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Preface

Computational Learning Theory is one of the first tentative attempts to construct a
mathematical model of a cognitive process. It may be described as a macro-theory,
because it provides a framework for studying a variety of algorithmic processes such
as those currently in use for training artificial neural networks. There is every reason
to suppose that better versions of the model will be produced, but the current state
of the theory is sufficiently respectable to warrant a short introductory account, as
provided in this book. We concentrate on ‘probably approximately correct’ learning,
because this area is well-developed and appears to be fundamental for the general
theory.

The book is intended to introduce the main ideas at a level suitable for a wide range
of postgraduate students. It may also be useful for advanced undergraduate courses
in mathematics or computing science. We have tried to keep the prerequisites to
a minimum by including relevant background material from logic, probability, and
complexity theory. The first five chapters, in particular, are suitable for students with
a fairly modest mathematical background. The book should also be of interest to
research workers in theoretical computer science, mathematics, and neural computing.

The book has developed from a course of postgraduate lectures given by one of us
(NLB) at the London School of Economics in October-December 1990. In preparing
the lectures, the notes of a course given by Professor Lenny Pitt at the University of
Illinois in Summer 1990 were very helpful. We are happy to acknowledge the influence
of those notes on the content and organisation of the book. We are also grateful to
friends and colleagues for reading and commenting upon various drafts of the book.
In particular, we should like to thank Graham Brightwell and John Shawe-Taylor
for their advice, and Roger Astley of Cambridge University Press for his efficient
handling of the project.

London, September 1991.
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Notation

Throughout this book, we use Inz to denote the natural logarithm of z, and lgz to
denote the logarithm of z to base 2. For any real number z, [z] denotes the ceiling of
z, the least integer greater than or equal to z. Further, we use the standard notation
for intervals on the real line; for example, [0,1) is the set of all real numbers z such
that 0 < z < 1. For any finite set S, the cardinality of S will be denoted by |S|.
Algorithms are often presented in a ‘pseudo-code’ rather like the Pascal programming
language, and the commands used are fairly self-explanatory. The symbol O denotes
the end of an example, proof, or statement. Frequently used symbols are listed
below, together with page references and, where appropriate, brief descriptions of
their meaning.

) alphabet 2
R the set of real numbers 2
i set of strings of length n in elements of ¥ 2
Py set of non-empty finite strings in elements of ¥ 2
X example space 2
c concept 2
C concept space 3
H hypothesis space 3
h hypothesis 3
X sample 3
m length of sample 3
s training sample 3
t target concept 4
L learning algorithm 4
Uy, Uy, ... literals 9
\% or connective 13
A and connective 13

(u;) elementary boolean function 13
(¢) boolean function represented by formula ¢ 13
(¢V), (¢) V(¥)  disjunction of boolean functions 13



conjunction of boolean functions
disjunctive normal form

conjunctive normal form

monomials defined on {0,1}"

monomials on {0,1}" having at most k literals
disjunctions of small monomials
representation of H

set of states

state

hypothesis represented by w

weights

threshold

ray

probability distribution

error of h with respect to ¢

error of h (when target understood)
product probability distribution

set of training samples of length m for ¢
confidence parameter

accuracy parameter

sufficient sample length

set of hypotheses consistent with s

set of hypotheses with error at least €
space of decision lists based on K

term of decision list

O-notation

the complexity class NP

a problem

example size

hypothesis space graded by example size
worst-case running time of L

sample complexity of L on T

upper bound on sample complexity of L on T
space of clauses on {0,1}"

conjunctions of k clauses in C,

graded space of conjunctions of k clauses
graph

vertex-set of graph

edge-set of graph

graph-colouring

13
13
13
14
14
14
16
16
16
16
16
16
17
20
21
21
22
22
22
22
22
29
29
32
32
38
39
39
40
40
40
42
42
44
44
45
45
45
45
45



H,
UH,
H,,
UH,,
DNF,
DNF
P,

5 (x)
Ex
H|E

Iy
VCdim(H)
conv(S)

0

®(d,m)
(x,b)
erg(h)
ery(h)

XA

J

QO

R,
LE(p,m,s)
Gm

I'(z)
GE(p,m, s)
)

p

R}
Ri +v
Qﬂ

9y

Q
B,

training sample corresponding to graph

the quantity In(é~1)

size of representation w

instance of SUBCOVER or MINIMUM COVER

set of representations of size r

representation size

set of hypotheses with minimal representation size r
hypothesis space graded by representation size
hypotheses of H, with representation size r
doubly-graded hypothesis space

boolean functions on {0,1}", with DNF representation
graded space of all boolean functions

real perceptron on n inputs

number of classifications of x by H

examples in sample x

restriction of H to domain E

growth function of H

VC dimension of H

convex hull of S

the origin

training sample

observed error of h on s

observed error of h on x (when target understood)
characteristic function of A

interval union space

set of bad training samples

set of bad training/testing samples

tail of binomial distribution

swapping group

tail of binomial distribution
(-notation

graded real perceptron space
non-negative quadrant

translate of non-negative quadrant
space of n-dimensional quadrants
quadrant

quadrant space

space of n-dimensional boxes

45
91
56
57
99
59
59
59
65
65
67
67
12
73
73
73
73
74
77
78
80
86
86
87
87
88
88
90
91
91
92
97
102
105
105
106
106
106
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space of boxes

r-fold unions of n-dimensional boxes
n-dimensional box union space

r-fold unions of intervals

effective hypothesis space

boolean perceptron on n inputs

boolean perceptron with threshold 1
constant in incremental algorithm
incremental algorithm

weight vector for ©,, which realises ¢
separation constant in perceptron

number of invocations of incremental algorithm
set of nodes

set of arcs

directed graph

set of input nodes

output node

weight on arc

activation function

number of states mutually /-distinguishable by x
number of weights and thresholds

parallel linear threshold machine

graded hypothesis space of parallel machine

106
115
115
115
118
123
124
126
126
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128
131
131
131
131
131
131
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134
135
137
140



Chapter 1: Concepts, Hypotheses, Learning Algorithms

1.1 INTRODUCTION

There are many types of activity which are commonly known as ‘learning’. In this
book we shall study a mathematical model of one such process. This particular
model appears to be useful because it captures the essence of certain activities which
were formerly described only in vague terms, and it enables non-trivial mathematical
assertions to be proved.

M —— 0/1

Actual
W >~
example

Figure 1.1: Diagram of a framework for learning

example

The schematic diagram in Figure 1.1 depicts a general framework for our discussion
of ‘learning’. The circle W represents a ‘real world’ containing a set of objects which
we shall refer to as examples. The box P is a pre-processor, which takes an example
and converts it into a coded message, such as a string of bits. This coded version of
the example is then presented to M, a machine whose purpose is to recognise certain
examples. The output of M is a single bit, either 1 (if the example is recognised as
belonging to a certain set), or 0 (if not). The machine can be in one of many states.
For example, M might be in a state in which it will recognise examples of the letter
A, coded as a string of bits in which the 1’s correspond to the positions of black pixels
on a grid; other states of M might enable it to recognise examples of other letters.
The learning process we consider involves making changes to the state of M on the
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basis of examples presented to it, so that it achieves some desired classification. For
instance, we might be able to change the state of M in such a way that the more
positive and negative examples of the letter A that are presented, the better will M
recognise future examples of that letter.

1.2 CONCEPTS

In this section, we formalise the notion that a ‘concept’ can be described by a set of
examples. Let ¥ be a set, which we shall call the alphabet for describing examples.
In this book, ¥ will be either the boolean alphabet {0,1}, or the real alphabet R. We
denote the set of n-tuples of elements of ¥ by X" and the set of all non-empty finite
strings of elements of ¥ by ¥*.

Let X be a subset of ¥*. We define a concept, over the alphabet ¥, to be a function
c: X —{0,1}.

In some cases X will be the whole of ¥*; while in other cases X will be taken as X"
for one specific value of n, which will be clear from the context. Occasionally X will
be a proper subset of some X", and when this is so we shall make the point explicitly.

The set X will be referred to as the ezample space, and its members as ezamples. An
example y € X for which ¢(y) = 1 is known as a positive ezample, and an example
for which ¢(y) = 0 is known as a negative ezample. The union of the set of positive
examples and the set of negative examples is the domain of ¢. So, provided that the
domain is known, ¢ determines, and is determined by, its set of positive examples.
Sometimes it is helpful to think of a concept as a set in that way.

Example 1.2.1 Let ¥ = {0,1} and definep : £* — {0, 1} as follows: ify = y195... 9,

then
_ J 1, if an odd number of y;’s are 1;
py) =

0, otherwise.

This is known as the parity concept. The string 1101010 is a negative example of p,
and 001101 is a positive example. O

Example 1.2.2 The boolean concept palindrome is defined by taking the positive
examples to be just those strings which read the same backwards as forwards. O

Example 1.2.3 Let ¥ = R and define u : ¥* — {0,1} as follows:

[, iy 4. 4+y2 <,
wW(Hrysz---Yn) = {0, oth:erwise.

This concept is the n-dimensional unit ball. 0
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1.3 TRAINING AND LEARNING

There are two sets of concepts inherent in the framework for learning described by
Figure 1.1. First, there is the set of concepts derived from the real world which it is
proposed to recognise. This set might contain concepts like ‘the letter A’, ‘the letter
B’, ‘the letter C’, and so on, each of which can be coded to determine a set of positive
and negative examples. When a set of concepts is determined in this way, we shall
use the term concept space for it. The other set of concepts inherent in Figure 1.1 is
the set which the machine M is capable of recognising. We shall suppose that M can
assume various states, and that in a given state it will classify some inputs as positive
examples (output 1), and the rest as negative examples (output 0). Thus a state of
M determines a concept, which we may think of as a hypothesis. For this reason, the
set of all concepts which M determines will be referred to as its hypothesis space.

The aim of the learning process is to produce a hypothesis which, in some sense,
corresponds to the concept under consideration. The details of when and how this
might be done are the central concern of this book. Generally speaking, we are given
two sets of concepts, C' (the concept space) and H (the hypothesis space), and the
problem is to find, for each ¢ € C, some h € H which is a good approximation to c.
In realistic situations hypotheses are formed on the basis of certain information which
does not amount to an explicit definition of ¢. In our framework we shall assume that
this information is provided by a sequence of positive and negative examples of c.

If sufficient resources are available, we could build a very large machine and take
a very long time to provide it with a marvellous program which would ensure that
h = c or that h is as close an approximation to ¢ as we might wish. But in practice
there are constraints upon our resources, and we have to be content with a hypothesis
h which ‘probably’ represents ¢ ‘approximately’, in some sense to be defined.

Let X C ¥* be the example space, where as always ¥ is {0,1} or R. A sample of
length m is just a sequence of m examples, that is, an m-tuple x = (z,,23,...,2,)
in X™. The sequence may contain the same value more than once, although in most
applications there will be no loss in assuming that the examples are distinct. A
training sample s is an element of (X x {0,1})™, that is,

s = ((mlabl)) (x2ab2)a RN ) (zmabM))a

where the z; are examples and the b; are bits. We shall think of a training sample
as a sequence of examples, together with some additional information contained in
the associated sequence of bits. This additional information could be provided by a
‘teacher’, so that the label b; specifies whether z; is a positive or negative example
of some given concept. We shall insist that there are no contradictory labels, so that
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if z; = z; then b; = b;. This is equivalent to the assumption that s is a function,
defined by s(z;) = b; (1 < ¢ < m). We say that s is a training sample for the target
concept t if b; = t(z;), (1 < i < m). For example, the following is a training sample
for the ‘palindrome’ concept:

(0010,0), (1001001,1), (111,1), (010101,0), (1110111,1).

We can now be rather more specific about the nature of the learning process which
we propose to study. Suppose we are given a concept space C and a hypothesis space
H, over the same alphabet . A learning algorithm for (C, H), sometimes referred
to as a (C, H)-learning algorithm, is a procedure which accepts training samples for
functions in C and outputs corresponding hypotheses in H. Of course, in order to
qualify as an algorithm the procedure must be effective in some sense, and we shall
need to discuss this point in more detail in due course. If we ignore the problem
of effectiveness, a learning algorithm is simply a function L which assigns to any
training sample s for a target concept t € C a function h € H. We write h = L(s).

Note that the hypothesis L(s) is a function defined on the whole example space X,
whereas s is a function defined on the finite subset £ C X comprising the examples
in the sample (z,,z,...,Zm). A hypothesis h in H is said to be consistent with s,
or to agree with s, if h(z;) = b; for each 1 <7 < m. We do not, in general, make the
assumption that L(s) is consistent with s, but when this condition does hold for. all
s we shall say that L itself is consistent. In that case the function L(s) is simply an
extension of s, and the diagram in Figure 1.2 is commutative.

X
| TN
N
\\
~ L(s)
~
N
N
N
N
S a

E 5 — {0, 1}

Figure 1.2: Learning as extending a function

In general, not every extension of a training sample will be a valid generalisation
because the target concept is only partially defined by the sample. Furthermore, a
training sample may be unrepresentative or misleading. For instance, if, under a
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suitable encoding, the example space consists of all animals and the target concept
is ‘cat’, it could happen that a sample consists entirely of tail-less cats. In practice
we must expect that unrepresentative samples are unlikely and that the majority of
samples are sufficiently representative so that most extensions are reasonably valid.
We shall return to this point in Chapter 3, when we discuss the probabilistic model
of learning which is the main topic of this book.

1.4 LEARNING BY CONSTRUCTION

In this section and the next one we shall describe two very simple and very general
learning algorithms. As might be expected, the simplicity and generality of the
algorithms is offset by their impracticality in all but the most trivial situations.
Indeed, much of the rest of the book is devoted to the construction of algorithms
which offer provably more efficient methods of learning.

When the example space X is known, a target concept ¢ is determined by its set X+
of positive examples, and so one way of learning ¢ is to construct this set explicitly.
Specifically, we can begin with the empty set and run through the training sample
adding each positive example when and if it is presented. In more formal language,
suppose that a training sample s, of length m, for the target concept t is given, and

define L(s) as follows.

set h(z) = 0 for allz in X;
for i:= 1 to m do

if b; = 1 then set h(z;) = 1;
L(s):=h

In this case there are already some pertinent questions about how such a procedure
might be implemented, and whether it can reasonably be regarded as an algorithm,
especially if X is infinite. Also, we should have to explain exactly how to define
an appropriate hypothesis space, so that the hypotheses can be represented in some
suitable way.

If we set aside, for the moment, the problem of effectiveness, there remain some other
points which are worthy of note. Clearly, the output hypothesis L(s) is equal to the
target concept ¢ if and only if s contains all positive examples of ¢. Because s is a finite
sequence, this means that only concepts with a finite number of positive examples
can be learned with total success. For example, the ‘parity’ concept is defined over
the whole of {0,1}*, and so the algorithm can never complete the task of constructing
the set of positive examples. If we restrict ‘parity’ to strings of a fixed length n, then
the algorithm can succeed, but the number of positive examples is 2"~!, and so m
must be at least that large.
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The algorithm does have a couple of more pleasant properties. First, it is consistent,
in the sense of Section 1.3; that is, the output hypothesis L(s) classifies all the
examples occurring in s correctly. Secondly, it has the property that each component
of the training sample is presented just once, and is not referred to again thereafter.
This is a very strong version of what is usually referred to as the ‘on-line’ property. In
practice it means that the examples can be presented to the learner in turn, as they
occur, without the necessity of having a ‘memory’ which stores them for future use.
Formally, we shall say that a learning algorithm is a memoryless on-line algorithm if,
for any given training sample s, it produces a sequence of hypotheses hg, hy,..., hy,,
such that h;;, depends only on h; and the current labelled example (z;, b;).

1.5 LEARNING BY ENUMERATION

The following method of learning is certainly not a memoryless on-line algorithm. We
suppose that the hypothesis space H is countable, and that an explicit enumeration
of it 1s given:

H = {hW 5@ p® 3.

Suppose s is a training sample for a target concept t. The method is to compare each
hypothesis in turn with each component of s in turn, rejecting the hypothesis on the
first occasion that it disagrees with a labelled example. After rejecting a hypothesis,
the next one is tested in the same way. The process is stopped when a hypothesis is
found to agree with the entire training sample.

r:=1; i:= 1;

repeat

if R()(z;) # b;
then begin r:= r+l; i:= 1 end
else i:= i+l

until i = m+i;

L(s):= A"

If H contains a hypothesis which agrees with the target concept on the training
sample, then the algorithm will terminate when it finds the first such hypothesis.
Otherwise it will not terminate. If H is finite we can make a trivial modification so
that the algorithm terminates with a not found message when the entire hypoth-
esis space has been tested without success. But in practice we must avoid using
an unreasonably large hypothesis space: for example, if we try to test all possible
hypotheses & : {0,1}" — {0,1} we have a hypothesis space of size 2*" (Exercise 4).
These remarks indicate that, for this to be a practical method of learning, some re-
strictions must be imposed upon the the hypothesis space H and, in particular, on
its relationship with the concept space C.
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This last consideration, concerning the relationship of the hypothesis space to the
concept space, is pertinent for any learning algorithm, and leads to the notion of
‘inductive bias’. This is the assumption that the learner has some preconceived idea
about what method of classification the teacher is using; that is, the learner knows,
or has some indication of, the concept space. The simplest way to model such an
assumption is to insist that H = C, and in that case we shall speak of a learning
algorithm for H, rather than for (H,H). In the next few chapters almost all the
algorithms discussed will be of this type.

FURTHER REMARKS

The origins of Computational Learning Theory are fairly recent. For many years
there have been studies of Machine Learning (as in Michalski et al. (1983)), Pattern
Recognition (see Duda and Hart (1973)), and Inductive Inference (see Angluin and
Smith (1983)), but they do not cover exactly the kind of problem discussed in this
book. The foundation of Computational Learning Theory as described in this book
may be credited to L.G. Valiant (1984a, 1984b). Since 1988 there have been annual
ACM meetings on the subject, known as COLT’88 and so on. The proceedings of
these meetings provide a comprehensive review of current progress in the field, and
many of the papers are cited in the list of references at the end of the book.

The idea of inductive bias, in the sense of using a restricted hypothesis space for
learning, is common in research in Artificial Intelligence: see, for example, Utgoff
(1986). A discussion relevant to the learning models described in this book can be
found in Haussler (1987, 1988).

There are many variants of the process of ‘supervised learning from examples’ which
is the main topic of this book, and a number of them have been investigated by
mathematicians and computer scientists in recent years. In particular, Angluin has
studied models which allow the ‘learner’ to ask questions, rather than simply accept
the examples provided by the ‘teacher’; see Angluin (1988), for example. One type
of question is the membership query: Is y a positive example of the target concept?
Another is the equivalence query, where the learner asks if the current hypothesis is
the correct one, and if the answer is no, a counterexample is returned.

Finally, it is worth remarking that, in this new and rapidly-developing field of Com-
putational Learning Theory, the notation and terminology is not yet standardised.
We hope that our choices are not too bizarre, but certainly they do not coincide with
every other publication in this field.



