Learnability 18.6.24

1 Approximate Correctness

Two languages are e-close under a distribution P iff P(Ly A Lg) <€
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— when H is the hypothesis, and T the target of learning, we call

P(H A'T) is also called the error of the hypothesis, and write
error(H) (leaving T and P implicit)

This means that the chances of randomly encountering a sentence that
distinguishes the languages (w € L1 A Ls) is no greater than e

If your hypothesis is e-close to the true language, you are approximately
correct, in the sense that your chances of making an error are no greater
than €

2 Probably Correct

It is always possible to collect an unrepresentative sample

— Even though getting all heads when flipping a fair coin 10 times
is unlikely, it is still possible

* we expect it to happen .5'0 x 100 ~ 0.1 percent of the time;
i.e. 1 time out of a thousand

if the sample is actually unrepresentative, we will surely make a mis-
take

There is no way of knowing whether we got an unrepresentative sample
The larger the sample, the less likely it is to be unrepresentative

This means that as your sample grows in size, you grow more confident
that it is representative

3 Probably, Approximately Correct

Assume a space of observables §2, and a distribution P over these



e Given a concept ¢ C §2, we write . for the characteristic function of ¢

(@) = 1 itzec

Xel@) = 0 ifxé¢c

o We write EX(c, P) for a random source of elements of 2, drawn ac-
cording to P, and labeled according to y.

— so if sampling from €2 we draw wy, we, w3, EX returns (w1, xc(w1)), (w2, Xc(w2)), (w3, xc(ws3))

o C C p(Q) is PAC learnable iff
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- VP:Q —[0,1]
— Y0 < € < L (margin of error - approximately)

2
- V0<d< % (confidence - probably)

there is some learner ¢ such that ¢(EX(c, P),e,d) = h, where the
probability that h is e-close to c under P is at least 1—9 (i.e. P(error(h)
<€) >1-9)

o If C = J,ery Cn, we say that C is learnable w.r.t. size or dimension n
iff for all n, C,, is PAC learnable

o If there is a PAC learner ¢ that achieves the PAC success criterion
P(error(h) <€) > 1 — ¢ for each C), in time polynomial in (%, %,n),
then we say that C is efficiently PAC learnable.

3.1 Example: Monomials

e Consider concepts which can be described using some number of binary
features

— A given concept might be underspecified for a particular feature

e A concept can then be given as a list of literals, where a literal for a
feature f is either f if f should have a value of 1, or £, if f should
have a value of 0

— if the concept is underspecified for f, neither £ nor f appears

e An example: syl,cons, son is the concept of vowels



e There is a natural measure of size, namely, how many possible features
there are.

e Our instance space is the set of sequences of 1s and Os of length n

e Our learner begins with the (inconsistent) hypothesis: z1 AZT A ... A
Ty A Ty, where x1 through x,, are the possible features

e on a positive input ¢ = by ---b,, remove literals that contradict the
data
— if b; = 1, then remove T; from the hypothesis
— if b; = 0, then remove z; from the hypothesis

o Note that after one positive example the learners current hypothesis
is consistent

e Let us now analyze the learner’s error.
— the learner’s hypothesis always denotes a subset of the actual

concept

— so the learner will only disagree with the concept on positive
examples

— this manifests itself as the learner having a literal in its hypothesis
that shouldn’t be there

— so the learner requires that feature f have a certain value, but
actually it doesn’t have to

— if the learner has such an erroneous literal f, it causes h to be
wrong only on postive examples in which f = 0.

— We do not care how many of these there are, only how likely we
are to see them. Thus we define

bad(f) := P({a: xc(a) =1A fis0in a})

— As every error of h is due to at least one literal, we have that the
total error of h is no greater than the sum of the badness of each
of its literals:

error(h) < ¥¢epbad(f)

'If f is £, then f = 0 means that there is a 0 in the example. If f is T, then f = 0
means that there is a 1 in the example.



— We want the error of A to be no larger than e, which we can
upper bound if ¥ cpbad(f) < e. But there are only ever at most
2n literals in a hypothesis.

— so as long as no bad(f) is greater than €/2n, we have that X scpbad(f) <
2n(e/2n) =€

— A literal whose badness exceeds €/2n is truly bad. We want to
be confident that we do not have any of these.

— Consider a particular truly bad literal f.

— Because it is truly bad, the probability that it is removed after
seeing a single example is bad(f) > €/2n.

— Thus the probability of not removing it after m examples is at
most (1 —e/2n)™
— And so the probability of there being some bad literal which is
not removed after m examples is at most 2n(1 —€/2n)™.
— Now we want to see how large m should be to make 2n(1 —
€/2n)™ < 4.
x as 1 —x < e *, we can choose m so that 2ne~me/2n <4
* which yields m > (2n/epsilon)(In(2n) + In(1/4))

T

o Letting n = 4, if we want to be 99% sure that our hypothesis is 99%
right, we need to draw 17 examples

o Letting n = 8, if we want to be 99% sure that our hypothesis is 99%
right, we need to draw 45 examples

4 VC Dimension

Given S C €, if
{LNS|ceC}=p(S)

then S is shattered by C.
e The VC dimension of C' is the size of the largest set shattered by C

VC(C) = max{|S| | S is shattered by C'}

¢ A class is PAC learnable iff it has finite VC dimension
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