
Learnability 18.6.24

1 Approximate Correctness
• Two languages are ϵ-close under a distribution P iff P (L1 △ L2) ≤ ϵ

– w ∈ L1 △ L2 iff w ∈ L1 − L2 or w ∈ L2 − L1

– when H is the hypothesis, and T the target of learning, we call
P (H △ T ) is also called the error of the hypothesis, and write
error(H) (leaving T and P implicit)

• This means that the chances of randomly encountering a sentence that
distinguishes the languages (w ∈ L1 △ L2) is no greater than ϵ

• If your hypothesis is ϵ-close to the true language, you are approximately
correct, in the sense that your chances of making an error are no greater
than ϵ

2 Probably Correct
• It is always possible to collect an unrepresentative sample

– Even though getting all heads when flipping a fair coin 10 times
is unlikely, it is still possible

∗ we expect it to happen .510 × 100 ≈ 0.1 percent of the time;
i.e. 1 time out of a thousand

• if the sample is actually unrepresentative, we will surely make a mis-
take

• There is no way of knowing whether we got an unrepresentative sample

• The larger the sample, the less likely it is to be unrepresentative

• This means that as your sample grows in size, you grow more confident
that it is representative

3 Probably, Approximately Correct
• Assume a space of observables Ω, and a distribution P over these
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• Given a concept c ⊆ Ω, we write χc for the characteristic function of c

χc(ω) :=

{
1 if x ∈ c
0 if x /∈ c

• We write EX(c, P ) for a random source of elements of Ω, drawn ac-
cording to P , and labeled according to χc

– so if sampling from Ω we draw ω1, ω2, ω3, EX returns ⟨ω1, χc(ω1)⟩, ⟨ω2, χc(ω2)⟩, ⟨ω3, χc(ω3)⟩

• C ⊆ ℘(Ω) is PAC learnable iff

– ∀c ∈ C

– ∀P : Ω → [0, 1]

– ∀0 < ϵ < 1
2 (margin of error - approximately)

– ∀0 < δ < 1
2 (confidence - probably)

there is some learner ϕ such that ϕ(EX(c, P ), ϵ, δ) = h, where the
probability that h is ϵ-close to c under P is at least 1−δ (i.e. P(error(h)
≤ ϵ) ≥ 1 - δ)

• If C =
∪

n∈NCn, we say that C is learnable w.r.t. size or dimension n
iff for all n, Cn is PAC learnable

• If there is a PAC learner ϕ that achieves the PAC success criterion
P (error(h) ≤ ϵ) ≥ 1 − δ for each Cn in time polynomial in (1ϵ ,

1
δ , n),

then we say that C is efficiently PAC learnable.

3.1 Example: Monomials
• Consider concepts which can be described using some number of binary

features

– A given concept might be underspecified for a particular feature

• A concept can then be given as a list of literals, where a literal for a
feature f is either f if f should have a value of 1, or f, if f should
have a value of 0

– if the concept is underspecified for f , neither f nor f appears

• An example: syl, cons, son is the concept of vowels
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• There is a natural measure of size, namely, how many possible features
there are.

• Our instance space is the set of sequences of 1s and 0s of length n

• Our learner begins with the (inconsistent) hypothesis: x1 ∧ x1 ∧ . . . ∧
xn ∧ xn, where x1 through xn are the possible features

• on a positive input i = b1 · · · bn, remove literals that contradict the
data

– if bi = 1, then remove xi from the hypothesis
– if bi = 0, then remove xi from the hypothesis

• Note that after one positive example the learners current hypothesis
is consistent

• Let us now analyze the learner’s error.

– the learner’s hypothesis always denotes a subset of the actual
concept

– so the learner will only disagree with the concept on positive
examples

– this manifests itself as the learner having a literal in its hypothesis
that shouldn’t be there

– so the learner requires that feature f have a certain value, but
actually it doesn’t have to

– if the learner has such an erroneous literal f, it causes h to be
wrong only on postive examples in which f = 0.1

– We do not care how many of these there are, only how likely we
are to see them. Thus we define

bad(f) := P ({a : χc(a) = 1 ∧ f is 0 in a})

– As every error of h is due to at least one literal, we have that the
total error of h is no greater than the sum of the badness of each
of its literals:

error(h) ≤ Σf∈hbad(f)
1If f is f, then f = 0 means that there is a 0 in the example. If f is f, then f = 0

means that there is a 1 in the example.
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– We want the error of h to be no larger than ϵ, which we can
upper bound if Σf∈hbad(f) ≤ ϵ. But there are only ever at most
2n literals in a hypothesis.

– so as long as no bad(f) is greater than ϵ/2n, we have that Σf∈hbad(f) ≤
2n(ϵ/2n) = ϵ

– A literal whose badness exceeds ϵ/2n is truly bad. We want to
be confident that we do not have any of these.

– Consider a particular truly bad literal f.
– Because it is truly bad, the probability that it is removed after

seeing a single example is bad(f) ≥ ϵ/2n.
– Thus the probability of not removing it after m examples is at

most (1− ϵ/2n)m

– And so the probability of there being some bad literal which is
not removed after m examples is at most 2n(1− ϵ/2n)m.

– Now we want to see how large m should be to make 2n(1 −
ϵ/2n)m ≤ δ.

∗ as 1− x ≤ e−x, we can choose m so that 2ne−mϵ/2n ≤ δ

∗ which yields m ≥ (2n/epsilon)(ln(2n) + ln(1/δ))

• Letting n = 4, if we want to be 99% sure that our hypothesis is 99%
right, we need to draw 17 examples

• Letting n = 8, if we want to be 99% sure that our hypothesis is 99%
right, we need to draw 45 examples

4 VC Dimension
Given S ⊆ Ω, if

{L ∩ S | c ∈ C} = ℘(S)

then S is shattered by C.

• The VC dimension of C is the size of the largest set shattered by C

VC(C) = max{|S| | S is shattered by C}

• A class is PAC learnable iff it has finite VC dimension
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