1 Approximate Correctness

- Two languages are ϵ-close under a distribution P iff $P\left(L_{1} \triangle L_{2}\right) \leq \epsilon$
$-w \in L_{1} \triangle L_{2}$ iff $w \in L_{1}-L_{2}$ or $w \in L_{2}-L_{1}$
- when H is the hypothesis, and T the target of learning, we call $P(H \triangle T)$ is also called the error of the hypothesis, and write error (H) (leaving T and P implicit)
- This means that the chances of randomly encountering a sentence that distinguishes the languages ($w \in L_{1} \triangle L_{2}$) is no greater than ϵ
- If your hypothesis is ϵ-close to the true language, you are approximately correct, in the sense that your chances of making an error are no greater than ϵ

2 Probably Correct

- It is always possible to collect an unrepresentative sample
- Even though getting all heads when flipping a fair coin 10 times is unlikely, it is still possible
* we expect it to happen $.5^{10} \times 100 \approx 0.1$ percent of the time; i.e. 1 time out of a thousand
- if the sample is actually unrepresentative, we will surely make a mistake
- There is no way of knowing whether we got an unrepresentative sample
- The larger the sample, the less likely it is to be unrepresentative
- This means that as your sample grows in size, you grow more confident that it is representative

3 Probably, Approximately Correct

- Assume a space of observables Ω, and a distribution P over these
- Given a concept $c \subseteq \Omega$, we write χ_{c} for the characteristic function of c

$$
\chi_{c}(\omega):= \begin{cases}1 & \text { if } x \in c \\ 0 & \text { if } x \notin c\end{cases}
$$

- We write $\mathrm{EX}(c, P)$ for a random source of elements of Ω, drawn according to P, and labeled according to χ_{c}
- so if sampling from Ω we draw $\omega_{1}, \omega_{2}, \omega_{3}$, EX returns $\left\langle\omega_{1}, \chi_{c}\left(\omega_{1}\right)\right\rangle,\left\langle\omega_{2}, \chi_{c}\left(\omega_{2}\right)\right\rangle,\left\langle\omega_{3}, \chi_{c}\left(\omega_{3}\right)\right\rangle$
- $C \subseteq \wp(\Omega)$ is PAC learnable iff
- $\forall c \in C$
$-\forall P: \Omega \rightarrow[0,1]$
$-\forall 0<\epsilon<\frac{1}{2}$ (margin of error - approximately)
- $\forall 0<\delta<\frac{1}{2}$ (confidence - probably)
there is some learner ϕ such that $\phi(\operatorname{EX}(c, P), \epsilon, \delta)=h$, where the probability that h is ϵ-close to c under P is at least $1-\delta$ (i.e. $\mathrm{P}(\operatorname{error}(\mathrm{h})$ $\leq \epsilon) \geq 1-\delta)$
- If $C=\bigcup_{n \in \mathbb{N}} C_{n}$, we say that C is learnable w.r.t. size or dimension n iff for all n, C_{n} is PAC learnable
- If there is a PAC learner ϕ that achieves the PAC success criterion $P(\operatorname{error}(h) \leq \epsilon) \geq 1-\delta$ for each C_{n} in time polynomial in $\left(\frac{1}{\epsilon}, \frac{1}{\delta}, n\right)$, then we say that C is efficiently PAC learnable.

3.1 Example: Monomials

- Consider concepts which can be described using some number of binary features
- A given concept might be underspecified for a particular feature
- A concept can then be given as a list of literals, where a literal for a feature f is either f if f should have a value of 1 , or $\overline{\mathrm{f}}$, if f should have a value of 0
- if the concept is underspecified for f, neither f nor $\overline{\mathrm{f}}$ appears
- An example: syl, $\overline{\text { cons, }}$ son is the concept of vowels
- There is a natural measure of size, namely, how many possible features there are.
- Our instance space is the set of sequences of 1 s and 0 s of length n
- Our learner begins with the (inconsistent) hypothesis: $x_{1} \wedge \overline{x_{1}} \wedge \ldots \wedge$ $x_{n} \wedge \overline{x_{n}}$, where x_{1} through x_{n} are the possible features
- on a positive input $i=b_{1} \cdots b_{n}$, remove literals that contradict the data
- if $b_{i}=1$, then remove $\overline{x_{i}}$ from the hypothesis
- if $b_{i}=0$, then remove x_{i} from the hypothesis
- Note that after one positive example the learners current hypothesis is consistent
- Let us now analyze the learner's error.
- the learner's hypothesis always denotes a subset of the actual concept
- so the learner will only disagree with the concept on positive examples
- this manifests itself as the learner having a literal in its hypothesis that shouldn't be there
- so the learner requires that feature f have a certain value, but actually it doesn't have to
- if the learner has such an erroneous literal f, it causes h to be wrong only on postive examples in which $f=0.1$
- We do not care how many of these there are, only how likely we are to see them. Thus we define

$$
\operatorname{bad}(f):=P\left(\left\{a: \chi_{c}(a)=1 \wedge f \text { is } 0 \text { in } a\right\}\right)
$$

- As every error of h is due to at least one literal, we have that the total error of h is no greater than the sum of the badness of each of its literals:

$$
\operatorname{error}(h) \leq \Sigma_{f \in h} \operatorname{bad}(f)
$$

[^0]- We want the error of h to be no larger than ϵ, which we can upper bound if $\Sigma_{f \in h} \operatorname{bad}(f) \leq \epsilon$. But there are only ever at most $2 n$ literals in a hypothesis.
- so as long as no $\operatorname{bad}(f)$ is greater than $\epsilon / 2 n$, we have that $\Sigma_{f \in h} \operatorname{bad}(f) \leq$ $2 n(\epsilon / 2 n)=\epsilon$
- A literal whose badness exceeds $\epsilon / 2 n$ is truly bad. We want to be confident that we do not have any of these.
- Consider a particular truly bad literal f.
- Because it is truly bad, the probability that it is removed after seeing a single example is $\operatorname{bad}(f) \geq \epsilon / 2 n$.
- Thus the probability of not removing it after m examples is at most $(1-\epsilon / 2 n)^{m}$
- And so the probability of there being some bad literal which is not removed after m examples is at most $2 n(1-\epsilon / 2 n)^{m}$.
- Now we want to see how large m should be to make $2 n(1-$ $\epsilon / 2 n)^{m} \leq \delta$.
* as $1-x \leq e^{-x}$, we can choose m so that $2 n e^{-m \epsilon / 2 n} \leq \delta$
* which yields $m \geq(2 n /$ epsilon $)(\ln (2 n)+\ln (1 / \delta))$
- Letting $n=4$, if we want to be 99% sure that our hypothesis is 99% right, we need to draw 17 examples
- Letting $n=8$, if we want to be 99% sure that our hypothesis is 99% right, we need to draw 45 examples

4 VC Dimension

Given $S \subseteq \Omega$, if

$$
\{L \cap S \mid c \in C\}=\wp(S)
$$

then S is shattered by C.

- The VC dimension of C is the size of the largest set shattered by C

$$
\mathrm{VC}(C)=\max \{|S| \mid S \text { is shattered by } C\}
$$

- A class is PAC learnable iff it has finite VC dimension

[^0]: ${ }^{1}$ If f is \mathbf{f}, then $f=0$ means that there is a 0 in the example. If f is $\overline{\mathbf{f}}$, then $f=0$ means that there is a 1 in the example.