8  Concepts, Hypotheses, Learning Algorithms

EXERCISES
1. What is the number of positive examples of the palindrome concept, when the

example space is {0,1}"?

2. Let w be the concept defined on {0,1}" by w(y) = 1 if and only if y contains at
most two 1’s. Show that the number of positive examples of w is a quadratic function
of n.

3. Suppose that, in a finite ‘learning by enumeration’ situation, we are sure that the
hypotheses are enumerated in such a way that the one we want is in the first half.
If we can check one million hypotheses per second, and the example space is {0,1}°,
how long will it take, in the worst case?

4. Given that the number of subsets of a set with IV elements is 2V, show that the
number of functions from {0,1}" to {0,1} is 22".



Chapter 2: Boolean Formulae and Representations

2.1 MONOMIAL CONCEPTS

One of the simplest of boolean concept spaces is the set of monomial concepts. In
Section 2.3 we shall describe a general framework which encompasses many concept
spaces, including the monomials, but for the time being a simple-minded approach
will be sufficient.

What is a chair? One attempt to describe the concept ‘chair’ would be to make a
list of properties, and to decide which of them must be attributes of a chair, which
of them must not be, and which of them are irrelevant. A very primitive list might
be something like the following.

Four legs — yes

Tail — no

Flat seat — yes

Coloured brown - irrelevant
Alive - no

This list defines a function chair : {0,1}* — {0,1} as follows.
: 1, fy,=1,y9,=0,y3=1,y5s = 0;

chair(y1yaysyays) = {0: oti’lllzrwis,efl2 ve Tl
It is conventional to represent the function chair as (u;%,usts), indicating that the
value of the function is 1 if and only if the first bit is 1, the second is 0, the third
is 1, and the fifth is 0. The fourth bit is irrelevant. The expressions u,,u#, and so
on are known as literals, the expression u,u,usts is a monomial formula, and the
angled brackets are simply a way of emphasising that the formula enclosed within
the brackets represents a function. This notation will be formalised in Section 2.3.

Another way of representing monomials is by means of a ‘machine’ whose main com-
ponents are four-way switches, with positions labelled a, b, ¢,d. The input to a switch
is a single bit, 0 or 1, and the output depends upon the position of the switch ac-
cording to the following table.
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Position Input =0 Input =1

a 0 1
b 1 0
c 1 1
d 0 0

The machine in Figure 2.1 receives an input y = y,Y2¥y3y4ys, and each bit y; is fed
into a switch which operates according to the table above. The outputs from the five
switches are then sent to a ‘multiple AND unit’, which outputs 1 if and only if all
five of them are 1. For example, when the machine in the state defined by the switch
positions abacb it computes the function chair defined above.

Y2 i

0/1

R .

Figure 2.1: A machine which can represent monomials in five variables

The machine is capable of representing any monomial function of five variables, by
choosing an appropriate setting of the switches. When the ith switch is in position a,
this corresponds to the presence of the term u; in the monomial; position b corresponds
to the presence of %;, and position ¢ to absence of both terms. Position d is included
for completeness; it corresponds to the situation where both u; and %; are present.
When any one of the switches is in position d the corresponding function is identically
zero. Strictly speaking the identically-zero function is not a monomial, but it is often
convenient to include it.
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2.2 A LEARNING ALGORITHM FOR MONOMIALS

There is a very simple learning algorithm for monomials. We shall describe how it
works in terms of the ‘formula’ representation; there is a parallel description in terms
of the machine.

The algorithm operates sequentially, using the following basic idea. Suppose the
target monomial is the simplified description of the function chair, that is, (u,usuats),
and the current hypothesis is b = (u,%usu,ts). If the labelled example (10100,1)
is presented, this provides the new information that the target monomial is satisfied
when y, = 0; that is, there is a positive example which is not brown. Thus our
hypothesis is wrong because it contains the literal u,, which indicates that all positive
examples should be brown (y, = 1). Clearly the literal u4 must be deleted.

This idea is the basis for a simple algorithm due to Valiant (1984b). We begin with
no information, so we must assume that every one of the 2n literals u,,%,,..., U, U,
can occur in the target monomial. Each positive example y = y, ...y, enables us
to discard those literals u; for which y; = 0, and those literals %; for which y; = 1.
Suppose we are given a training sample s containing the labelled examples (z;, b;)
(1 £ ¢ < m), where each example z; is an n-tuple of bits (z;);. If we let hy denote
the monomial formula containing the literals in the set U, the algorithm can be
expressed as follows.

set U = {u,4y,...,up,Upn};
for i:= 1 to m do
if b, =1 then
for j:= 1 to n do
if (z;); =1 then delete u; if present in U
else delete u; if present in U;

L(s):= hy

We call this algorithm the standard learning algorithm for monomials. Note that it
is a memoryless on-line algorithm, in the sense described in Section 1.4.

Example 2.2.1 Suppose that n = 7, the target concept is (u,%,usus), and the
training sample is
(1001111,1), (0110110,0), (1011101,1), (1011001,1).

The initial hypothesis is (u, 4, . .. u7u;), which represents the identically-zero function,
and (as we have already remarked) is conveniently regarded as a ‘monomial’ in this
context. The sequence of hypotheses generated by the algorithm is:

(U UpUgUgUsUgUy), (UilaliaUsUstils), (U3UsUqUsUs), (UiliaUsUz).
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So in this case the training sample is good enough to ensure total success. Note that
the negative example is not used. O

There is an equivalent description of the computation by the sequence of states of
a ‘machine’ like the one in Figure 2.1, with seven switches instead of five. In this
example the initial state is ddddddd, and the subsequent ones are abbaaaa, abbaaaa,
abcaaca, abcacca.

It is clear that, if the training sample contains all positive examples of the target
concept, then the algorithm will output the correct answer. But this condition is
not necessary for success, as Example 2.2.1 shows. Each positive example which
provides new information results in the deletion of at least one literal, and so n
positive examples may suffice, if they are well-chosen. In any case, the algorithm is
consistent: its output agrees with each member of the training sample, as we now
show.

Theorem 2.2.2 The standard learning algorithm for monomials is consistent.

Proof At each stage some (possibly none) of the literals are deleted from the current
hypothesis. It is clear that literals which occur in the target monomial ¢ are never

deleted.

Any negative example of ¢ ‘falsifies’ some literal in £, which is not deleted. It follows
that all negative examples of ¢ (and, in particular, those in the sample) are correctly

classified by L(s).

On the other hand, if hy(z) = 1 and V C U then hy(z) = 1. After each positive
example z in s is presented, the deletion procedure ensures hy(z) = 1, and therefore
the classification of z is subsequently correct. This shows that the final hypothesis
L(s) correctly classifies all the positive examples in s. O

This simple algorithm is quite efficient — a remark which will be elaborated in due
course. At this point it is worth noting that one reason why it needs a fairly small
number of examples is because the hypothesis space, which, in this case, is the same as
the concept space, is very limited. The number of concepts defined on {0,1}" which
can be represented as monomials is 3", because there are only three possibilities for
each one of the ‘terms’: either u; is present, or #; is present, or neither is present.
(Here we disregard the identically-0 function.) On the other hand, the total number
of concepts which can be defined on {0,1}" is 2%", which is much larger.
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2.3 THE STANDARD NOTATION FOR BOOLEAN FUNCTIONS

There is a standard method of representing boolean functions {0,1}* — {0,1} by
means of formulae. The symbols required are the literals u,, u,,...,u,, %,, the logical
connectives V, meaning or, and A, meaning and, and the parentheses ( ). Each one
of the literals u; and u; defines an elementary function by the rules

]., -f i = ].;
W ={g5 48

— 1 if i = 0;

@)W =0 ity =1
The angled brackets are used to emphasise the distinction between the symbol and
the function it represents.

Simple rules of formation enable us to build up more complicated functions. If (¢) and
() are functions (in particular, if they are elementary functions) then the disjunction,
denoted (¢ V ¢) or (¢) V (), and the conjunction, denoted (¢ A ¥) or ($) A (¢), are
the functions defined as follows.

SARAOE {1’ if (8)(y) =1 or (Y)(y) = 1;

0, otherwise.

nv = (k) =1 )=

These rules, together with the usual conventions about the use of parentheses, allow
the formation of functions like

(7 A ug) V (uy A uy A ag)).

There is a convention that the symbol A for conjunction may be omitted if the
meaning is clear, so that the function above is usually written as (%,u, V u u,us).
The values of such functions are defined recursively by the rules of construction, and
if necessary the familiar method of ‘truth tables’ can be used for explicit evaluation.

A very useful property of this notation is that every boolean function {0,1}" — {0,1}
can be represented by such a formula. In fact, there are many different ways of
representing a given function, but there are two ‘normal forms’ which are particularly
convenient. The disjunctive normal form or DNF is a disjunction

ﬂlV#ZV"'V‘ur,

where each y; is a monomial, that is, a conjunction of literals, as in Section 2.1.
(Note that the convention about suppressing the A symbol is applied there.) The
conjunctive normal form or CNF is a conjunction

AN AN AR 7T
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where each «; is a clause, that is, a disjunction of literals.

By placing restrictions on the size and number of the components of the two normal
forms we obtain several important hypothesis spaces. We have already studied the
set of functions which can be represented by monomials defined on {0,1}"; this space
will be denoted by M,,. The space of functions represented by monomials which have
at most k literals will be denoted by M, ;, and the space of functions which can be
represented by a disjunction of monomials in M, , will be denoted by D, ,. Other
hypothesis spaces defined in a similar way will be used in subsequent chapters: there
is a list of the notations used at the beginning of the book.

2.4 LEARNING DISJUNCTIONS OF SMALL MONOMIALS

In this section we think of n as being a ‘large’ positive integer, and k as being fixed
and relatively ‘small’. The space D, ;, comprising all those boolean functions of n
variables which can be expressed as the disjunction of monomials of length at most k,
is significantly larger, and consequently more expressive, than M,,. (See Exercise 7 for
an explicit estimate of | D, |.) However, it is simple enough to admit a straightforward
consistent learning algorithm.

The learning algorithm, due to Valiant (1984a), begins with the initial hypothesis
which is the disjunction of all monomials of length at most k. As in the monomial
learning algorithm, each step is based on a simple logical deduction involving a com-
parison between the current labelled example and the current hypothesis. Specifically,
at each step some of the monomials may be deleted, according to the following rule.
Suppose we are presented with a negative example (y,0), but the current hypothesis
h produces the value h(y) = 1. This means that at least one of the monomials com-
prising h must evaluate to 1, and since that is in error, all such monomials should be

deleted.

As usual, we shall suppose that a training sample s of length m is given. The
algorithm may be described as follows.

set h = disjunction of all monomials of length at most k ;
for i:= 1 to m do
if b; = 0 and h(z;) =1
then delete monomials i for which p(z;) = 1;

L(s):=h

Example 2.4.1 Suppose we are working in D3 ; and the target concept is (@, V(u,us)).
There are three negative examples, 101, 111 and 100, and the other five examples are
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positive. The collection of all relevant monomial formulae is:

Uy, Uy, Uz, Uy, Us, U3, UjUs, U;U3, UsUs,

U Uy, UjUz, UpUz, UjUy, U Uz, UsUz, U Us, U Uz, UsUs.

In the algorithm only the negative examples are effective. Suppose these are pre-
sented, in the order 101, 111, 100. The presentation of (101,0) results in the deletion
of all those monomials which are 1 on 101, that is: u;, us, #,, U us, Usus and u,us. The
subsequent presentation of (111, 0) results in the deletion of u,, u;u,; and u,us, and the
presentation of (100,0) results in the deletion of #3,u,u; and @,u3. Thus, provided
the training sample contains the three negative examples, the output hypothesis is
the disjunction of all the remaining monomials, that is

h =t Vaus VtusV usiz V Uity V U, Us).

Here we see clearly that the output is not the simplest representation of the target
concept in the hypothesis space Dj,. The formula does indeed represent exactly the
same function as the given formula, (@, V (u,%3)), but it is much longer. In some
cases, such considerations are important, and we shall return to this issue later in the

book. O

2.5 REPRESENTATIONS OF HYPOTHESIS SPACES

The learning algorithms discussed in this chapter rely on the simplifying assumption
that the concept space is the same as the hypothesis space. In effect, we have been
concerned with ‘learning’ only in situations where the target concepts have some
artificial description in terms of formulae or machines. Although this assumption may
seem rather restrictive, it is natural in a mathematical development of the subject.

If we are asked to construct a machine to compute a boolean function of n variables,
there is a well-known technique which produces a network of ‘gates’ — a boolean
circuit, in the accepted terminology. The construction of a suitable circuit is closely
linked to the construction of a formula representing the function, and the size of the
machine is related to the length of the formula. Since neither the formula nor the
machine is unique, it is important that we try to find a good solution, if not the best.

The machines needed in this area of Computational Learning Theory have the addi-
tional feature that they can take on a number of different states, and so a machine
represents a set of functions, rather than a single function. A state of the machine
is a representation of a function, and the set of all such functions comprises the hy-
pothesis space defined by the machine. This is analogous to defining a hypothesis
space in terms of a specific class of formulae, such as the space D, , discussed above.
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In order to model both interpretations of a hypothesis space, it is convenient to define
a representation to be a surjection 2 — H, where ) is a set and H is a hypothesis
space. The set Q may be the set of states of a machine, or the set of formulae
constructed by some specific rules of formation. The surjection assigns to each state
or formula w a corresponding function &,,.

Example 2.5.1 Let 2 be the set of monomial formulae in five variables and H = M.
For each formula w € §Q there is a boolean function h, € Mjs, defined by the rules
outlined in Section 2.1. For example, if w = wu,u,ustts, then h, is the function
(u1Uausts), which is just the function chair used as an illustration in Section 2.1. O

Example 2.5.2 Figure 2.2 is a diagram of a linear threshold machine with five
boolean inputs and a single active node. The arcs carrying the inputs have associated
weights a,, as, a3, a4, as and the weighted sum a,y; + asys + asys + aqys + asys of
the inputs is applied to the active node. This node outputs 1 if the weighted sum is
at least 6, and 0 otherwise.

?/I‘-'—F(\)\

Yo m—>

3/3-—»0

0/1

Yy

Y5 ——>

Figure 2.2: A linear threshold machine

In this case the representation & — H is defined as follows. The set  is the real
space R®, that is, the set of 6-tuples w = (o, a,, a3, a4, as5,0). The function h, is
given by

1, if + « a + a > 0,
ho(Y1Y2Y3Yays) = {0’ oth éf;vise' 2Y2 + asys + a4y, 5Ys =
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Example 2.5.3 Let = R and for each real number 8 define the real concept ry by
oS g
ra(y)={1, lfy_o,

0, otherwise.

The concept ry is known as a ray; the set of positive examples is the right half-line
with end-point 6. O

FURTHER REMARKS

Of course, there can be more than one learning algorithm for any given hypothesis
space. In particular, there are alternative algorithms for the space M, of monomi-
als. We shall describe one of these, a ‘greedy’ algorithm due to Haussler (1988), in
Chapter 6.

The brief presentation of the algebra of boolean expressions given in Section 2.3
is amplified in many texts on Discrete Mathematics and Computer Science. The
existence of the disjunctive normal form may be established by a process rather like
‘learning by construction’, as follows. Let (@) be a boolean function of n variables.
For each positive example y of (¢), form the monomial

uyz(ll/\lz/\.../\ln)’

where _
= ify=1
T W, ify=0.

Then p¥(y) = 1 and p¥(z) = 0 if 2 # y. Thus, if z,,2,,...,z; are all the positive
examples of (@) then

(@) = (p™ V p™2 V...V u®F).
We remark that this procedure produces a rather long DNF formula representing (@),
and so is of little practical use.

We refer the reader to Kearns et al. (1987b) for further description of some of the
standard boolean spaces considered in Computational Learning Theory.

EXERCISES
1. Write down the sequence of hypotheses generated when the training sample

(11100101,1), (00100011,0), (11001001, 1)

1s input to the monomial learning algorithm. If the target concept is (u,ut4ug), write
down an additional labelled example which will result in complete success.

2. Describe the process in Exercise 1 in terms of the states of a machine with switch
positions a, b, ¢,d as defined in Section 2.1.
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3. In each of the following cases find a DNF formula which defines the same function

as the given one:
(ul A ('&2 Vv u;;));

((uy Vug) A (ug Vug));
((ur Vug) A (uy V ug));

4. Write down DNF formulae for the parity and palindrome concepts on the example
space {0,1}°.

5. What is the output from the algorithm for learning D3, when the training sample
18

(100,0), (010,1), (011,0)?

What is the simplest formula in D3, which defines the same function?

6. Give an explicit example of a boolean function of three variables which is not in

Ds,.
14 (21") + (2;) PR (2:) < (2n)t,

for n > k > 1. Deduce that |M, ;| is bounded above by (2n)*, and that |D, .| is
bounded above by 2(»".

7. Prove that

8. Show that the ezclusive-or function zor : {0,1}*> — {0,1} defined by

_ |1, if exactly one of y,,y, is 1;
zor (1) = {0: otherwise; ,

does not belong to the hypothesis space of the two-input linear threshold machine.

9. For which of the three Examples discussed at the end of Section 2.5 is the repre-
sentation w — h, an injection?



Chapter 3: Probabilistic Learning

3.1 AN ALGORITHM FOR LEARNING RAYS

As an introduction to one of the most important ideas in Computational Learning
Theory, we shall discuss a very simple algorithm for learning in a real hypothesis
space.

Recall that for each real number 8 the ray ry is the concept defined on the example
space R by

re(y) =1 <= y2>0.

An algorithm for learning in the hypothesis space H = {r, | @ € R} is based on the
idea of taking the current hypothesis to be the ‘smallest’ ray containing all the positive
examples in the training sample. A suitable default hypothesis when there are no
positive examples in the sample will be the identically-0 function. For convenience,
we therefore consider this to be a ray, and call it the empty ray. It will be denoted
Teo, Where 0o is merely a symbol taken to be greater than any real number. Then,
for a given training sample s = ((z,,b,),-..,(Zm,bm)), the output hypothesis L(s)
should be r,, where

A=XMs)=m {z; ]| b; = 1},

n
.
and A = oo if the sample contains no positive examples.

A simple modification of an algorithm which computes the minimum of a finite set is
sufficient for our purposes. This yields the following memoryless on-line algorithm.

set A = 00;
for i:= 1 to m do

if b; =1 and z; < ) then set A = z;;
L(S):=T,\

For example, if the training sample is

(3.6578,1), (2.5490,0), (3.4156,1), (3.5358,1), (3.3413,1), (4.4987,1),
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then the corresponding sequence of hypotheses is

Ty T3.6578) T3.6578y T3.4156y T3.4156y 73.3413) 73.3413-

It is easy to see that if the training sample is for a target hypothesis 4 then L(s) will
be a ray ry, with A = A(s) > 6. Because there are only finitely many examples in a
training sample, and the example space is uncountable, we cannot expect that A = 6.
However, it seems that as the length of the training sample increases, so should the
likelihood that there is small error resulting from using r, instead of r,.

