Learnability

Greg Kobele

Summer Semester, 2024

1 Course Description

Greg Kobelegkobele@uni-leipzig.deOffice: GWZ 1511Office Hours: Tues 12:00-12:50Classroom: NSG S.215Tues 13:15-14:45https://home.uni-leipzig.de/gkobele/courses/2024.SS/Learnability

Table1: Brief Outline of Course TopicsGold LearningPAC LearningRegular languagesCG/MGs from treesSubregularityDistributional Learning

2 Identification (Gold learning)

- 1. languages are sets of expressions, expressions are elements of Σ^* , where Σ is a finite vocabulary
- 2. A (positive) text is an infinite sequence of expressions and/or pauses
 - a pause is #
 - T(i) is the expression at point i in T
 - T[i] is the prefix of T of length i
 - expressions occuring in a text T are denoted content(T)- $content(T) = \{e \mid \exists i.t_i = e \land e \neq \#\}$
- 3. A text T is for a language L iff L = content(T)
 - for every text T and $x \in content(T)$, there is some i s.t. T(i) = x
- 4. A **learner** is a (partial) function ϕ from *finite* sequences of expressions to grammars
- 5. Learner ϕ is **defined** on T iff $\phi(T[i])$ is defined for all i
- 6. Learner ϕ converges on T iff
 - (a) ϕ is defined on T, and
 - (b) for some $i, \phi(T[i]) = \phi(T[j])$ for all $j \ge i$

In this case, we define $\phi(T)$ to be $\phi(T[i])$, and say ϕ converges to $\phi(T[i])$

- 7. Learner ϕ identifies a text T iff
 - (a) ϕ converges on T
 - (b) and $L(\phi(T)) = content(T)$
- 8. A learner identifies a language L iff it identifies every text for L
- 9. A learner identifies a class of languages \mathcal{L} iff it identifies every $L \in \mathcal{L}$
 - A class of languages is identifiable iff some learner identifies it

2.1 First results

Theorem 1. The classes $\mathcal{L} = \emptyset$ and $\mathcal{L} = \{L\}$ are identifiable (for every r.e. lang L).

Theorem 2 (Gold, 1967). The class \mathcal{L}_{fin} of all finite languages is identifiable.

Proof. Assume some enumeration G_0, G_1, G_2, \ldots of the grammars for the finite languages. Define $\phi_e(T[i])$ to be the first grammar G s.t. L(G) = content(T[i]).

We show that ϕ_e identifies \mathcal{L}_{fin} . Let $L \in \mathcal{L}_{fin}$ be arbitrary, and let T be a text for L. Because L is finite, there will be some point i at which content(T[i]) = L. Then content(T[j]) = content(T[i]) for all $j \geq i$. As ϕ_e is defined extensionally, it converges on T. As it converges to a grammar for L, it identifies T. As T was arbitrary, it identifies L. As L was arbitrary, it identifies \mathcal{L}_{fin} .

- 10. This kind of learner is called an **identification-by-enumeration** learner.
- 11. We did not specify how to construct or more generally to interact with this enumeration.
 - one way: by explicitly manipulating grammars

 $\phi(T[i]) := \{S \to w | w \in content(T[i])\}$

Here the enumeration is only *implicit*

• A common slogan: Choose the simplest grammar compatible with the data

12. A learner ϕ is **self-monitoring** iff

- (a) on any text T, there is a unique i s.t. $\phi(T[i]) = \star$
- (b) on any text T, if $\phi(T[i]) = \star$, then for all j > i, $\phi(T[j]) = \phi(T[i+1])$

Theorem 3 (Freivald and Wiehagen, 1979). No self-monitoring learner identifies \mathcal{L}_{fin} .

Proof. Assume for a contradition that self-monitoring ϕ did identify \mathcal{L}_{fin} . Let $L \in \mathcal{L}_{fin}$ be arbitrary, and consider any text T where content(T) = L. Let i be the unique point in T where $\phi(T[i]) = \star$. Then by assumption $L(\phi(T[i+1])) = L(\phi(T[j]))$ for all j > i. Now let $w \notin L$, and consider the text T' = T[i+1]www... Then $\phi(T[i+1]) = \phi(T'[i+1])$ and thus $\phi(T) = \phi(T')$ but $content(T) \neq content(T')$, and so ϕ fails to identify either T or T'.

2.2 Formal Properties of Identification

- 13. let $SEQ := \{T[n] \mid T \text{ is a text and } n \in \mathbb{N}\}$ be the set of *finite* sequences of expressions (texts are *infinite* sequences of expressions). For $s, t \in SEQ$,
 - $s^{\frown}t$ is their concatenation
 - $s \subseteq t$ iff s is a prefix of t
- 14. $s \in SEQ$ is a **locking sequence** for learner ϕ and language L iff
 - (a) $content(s) \subseteq L$
 - (b) $L(\phi(s)) = L$, and
 - (c) for all $s' \in SEQ$ with $content(s') \subseteq L$, $\phi(s \cap s') = \phi(s)$

Theorem 4 (Blum and Blum, 1975). *if* ϕ *identifies* L*, then there is a locking sequence for* ϕ *and* L

Proof. For a contradiction, assume the theorem were false. Then ϕ identifies L, but there is no locking sequence. Spelling this out:

for every finite sequence $s \in SEQ$ with $content(s) \subseteq L$ and where $L(\phi(s)) = L$, there is another sequence $s' \in SEQ$ with $content(s') \subseteq L$, but where $\phi(s \cap s') \neq \phi(s)$.

