexicon, we would still derive the same sentences in the same way.
- We could even rename every category, without changing things, as long as we didn't accidentally give the same name to two (previously) different categories.

2 Substitutions and unification

- A (first-order) term is built out of function symbols each with a particular arity f_{1}, \ldots, f_{k} and constant symbols a_{1}, \ldots, a_{j}, together with variables for constants (X,Y,Z)
- $g(g(a)), f(a, X), f(g(X), f(Y, g(g(X))))$
- a term without variables is called ground
- each term can be viewed as a tree
- The head of a term is its left-most symbol, i.e. its root
- the subterm beginning with a particular symbol is the tree rooted at that symbol
- Two terms unify with one another iff there is a way to replace variables with terms that makes them identical; this is called a substitution
- to unify $\operatorname{man}(X)$ with man (socrates), we substitute the variable X with the term socrates; this can be written $\{X /$ socrates $\}$, or [$X \mapsto$ socrates]
- A substitution can replace multiple (different) variables with terms simultaneously
$-\operatorname{Let} \theta=\{X / \mathbf{s}(Y), Y / \mathbf{z}\}$, then $\operatorname{sum}(X, Y, X) \theta=\operatorname{sum}(\mathbf{s}(Y), \mathbf{z}, \mathbf{s}(Y))$
- substitutions can be composed: $A(\theta \rho)=(A \theta) \rho$
- the composed substitution must

1. on $X \in \operatorname{dom}(\theta)$, replace this with $(X \theta) \rho$
2. on $Y \in \operatorname{dom}(\rho)-\operatorname{dom}(\theta)$, replace this with $X \rho$
$-\left\{X_{1} / \mathrm{s}\left(Y_{1}, X_{2}\right), X_{2} / t\right\}\left\{Y_{1} / u, X_{2} / v\right\}:=\left\{X_{1} / \mathrm{s}(u, v), X_{2} / t, Y_{1} / u\right\}$

- unification is the problem of finding a substitution that makes two expressions identical
- There is a simple algorithm to find a most general unifier $\operatorname{mgu}(E, F)$ for two expressions E and F (if one exists):

1. set $k=0$ and $\theta_{0}=\{ \}$
2. if $E \theta_{k}=F \theta_{k}$ stop, and output θ_{k}.

- otherwise, find the leftmost subtree E^{\prime} and F^{\prime} where $E \theta_{k}$ and $F \theta_{k}$ differ
- if one of E^{\prime} and F^{\prime} is a variable X and the other any term t, then if X does not occur in t, then set $\theta_{k+1}=\theta_{k}\{X / t\}$, increment k to $k+1$, and return to step 2 .
* otherwise, they are not unifiable

3 Substitutions and unifications in CG

- We formalize the intuition about renaming categories via substitutions
- Our terms are categories.
- the start category s and the slashes are treated as symbols
- the other basic categories are treated as variables
- What are the mgus of
* $\left\{c_{1} / c_{2}, c_{3}\right\}$
* $\left\{c_{1} / c_{2}, c_{1} \backslash c_{2}\right\}$
* $\left\{c_{1} /\left(c_{2} \backslash c_{3}\right),\left(\mathrm{s} / c_{5}\right) / c_{6}\right\}$
- Let $G \theta=\{(w, c \theta) \mid(w, c) \in G\}$ be the result of applying θ to each lexical category

Theorem 3. If $G_{1} \theta \subseteq G_{2}$ for any grammars with the same start category s, then $\llbracket s \rrbracket_{G_{1}} \subseteq \llbracket s \rrbracket_{G_{2}}$.

Proof. Consider any derivation tree of G_{1} with root s. Applying any substitution to the categories in this tree results in a derivation tree of G_{2} with root s and the same yield.

4 Elasticity

- Consider the following sets:

1. $\mathbb{N}=\{0,1,2, \ldots\}$, the set of natural numbers
2. \mathbb{E}, the set of finite subsets of even numbers
3. \mathbb{O}, the set of finite subsets of odd numbers

- It is easy to think of a learner for the class $\mathcal{L}_{1}=\{\mathbb{N}\} \cup \mathbb{E} \cup \mathbb{O}$
- if you see e and o, then guess \mathbb{N}, else guess exactly what you have seen
- The set $\mathcal{L}_{2}=\left\{L_{1} \cup L_{2} \mid L_{1}, L_{2} \in \mathcal{L}\right\}$ is not identifiable
- it contains all finite subsets of \mathbb{N}, together with \mathbb{N}
- seeing e and o together does not indicate that you should generalize

Definition 4.1. A class \mathcal{L} has a limit point L iff there are languages $L_{0}, L_{1}, \ldots \in \mathcal{L}$ such that

$$
L_{0} \subset L_{1} \subset L_{2} \cdots
$$

and $L \in \mathcal{L}$ is such that

$$
L=\bigcup_{n \in \mathbb{N}} L_{n}
$$

- \mathcal{L}_{2} has a limit point \mathbb{N}, witness

$$
\{0\} \subset\{0,1\} \subset\{0,1,2\} \subset \cdots
$$

- but \mathcal{L}_{1} has no limit point

Theorem 4 (Kanazawa, 1998). If \mathcal{L} has a limit point, it is not identifiable.
Proof. Towards a contradiction, assume that ϕ identifies \mathcal{L}, which has limit point L. Then there must be a locking sequence t for ϕ and L. Since t is finite and $L=\bigcup_{n \in \mathbb{N}} L_{n}$, there must be some L_{i} which contains all of t. Then on any text for L_{i} which begins with t, ϕ converges instead on L, thus failing to identify L_{i}.