In practical terms, this property can be characterised as follows. Suppose we run the
algorithm with a large training sample, and then decide to use the output hypothesis
) as a substitute for the (unknown) target hypothesis r4. In other words, we are
satisfied that the ‘learner’ has been adequately trained. If A is not close to 8, this
indicates that positive examples close to 8 are relatively unlikely and did not occur
in the training sample. Consequently, if we now classify some more examples which
are presented according to the same distribution, then we shall make few mistakes as
a result of using r, instead of r,.

In the next section we shall set up the definitions required to formalise this property,
and in Section 3.3 we shall prove that the algorithm does indeed have the property.

3.2 PROBABLY APPROXIMATELY CORRECT LEARNING

We proceed to develop the ideas introduced at the end of the previous section. Con-
sider a model in which a training sample s for a target concept ¢ is generated by
drawing the examples z,,z,,...,z, from X ‘at random’, according to some fixed,
but unknown, probability distribution. A learning algorithm L produces a hypothesis
L(s) which, it is hoped, is a good approximation to . More fully, we require that,
as the number m of examples in the training sample increases, so does the likelihood
that the error which results from using L(s) in place of ¢ is small.

In order to formalise these ideas it is necessary to review some elementary probability
theory. A probability space is a set X, together with a family A of subsets of X and
a function p, the probability distribution or probability measure, from A to the unit
interval [0,1]. The family A is required to be closed under the operations of taking
complements, finite intersections, and countable unions. An element A of A is known
as an event, and the value of u(A) is known as the probability of A. The function y
is required to satisfy the following conditions:

p(@) =0; pu(X)=1
for any pairwise disjoint sets A;, A;,... € A, u (U A,-) = Zp(A,-).
i=1

i=1
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In the cases of direct concern here, X is an example space, and the examples are
either boolean or real. In the boolean case X is finite or countable, and we can take
A to be the family of all subsets of X. In the real case we can take A to be any
family large enough to contain all those sets which we need to consider; it turns out
that it is sufficient to use the family of Borel sets in R”. In both boolean and real
cases we shall use the appropriate family without explicit reference to the details.

From now on, then, we shall simply speak of a ‘probability distribution g on X’, by
which we mean a function u defined on the appropriate family A and satisfying the
axioms given above. It must be emphasised that, in the applications we have in mind,
we make no assumptions about u, beyond the conditions stated in the definition. The
situation we are modelling is that of a world of examples presented to the learner
according to some fixed but unknown distribution. The ‘teacher’ is allowed to classify
the examples as positive or negative, but cannot control the sequence in which the
examples are presented.

We shall continue to assume that the target concept belongs to a hypothesis space
H which is available to the learner. Given a target concept ¢ € H we define the
error of any hypothesis h in H, with respect to ¢, to be the probability of the event
h(z) # t(z). That is,

er,(h,t) = piz € X | h(z) # t(z)}.

We refer to the set on the right-hand side as the error set, and we assume that it
is an event, so that a probability can be assigned to it. In order to streamline the
notation, we suppress the explicit reference to ¢ when it is clear from the context,
and we write er,(h) in place of er,(h,t).

Example 3.2.1 Let X = {0,1}3, and suppose the target concept is (u,). The error
set for the hypothesis (u,%,) contains just two examples, 110 and 111. So

er,({(u1t;)) = p{110,111}.

For example, if 4 is the uniform distribution on X (each of the eight possible examples
has probability 1/8), then the error is 1/4. On the other hand, if for some reason
examples with y, = 1 are relatively unlikely, then the error will be correspondingly
smaller. a

When a given set X is provided with the structure of a probability space, the product
set X™ inherits a probability space structure from X. The details need not concern
us; it is sufficient to remark that the construction allows us to regard the components
of an m-tuple (z,,z,,...,z,,) as ‘independent’ variables, each distributed according
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to the probability distribution g on X. The corresponding probability distribution
on X™ is denoted by u™. Informally, for a given Y C X™ we shall interpret the
value p™(Y’) as ‘the probability that a random sample of m examples drawn from X
according to the distribution u belongs to Y.

Let S(m,t) denote the set of training samples of length m for a given target concept
t, where the examples are drawn from an example space X. Any sample x € X™ de-
termines, and is determined by, a training sample s € S(m,t): if x = (z,,2,,...,Zm),
then s = ((z,,%(z1)), (z2,t(z2)), . - .y (Tm, t(zm))). In other words, there is a bijection
$: X™ — S(m,t) for which ¢(x) = s. Thus, we can interpret the probability that
s € S(m,t) has some given property P in the following way. We define

p™{s € S(m,t) | s has property P}

to mean
pm{x € X™ | ¢(x) € S(m,t) has property P}.

It follows that, when the example space X is equipped with a probability distribution
[, We can give a precise interpretation to

(i) the error of the hypothesis produced when a learning algorithm L is supplied

with s; and

(ii) the probability that this error is less than e.
The first quantity is just er,(L(s)). The second is the probability, with respect to
u™, that s has the property

er,(L(s)) < e

Putting all this together we can formulate the notion that, given a confidence param-
eter § and an accuracy parameter €, the probability that the error is less than € is
greater than 1 — §. The result is one of the most important definitions in this book.
It was formulated first by Valiant (1984a) and, using this terminology, by Angluin
(1988).

We say that the algorithm L is a probably approzimately correct learning algorithm
for the hypothesis space H if, given

¢ a real number 4 (0 < 6 < 1);

e a real number € (0 < € < 1);
then there is a positive integer mg = my(6, €) such that

o for any target concept t € H, and

e for any probability distribution x on X;

whenever m > mo, p™{s € S(m,t) | er,(L(s)) <e} > 1—46.

The term ‘probably approximately correct’ is usually abbreviated to the acronym
pac.
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The fact that m, depends upon é and €, but not on ¢ and u, reflects the fact that
the learner may be able to specify the desired levels of confidence and accuracy, even
though the target concept and the distribution of examples are unknown. The reason
that it is possible to satisfy the condition for any p is that it expresses a relationship
between two quantities which involve u: the error er, and the probability with respect
to u™ of a certain set.

Pac learning is, in a sense, the best one can hope for within this probabilistic frame-
work. Unrepresentative training samples, although unlikely, will on occasion be pre-
sented to the learning algorithm, and so one can only expect that it is probable that
a useful training sample is presented.. In addition, even for a representative training
sample, an extension of the training sample will not generally coincide with the target
concept, so one can only expect that the output hypothesis is approzimately correct.

3.3 ILLUSTRATION — LEARNING RAYS IS PAC
We can now give a formal verification that the algorithm of Section 3.1 has the pac

property.

Theorem 3.3.1 The algorithm L given in Section 3.1 for learning rays is probably
approximately correct.

Proof Suppose that 6,¢,7y, and p are given. Let s be a training sample of length m
for 7y and let L(s) = r,. Clearly, the error set is the interval [#,)). For the given
value of ¢, and the given u, define

Bo = ﬂo(ﬁ,ﬂ) = sup{f | ,u[o,ﬂ) < 6}-
Then it follows (Exercise 4) that p[0,8,) < € and p[8, 8] > €. Thus if A < B, we

have

er(L(s)) = ul6, ) < pl6, Bo) < e.

The situation A < S, is illustrated in Figure 3.1.

e—— probability < £—>| <«—— probability <1 - ¢ —_—>
6 A Bo
le————probability 2 £ ——

Figure 3.1: In this situation the error of the output is at most €
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The event that s has the property A < S, is just the event that at least one of the
examples in s is in the interval [0, B,]. Since u[8, B;] > € the probability that a single
example is not in this interval is at most 1 — €. Therefore the probability that none
of the m examples comprising s is in this interval is at most (1 — €)™. Taking the
complementary event, it follows that the probability that A < S, is at least 1—(1—¢)™.
We noted above that the event A < B, implies the event er,(L(s)) < €, and so

p™{s € S(m,r) | er,(L(s)) < e} 21—(1—¢€)™.

Note that the right-hand side is independent of the target function ry (and g). In
order to make it greater than 1 — § we can take
1.1

m > my= I——lng.l.
€

For then it follows that
(1—¢€)™ < (1—¢€)™ < exp(—emy) < exp(lné) = 6.
This calculation shows that the algorithm is pac. O

It should be noted that the inequality er,(L(s)) < € is used in the foregoing proof,
whereas our definition of pac learning required the inequality to be strict. However,
it is easy to see that the difference is not significant.

The proof of the theorem provides an explicit formula for the length of sample (that
is, the amount of training) sufficient to ensure prescribed levels of confidence and
accuracy. Suppose we require § = 0.001 and ¢ = 0.01. Then the value of m, is
[1001n1000] = 691. So if we supply at least 691 labelled examples of any ray, and
take the output ray as a substitute for the target, then we can be 99.9% sure that at
most 1% of future examples will be classified wrongly, provided they are drawn from
the same source as the training sample.

3.4 EXACT LEARNING

When the example space X is finite the notion of pac learning has some additional
ramifications. We begin by observing that any probability distribution g on a finite
set X is determined by its values on the singleton sets {z}, using the additivity
axiom. For convenience we write p(z) instead of u({z}). If there are some examples
for which p(z) = 0, with probability 1 these will not occur in a finite random sample,
and can be ignored. In other words, we can, if necessary, redefine X so that p(z) > 0
for all z € X. Since X is finite, the quantity

¢ = mip ()
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is well-defined and strictly positive.

Suppose that we have an algorithm L which is pac for a hypothesis space H defined
on X. In the notation of Section 3.2, we have, given §, €, u, and ¢t with their usual
meanings,

m > mo = u"{s € S(m,t) | er,(L(s)) <€} >1-04.

Suppose the accuracy € is chosen to be no greater than €,. Then the condition
er,(L(s)) < e implies that the error set for L(s) is empty, because there are no
examples which have probability less than €. Thus the condition implies that L(s) = ¢:
that is, the output hypothesis is ezactly equal to the target ¢.

The conclusion of the preceding argument is that a pac learning algorithm on a finite
example space is ‘probably exactly correct’, which is apparently rather stronger than
being probably approximately correct. But there is a snag. The sample length m, in
the definition of pac learning depends upon the parameters é and ¢, but is independent
of u (and t). The argument given above involves choosing € in terms of ¢,, and so
the value of m, required for exact learning will depend upon é and u. This conflicts
with our original aim of providing performance guarantees which are independent of
&, the possibly unknown distribution of examples in an unhelpful world.

Example 3.4.1 We shall establish the ‘probably exactly correct’ property of the
standard monomial learning algorithm on the boolean example space {0,1}", for
fixed n, by an explicit argument.

The key observation is that the algorithm yields the correct hypothesis provided that
all positive examples have been included in the training sample. As the length of
the training sample increases, so does the probability that it contains all positive
examples; consequently so does the probability that the output is correct. Precisely,
let €, be the least value of u(z) taken over the set X C {0,1}" of examples with
non-zero probability. Then the probability that a training sample of length m does
not contain a given example is at most (1 —e¢,)™. The probability that there is one of
a given set of p examples which is not in the training sample is therefore p(1 — ¢,)™.
In particular, if X* is the set of positive examples for a given target concept ¢, the
probability that there is a member of X+ which is not in the sample is at most
X1 = ).

We need to choose m so that

IX*|(1—¢e,)™ < 6.
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Using the facts that | X*| < |X| £ 2", and 1 — ¢, < exp(—e,), it follows that it is
sufficient to choose

m > Flln2+ —l—ln l] .
€y €, O
Note that the sample length is independent of ¢, but does depend upon the distribu-
tion p through the parameter . O
FURTHER REMARKS

In Valiant’s original description of learning, it was assumed that the learning al-
gorithm had access to an ‘oracle’ which generated labelled examples of the target
concept, drawn according to the distribution on the example space. In such a model,
the input to the algorithm consists solely of the parameters § and e: the algorithm
itself then uses the oracle to generate sufficiently many labelled examples to ensure
that the output hypothesis is pac. This model is commonly known as the oracle
model, while the model described in this book is the functional model. Haussler
et al. (1988) have shown that these versions of the learning model, and a number of
other variants, are, to all intents and purposes, equivalent. (We are being deliberately
vague here. Later in the book we discuss ‘efficient’ learning: the paper referenced
above shows that the spaces learnable efficiently in one model are learnable efficiently
in the others.)

Suppose that L is a memoryless on-line learning algorithm for some space H, and
that we input some training sample s for a hypothesis ¢t of H. We may allow s to
be chosen arbitrarily: that is, it need not be drawn according to some distribution
on the example space, but may, for example, be a sequence chosen maliciously by a
‘teacher’ trying to impart as little information as possible to the learner. Suppose
that L updates its current hypothesis each time it makes a mistake on an example
in s. In other words, L adjusts its current hypothesis after presentation of a labelled
example with which its current hypothesis disagrees. We say that L has absolute
mistake bound k if on any training sample, of any length, L makes at most k£ mistakes.
The mistake-bounded learning model provides a general framework for studying this
situation; see, for example, Littlestone (1988). A number of researchers have studied
mistake-bounded learning and its variants, and have related them to the pac model
described here and to other models of learning: see, for example, Littlestone (1988),

Angluin (1988), Haussler, Littlestone and Warmuth (1988) and Blum (1990).

There are many types of error that can occur during a practical implementation
of a particular learning algorithm, and a number of these have been formalised (see
Sloan (1988) for a discussion). For example, Angluin and Laird (1987) have produced
algorithms for pac learning in the presence of random misclassification errors, while
Kearns and Li (1988) studied this model and the stronger one of learning in the
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presence of malicious errors, obtaining results on the feasibility of pac learning in
such circumstances.

More severe variants of pac learning are obtained by allowing the learning algorithm
and the sufficient sample length m, to depend in some way either on the probability
distribution g or on the target concept ¢. This is not artificial: in many learning
problems, something is known of the distribution or the target. The resulting defi-
nitions of learnability are less attractive than the concept-free and distribution-free
pac definition, but they are often more easily satisfied. Much work has been done on
such ‘non-uniform’ pac learning. As a sampling, we refer the reader to the papers
by Ben-David et al. (1989), Benedek and Itai (1988), Linial et al. (1989), Kearns et
al. (1987a), Li and Vitanyi (1989), Baum (1990), Natarajan (1988) and Bartlett and
Williamson (1991).

EXERCISES
1. Write down the sequence of hypotheses generated by the algorithm for learning
rays, when the training sample is

(6.1436,1), (1.5987,0), (4.2381,1), (5.7462,1), (4.3964,1), (4.2167,1).

2. What length of training sample for the ray learning algorithm will guarantee with
99.5% confidence that at most 0.25% of examples drawn from the same distribution
as the sample will be misclassified?

3. Modify the ray learning algorithm of this chapter to obtain a ray learning algorithm
which makes no use of the empty ray, but starts instead with A initialized to some
large real number large. Is this algorithm consistent?

4. Prove that if B, is as defined in Section 3.3, then u[6, 8,) < € and pu[d, 5] > e
[Hint: For the first part, use the fact that u (U,[0, 8 — 1/n)) = lim, u[d, 8, — 1/n).]

5. Given real numbers a < § the interval concept ¢, s is defined by

_f1, fa<y<p;
Cap(y) = {O, otherwise.

Let H be the hypothesis space of all intervals, together with the identically-0 function
(which can be thought of as the empty interval). The following is a learning algorithm
for H.
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empty:= true;
for i:= 1 to m do
if b; =1 then
if empty then begin
set a = z; and B = x;;
empty:= false end
else begin
if z; > [ then set f = z;;
if z; < o then sel a = z; end
if empty then L(s):=empty interval
else L(s):= c,p

Prove that L is pac, with a suitable value of m(8, €) being [(2/€)In(2/8)].

6. Modify the algorithm in Exercise 5 to obtain a consistent learning algorithm for
the space of interval concepts which makes no use of the identically-0 function.



Chapter 4: Consistent Algorithms and Learnability

4.1 POTENTIAL LEARNABILITY

Learning in the pac sense is a property of an algorithm. Given any algorithm, we can
try to prove directly that it is pac, but that might require a very specific argument.
Consequently it is desirable to approach the problem more generally. In this chapter
we shall describe a property of a hypothesis space H which ensures that any consistent
algorithm for learning H by H is probably approximately correct, and we shall prove
that many spaces H have this property.

We shall continue to use the notation introduced in previous chapters; in particular,
H is a hypothesis space of functions defined on an example space X. Recall that a
learning algorithm L for H is consistent if, given any training sample s for a target
concept t € H, the output hypothesis h = L(s) € H agrees with ¢ on the examples
in s. That is, h(z;) = t(z;) (1 < ¢ < m). For a given s € S(m,t), it is convenient to
denote by H(s] the set of all hypotheses consistent with s:

H[s|={h € H | h(z;) =t(z;) (1 <i<m)}.

Thus L is consistent if and only if L(s) € H[s| for all training samples s. It turns out
that in order to ensure that a consistent learning algorithm is pac, it is sufficient to
put a condition on the sets H|s].

As in Chapter 3 we assume that there is an unknown probability distribution x on
X. Suppose we fix, for the moment, a target concept ¢t € H. Given € € (0,1) the set

B.={h € H | er,(h) > €}

may be described as the set of ¢-bad hypotheses for t. A consistent algorithm for H
produces an output in H|[s], and the pac property requires that such an output is
unlikely to be e-bad; in other words, we insist that a hypothesis is unlikely to be bad
if it is correct on the training sample. This leads to the following definition.

We say that the hypothesis space H is potentially learnable if, given real numbers §
and € (0 < §,e < 1), there is a positive integer mo = mq(6, €) such that, whenever
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m 2 my,

p™{s € S(m,t) | H[s)n B.=0} > 1-3,
for any probability distribution g on X and any t € H.

Theorem 4.1.1 If H is potentially learnable, and L is a consistent learning algorithm
for H, then L is pac.

Proof It is sufficient to recall the observation that if L is consistent, then L(s) is in
HJs]. Thus the condition H[s] N B, = ) means that the error of L(s) is less than ¢,
as required for pac learning. 0O

4.2 THE FINITE CASE

The definition of potential learnability is quite complex, and it might be argued that
it merely obscures the description of pac learning. Our task now is to justify the
definition by showing that it has significant implications.

Theorem 4.2.1 Any finite hypothesis space is potentially learnable.

Proof Suppose that H is a finite hypothesis space and §, ¢, t, and u are given. We
shall prove that the probability of the event H[s] N B, # 0 (the complement of the
event in the definition) can be made less than § by choosing the length m of s to be
sufficiently large. )

Since B, is defined to be the set of e-bad hypotheses it follows that, for any A € B,,
p{r € X | h(z) =t(z)} =1 —er,(h) L1 —€

Thus
W™ s | h(z:) = Ha) (1 S i Sm)} < (1— )™

This is the probability that any one e-bad hypothesis is in H[s]. The probability that
there is some e-bad hypothesis in H|s], that is

p"{s | H[s] N B. # 0},

is therefore less than |H|(1 — €)™. This is less than § provided

m > my = Eln%} ,

because in that case

|H|(1—€¢)™ < |H|(1-€)™ < |H|exp(—emo) < |H|exp(In(§/|H|)) = 6.
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Taking the complementary event we have the required conclusion. O

It is clear that this is a useful theorem. It covers all boolean cases, where the example
space is {0,1}" (or a subset thereof) with n fixed. In any such situation a consistent
algorithm is automatically pac. For example, the algorithms for learning monomials
and disjunctions of small monomials presented in Chapter 2 are pac. Furthermore,
the proof tells us how many examples are sufficient to achieve prescribed levels of
confidence and accuracy. For the monomial algorithm, we know that the size |M,| of
the hypothesis space is 3" (Section 2.2). Therefore

mo = E In %1 _ E(nln3 +1n(1/5))]

is a sufficient number of examples to ensure that, with probability greater than 1—§,
the output of the algorithm has error less than e.