But this will allow us to construct a text S for L which ϕ does not identify, establishing the contradiction.

Let T be a text for L. We define a set of finite sequences s_0, s_1, \ldots , each of which will be an initial segment of the desired S.

stage 0 $s_0 = \epsilon$

stage n+1 Given s_n , there are two cases.

case 1 $L(\phi(s_n)) \neq L$ Then let $s_{n+1} = s_n^{\frown} T(n)$. case 2 $L(\phi(s_n)) = L$ Then by our condition, there is some $s' \in SEQ$ with $content(s') \subseteq L$ with the property that $\phi(s_n^{\frown} s') \neq \phi(s_n)$. Let $s_{n+1} = s_n^{\frown} s'^{\frown} T(n)$.

Observe that for all i, s_i is a prefix of s_{i+1} . Furthermore, for each s_i , $content(s_i) \subseteq L$. We define the text $S = s_0(0) \ s_1(1) \ s_2(2) \cdots$ for L. This text S is essentially the upper bound of the finite sequences s_i . However, by design, ϕ does not converge on S.

Locking sequences are ubiquitous.

Corollary 4.1. Let ϕ identify L, and $t \in SEQ$ with $content(t) \subseteq L$. Then there is some $s \in SEQ$ such that t^{s} is a locking sequence for ϕ and L.

Proof. We use the same construction as in the previous theorem, except that $s_0 = t$.

Locking sequences allow us to show that certain classes are unidentifiable.

Theorem 5 (Gold 1967). No superfinite class of languages is identifiable.

Proof. Let \mathcal{L} contain all finite languages, and at least one infinite language, L_{∞} . Assume for a contradiction that *phi* identifies \mathcal{L} . Let *s* be a locking sequence for ϕ and L_{∞} . There is a text *T* for *content*(*s*) which begins with *s* (for example, *s* repeated *ad infinitum*). But then by the locking sequence theorem, $L(\phi(T)) = L_{\infty}$, whence ϕ doesn't identify *content*(*s*).

The classes of languages which are identifiable have a certain topological property.

Theorem 6 (Angluin 1980, Subset Theorem). \mathcal{L} is identifiable iff for every $L \in \mathcal{L}$ there is a finite $D_L \subseteq L$ such that for all other $L' \in \mathcal{L}$, if $D_L \subseteq L'$ then $L' \not\subset L$.

Proof. Let \mathcal{L} be given.

left-to-right Suppose ϕ identifies \mathcal{L} . For each $L \in \mathcal{L}$ choose a locking sequence s_L for ϕ on L. We will show that $D_L = content(s_L)$. Towards a contradiction, assume that there is some intervening $L' \in \mathcal{L}$ such that $content(s_L) \subseteq L' \subset L$. Let T be a text for this hypothesized L' beginning with s_L . Because s_L is a locking sequence for L, and because for every $j \geq |s_L|$, $T[j] = s_L^{\frown} t_j$ for some $t_j \in SEQ$ with $content(t_j) \subseteq L$, ϕ must converge to L on T, which means that ϕ doesn't identify T which is for L', and thus not L', and thus not \mathcal{L} . A contradiction.

right-to-left Assume that for every $L \in \mathcal{L}$ there is a finite $D_L \subseteq L$ such that for all other $L' \in \mathcal{L}$, if $D_L \subseteq L'$ then $L' \notin L$. We must show that some learner identifies \mathcal{L} . Assume some enumeration of grammars. We define a learner ϕ as follows:

For all $s \in SEQ$, $\phi(s)$ is the first grammar G in the enumeration for an $L \in \mathcal{L}$ with the property that

$$D_L \subseteq content(s) \subseteq L$$

Otherwise $\phi(s)$ is the first grammar in the enumeration.

Now we show that ϕ so defined actually identifies \mathcal{L} . Let $L \in \mathcal{L}$ be arbitrary, and let T be a text for L. Then for some $n, D_L \subseteq content(L[m]) \subseteq L$ for all $m \geq n$. Consider the first grammar G for L in the enumeration. Learner ϕ will not hypothesize G on T[k] for $k \geq n$ only if there is some earlier G' in the enumeration with $D_{L(G')} \subseteq T[k] \subseteq L(G')$. Assume such a G' exists. We show that at some point this G' no longer meets this condition, and thus ϕ must abandon it (and move closer to G). By hypothesis, $D_{L(G')} \subseteq T[k] \subseteq L$, whence by assumption of the theorem $L \not\subseteq L(G')$. Thus there is some $u \in L - L(G')$. As T is a text for L, u appears in T at some point j, at which point it no longer holds that $D_{L(G')} \subseteq T[j] \subseteq L(G')$ and so ϕ abandons its conjecture.