- Why do we care about unions of languages?
- German \cup English is a rough approximation of my children's mind
- Note: we are usually comfortable saying High-class English \cup Colloquial English $=$ English; what's the difference?
- Code-switching suggests that multilingualism is more than just language union
- but it seems a reasonable first approximation

Definition 4.2. A class \mathcal{L} has infinite elasticity iff there is a sequence of sentences s_{0}, s_{1}, \ldots and a sequence of languages L_{0}, L_{1}, \ldots in \mathcal{L} such that for all $n \geq 0$:

- $s_{n} \notin L_{n}$, and
- $\left\{s_{0}, \ldots, s_{n}\right\} \subseteq L_{n+1}$

A class has finite elasticity iff it does not have infinite elasticity.

- \mathcal{L}_{1} has infinite elasticity (as does \mathcal{L}_{2}):

$$
\begin{array}{rrrrr}
0 & 2 & 4 & 6 & \ldots \\
\emptyset & \{0\} & \{0,2\} & \{0,2,4\} & \ldots
\end{array}
$$

Theorem 5 (Wright, 1989). If \mathcal{L} has finite elasticity, it is identifiable.
Proof. Let \mathcal{L} have finite elasticity. Assume some sort of ordering on the sentences of each language (e.g. alphabetical). We show that each $L \in \mathcal{L}$ has a distinguished set in Angluin's sense. Let $L \in \mathcal{L}$ be arbitrary; here is its distinguished set:

$$
D_{L}=\left\{w \mid \exists L_{i} \in \mathcal{L} . w \text { is least in } L-L_{i}\right\}
$$

Note that if $L_{i} \supset L$, then $L-L_{i}=\emptyset$, and so supersets don't contribute to D_{L}. Now we show that D_{L} has the desired properties.
if $D_{L} \subseteq L^{\prime}$ then $L^{\prime} \nsubseteq L$: Let $L^{\prime} \in \mathcal{L}$ st $D_{L} \subseteq L^{\prime}$. Then the least element in L but not L^{\prime} cannot exist, and so $L^{\prime} \supset L$.
D_{L} is finite: Now suppose D_{L} is infinite (for a contradiction). Then for any $n>0$, some element of D_{L} is longer than n. Consider some $s_{0} \in D_{L}$, and some language $L_{0} \in \mathcal{L}$ such that s_{0} is least in $L-L_{0}$. There must also be some other language L_{1} such that $L-L_{1} \neq \emptyset$ and $s_{0} \in L_{1}$; otherwise s_{0} would be the (assumed non-existent) longest string in D_{L}. Thus for every $s_{i} \in D_{L}$, there is a language $L_{i+1} \in \mathcal{L}$ such that $L-L_{i} \neq \emptyset$ and $\left\{s_{0}, \ldots, s_{i}\right\} \subseteq L_{i+1}$. But then there is an infinite sequence of sentences s_{0}, s_{1}, \ldots and languages L_{0}, L_{1}, \ldots witnessing the infinite elasticity of \mathcal{L}.

Theorem 6 (Wright, 1989; Motoki, Shinohara and Wright, 1989; Kanazawa, 1998). If \mathcal{L}_{1} and \mathcal{L}_{2} have finite elasticity, then so does $\left\{L_{1} \cup L_{2} \mid L_{1} \in\right.$ \mathcal{L}_{1} and $\left.L_{1} \in \mathcal{L}_{1}\right\}$.

5 Rigid CGs have finite elasticity

Kanazawa [1998] shows that a particular subclass of CGs has finite elasticity.
Definition 5.1. (Rigidity) A grammar is rigid iff there are no two distinct lexical items with the same string component.

- Derivation trees are written with leaves labeled with strings, and with internal nodes labeled with categories
- every leaf must be immediately dominated by a unary branching node, labeled with its category.
- every other internal node must be binary branching, and be licensed by either the FA or the BA rule.
- f-structures are binary branching trees with strings at the leaves and either a right arrow or a left arrow at the internal nodes.
- To go from a derivation tree to a f-structure,

1. erase the unary branching nodes, and
2. for each binary branching node, replace its label with an arrow pointing to the slash-category

- $\mathcal{F}(G)$ is the set of f -structures of derivations of s in G
- \mathcal{G}_{r} is the set of rigid grammars over some particular vocabulary V. We assume they share a common start category, s.
- \mathcal{F}_{r} is the set $\left\{\mathcal{F}(G) \mid G \in \mathcal{G}_{r}\right\}$
$-\mathcal{L}_{r}$ is the set $\left\{\llbracket s \rrbracket_{G} \mid G \in \mathcal{G}_{r}\right\}$
Theorem 7 (Kanazawa, 1998). \mathcal{F}_{r} has finite elasticity.
A learner for \mathcal{F}_{r} on input $t_{i}=\left\{F_{1}, \ldots, F_{i}\right\}$

1.

(a) assign s to the root of each
(b) assign unique basic categories to each argument node
(c) determine the categories of the functor nodes
2. Collect the lexical categories to obtain a grammar $G F\left(t_{i}\right)$
3. Unify all the different categories assigned to each individual word to obtain a rigid grammar $R G\left(t_{i}\right)$