More generally we observe that, for any finite hypothesis space whatsoever, there is
a consistent learning algorithm: the method of learning by enumeration, described
in Section 1.5. Thus it is an immediate corollary of Theorem 4.2.1 that, given any
finite hypothesis space H, there is a learning algorithm for H which is pac.

At this point the reader might well wonder what all the fuss is about. We have
set up a complicated condition, only to prove that it is always satisfied in the finite
case, which is most important in practice. But practical considerations impose the
additional constraint that the number of examples should be ‘manageable’, and this
is not necessarily the case with the method of learning by enumeration. Suppose,
for example, that the hypothesis space is the set B, of all boolean functions of n
variables. Then we have |B,| = 22", and so the bound for the sample length is
_[2" 1 2
Mo = [ e 8 ] '

Even for applications of moderate size, when n = 50 say, this is unreasonably large,
due to the presence of the term 2". In such cases, Theorem 4.2.1 is of little use in
practice. This crucial problem will be studied at length in the next chapter.

4.3 DECISION LISTS

One way of describing complex concepts is to build them up from smaller units.
This is just how we defined the space D, ; in Section 2.4: the units are the ‘small’
monomials with length at most k, and they are put together by the operation of
disjunction. In this section we shall describe another method of construction, which
can be applied to any given set of building blocks.
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Let K be any set of boolean functions on {0,1}", n fixed. Following Rivest (1987), a
boolean function f with the same domain as K is said to be a decision list based on
K if it can be evaluated as follows. Given an example y, we first evaluate f,(y) for
some fixed f, € K. If fi(y) = 1, we assign a fixed value ¢, (either 0 or 1) to f(y); if
not, we evaluate f,(y) for a fixed f, € K, and if f,(y) = 1 we set f(y) = c,, otherwise
we evaluate fs3(y), and so on. The procedure is illustrated in Figure 4.1.

Figure 4.1: Diagrammatic representation of a decision list

The evaluation of a decision list f can be thought of as a sequence of if then else
commands:

if fi(y) =1 then set f(y) = a
else if f,(y) =1 then set f(y) =c,

;a.l‘se if f.(y) =1 then set f(y) = ¢
else set f(y) =0.

More formally, we may define DL(K), the space of decision lists based on K, to be
the set of finite sequences

f = (fl)cl)’ (f2ac2),-", (fr, Cr))
such that f; € K,¢; € {0,1} (1 £ i < r). The values of f are defined by

_J ¢, if j=min{¢ | f;(y) = 1} exists;
fly) = {01, otherwise. ’

There is no loss of generality in requiring that all terms f; occurring in a decision list

are distinct, because repetitions of a given function ¢ € K can be removed without

affecting the evaluation. Thus the length of a decision list based on a finite set K

is at most |K|, and |[DL(K)| is bounded by a function of |K|. (See Exercise 10 for

details.)
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Example 4.3.1 Suppose that K = M;,, the space of monomials of length at most
two in three boolean variables. The decision list

({u2), 1), ((w1),0), ((1),1)

may be thought of as operating in the following way on the example space {0,1}3.
First, those examples for which (u,) is satisfied are assigned the value 1: these are
010,011,110,111. Next the remaining examples for which (u,#s) is satisfied are
assigned the value 0: the only such example is 100. Finally, the remaining examples
for which (@,) is satisfied are assigned the value 1: this accounts for 000 and 001,
leaving only the example 101 which is assigned the value 0. 0

It is worth remarking that the disjunction of two functions in K is a special case of
a decision list based on K. Explicitly, f V g is represented by the decision list

(f,1), (g,1).

This means that a decision list is a generalisation of a disjunction. In particular,
the space D, is contained in DL(M, ;); in fact it is a proper subset. Another
consequence is that, for a given n, any boolean function of n variables is in some
DL(M, ;) for k sufficiently large. (Indeed, this is true for £ = n by the existence of
the disjunctive normal form.) Further details concerning these remarks can be found
in the Exercises at the end of the chapter.

4.4 A CONSISTENT ALGORITHM FOR DECISION LISTS

In this section we shall describe a learning algorithm for DL(K) which works when
K is any finite set. The algorithm is consistent, but is not a memoryless on-line
algorithm. Of course, the learning by enumeration algorithm has similar proper-
ties, and it remains to be seen whether the algorithm described here is a significant
improvement. This point will be discussed at length in Chapter 5.

The algorithm may be described as follows. Let s be a training sample of labelled
examples (z;,b;) (1 < 7 < m). At each step in the construction of the required
decision list some of the examples have been deleted, while others remain. The
procedure is to run through K seeking a function g € K and a bit ¢ such that, for all
remaining examples x;, whenever g(z;) = 1 then b; is the constant boolean value c.
The pair (g, ¢) is then selected as the next term of the sequence defining the decision
list, and all the examples satisfying g are deleted. The procedure is repeated until all
the examples in s have been deleted.
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Let {g:,92,...,9,} be an enumeration of K. The algorithm is as follows.

set I ={1,2,...,m}; j:=1;
repeat
if for alli € I, g;j(z;) =1 implies b; = ¢
then begin select (g;,¢) ;
delete from I all ¢ for which g;(z;) = 1;
j:=1 end
else j:= j+1;
until I =

Example 4.4.1 Take K = Mj;,, and suppose that K is listed in ‘dictionary’ order,
based on the ordering u,,u,, us, us, us, U, Uy, Us, Uy, s of the literals. The first few
entries in the dictionary are: the identically-1 monomial (), (u;), (uiu,), (u;us).
Suppose the training sample is

z, = 10000, b, = 0;
z, = 01110, b, = 0;
zz = 11000, b3 = 0;
x4 = 10101, b, =1;
z5 = 01100, by =1;
ze = 10111, b = 1.

To begin, we select the first item from the dictionary which satisfies the required
conditions. Clearly () will not do, because all the examples satisfy it but some have
label 0 and some have label 1. Also (u,) will not do, because (for example) z, and z,
both satisfy it but b, # bs. However, (u,u,) is satisfied only by z3, and b3 = 0, so we
select ({u;u,),0) as the first term in the decision list, and delete z;. The subsequent
steps are as follows:

select ({u,us),1), delete x4 and zg;

select ({u,),0), delete z,;
select ({@,u4),0), delete z,;
select ({),1), delete z5.

In this case the required decision list is

((ulu2)a0)a ((ulua)’l)’ ((ul)’o), ((ﬁ1u4),0), (()’l)

It is worth remarking that different orderings of M5,2 may give different answers: see,
for example, Exercise 5. O

There is a slight air of mystery surrounding the example because it is not immediately
clear why the search for g and c is always successful. In order to prove that the
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algorithm works, it is necessary to show that whenever we are given a training sample
s for a target concept in DL(K), then there will always be some pair (g, c) which has
the required properties. The training sample given above was not initially known to
be compatible with a concept in DL(Ms;), although the successful completion of the
algorithm shows that it is in fact of this form.

Proposition 4.4.2 Suppose that K is a hypothesis space containing the identically-1
function. Let ¢ be a function in DL(K) and let S be any finite set of examples. Then
thereis a ¢ € K and a c € {0,1} such that:

(i) the set S = {z € S| g(z) = 1} is not empty;

(ii) for all z € §%,¢(z) = c.

Proof It is given that ¢ is in DL(K), so there is a representation of ¢ as a decision
list

t=(fi,c1), (forc2)y ooy (frrcr)-
If fi(z) =0forallz € S and all i € {1,2,...,r}, then all the examples in S are
negative examples of ¢. In this case we take g to be the identically-1 function and
c=0.

On the other hand, if there is some ¢ such that the set of z € S for which fi(z) =1is
not empty, then let g be the least such value. Then it follows from the definition of
a decision list that t(z) = ¢, for all z such that f,(z) = 1. In this case we may select
g=f,and c=c,. O

It follows from Proposition 4.4.2 that, given any training sample for a function in
DL(K), there is a suitable choice of a pair (g,c) for the ‘first term’ of a decision
list. Applying this result recursively, we see that the algorithm described above will
always succeed.

FURTHER REMARKS

It is important to ensure that all the probabilities which occur in the definitions
of this chapter are well-defined. There are no problems if the example space X is
countable, but for real X we must place some measure-theoretic restrictions on the
hypotheses spaces we consider. For any two hypotheses t,h € H, we need to assign,
as in Chapter 3, a probability to the error set {x | h(z) # t(z)}. This can be achieved
if the hypotheses are measurable functions. To ensure that, for all m and all t € H,
the set

{s € S(m,?) | H[s] N B. # 0}
has a well-defined probability (with respect to p™) some additional constraints must
be imposed. It suffices to have H universally separable; we refer the reader to Pollard
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(1984) and Blumer et al. (1989) for the details. We remark that most ‘reasonable’
hypothesis spaces have this property, and certainly the ones discussed in detail in

this book do.

The theory of potential learnability can easily be extended to apply to algorithms
which are ‘nearly consistent’. For potential learnability, one wants to be able to
guarantee that consistency on a training sample of sufficient length implies (with high
probability) good approximation. The condition required for the extended definition
is the following. For any fixed constant a < 1, there is a positive integer mq(a, d, €)
such that if a hypothesis h disagrees with at most a fraction ae of a training sample
of length my, then, with probability at least 1 — é, A has actual error less than e.
This condition can be satisfied for any finite hypothesis space H; the proof follows
quite easily using a bound of Angluin and Valiant (1979) on certain sums of binomial
numbers.

EXERCISES
1. Prove by a direct argument that the space H = {ry | 8 € R} of rays is potentially
learnable. (Note that this space is not finite.)

2. Show that for the hypothesis space D, (n > k > 1) it is sufficient to take the
value

mo(6, €) = [é In2n + %ln %]

in the definition of potential learnability.

3. Evaluate f(y) when f € DL(Ms,) is the decision list

((u3u5)’ 1)a (("_‘2)’0% ((ulaS)’ 1)

and (i) y = 10101, (ii) y = 01111, (iii) y = 01011. What is the effect of interchanging
the first two terms of the decision list?

4. Use the algorithm described in Section 4.4 to find a decision list in DL (Mj,)
consistent with the training sample

z; = 100110, b, = 0;
z, = 001100, b, = 1;
z3 = 110001, b3 =1;
x4 = 011011, b, = 1;
z5 = 111100, b5 = 1;
ze = 010010, bs = 0;
z7 = 000100, &, = 0.
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5. Suppose the space Mj, is ordered in such a way that all monomials of length
one come first. Verify that the decision list algorithm, when applied to the training
sample used in Example 4.4.1, produces a decision list involving only monomials of
length one.

6. Prove that foralln > k> 1, D, , C DL(M, ). Deduce that any boolean function
can be represented by a decision list.

7. Construct a boolean function of three variables which is not in the space D3, but
is in the space DL(M; ;).

8. Construct a boolean function of three variables which is not in the space DL(Mj,).
9. Prove that the algorithm described in Section 4.4 is consistent.

10. Prove that for any set K of boolean functions, 3/X!|K|! is an upper bound on

IDL(K)|.

11. The complement of a boolean function & is the boolean function A with A(z) =1
if and only if A(z) = 0. Prove that for any set K of boolean functions containing the

identically-1 function,
h € DL(K) <= h € DL(K).

That is, DL(K) is closed under complementation.
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5.1 OUTLINE OF COMPLEXITY THEORY

The subject known as Complexity Theory deals with the relationship between the
size of the input to an algorithm and the time required for the algorithm to produce
its output for an input of that size. In particular, it is concerned with the question
of when this relationship is such that the algorithm can be described as ‘efficient’.
This book is intended to be intelligible to readers who have not studied Complexity
Theory, but some knowledge of that subject will be helpful. In this section we shall
describe the basic ideas in a very simplistic way. More details may be found in the
books by Garey and Johnson (1979), Wilf (1986), and Cormen, Leiserson and Rivest
(1990).

The size of an input to an algorithm can be measured in various ways. For the time
being we shall be dealing mainly with boolean variables, and it will be sufficient
to define the input size in terms of the number of bits which the input contains.
However, it must be noted that more care is needed if we have to define a measure
of size for real variables.

The ‘running time’ of an algorithm is, of course, dependent on the speed with which
the underlying calculations can be carried out. Since the intention is to give a device-
independent definition, it is usual to measure running time by the number of op-
erations needed, rather than the actual time involved. Furthermore, we are only
interested in the form of the dependence on input size, not the exact details, be-
cause the details will in any case vary with the implementation. For this purpose
the mathematical O-notation, as explained below, is appropriate. Finally, the worst-
case running time is generally employed: this means that we consider the maximum
possible number of operations, taken over all inputs of a given size.

These ideas are encapsulated in the following definition. Let A be an algorithm which
accepts inputs of varying size s. We say that the running time of A is O(f(s)) if, for
any input of size s, the number of operations required to produce the output of A is
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at most K f(s), where K is some constant.

For example, suppose we use the familiar long-multiplication algorithm to multiply
two given binary integers of the same size. In this case, the size s is n, the number
of bits in each integer. The operations involved are bit-multiplications, bit-additions,
and carrying. The number of bit-multiplications is n?, since each bit of the first
integer must be mutliplied by each bit of the second integer. The number of bit-
additions is about the same, and the carrying operations are less numerous, so we
can say that the running time is O(n?).

There are good reasons for saying that an algorithm with running time O(s"), for
some fixed integer r > 1, is ‘efficient’. Such an algorithm is said to be a polynomial
time algorithm, and problems which can be solved by a polynomial time learning
algorithm are usually regarded as ‘easy’. Thus, to show that a problem is easy, we
should present a polynomial time algorithm for it. On the other hand, if we wish to
show that a given problem is ‘hard’, it is enough to show that if this problem could
be solved in polynomial time then so too could another problem which is believed to
be hard. One standard problem which is believed to be hard is the following one.

SATISFIABILITY
Instance A boolean formula ¢ in n variables.
Question Is there a positive example of (¢)?

When we say that SATISFIABILITY is ‘believed to be hard’, we mean that it belongs
to a class of problems known as the NP-complete problems. This class of problems
is very extensive, and contains many famous problems in Discrete Mathematics. Ex-
amples will be found in Section 5.4 and in later chapters of this book. Although
it has not yet been proved, it is conjectured, and widely believed, that there is no
polynomial time algorithm for any of the NP-complete problems. This is known as
the ‘P # NP conjecture’.

We shall apply these ideas to Computational Learning Theory in the following way.
Suppose that II is a problem in which we are interested, and II, is a problem which
is known to be NP-complete. Suppose also that we can demonstrate that if there is a
polynomial time algorithm for IT then there is one for II,. In that case our problem II

- is said to be NP-hard. If the P # NP conjecture is true, then proving that a problem
IT is NP-hard establishes that there is no polynomial time algorithm for II.
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5.2 RUNNING TIME OF LEARNING ALGORITHMS

Most of the learning algorithms discussed in previous chapters deal with boolean con-
cepts. In such cases the example space is {0,1}" for some fixed n, and the hypothesis
space H, is a set of functions defined on that example space. For each of these al-
gorithms, the parameter n is arbitrary in the sense that the algorithm is defined for
any n and, moreover, operates in essentially the same way for each value of n. For
example, the standard learning algorithm for the space M,, of monomials is defined
quite generally, although we need a specific ‘machine’ (like the one in Figure 2.1) in
order to implement it for a given value of n.

We now wish to quantify the behaviour of learning algorithms with respect to n, and
it is convenient to make the following definitions. We say that a union of hypothesis
spaces H = |JH, is graded by example size n, when H, denotes the space of hy-
potheses defined on n-bit examples. By a learning algorithm for H = |J H, we mean
a function L from the set of training samples for hypotheses in H to the space H,
such that when s is a training sample for A € H,, it follows that L(s) € H,. That is,
we insist that L preserves the grading.

Consider a learning algorithm L for a boolean hypothesis space H = |J H,,, graded by
example size. An input to L is a training sample, which consists of m n-bit vectors
together with the m single-bit labels. The total number of bits in the input is therefore
m(n + 1), and it would be possible to use this single number as the measure of input
size. However, there is some advantage in keeping track of m and n separately, and
so we shall use the notation R;(m,n) to denote the worst-case running time of L on
a training sample of m n-bit vectors.

Example 5.2.1 Let L be the learning algorithm for monomials described in Section
2.2. The hypothesis space is the union |J M,,. The main step in the algorithm requires
the checking of each bit of each positive example, and possibly the deletion of some
literals. In the worst case, every example in the training sample could be a positive
example, and so we should have to carry out this step m times, each step involving
the checking of n bits. The other parts of the calculation require comparatively few
operations, so we can say that the running time R;(m,n) is O(mn) in this case. O

Example 5.2.2 In Section 2.4 we described a learning algorithm for the space D,
of disjunctions of small monomials. As usual, we regard k as fixed, and n as variable.
Each step of the algorithm involves checking whether one of the m examples z in a
training sample is positive or negative and, if it is negative, evaluating some mono-
mials in M, , on z. Initially the list of relevant monomials has length about (2n)*
(Exercise 7 of Chapter 2) and at each stage some of them may be deleted. Since k is
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fixed the factor 2* is a constant, and the running time is O(mn*). 0

Both algorithms discussed above are memoryless on-line algorithms, and this makes
the calculation of the running-time very simple. If such an algorithm L requires at
most S (n) operations to process a single n-bit example, then its running time is

Ry (m,n) < mSL(n).

For algorithms which are not of this kind, the calculation of running time may be
more complicated.

Example 5.2.3 Recall the algorithm given in Section 4.4 for learning in the decision
list space DL(K,). This is clearly not a memoryless on-line algorithm, because at
each step it is necessary to check all the remaining examples against the list of pairs
(g,¢), where g € K, and ¢ € {0,1}. If there are initially m examples in the training
sample, there will be 2|K,|m checks at the first step, in the worst case. At least
one example will be deleted, so the next step requires at most 2|K,|(m — 1) checks.
Repeating the same arguments, it follows that the total number of checks is at most

(m+(m—=1)+---+1)2|K,| = m(m+ 1)|K,|.

Thus the running time is O(m?|K,|). In particular, when K, is the space M, of
small monomials, for which the cardinality is bounded by (2n)*, the running time is
O(m?*n*). 0

5.3 AN APPROACH TO THE EFFICIENCY OF PAC LEARNING
A general approach to proving the pac property of a learning algorithm L was devel-
oped in Sections 4.1 and 4.2. In the context of a graded hypothesis space H = |J H,
of boolean functions, we may describe the procedure schematically as follows:

H, finite = H, potentially learnable;

H, potentially learnable and L consistent for H, = L pac learns H,,.

With regard to efficiency, the natural question is: given the required levels of confi-
dence and accuracy, what conditions guarantee that the running time in which L pac
learns H, is polynomial in n?

At this point it is helpful to introduce a new piece of terminology to describe a familiar
notion. Supose that real numbers 0 < §,¢ < 1 are given, and let L be a learning
algorithm for a concept space C' and a hypothesis space H. (The assumption C = H
is not required here.) We say that the sample complezity of L on a subset T of C is
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the least value m (T, 6, ¢) such that, for all target concepts t € T and all probability
distributions pu,

p™{s € S(m,t) |er,(L(s)) <e} >1—6

whenever m > m(T,é, €); in other words, a sample of length m (T, 6, €) is sufficient
to ensure that the output hypothesis L(s) is pac, with the given values of § and e.
In practice we usually deal with a convenient upper bound m, > mg, rather than
my, itself; thus mo(T,6,¢) will denote any value sufficient to ensure that the pac
conclusion, as stated above, holds for all m > ms,.

The full generality of the definition will be useful on occasions in subsequent chap-
ters, but in most applications we shall take T = C = H. For example, using this
terminology, Theorem 4.2.1 shows that, for a consistent learning algorithm on a finite
space H, an upper bound for the sample complexity m,(H, d,¢) is

mo(H,b,€) = [%ln l—g—q .

The sample complexity provides the link between the running time R (m,n) of a
learning algorithm (that is, the number of operations required to produce its output
on a sample of length m when the examples have size n) and its running time as a pac
learning algorithm (that is, the number of operations required to produce an output
which is probably approximately correct with given parameters). Since a sample of
length my(H,, é, €) is sufficient for the pac property, the number of operations required
is at most

R;(mo(H,,¥b,€),n).

In the case of a consistent algorithm, this provides an answer to the question posed
at the beginning of this section.

Theorem 5.3.1 Suppose that L is a consistent learning algorithm for the hypothesis
space H =H,. If

e R;(m,n) is polynomial in m and n, and

e In |H, | is polynomial in n,
then, for given values of the confidence and accuracy parameters, the running time
in which L will produce a probably approximately correct hypothesis is polynomial
in n.

Proof Since L is consistent, an upper bound for the sample complexity of L on H,

18
1. |H,]
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Thus it is only necessary to observe that, when the conditions hold, the expression
R.([(1/€)In(|H,]/6)],n) reduces to a polynomial function of n. O

This result throws some light on the efficiency of the learning algorithms previously
discussed. For example, the space of monomials has cardinality |M,| = 3", and
so In|M,| = nln3. The standard learning algorithm for monomials is consistent
(Theorem 2.2.2) and has running time O(mn). It follows that the algorithm pac learns
M, in time polynomial in n — specifically the running time is O(n?). Similarly, we
have shown that there is a consistent learning algorithm for D,, , which has running
time O(mn*), and we also know that |D, | is at most 22" (Exercise 7 of Chapter
2). It follows that In|D,, .| is bounded by a constant multiple of n*, and the theorem
implies that the algorithm pac learns D, ; with running time O(n?).

Theorem 5.3.1 does not however enable us to draw any conclusion about the efficiency
of more ‘general’ learning algorithms. For example, the algorithm for learning by
enumeration, given in Section 1.5, requires each one of the m labelled examples in a
training sample to be checked against each one of the hypotheses in H,,. Thus it is a
consistent algorithm whose running time Ry(m,n) is O(m|H,|). In this case the first
condition of Theorem 5.3.1 requires that |H,| itself (rather than its logarithm) have
polynomial growth. This is a very restrictive condition, because even quite limited
hypothesis spaces, like M, and D, ., have cardinality which grows exponentially.
Consequently, although the enumeration algorithm can be used for any finite space,
there are many cases where Theorem 5.3.1 cannot be applied to show that it will
produce a probably approximately correct hypothesis in polynomial time.

It is instructive to apply Theorem 5.3.1 to the learning algorithm for DL(K,), for
which the running time is O(m?| K, |). The first condition requires that the cardinality
of the base space K, is a polynomial function of n. In fact this is all that is needed,
because the second condition follows automatically; that is, In |DL(K,)| is polynomial
if |[K,| is. To verify this, we observe that |DL(K,)| < 3*=l|K,|! (Exercise 10 of
Chapter 4). Using the fact that In(N!) < Nln N, we have

In|DL(K,)| < |K.|(In |K,| + In3),

and clearly this is bounded by a polynomial in n whenever |K,| is — for example
when K, = M, ;.
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5.4 THE CONSISTENCY PROBLEM

We are now ready to consider the implications for learning of the theory of NP-hard
problems. Let H = |J H, be a hypothesis space of boolean functions, graded by the
example size n. The consistency problem for H may be stated as follows.

H—-CONSISTENCY
Instance A training sample s of labelled n-bit vectors.
Question Is there a hypothesis in H,, consistent with s?

We shall show that, in some non-trivial cases, this problem is NP-hard. In order to
explain the practical implications of this result, we need to make a few general com-
ments. First, if we consider only those instances of the problem in which the length
of s is bounded by some fixed polynomial in n, then we have a restricted form of the
consistency problem. It is such restricted forms which will arise in this book, and we
shall see that in some cases these problems are NP-hard. Observe that if a restricted
form of H—CONSISTENCY is NP-hard then, in particular, H—CONSISTENCY
itself is NP-hard.

Another comment is that, in practice, we wish to produce a consistent hypothesis,
rather than simply know whether or not one exists. In other words, we have to
solve a ‘search’ problem, rather than an ‘existence’ problem. But these problems
are directly related. Suppose, as above, that we consider only those s with length
bounded by some polynomial in n. Then, if we can find a consistent hypothesis in time
polynomial in n, we can answer the existence question by the following procedure.
Run the search algorithm for the time (polynomial in n) in which it is guaranteed to
find a consistent hypothesis if there is one; then check the output hypothesis explicitly
against the examples in s to determine whether or not it is consistent. This checking
can be done in time polynomial in n also. Thus if we can show that a restricted form
of the existence problem is NP-hard, this means that there is no polynomial time
algorithm for the corresponding search problem (unless P = NP).

5.5 A HARDNESS RESULT

Pitt and Valiant (1988) were the first to give an example of a hypothesis space H
for which a restricted form of the consistency problem is NP-hard. The following is
a slightly simplified account of their method. Let C,, the space of clauses, be the
set of boolean functions of n variables which can be represented by clause formulae;
that is, by formulae like u, V 13 V ug which are disjunctions of literals. Let C* be
the space of boolean functions which can be represented as the conjunction of &
clauses. We can think of C,, as being the hypothesis space of a machine ‘dual’ to the
monomial machine, and C* as the hypothesis space of a machine formed by putting
k C,-machines in parallel, and passing their individual outputs through a multiple
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AND unit (Figure 5.1).
We shall show that, for fixed £ > 3, the consistency problem for C* = |J C¥ is NP-

hard. Thus it is unlikely that there is a polynomial time learning algorithm for C*
which produces a consistent hypothesis.

Y- —

Y2 —p

Y3 - e

AND 0/1

Figure 5.1: The C* machine

The proof follows the standard technique, outlined in Section 5.1, of relating the
problem to one which is known to be NP-complete — in this case the problem of
k-colouring a graph with n vertices. Let G be a graph with vertex-set V and edge-set
E, so that F is a subset of the set of 2-element subsets of V. A k-colouring of G
is a function x : V — {1,2,...,k} with the property that, whenever ij € E, then
x(¢) # x(7). The existence problem for k-colourings is known to be NP-complete for
each k > 3 (Garey and Johnson 1979).

Suppose we are given a graph G = (V, E), with V = {1,2,...,n}. We construct a
training sample s(G), as follows. For each vertex i € V we take as a negative example
the vector v; which has 1 in the sth coordinate position and 0’s elsewhere. For each
edge 5 € E we take as a positive example the vector v; + v;. For example, a graph
G and the corresponding training sample s(G) are shown in Figure 5.2.
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Figure 5.2: A graph and the corresponding training sample

Proposition 5.5.1 There is a function in Cf which is consistent with the.training
sample s(G) if and only if the graph G is k-colourable.

Proof Suppose that h € CF is consistent with the training sample. By definition, A
is a conjunction

h=h1/\h2/\.../\hk

of clauses. For each vertex ¢ of G, h(v;) = 0, and so there must be at least one clause
h; (1 £ f < k) for which hy(v;) = 0. Thus we may define a function x from V to
{1,2,...,k} as follows:

x(2) = min{f | k;(v;) = 0}.

It remains to prove that x is a colouring of G; in other words, if : and j are two
vertices for which x(i) = x(j), then ij ¢ E. Suppose that x(¢) = x(7) = f, so that
hs(v;) = h;(v;) = 0. Since h; is a clause, every literal occurring in it must be 0 on
v; and on v;. Now v; has a 1 only in the :th position, and so h,(v;) = 0 implies that
the only negated literal which can occur in k; is %;. Since the same is true for %;, we
conclude that h; contains only some literals u,, with z # i,7. Thus h;(v; + v;) = 0
and h(v; +v;) = 0. Now if ij were an edge of G, then we should have h(v; + v;) = 1,
because we assumed that A is consistent with s(G). Thus ij is not an edge of G, and
X 1s a colouring, as claimed.

Conversely, suppose we are given a colouring x : V — {1,2,...,k}. For 1 < f <k,
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define h; to be the clause

(L, )

and define h = hy Ak, A ... A h,. We claim that h is consistent with s(G).

First, given a vertex i suppose that x(z) = g. The clause h, is defined to contain only
those (not negated) literals corresponding to vertices not coloured g, and so u; does
not occur in h,. It follows that h,(v;) = 0 and h(v;) = 0.

Secondly, let 2 be any edge of G. For each colour f, there is at least one of ¢,5 which
is not coloured f; denote an appropriate choice by ¢(f). Then &, contains the literal
Uu;(sy, which is 1 on v; + v;. Thus every clause h; is 1 on v; + v;, and kh(v; + v;) =1,
as required. O

Example 5.5.2 The graph depicted in Figure 5.2 has a 3-colouring x given by
x(1) = 1,x(2) = 2,x(3) = 3,x(4) = 2. Thus there is function k in C} consistent

with the corresponding training sample:
h = h]_/\hz/\h3= <(u2VU3VU4)A(Ul VU3)A(UI VU2VU4)).

This graph does not have a 2-colouring, and so we can conclude that there is no
function in C? which is consistent with the training sample. 0

The preceding proposition is the link between the k-colouring problem for graphs
and the C*-consistency problem. If we regard the positive integer k as being fixed in
advance, then we can state these problems more formally as follows.

GRAPH k-COLOURING
Instance A graph G with n vertices.
Question Does G have a k-colouring?

C*—CONSISTENCY
Instance A training sample s of labelled n-bit vectors.
Question Is there a function in C* consistent with s?

The proof that C*—CONSISTENCY is NP-hard is indicated diagrammatically in
Figure 5.3. First, given an instance G of GRAPH k-COLOURING, we can construct
(in polynomial time) an instance s(G) of C*— CONSISTENCY. Note that the number
of edges in a graph with n vertices is at most n(n — 1)/2, and so the number of
examples in s(G) is at most n + n(n — 1)/2, which is O(n?). Now suppose there
is an algorithm (which we may think of as an ‘oracle’) that can provide answers
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to the C¥*—CONSISTENCY question. If the oracle operates in polynomial time,
then we could answer the GRAPH k-COLOURING question in time polynomial in
n, by the following procedure: given G, construct s(G), and consult the oracle.
Proposition 5.5.1 tells us that the answer given by the oracle is the same as the
answer to the original question. Note that this argument shows that a restricted

form of C*—CONSISTENCY in which m is O(n?) is NP-hard.

Instance
Instance | Construction S(G) YES/NO
G G- s(@)

Figure 5.3. The relation between graph k-colouring and C*-consistency

The foregoing proof that the consistency problem for C* is NP-hard works only when
k > 3, because the graph k-colouring problem is NP-complete only when k£ > 3.
When k = 1, we have C} = C,,, and there is a polynomial time learning algorithm
for C,, dual to the familiar one for the monomials (Exercise 6).

When k = 2 it can be shown, by transforming from a different NP-complete problem,
that the consistency problem remains NP-hard. See Pitt and Valiant (1988) and
Exercise 7 for the details. So we can summarise the results of this section by saying
that the consistency problem for C* is NP-hard if and only if & > 2.

FURTHER REMARKS

In this chapter we have discussed learning algorithms for graded spaces H = |J H,,,
where the hypothesis space and the concept space coincide. It is easy to define a
learning algorithm for a graded concept space |JC, by a (possibly different) graded
hypothesis space |J H,: such an algorithm takes as input training samples for hy-
potheses in C = |JC,,, and outputs hypotheses in H = |J H,,, with the property that
if s is a training sample of a hypothesis in C, then L(s) € H,. In this vein, Haus-
sler, Littlestone and Warmuth (1988) introduced the notion of efficient prediction,
subsequently studied by Pitt and Warmuth (1988, 1990) and Haussler et al. (1988).
Roughly speaking, the graded concept space C = |JC, is efficiently predictable if
there is some graded hypothesis space H = |J H, such that there is a pac learning
algorithm for (UC,,U H,) with running time polynomial in n. (To be more precise,
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H is required to have a ‘polynomially evaluable’ representation. In other words, when
the learning algorithm is presented with a training sample for a target in C,, then it
outputs a representation w of a hypothesis h, € H, such that one can determine in
polynomial time whether or not a given example is a positive example of h,,. We make
no further reference to this, as all representations in this book have this propery.)

The hardness result proved in Section 5.5 has been generalised to wider families
of boolean functions by Blum and Singh (1990). Fischer and Simon (1990) prove
an analogous hardness result in the case when hypotheses are represented not in
conjunctive normal form, but by ‘ring-sum-expansions’.

EXERCISES
1. Why is it usually appropriate, in dealing with questions of efficiency, to take the
size of an input which is a positive integer m to be lgm?

2. The following is a fast algorithm for evaluating the mth power of a given value w.
(The output is the final value of bot.)

bot:= 1; top:= u; q:= m;
while q > 0 do
begin
if q mod 2 = 1 then bot:= top*bot;
top:= sqr(top);
q:= q div 2
end

Justify the assertion that the efficiency of the algorithm is O(s), where s is the
measure of the size of m as suggested in Exercise 1.

3. Devise an algorithm to determine the parity of a given n-bit string, and estimate
its efficiency in terms of n.

4. Devise an algorithm to decide whether or not a given n-bit string is a palindrome,
and estimate its efficiency in terms of n.

5. Let G = (V,F) be the graph with vertex-set V = {1,2,3,4,5} and edge-set
E = {12,13,15,23,25,34,45}. Write down the corresponding training sample s(G)
as indicated in Section 5.5. Find the least value of k for which there is a function in
C¥ consistent with s(G), and give an explicit formula for such a function.

6. Let C, = C}, that is, the space of boolean functions on {0,1}" which can be
represented by a single clause formula. Formulate a consistent learning algorithm for
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C, which is ‘dual’ to the standard algorithm for monomials, and justify the claim
that its running time is polynomial in m and n.

7. The following problem is known to be NP-complete (Lovasz 1973).
SET SPLITTING

Instance A pair (U,S), where U is a finite set and S is a collection of sets

with union U.
Question Do there exist U;, U, C U such that U = U, U U, and such that no
set in S lies entirely within U, or U,?

Reduce SET SPLITTING to C?*—CONSISTENCY, and deduce that the consistency
problem for C? is NP-hard (Pitt and Valiant 1988).
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6.1 EFFICIENCY IN TERMS OF CONFIDENCE AND ACCURACY
The discussion in the previous chapter centred on the behaviour of the running time
of a learning algorithm, considered only as a function of the size n of the examples.
Clearly, there are other factors which determine the running time of learning algo-
rithms, and we should like to have a notion of efficiency which takes account of these.
To this end, we begin by discussing efficiency with respect to the levels of confidence
and accuracy required. Then we shall discuss efficiency with respect to the size of
the representation of the target concept. These considerations are relevant for any
hypothesis space, and they can be combined with the ideas of Chapter 5 to give a
quite general definition of what is meant by an efficient pac learning algorithm.

In the previous chapter, we regarded the confidence parameter § and the accuracy
parameter € as fixed but arbitrary. It is clear that decreasing either of these quantities
makes the learning task more difficult, and therefore the running time of an efficient
pac learning algorithm should be constrained in some appropriate way as §~! and ¢!
increase. We could simply ask that the running time increases polynomially with §~*
and €', but this dependence on §~! is not quite appropriate for the following reason.
If the length of training sample input to an efficient learning algorithm is doubled, we
might expect the probability that the output hypothesis is ‘bad’ to be approximately
squared. In other words, the desired relationship between the sample complexity and
67! is logarithmic. Motivated by this, we shall say that a learning algorithm L is
efficient with respect to confidence if its running time is polynomial in m and the
sample complexity m(H,é,¢) depends polynomially on the quantity In(6~!), which
we shall denote by é*. In the case of the accuracy parameter, we shall say that L
is efficient with respect to accuracy if its running time is polynomial in m and the
sample complexity depends polynomially on e~!. If both these conditions hold, then
the running time required to produce a pac output hypothesis is polynomial in é*
and e~
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For example, if H is any finite hypothesis space and L is a consistent learning algo-
rithm for H, then the theory developed in Chapter 4 implies that an upper bound
for the sample complexity is mo(H,6,¢€) = [e~!In(|H|/6)]. In this case m, is clearly
bounded by a polynomial function of é* and €¢~!. If the running time of L is polyno-
mial in m then L is a pac learning algorithm for H which runs in time polynomial
in 6* and €!. The same argument works in the graded case. If H = UH, is a
hypothesis space of boolean functions graded by example size, then an upper bound
for the sample complexity is

g0 = [ (121)]

In this case if the running time R;(m,n) is polynomial in m and n, and if In |H,| is
polynomial in n, then L pac learns H, with running time polynomial not only in n,
but also in 6* and € !.

6.2 PAC LEARNING AND THE CONSISTENCY PROBLEM

The analysis given at the end of the previous section is motivated by the now familiar
relationship between consistency and pac learning. Restricting our attention to the
ungraded case, the result is simply that if there is a consistent learning algorithm L
for a finite hypothesis space H which runs in time polynomial in the sample length m,
then L pac learns H with running time polynomial in §* and ¢~!. Roughly speaking
we may say that an efficient ‘consistent-hypothesis-finder’ is an efficient ‘pac learner’.
In this section we shall investigate to what extent the converse implication holds.

It turns out that efficient pac learning does imply efficient consistent-hypothesis-
finding, provided we are prepared to accept a randomised algorithm. A full account
of the meaning of this term may be found in the book of Cormen, Leiserson and
Rivest (1990), but for our purposes the idea can be explained in a few paragraphs.

We suppose that there is available some form of random number generator which,
given any integer I > 2, produces a stream of integers 7 in the range 1 < ¢ < I, each
particular value being equally likely. This could be done electronically, or by tossing
an [-sided die. A randomised algorithm A is allowed to use these random numbers
as part of its input. The computation carried out by the algorithm is determined
by its input, so that it depends on the particular sequence produced by the random
number generator. It follows that we can speak of the probability that A has a given
outcome, by which is meant the relative frequency of sequences which produce that
outcome with respect to the total number of possible sequences.

We say that a randomised algorithm A ‘solves’ a search problem II if it behaves in
the following way. The algorithm always halts and produces an output. If A has
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failed to find a solution to II then the output is simply no. But, with probability at
least 7 (in the sense explained above), A succeeds in finding a solution to II and its
output is this solution.

The practical usefulness of a randomised algorithm stems from the fact that repeating
the algorithm several times dramatically increases the likelihood of success. If the
algorithm fails at the first attempt, which happens with probability at most 2, then
we simply try again. The probability that it fails twice in succession is at most ;.
Similarly, the probability that it fails in k attempts is at most (3)*, which approaches
zero very rapidly with increasing k. Thus in practice a randomised algorithm is almost
as good as an ordinary one — provided of course that it has polynomial running time.
We have the following theorem of Pitt and Valiant (1988) (see also Natarajan (1989)
and Haussler et al. (1988)).

Theorem 6.2.1 Let H be a hypothesis space and suppose that there is a pac learning
algorithm for H with running time polynomial in e¢~!. Then there is a randomised
algorithm which solves the problem of finding a hypothesis in H consistent with a
given training sample, and which has running time polynomial in m (the length of
the training sample).

Proof Suppose that s* is a training sample for a target hypothesis ¢ € H, and that
s* contains m* distinct labelled examples. We shall show that it is possible to find
a hypothesis consistent with s* by running the given pac learning algorithm L on a
related training sample.

Define a probability distribution x on the example space X by
1/m*, if z occurs in s*;

u(z) = {0,/ " otherwise. ,
We can use a random number generator with output values ¢ in the range 1 to m* to
select an example from X according to this distribution: simply regard each random
number as the label of one of the m* equiprobable examples. Thus the selection of a
training sample of length m for ¢, according to the probability distribution px, can be
simulated by generating a sequence of m random numbers in the required range.

Let L be a pac learning algorithm as postulated in the statement of the Theorem.
Then, when the four usual objects 8, €, i, and ¢ are given, we can find an integer
mg (6, €) for which the probability (with respect to training samples s € S(m,,t)) that
the error of L(s) is less than € is greater than 1—4. Suppose we specify the confidence
and accuracy parameters to be
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Then if we run the given algorithm L on a training sample of length my(1/2,1/m*),
drawn randomly according to the distribution p, the pac property of L ensures that
the probability that the error of the output is less than 1/m* is greater than 1— 7 = 2.
Since there are no examples with probability strictly between 0 and 1/m*, this implies
that the probability that the output agrees exactly with the training sample is greater

than 1/2.

The procedure described in the previous paragraph is the basis for a randomised
algorithm L* for finding a hypothesis which agrees with the given training sample s*.
In summary, L* consists of the following steps.

e Evaluate my = my(1/2,1/m*).

¢ Using the random number generator, construct a training sample s of length
my, according to the probability distribution .

e Run the given pac learning algorithm L on s.

o Check the resulting hypothesis L(s) explicitly to determine whether or not
it agrees with s*.

o If the hypothesis does not agree with s*, output no. If the hypothesis does
agree with s*, output the hypothesis.

As we noted, the pac property of L ensures that L* succeeds with probability greater
than ;. Finally, it is clear that if the running time of L is polynomial in €', then

the running time of L* is polynomial in m* = ¢!, O

Theorem 6.2.1 enables us to extend hardness results for the consistency problem,
as proved in Section 5.5, to pac learning. Recall that both the decision problem
for consistency and (consequently) the problem of finding a consistent hypothesis
are NP-hard in some cases, such as when the hypothesis space is C* = |JC*. The
theorem tells us that if we could pac learn C* with running time polynomial in ¢!
and n then we could find a consistent hypothesis, using a randomised algorithm with
running time polynomial in m and n. In the language of Complexity Theory this
would mean that the latter problem is in RP, the class of problems which can be
solved in ‘random polynomial time’. Now it is thought that RP does not contain any
NP-hard problems — this is the ‘RP # NP’ conjecture, which most people consider
to be as reasonable as the ‘P # NP’ conjecture. So if we accept the common view, it

follows that there is no polynomial time pac learning algorithm for the graded space
C* when k > 2.

The above discussion shows that for £ > 2, C* is not pac learnable efficiently with
respect to example size. However, for any n, C* is contained in D, , the space
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of disjunctions of monomials with at most k literals (Exercise 3). Valiant’s learn-
ing algorithm for D, = D, ,, described in Section 2.2, is a consistent algorithm
with running time R;(m,n) = O(mn*), polynomial in m and n (see Example 5.2.2).
Therefore, for any training sample s for a hypothesis in C¥, this algorithm will pro-
duce, in polynomial time, a hypothesis of D, , consistent with s. In the Further
Remarks section of the previous chapter, we defined what is meant by a learning
algorithm L for one graded space |J C, by another graded space |J H,: given a train-
ing sample s for a hypothesis of C,, L returns a hypothesis L(s) € H,. Using this
terminology, the standard learning algorithm for D, is a pac learning algorithm for
(C*, D), efficient with respect to example size. Thus, in contrast to the negative
result above, C* is efficiently learnable by a larger space. There is no contradiction
here. Roughly speaking, it is difficult to find a formula for a consistent hypothesis
in C* because this space is too ‘limited’. Given the greater flexibility of working in
the ‘richer’ space D, ;, in which the algorithm can express its hypotheses in terms of
D, ; formulae, fast learning can be achieved. The non-learnability result is therefore,
in a sense, representation-dependent.

6.3 THE SIZE OF A REPRESENTATION

We have already mentioned in passing that the output of a realistic learning algorithm
is not an abstract function, but rather a representation of that function by means of a
formula or a state of a machine. Since a boolean function which can be represented by
a short boolean formula is clearly ‘simpler’ than one which requires a longer formula,
it may reasonably be expected that the latter is more difficult to learn than the
former.

The framework needed for a careful discussion of such matters is provided by the
notion of a representation ! — H, as introduced in Section 2.5. The set {2 may be
thought of as a set of formulae or a set of states of a machine, so that for each w € 2
there is a corresponding hypothesis h,. In the next few sections, we shall investigate
how the representation of hypotheses affects the running time of learning algorithms.

In order to do so, we first need to have some measure of the ‘size’ of a representation
of a hypothesis. Of course there is no absolute measure, and so we must construct
one which seems reasonable for the problem in hand. The boolean case is the most
straightforward.

The standard method of representing boolean functions by means of formulae was
described in Section 2.3. Formally, we use an alphabet of 4 + 2n symbols

() /\Vulﬂluzﬁg Un, U,

which are combined according to certain rules of formation. This alphabet can be
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encoded using 3+ [lgn] bits for each symbol, as indicated in the following table. The
idea is that the first three bits are used to code the nature of the symbol, and the
remaining [lgn] bits are used to represent the subscripts on the literal symbols.

Symbol Code

( 110 000...00
) 101 000...00
\Y; 100 000...00
A 111 000...00
U,y 001 000...01
Uy 000 000...01
Uy 001 000...10
and so on

Let w be a well-formed formula which can be obtained from the alphabet given above.
If w has s symbols, then it can be encoded by using s(3 + [lgn]) bits, and so the size
of w may be taken as

wll = s(3 + [lgn]).
For example, if n = 3 and w = (u; A u;) V uz, then w contains 7 symbols and
lw]| = 7(3 + 2) = 35.

As we remarked above, the output from a learning algorithm is not an abstract
function or hypothesis, but rather a representation of a hypothesis by a formula or
a state of a machine. In this light it is instructive to compare the size of such an
output with the size of the input to the algorithm, which is simply a training sample
of labelled examples.

Example 6.3.1 Suppose we supply a training sample of 20 labelled 30-bit vectors to
the standard monomial learning algorithm. The total number of bits in the input is
20 x (30 +1) = 620. The output is a monomial hypothesis, which can be represented
by a formula with at most 30 literals and 29 conjunction symbols. Using the encoding
scheme described above, the number of bits required to encode the output is at most

(30 + 29) x (3 + [Ig30]) = 472.

Since this is rather less than the number of bits in the input, it is reasonable to claim
that the output is, in some sense, a compressed form of the input. a

The preceeding example illustrates that, in favourable circumstances, we can expect
the learning algorithm to output a representation w of a hypothesis A, such that not
only is h, an extension of the training sample, but w is a compressed form of the
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input. That is, in a sense, w contains as much information as is conveyed by the
training sample, it defines an extended function, and it requires less bits than the
training sample. In Section 6.5 we shall see that if a learning algorithm L outputs
the representation of a hypothesis which, in a precise sense to be defined, is not
too long, and is a significant compression of the input, then L has certain probably
approximately correct properties.

6.4 FINDING THE SMALLEST CONSISTENT HYPOTHESIS

Suppose we are given a training sample for a monomial. The standard learning algo-
rithm described in Section 2.2 produces, in polynomial time, a monomial consistent
with the training sample. However, we might expect more, and ask for the smallest
monomial consistent with the sample. In this context we can ignore the conjunction
symbols in a monomial, and it suffices to use the approximation [k logn] for the size
of a monomial formula with k literals, defined on {0,1}". Thus, in any given subset
of M, the ‘smallest’ monomial is simply the one with the fewest literals. In this
section we shall show that finding the smallest monomial consistent with a training
sample is an NP-hard problem.

Our aim will be achieved by relating the problem to one which is known to be NP-
complete. Suppose U is a finite set and S is a finite collection of sets with union
U. We say that a subcollection S’ of S is a subcover if the union of the sets in §' is
also U. The following was one of the first problems shown to be NP-complete (Karp
(1972); see also Cormen, Leiserson and Rivest (1990)).

SUBCOVER
Instance A pair (U, S), as above, and a positive integer £ < |S|.
Question Is there a subcover of S containing at most k sets?

Note that the size of the instance depends on both |U| = u and |S| = n. In fact we
can describe (U, S) by a matrix with u rows and n columns, which specifies whether
or not each member of U is in each member of S. The size un of this matrix may be
regarded as the size of the instance (U, S), and this is the parameter with respect to
which we discuss the question of polynomiality. '

The preceding problem is in ‘decision’ form. There is a related ‘optimisation’ problem
which is more directly relevant to our aims.

MINIMUM COVER
Instance A pair (U, S), as above.
Question What is the minimum number of sets in a subcover of (U, S)?

Clearly, if we could answer the MINIMUM COVER problem with running time poly-



58  Efficient Learning — II

nomial in un then we could answer the SUBCOVER problem also in polynomial time.
Indeed, suppose that the pair (U, S) and the positive integer k constitute an instance
of SUBCOVER. If we solve MINIMUM COVER for the instance (U, S), we find the
least integer K such that S has a subcover with K sets. The answer to the instance
of SUBCOVER is then immediate, being yes if and only if ¥ > K. In fact a converse
relationship also holds, although we do not need it here. (See Exercise 4.)

Let us now return to the problem of finding a monomial consistent with a given
training sample s and containing the fewest possible literals.

SHORTEST MONOMIAL

Instance A training sample s of length m for a monomial in M,,.

Question What is the minimum number of literals appearing in a formula for
a monomial consistent with s?

We now show that SHORTEST MONOMIAL is NP-hard by reducing MINIMUM
COVER to it. Our approach is based on that of Haussler (1988). Suppose we are
given an instance of MINIMUM COVER with

S = {51,82,...,5"} ’ U = {al,ag,... ,au} .
Then we form a corresponding instance s(S) of SHORTEST MONOMIAL as follows.

The training sample s(S) has length m = u + 1 and consists of u negative examples
and one positive example. For ¢ in the range 1 < ¢ < u the negative example z; is
the n-bit vector defined by

(Zi),- — {0, if a; € S],

1, otherwise.

The positive example is the all-1 vector of length n.

Proposition 6.4.1 For each positive integer k£ < n, S has a subcover of size k if and
only if there is a monomial with k literals which is consistent with s(S).

Proof Suppose that
S' = {Sjnsjz’ v ’Sjk}

is a subcover of S, and define A to be the monomial
h = (uhuh o 'ujk)'

The positive example in s(S) is correctly classified by h, because h contains no negated
literals. Further, each a; belongs to at least one set S;,, and therefore z; has a 0 in
the j;th coordinate position and is a negative example of h. Thus h is consistent with

s(S).
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Conversely, suppose that A is a monomial consistent with s(S). Since the all-one
vector is a positive example of h, h can contain no negated literals. Suppose then
that

h = (ujlujz cee uik)'

We claim that
{Si1sSizr -2 Sii}

is a subcover of S. If this were false, then there would be some a; € U which belongs
to none of the sets in S, and that would mean that h(z;) = 1, contrary to the
assumption that A is consistent with the training sample. The result follows. O

It follows that if there is an algorithm for solving the SHORTEST MONOMIAL
problem which runs in time polynomial in m and n, then this algorithm could be used
to solve the MINIMUM COVER problem in time polynomial in un. (Recall that the
training sample s(S) has length m = u + 1.) We have previously remarked that a
polynomial time algorithm for MINIMUM COVER would imply one for SUBCOVER,
and the latter is known to be NP-complete. Hence SHORTEST MONOMIAL is NP-
hard.

In summary, we have shown that although the standard learning algorithm for mono-
mials provides an efficient means of finding some monomial consistent with a given
training sample, there is (if we accept that P # NP) no algorithm L which finds
a consistent monomial with fewest possible literals, and for which the running time
R;(m,n) is polynomial in m and n.

6.5 OCCAM ALGORITHMS
Let @ — H be a representation of boolean functions, and let ||w|| be a measure of
size defined for each w € 2. For each integer r > 1 define

Q, = {wEQ l ”w” =1‘},

and let H, denote the subset of H comprising those hypotheses h, whose minimal
representation has size r. We shall say that such hypotheses have representation size
r. Then H may be graded by representation size as H = |J H,. A learning algorithm
L for H takes as input a training sample for some target function ¢t € H. Suppose ¢
is in H,; in other words, the smallest representation of ¢ has size r. The output of L
will be specified by a representation w € (2, and we need to consider the relationship
between ¢ and r. By the result of the previous section, it may be difficult to find the
smallest possible value of g, but we might ask, not that L finds the shortest possible
representation, but merely a reasonably short one. This idea is made precise in the
following definition, due to Blumer et al. (1987).
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We say that a learning algorithm L for H is Occam with respect to the representation
Q— Hif

e L is consistent;

e given a training sample s of length m for a target function ¢ € H,, the
output hypothesis L(s) = A, is such that ||w|| < m*r?, where 0 < a < 1 and
B > 1 are constants.

The bound for ||w| says that the output is compressed with respect to the length
of the training sample and grows only polynomially as a function of the size of the
minimal representation length of the target. The condition a < 1 means that the
output is truly a compressed form of the input; if we allowed a = 1, then the output
would be comparable in size with the training sample, whose bit-length is linear in m,
and no significant compression of data would be achieved. The next theorem shows
that outputting a short representation, in this sense, is sufficient for a form of pac
learning.

In order to formulate the theorem we need to recall that our original definition of
a learning algorithm allowed the concept space C' and the hypothesis space H to
be different. This distinction is useful here, because we are interested in learning
hypotheses in a subset H, by using the full resources of the space H.

Theorem 6.5.1 Let H be a space of boolean functions with representation ) — H,
and let H = |JH, be graded, as above, by representation size. If L is an Occam
learning algorithm with respect to the given representation then, for each r, L is a
pac learning algorithm for (H,, H), with sample complexity m(H,,¥, €) polynomial
in r, 6* and €.

Proof Suppose that the usual objects 6, €, u, and t are given, and that ¢t € H,. For
a given m, let L(m,t) denote the set of hypotheses h € H such that & is the output
L(s) of L, for some training sample s of length m for the target concept ¢. In other
words, L(m,t) is the ‘effective’ hypothesis space for t.

By the second Occam condition, the members of L(m,t) are hypotheses A, for which
w has at most M = |m*rf| bits, and the total number of such w is at most 2™+,
Hence

|L(m,t)| < 2™+,

Note that the bound depends only on r, not ¢ itself; in other words it holds uniformly
for all t € H,. We now repeat the argument given in Section 4.2. The probability
that any one e-bad hypothesis from H agrees with ¢ on a training sample of length
m is (1 — €)™. Since L is consistent, its output hypotheses agree with the training
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sample, and thus the probability that the output hypothesis is e-bad is at most
IL(m, t)|(1 — &)™ < 27"+ (1 — )™,

It remains to prove that this can be made less than § by taking m sufficiently large,
and that the value of m required is a polynomial function of r, §* and ¢~!. Using the
inequality (1 — €)™ < exp(—em) and rearranging, we find that it suffices to have

em > Am* + B,

where

A=rIn2, B=]n(%).

Since a < 1, the condition holds if m!=* > (A + B)/e, that is,

1/(1-a)
mZmoz[(A+B) }

€

In other words, the expression m, is an upper bound for the sample complexity.
Clearly m, is polynomial in r, because A is O(rf) and so m, is O(r?/'~*); furthermore
m, is also polynomial in 6* and €!. The result follows. 0

We observe once again the importance of the condition a < 1: it is clear that the
condition em > Am® + B cannot be satisfied if a = 1.

It is an immediate corollary of Theorem 6.5.1 that if the running time of an Occam
algorithm is polynomial in the sample length m, then its running time as a pac
learning algorithm is polynomial in r, §* and €~*. In other words an Occam algorithm
L for H pac learns each H, by H, and it does so efficiently with respect to the
representation size and the confidence and accuracy parameters. Note that it does
not necessarily follow that H itself is pac learnable, although this will be so if there
is an upper bound on the representation size of hypotheses in H.

6.6 EXAMPLES OF OCCAM ALGORITHMS

Suppose we are given a collection S = {S5,,S,,...,5,} of finite sets, with union
U, and we wish to determine the smallest subcover of (U,S); that is, the smallest
subcollection of S whose union is also U. We have seen that this problem is NP-
hard. That does not mean, however, that there is no efficient means of obtaining
an approximate solution to the problem. Indeed, there is a simple intuitive method
of finding an approximate solution, based on the ‘greedy’ method, which turns out
to be very efficient. First, we choose a set S;, which contains the largest number
of elements of U, and delete the members of S;,. Then we choose a set S;, which
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contains the largest number of remaining elements, and delete those elements. We
continue in this manner, at each stage choosing the set which contains the largest
number of remaining elements.

set X =U,;
while X #0 do
begin
choose S; such that |S; N X| is mazimal;
sel X = X \ Sj
end
Since S covers U, the process must terminate with a subcover 8’ = {S;,,5;,,...,S5;, }.

We call this the greedy algorithm for MINIMUM COVER. Of course, the size k of
the resulting subcover will not in general be the minimum possible size of a subcover,
but it has been shown (Nigmatullin (1969) and Johnson (1974)) that & is related to
the size ! of a minimum subcover as follows:

k <l |U|+1).

This yields a good upper bound for the performance ratio k/l and, in this sense, the
greedy algorithm is a good approximation algorithm for the problem.

The running time depends on both u = |U| and n = |S|. The number k of selection
steps is at most n, since we cannot select more sets than there are in S; it is also at
most u, since we cannot need more sets than there are elements to be covered. In
other words, £ < min(u,n). (Note that the result on the performance ratio yields
k < n(lnu + 1).) Each selection step involves finding the maximum of at most n
integers and deleting at most u elements from each of at most n sets. The number of
operations required for each selection is thus O(un). The overall running time may
therefore be expressed as
O(un min(u,n)),

which can be further simplified according to the context.

The greedy method can be used to derive learning algorithms for certain classes of
boolean formulae. In this context, the result on the performance ratio turns out
to be just what is needed for an Occam algorithm. Following Haussler (1988), we
shall illustrate the technique by showing how the greedy algorithm for the covering
problem can be transferred to the space M, of monomials, and we shall prove that
the resulting learning algorithm is Occam.

The initial hypothesis is the monomial formula with no literals, in other words the
identically-1 function. At each stage, one literal is added to the current conjunction
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of literals according to a rule based on the greedy algorithm for the covering problem.
Let us say that a literal A\ eliminates a negative example z if (A)(z) = 0. We take
the elements to be covered to be the set of negative examples in the given training
sample, and the covering sets as the sets of negative examples eliminated by literals of
a certain kind. At each stage we select the literal which eliminates the largest number
of negative examples in the sample, add this literal to the formula, and delete the
examples which it eliminates. We continue in this manner, until all negative examples
in the sample have been eliminated.

In order to explain why this method works, we need some rather more detailed
arguments. Let s be a training sample for a monomial, and let E be the set of
examples occurring in s, so that F is partitioned into positive and negative examples,
E = E* U E~. For any literal X let Sy be the set of negative examples eliminated by
A, that is

Sy={z € E7 | (A)(z) = 0}.

Finally, let
A={\|{\(z)=1forall z € E*}.

Lemma 6.6.1 The collection of sets S = {S) | A € A} covers E~.

Proof Since s is a training sample for a monomial, we know that there is a monomial
t = (A A...A ) such that, for z € E, t(z) is 1 or 0 according as = is in E* or E~.
This implies, first, that A;,..., A; all belong to A. Secondly, it implies that for any
z € E~ at least one of the literals A; occurring in ¢ is such that (A;)(z) = 0. In other
words, z € S,, € S. 0

Lemma 6.6.2 If
S' = {S'\l""’S'\k}

is any subcover of (E~,S), then the monomial A = (A\; A... A \;) is consistent with
S.

Proof Suppose x € E*. Since A,,...,\; are members of A, they all evaluate to

1 on z, and so h(z) = 1. Suppose z € E~. Since S’ is a subcover, there is some
3 (1 £3j < k) such that € S,;. Thus (A;)(z) = 0 and consequently h(z) = 0. O

These lemmas show that the greedy algorithm for the covering problem can be trans-
formed into an algorithm for finding a monomial consistent with a given training
sample. To see that it is indeed an Occam algorithm, consider its behaviour on a
training sample for a monomial ¢ whose smallest representation is by a formula con-
taining ! literals. The minimum representation size of ¢ is thus r = [llgn]. The result
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on the performance ratio of the greedy algorithm for the covering problem implies
that the number k of literals in the output formula is such that & < I(In|E~| + 1).
Therefore the size of the output formula w satisfies

lwll = [klgn] < [i(In|E7| +1)lgn] < r(ln [E7] +1).

The number |E~| of negative examples in the training sample is bounded by m, the
length of the training sample. Hence |lw|| < (Inm + 1)r, which trivially implies the
Occam compression condition ||w]| < m®r? with a = 1/2 and B =1 (for example).

The greedy algorithm differs in a number of important aspects from the standard
learning algorithm for M, described in Section 2.2. Instead of starting with the
identically-0 function (the conjunction of all 2n literals) and then deleting literals
using the positive examples, the new algorithm starts with the identically-1 function
(the empty conjunction of literals) and then adds literals using the negative examples.
Also, while the standard algorithm is a memoryless on-line algorithm, the greedy
algorithm certainly is not. However, as an Occam algorithm, the greedy algorithm has
the important advantage that it outputs consistent hypotheses which are relatively
simple.

Rivest (1987) has observed that the greedy method can also be used to develop an
Occam algorithm for the space DL(M,, ;) of decision lists formed from monomials of
length at most k (for a fixed k). We shall say that the pair (g,c), with g € M, ,
and ¢ € {0,1}, ezplains a subset T of the m examples in a training sample for ¢ if
g(z) = 1 implies t(z) = c for all z € T. The greedy learning algorithm for decision
lists is again based on the greedy algorithm for MINIMUM COVER. We can think
of the set to be covered as the set of examples in the sample, and the covering sets
as the set of examples explained by the pairs (g, c) as above. The algorithm builds
up a decision list from the empty decision list, at each stage adding the term (g, c)
which explains the largest number of examples in the sample which have not been
explained by earlier terms in the list. As above, we can show that the length of
the resulting decision list is at most a factor (Inm + 1) larger than the length of
the shortest decision list consistent with the sample. An analysis similar to that for
monomials shows that the greedy learning algorithm for decision lists is an Occam
algorithm (see Exercise 7).

6.7 EPAC LEARNING

We have seen that there are several natural parameters of a learning problem which
affect its difficulty. Clearly, as greater confidence and accuracy are demanded, the
learning task becomes harder. However, if a given learning algorithm L is to be prac-
ticable, the learning task should not become ‘hugely’ more difficult as these param-
eters are varied. We formalised this notion by insisting that the sample complexity
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my(H,é,¢€) should depend polynomially on é6* and e~'. We have also discussed the
effect of representation size on the difficulty of a learning problem. Again, to ensure
efficiency, we insisted that the sample complexity depends polynomially on the rep-
resentation size. Yet again, back in Chapter 5, we discussed learning algorithms for
graded hypothesis spaces, and this provided a framework for studying the efficiency
of such algorithms with respect to the size of the examples.

All these aspects can be combined in an attempt to capture the full meaning of effi-
ciency in the context of learning algorithms. Suppose that H = |J H,, is a hypothesis
space graded by example size, and that ! — H is a representation for H. Then,
we may grade each H, by representation size as H, = U H,, ,, where H,, , consists of
those hypotheses of H, which have minimal representation size r. In this situation

we shall say that
H=JUH..

is doubly-graded. Usually we shall use a single union sign for a doubly-graded space
when this causes no confusion.

Let L be a learning algorithm for H, in the usual sense that L(s) is in H, whenever
s is a training sample for a hypothesis in H,. We say that L is efficiently pac or
(following Valiant (1991)) epac if

¢ the running time R;(m,n) is polynomial in m and n;

e the sample complexity m(H,,,é, €) is polynomial in n, r, §*, and €'.

Thus an epac learning algorithm is guaranteed to produce a probably approximately
correct output, with running time polynomial in n, r, §* and €!.

One way of ensuring that the second property holds is to impose a version of the
Occam conditions. In the present context we say that L is Occam if the conditions
stated in Section 6.5 hold for each H,, with the constants « and f independent of n.
Then we have the following result.

Theorem 6.7.1 Suppose that the hypothesis space is H = | H,,, as above, and
that L is an Occam algorithm for learning H,, , by H,, with polynomial running time
Rr(m,n). Then L is epac.

Proof From the proof of Theorem 6.5.1, we have the upper bound

mo(H,,b,€) = RA + B) ‘/(l—a)]

€
for the sample complexity of L on H,,, where A = r’In2 and B = In(2/6). As we
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noted, this is polynomial in 7, §* and ¢~'. Since « and S are independent of n, so too
is mo (H,, 6, €). The result follows on observing that an upper bound on the running
time of L in pac learning H, , is

Ry (mO (Hn.r’ 6, 6) ) n) )

which is polynomial in n,r,6* and €.

a

Example 6.7.2 The graded hypothesis space M = |J M,, of monomials can be doubly
graded as M = U M,, ., where M,, , consists of those monomials on n variables which
have representation size r. (Note that the notation M, , used in previous chapters has
a slightly different meaning.) In Section 6.6 we described an algorithm for learning
M, . by M,, based on the greedy method, and we showed that it has the Occam
property, with & = 1/2 and # = 1. The running time R;(m,n) is O(mn min(m,n)),
which is certainly polynomial in m and n. Thus we can conclude that the greedy
algorithm for M is efficiently pac. a

In the same way, one can show that, for a fixed k, the greedy algorithm for decision
lists gives rise to an epac algorithm for the space U, DL(M, ), graded by example
size n.

These examples raise a few interesting points. Any monomial in M, has at most
n literals and so has representation size at most [nlogn]. That is, in the doubly-
graded space M = UM, ,, if r > [nlogn] then M, , is empty. Thus r is bounded
polynomially by n. Similarly, for the space of decision lists based on M, ;, the
representation size is polynomial in n.

More generally, let H = |J H,, be a graded space with representation 2 — H. Suppose
that there is some polynomial p(n) such that, when H is doubly graded as H = U H,. .,
then

r>p(n) = H,,=0;

that is, as in the two examples above, r is bounded polynomially in n. In this
case, we say that H has polynomial representation size. Suppose that L is an epac
learning algorithm for such a space H. Then the sample complexity my, (H, ,, 6, ¢€) is
polynomial in r and n, and hence is polynomial in . In addition, L runs in polynomial
time. Therefore any epac learning algorithm for H, considered as a pac learning
algorithm for the graded space H = | H,,, is efficient with respect to example size,
confidence and accuracy. Thus, for hypothesis spaces with polynomial representation
size, the definition of epac learning is a restriction, or a narrowing, of the definition
of pac learning: not only must there be a pac learning algorithm for H efficient with
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respect to example size, confidence and accuracy, but there must be one which is, in
addition, efficient with respect to representation size.

On the other hand, consider the following important example.

Example 6.7.2 Let us denote by DNF, the space of all 22" boolean functions de-
fined on {0,1}". We use the notation DN F,, because every boolean function can be
expressed in disjunctive normal form, and because we consider the representation by
DNF formulae. The representation size of A € DNF, is the least size (as defined
in Section 3.3) of a DNF formula representing A. The space DNF = |JDNEF, of
all boolean functions can then be doubly-graded as DNF = |JDNF, ,. Unlike the
previous examples, the graded space DNF = |JDNF, does not have polynomial
representation size (see Exercise 8). a

We shall see in Chapter 9 that there can be no pac learning algorithm for DN F which
is efficient with respect to example size (essentially because DNF, is ‘too large’).
However, it is still possible that there is an epac learning algorithm for DN F. (Such
an algorithm need not have running time polynomial in n since its running time
can depend polynomially on the representation size r, which is not bounded by any
polynomial in n.) This example serves to illustrate that there are some hypothesis
spaces for which the definition of epac learning can be regarded as a generalisation, or
a widening, of the definition of pac learning. Epac learning admits a natural limited
form of ‘non-uniformity’ into the learning process.

We remark that whether there is an epac learning algorithm for DN F' is a major
open problem in Computational Learning Theory, first raised by Valiant (1984).

FURTHER REMARKS

As mentioned above, the fact that C* is not learnable efficiently with respect to
example size is a representation-dependent result. If the output hypotheses can be
represented in ways other than as conjunctions of at most k clauses, then generation
of probably approximately correct hypotheses is easy. It could be argued, therefore,
that such negative results are not very strong. Kearns and Valiant (1989) (see also
Kearns (1990)) have obtained very strong hardness results based on cryptographic
hardness assumptions. In order to describe their results, recall that a graded concept
space C = UC, is efficiently predictable if there is some graded hypothesis space
H = |JH, and some pac learning algorithm for (C, H) efficient with respect to n.
Kearns and Valiant show that for a number of boolean concept spaces C = |JC,,
efficiently predicting C' is as hard as some of the problems traditionally thought
of as intractable in cryptography, and upon which many cipher systems are based.
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These hardness assumptions are weaker than the RP#NP assumption, but the results
obtained are significantly stronger. For example, for p a fixed polynomial function, let
BF? be the space of boolean functions on {0,1}" which can be represented by some
boolean formula of size at most p(n), and let BF? be the graded space BF? = |J BF?.
Then their results show that there is a polynomial p such that BF? is not pac learnable
efficiently with respect to example size, no matter how the output hypotheses are
represented.

Clearly, it is possible to introduce representation size into the definition of efficient
prediction. We may say that a doubly graded space C = UC,,, is epac predictable
if there is some hypothesis space H = |JH, and some polynomial time learning
algorithm L for (C, H) such that L has sample complexity my (C, -, 9, €) polynomial
in n,r,6*,¢"!. We mentioned that the epac learnability of DN F' is an open problem.
It is also unknown whether DN F' is epac predictable.

In our definition of efficiency with respect to confidence, we required the sample com-
plexity and running time of the learning algorithm to be polynomial in the quantity
6*, and we gave some informal motivation for this. In fact, Haussler et al. (1988)
have shown that any pac learning algorithm which has running time polynomial in
6~! can be used to construct one which has running time polynomial in §*. Thus if a
hypothesis space is pac learnable by an algorithm which has running time polynomial
in §~! and €!, then it is learnable by an algorithm efficient with respect to confidence
and accuracy in our sense.

If we fix 6§ = 1/2 in the definition of epac learning, we obtain a different model of
learning, in which arbitrarily high confidence is not required. Although this seems
significantly less strong than epac learning, Haussler et al. (1988) have shown that
if there i1s an efficient learning algorithm for a hypothesis space in this model, then
this algorithm can be used (by repetition) to construct a full epac learning algorithm
for H. Thus, the two models are essentially the same: it is computationally just as
feasible to learn with arbitrarily high confidence as it is to learn with fixed confidence

§=1/2.

Another variant of epac learning has been defined by Kearns and Valiant (1989). A
doubly-graded space C = |JC, , is said to be (efficiently) weakly learnable if there
is some hypothesis space H, a learning algorithm L for (C, H), a polynomial p(n,r)
and a function my(C,, ., §) such that the following hold:

e R;(m,n) is polynomial in m and n,

e my(C, ,,6) is polynomial in n,r and 67!, and
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e for m > my(C, ., 6),

er, (L(s)) < % - p(nl,r)} >1-46,

p {S € S(m,t)
for any t € C,,, and for any probability distribution g on {0,1}".

Thus, the main difference between weak learning and epac prediction is that the
learning algorithm does not have to achieve arbitrarily high accuracy; it simply has to
perform better than random guessing by an amount which decreases as the parameters
n and r, characterising the difficulty of the problem, increase. This therefore looks
an easier definition to satisfy than the definition of epac prediction. But Schapire
(1990) has shown that a hypothesis space is efficiently weakly learnable if and only
if it is epac predictable (see also Freund (1990)). Note that, in view of this and the
comments above, one could equally well have demanded poynomiality in 6* in the
definition of weak learnability.

The preceeding few paragraphs illustrate that the models of epac learning and epac
prediction are robust: seemingly different variants of the models make no further
spaces efficiently learnable.

EXERCISES

1. In Section 6.2 we said that a randomised algorithm solves a search problem if it
outputs the ‘correct answer’ with probability at least ;. Explain why the value ; can
be replaced by any fixed value § > 0.

2. Let F, denote the set of all arithmetical expressions in two variables with integer
coeflicients, such as

f(zy,25) = (27 — 3,)° — 2} — 22 + 22,7,

Devise a randomised algorithm for deciding whether a given f € F, is identically
zero. [Hint: If f is not identically zero, the probability that it will always evaluate to
zero when r different pairs of values are substituted decreases rapidly as r increases.

See Welsh (1988, pp.151-2).]

3. Show that C* C D, , for all £ and n, and that the inclusion is strict for some
values of k£ and n. Discuss fully the implications of this result for learning C*, as
sketched at the end of Section 6.2.
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4. Given a decision problem of the following form:
e Is there an object in a given set with integral ‘cost’ at most k7

there is a corresponding optimisation problem:
e Find the least value of k for which there is an object in the given set with
cost exactly k.

Show that if there is a suitable upper bound for the cost in terms of the size of an
instance and the decision problem can be solved in polynomial time, then the optimi-
sation problem can also be solved in polynomial time. Deduce that if the SUBCOVER
problem could be solved in polynomial time, then so could the MINIMUM COVER

problem.

5. Formulate the set-covering problem which corresponds (as in Section 6.6) to finding
the shortest monomial consistent with the following examples.

E+ = {1110011,1111011,1011001, 1011011,1110001};

E~ = {1010100,0111011,0001111,1001010,0101111,1100000}.

Solve the set-covering problem ‘by inspection’, and hence write down the shortest
monomial.

6. Use the greedy algorithm as described in Section 6.6 to construct a ‘short’ mono-
mial consistent with the training sample given in Exercise 5.

7. Formulate carefully a greedy algorithm for finding an element of DL(M,, ;) con-
sistent with a given training sample, and verify that it has the Occam property.

8. Prove that if the graded boolean space H = |J H,, (with representation 2 — H) has
polynomial representation size then In|H,| is polynomial in n. Deduce that DN F
(where the hypotheses are represented by boolean formulae in disjunctive normal
form) does not have polynomial representation size.



Chapter 7: The VC Dimension

7.1 MOTIVATION

Suppose that, as in the framework of previous chapters, we have a hypothesis space H
defined on an example space X. In Chapter 4 we proved that if H is finite, then it is
potentially learnable. The proof depends critically on the finiteness of H and cannot
be extended to provide results for infinite H. However, there are many situations
where the hypothesis space is infinite, and it is desirable to extend the theory to
cover this case. A pertinent comment is that most hypothesis spaces which occur
‘naturally’ have a high degree of structure, and even if the space is infinite it may
contain functions only of a special type. This is true, almost by definition, for any
hypothesis space H which is constructed by means of a representation 2 — H.

The key to extending results on potential learnability to infinite spaces is the observa-
tion that what matters is not the cardinality of H, but rather what may be described
as its ‘expressive power’. In this chapter we shall formalise this notion in terms of
the Vapnik-Chervonenkis dimension of H, a notion originally defined by Vapnik and
Chervonenkis (1971), and introduced into learnability theory by Blumer et al. (1986,
1989). The development of this notion is probably the most significant contribution
that mathematics has made to Computational Learning Theory.

In order to illustrate some of the ideas, we consider the real perceptron. This is
a machine which operates in the same manner as the linear threshold machine of
Section 2.5, but with real-valued inputs. Thus, as shown in Figure 7.1, there are
n inputs and a single active node. The arcs carrying the inputs have real-valued
weights oy, as,...,a, and there is a real threshold value 6 at the active node. As
with the linear threshold machine, the weighted sum of the inputs is applied to the
active node and this node outputs 1 if and only if the weighted sum is at least the
threshold value 6.
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0/1

Figure 7.1: The real perceptron P,

More precisely, the real perceptron P, on n inputs is defined by means of a represen-
tation Q — H, where the set of states 2 is R**!. For a state w = (a1, az, ..., an,0),
the function A, € H, from X = R" to {0, 1}, is given by
_ [ if Z:; a;y; > 0,
ho(y) = {0, otherwise. ’

It should be noted that w — A, is not an injection: for any A > 0 the state Aw defines
the same function as w.

Example 7.1.1 As an example, consider P,, the real perceptron with two inputs. In
state w = (e, a3, 0), P, computes the boolean-valued function A, for which

ho(y1,92) =1 <= a1y1 + oy 2> 6.

It is useful to describe this geometrically (Figure 7.2). The example y = (y1,y2),
considered as a point in the plane R?, is a positive example of A, if and only if y lies
on the straight line I, with equation a,y, + a,y, = 6 or on the side of /, consisting
of points with a,y; + asy, > 0.

Figure 7.2: Geometrical interpretation of a hypothesis in P,
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Given a sample of m points in R?, the machine P, can only achieve certain classifi-
cations of the sample into positive and negative examples: precisely those for which,
as above, the positive examples are separated from the negative examples by a line
in the plane. When a classification of the sample can be realised in this way, we shall
say that it is linearly separable. The fact that relatively few classifications are linearly
separable is an indication of the restricted ‘expressive power’ of P,. O

7.2 THE GROWTH FUNCTION

Suppose that H is a hypothesis space defined on the example space X, and let
X = (z, Z3,-.-,Z;,) be a sample of length m of examples from X. We define IT;(x),
the number of classifications of x by H, to be the number of distinct vectors of the
form

(h(z,),h(z3), ..., h(zy)),

as h runs through all hypotheses of H. Although H may be infinite, we observe that
H|E,, the hypothesis space obtained by restricting the hypotheses of H to domain
E, = {z,,z,...,2,,}, is finite and is of cardinality II5(x). Note that for any sample
x of length m, II5(x) < 2™. An important quantity, and one which shall turn out to
be crucial in applications to potential learnability, is the maximum possible number
of classifications by H of a sample of a given length. We define the growth function
Il by
My(m) = max {II4(x) : x € X™}.

We have used the notation Iy for both the number of classifications and the growth
function, but this should cause no confusion.

Example 7.2.1 Let X = R be the real line and let H be the set of rays, as defined
in Chapter 2. Suppose that m is a positive integer and that x = (z,,z,,...,z,) is a
sample of length m, in which the examples are arranged in strictly increasing order:

$1<$2<...<$m.

Given 0 € R, 14(z;) = 1 if and only if z; > 6. Therefore, for any A = r, and any k
between 1 and m — 1, h(zy) = 1 implies h(zy41) = 1. Thus the set of ‘classification
vectors’ (vectors of the form (h(z,), h(z2),...,k(z,)) for some h € H) consists only
of the m + 1 vectors

(111...11), (011...11), (001...11), ..., (000...00).

Now any sample in which the examples are distinct can be obtained from one in which
the examples are in strictly increasing order by a permutation, and this permutation
of the sample will simply give another set of m + 1 classification vectors. If not all
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the examples are distinct, there will clearly be fewer possible classifications. Thus
II4(m), the maximum number of classifications, is m + 1. O

In general, it is difficult to find an exact formula for the growth function of a hypoth-
esis space. In the next section we shall define a numerical parameter of a hypothesis
space which is easier to estimate than the growth function, and which can be used to
provide upper bounds for the growth function.

7.3 THE VC DIMENSION

We noted above that the number of possible classifications by H of a sample of length
m is at most 2™, this being the number of binary vectors of length m. We say that
a sample x of length m is shattered by H, or that H shatters x, if this maximum
possible value is attained; that is, if H gives all possible classifications of x. Note that
if the examples in x are not distinct then x cannot be shattered by any H. When
the examples are distinct, x is shattered by H if and only if for any subset S of E,,
there is some hypothesis h in H such that for 1 < ¢ < m,

h(z) =1 <>z, €S

S is then the subset of E, comprising the positive examples of h.

Based on the intuitive notion that a hypothesis space H has high expressive power
if it can achieve all possible classifications of a large set of examples, we use as a
measure of this power the Vapnik-Chervonenkis dimension, or VC dimension, of H,
defined as follows. The VC dimension of H is the maximum length of a sample
shattered by H; if there is no such maximum, we say that the VC dimension of H is
infinite. Using the notation introduced in the previous section, we can say that the

VC dimension of H, denoted VCdim(H), is given by
VCdim(H) = max {m : Hg(m) = 2"},

where we take the maximum to be infinite if the set is unbounded.

Example 7.3.1 Consider again the case in which X is the real line and H is the
space of rays. Given a sample (y,y’) of length 2, we may suppose without loss that
y < y'. Then there is no ray h = ry such that A(y) = 1 and h(y’) = 0, because if such
a ray were to exist, we should have y’ < § < y. Therefore H shatters no sample of
length 2. Clearly H shatters any sample consisting of just one example, and therefore

VCdim(H) = 1. O

Example 7.3.2 Let X be the plane R?, and H the hypothesis space of P,. Suppose
that x = (z,,z,,23) is any sample consisting of three distinct non-collinear points.
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We observed earlier that H can achieve precisely those classifications of a sample
into positive and negative examples which are linearly separable. Thus, x is shat-
tered by H if and only if for any subset S of Ex = {z,,z,,23}, S and E, \ S are
linearly separable. This is easily seen to be true in this case (Figure 7.3), and hence

VCdim(H) > 3.
- + + +

+ - - + + + + +

Figure 7.3: P, shatters three non-collinear points

In order to prove that VCdim(H) = 3, we have to show that no sample of length 4 is
shattered by H. Suppose, by way of contradiction, that the sample x = (z,, z;, 23, z4)
of length 4 is shattered by H. Then for every S C E,, S and E, \ S are linearly
separable and so, in particular, no three of z,, z,, z3, 2, can be collinear. There are two
cases to consider: either all four points are boundary points of the smallest closed
polygonal region containing E,, or one of the points (without loss, z,) lies in the
interior of this region. Typical examples of these cases are illustrated in Figure 7.4.

In the first case, {z,,z3} and {z,,z,4} (for example) are not linearly separable, while
in the second case {r4} and {z,,z,,73} are not linearly separable. Therefore H
shatters no sample of length 4 and, consequently, as claimed, VCdim(H) = 3. O

L

23
°

° &

Figure 7.4: The two cases for a sample of four points
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When the hypothesis space H is the set of functions defined by some representation
0 — H, we shall take the VC dimension of the representation to be the VC dimension
of H. Thus, we have shown that the VC dimension of P, is 3.

The following simple result on finite hypothesis spaces is often useful.

Proposition 7.3.3 If H is a finite hypothesis space, then
VCdim(H) < lg|H]|.

Proof The VC dimension of H is the greatest integer d for which II4(d) = 2¢. But
the number of classifications by a finite hypothesis space H of a sample of any length
is certainly at most the number of distinct hypotheses in H. Hence, for any positive
integer m, II(m) < |H|. In particular,

9 = T,(d) < |H|.

Taking logarithms gives the result. 0

Example 7.3.4 Using the foregoing Proposition, we can obtain an upper bound
on the VC dimension of M, the hypothesis space of monomial concepts defined on
{0,1}". Recall that |M,| = 3" and therefore, by the Proposition, the VC dimension
of M, is at most 1g3". That is

VCdim(M,) < (Ig3)n.

In order to get a lower bound, we claim that M, shatters the sample (e, es,...,€,)
where, for ¢ between 1 and n, e; is the point in {0,1}" with 1 as entry in position 7 and
with all other entries 0. It will follow immediately from this that the VC dimension
of M, is at least n. To prove our claim, suppose that

q = (Q1,Q2,---a%) € {0,1}ﬂ
We have to show that there is A in M, such that
h(e) = q1, h(e2) = qz,-..,h(en) = gn.

If ¢ is the all-1 vector, we take h to be the empty monomial in which no literal
appears; otherwise we take h to be the conjunction of those literals u; for which
¢; = 0. Summarising, we have

n < VCdim(M,) < (lg3)n

for any n. O



7.4 The VC Dimension of the Real Perceptron 77

7.4 THE VC DIMENSION OF THE REAL PERCEPTRON

We have seen that the VC dimension of P, is 3. Furthermore, if one interprets P, in
the obvious way (Exercise 2), then it is easy to verify that P, has VC dimension 2.
We shall prove in this section that, more generally, for any positive integer n, the VC
dimension of P, is precisely n + 1. In order to do so, we need some geometrical ideas.

Consider the perceptron P, with n inputs. In state
w=(aj,as,...,a,,0),
the function h, computed by the perceptron is the {0, 1}-function such that
ho(y) =1<= oy +azyz+ ...+ anyn, > 0.

Thus the set of positive examples of A, is the closed half-space

Zaiyi 2 0} )
=1

C={y€R"

bounded by the hyperplane

Za,-y.- = 0} .
i=1

l, = {y € R"
The set of negative examples of h, is then the open half-space

Ea,-y.- < 0} .
i=1

C={y€R"

Roughly speaking, [, divides R" into the set of positive examples of A, and the set
of negative examples of A,

A subset C of R" is convex if, given any two points &,y of S, the line segment between
z and y lies entirely in C. More formally, C' is convex if given any z,y in C' and any
real number A with 0 < A <1, the point Az + (1 — M)y belongs to C. (The notation
here is the standard one for the real vector space R".) It is clear that the intersection
of any number of convex sets is again convex and therefore for any non-empty set S
of points of R", there is a smallest convex set containing S. This set, denoted by
conv(S), is called the convez hull of S; conv(S) is the intersection of all convex sets
containing S. For example, suppose that S is any finite set of points in the plane R?2.
Then conv(S) is the smallest closed region which is bounded by a polygon and which
contains S.
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We shall find the following result, known as Radon’s Theorem, extremely useful. Let
n be any positive integer, and let E be any set of n 4+ 2 points in R”. Then there is
a non-empty subset S of E such that

conv(S) Nconv(E \ S) # 0.

A proof is given by Grunbaum (1967).

Theorem 7.4.1 For any positive integer n, let P, be the real perceptron with n

inputs. Then
VCdim(P,) =n + 1.

Proof Let x = (z,,%,,...,%,42) be any sample of length n + 2. As we have noted,
if two of the examples are equal then x cannot be shattered. Suppose then that the
set F, of examples in x consists of n + 2 distinct points in R”. By Radon’s Theorem,
there is a non-empty subset S of E, such that

conv(S) Nconv(E, \ S) # 0.

Suppose that there is a hypothesis h, in P, such that S is the set of positive examples
of h, in E,. Then we have

SClt, E\SCL.
Since open and closed half-spaces are convex subsets of R", we also have
conv(S) C It conv(E,\S)Cl;.

Therefore

conv(S)Nconv(E,\ S)C It ni; =0.
We deduce that no such h, exists and therefore that x is not shattered by P,. Thus
no sample of length n + 2 is shattered by P, and VCdim(P,) < n + 1.

It remains to prove the reverse inequality. Let o denote the origin of R" and, for
1 <2 < n, let ¢; be the point with a 1 in the ith coordinate and all other coordinates
0. We shall show that P, shatters the sample

x = (0,e,€2,...,€,)

of length n + 1.

Suppose that S is a subset of Ex = {o,€;,...,e,}. For:1=1,2,...,n, let

_ ]., 1fe,€.5',
&% =1_1 ife ¢S
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and let
0= -1/2, ifo€S;
—11/2, ifoéS.

Then it is straightforward to verify that if w is the state
w = (ay,as,...,a,,0)

of P, then the set of positive examples of h, in FE, is precisely S. Therefore x
is shattered by P, and, consequently, VCdim(P,) > n + 1. Combining these two
results, we have the stated equality. O

7.5 SAUER’S LEMMA

In this section we assume that H has finite VC dimension. The growth function
II5(m) is a measure of how many different classifications of an m-sample into pos-
itive and negative examples can be achieved by the hypotheses of H, while the VC
dimension of H is the maximum value of m for which II5(m) = 2™. Clearly these two
quantities are related, because the VC dimension is defined in terms of the growth
function. But there is another, less obvious, relationship: the growth function II4(m)
can be bounded by a polynomial function of m, and the degree of the polynomial is the
VC dimension d of H. Explicitly, we have the following theorem, due to Sauer (1972)
and Shelah (1972) independently (see Assouad (1983)). In combinatorial circles it is
usually known as Sauer’s Lemma.

Theorem 7.5.1 (Sauer’s Lemma) Let d > 0 and m > 1 be given integers and let
H be a hypothesis space with VCdim(H) = d. Then

HMm)Sl+(T)+(?)+“.+(?>

where the binomial numbers are defined by

(m) _mm=1)...(m=i+1)

) 1.2...m

O

Before we give the proof, it may be helpful to interpret the result. First, it should
be noted that the explicit definition of the binomial numbers means that (:) is zero
whenever b > a > 1. Thus for values of m not exceeding d the result asserts only
that

Hﬂm)51+(T)+.“+(2)+0+0+.“+0=2m
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which is trivial; we already know that II; takes these values in this range. However,
when m is greater than d, the sum

otam) = 1+ (7) # () v (3)

is strictly less than 2™: indeed, it follows from the explicit formula for the binomial
numbers that it is a polynomial function of m with degree d.

For convenience, we let ®(d, m) denote this sum of binomial numbers for any d > 0
and m > 1. We have:

®0,m)=1 (m>1); ®d,1)=2 (d>1).

The binomial numbers satisfy the identity

()= (%) +(620)

which can be verified explicitly using the formula. From this we can immediately
derive the identity

®(d,m)=0(d,m—-1)+®(d—1,m —1),

which is valid for all d > 1 and m > 2 (Exercise 5).

Proof of Sauer’s Lemma If H is a hypothesis space with d = VCdim(H) = 0 then,
for any example z, h(z) is the same (either 0 or 1) for all hypotheses h € H. It follows
that II;(x) = 1 for any sample x of any length m. Thus [I(m) =1 = ®(0,m), and
the theorem is true in the case d = 0.

If m=1and d > 1, then for any H we have II4(1) <2 = ®(d, 1), so the theorem is
true in this case also.

Using these ‘boundary conditions’ we can prove the theorem by induction on d + m.
The case d + m = 2 is covered explicitly by the boundary conditions. Suppose the
result holds for all cases with d + m < k, where k > 2, and let H be a hypothesis
space of VC dimension d and x a sample of length m, where d + m = k + 1. The
cases (d,m) = (0,k + 1) and (d,m) = (k,1) are covered by the boundary conditions,
so we may assume that d > 1, m > 2.

If the given sample x = (z,,2;,...,2,) contains repeated examples, then we can
remove the repetitions and obtain a shorter sample. The result then follows by the
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induction hypothesis. So we may suppose that x contains m distinct examples. Let
E be the set of examples in X and let H = H|E be the hypothesis space on E
obtained by restricting the hypotheses of H to the domain FE. Then, as remarked
earlier, Hg is finite and [I5(x) = |Hg|- We shall show that |Hg| < ®(d, m).

Let F = E \ {z,,} and consider the hypothesis space Hr = H|F. Two distinct
hypotheses h, g of Hg give, on restriction to F', the same hypothesis of Hr precisely
when h and g agree on F' and disagree on z,,. Denote by H, the set of hypotheses of
Hp which arise in this manner from two distinct hypotheses of Hg. Thus, if h, € H,
then both possible extensions of h, to a {0, 1}-function on E are hypotheses of Hpg.
It follows that

|Hg| = |Hp| + |H.|.
We now bound |Hfr| and |H.]|.

Let x' = (z,, Z3,...,Zm-1) be the sample consisting of the first m — 1 examples of x.
Then Hp is a hypothesis space on F' and therefore

|Hp| = 115 (x') < Hg(m —1).
Using the induction hypothesis we can conclude that
|He| < Ty(m — 1) < &(d,m — 1),
since d + (m — 1) < k.

We claim that VCdim (H.,) is at most d — 1. Indeed, suppose that H, shatters some
sample z = (2,, 2, . . . , z4) of length d of examples from F'. For each h, € H,, there are
hi,h, € Hg such that h, and h, agree with A, on F, and h,(z,) =0, hy(z,) = 1. It
follows that Hg, and hence H, shatters the sample (z,,. .., z4, Z,») of length d+ 1, an
impossibility since VCdim(H) < d. Hence VCdim (H,) < d — 1. Using the induction
hypothesis again we have

|H.| = Ty, (x') < Ty, (m — 1) < 0(d = 1,m — 1),
since (d — 1)+ (m —1) < k.
Combining the results obtained, we have
g(x) = |He| = |Hp| + |H.| < @(d,m — 1) + @(d — 1,m — 1) = &(d, m),

as required. o



82 The VC Dimension

Example 7.5.2 Let H be the hypothesis space of the real perceptron P,. Then H has
VC dimension n + 1 and therefore, for any positive integer m, IIz(m) < ®(n + 1, m).
For example, when n = 2

Mp(4) < ®(3,4) =1+4+6+4=15.

This corresponds to the fact, illustrated in Figure 7.4, that not all the 2¢ classifications
of a 4-sample can be realised by P,. In fact, careful analysis of the cases shows that
I14(4) = 14 (Exercise 3). 0

We shall now elaborate on the fact that ®(d, m) is bounded by a polynomial function
of m, of degree d. A simple form of this result, ®(d, m) < m? for m > d > 1, is fairly
easy to prove (Exercise 6). But there is some advantage in having a better bound,
as given by the following result of Blumer et al. (1989).

Proposition 7.5.3 For all m > d > 1,

®(d,m) < (?)d,

where e is the base of natural logarithms.

Proof The proof is in two stages. First, we claim that for all positive integers d,

for all m > d. This can be proved by an inductive argument, as follows. If d = 1
then ®(d,m) =m+1 < 2m. If m =d > 1 then ®(d,m) = ®(d,d) = 2°. Now, for
d > 1, we have

1\¢ 1
— > - =9
(1+d) >1+d =2

This justifies the induction step in the following argument:
d+1\* d+1\"d¢ _(d+1)#
d+1 < d < PR P S A—
2 _(d)2_2(d)d! 2(d+1)!’

and verifies the claim for m = d > 1.

Suppose that m > d > 1. Since
®(d+1,m+1)=8(d+1,m)+ ®(d,m),
it suffices to prove that

md md+1 (m + 1)d+1

2o T A S sy
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It is straightforward to verify that this is true if and only if
d+1
1+(d—t—1) <(i+-)
m m
which follows from the binomial theorem. Thus, for all m > d, ®(d,m) < 2m?/d!.
It remains to show that, for all m > d > 1,

d
2 (C—l) < d.
(A

The result clearly holds when d = 1. Suppose it holds for a given value of d > 1:
then

(d+1)!=(d+1)d!>(d+1)2(g) .

Thus it suffices to prove that

arne(d) 52 (221)"

1d
(”2) se

which is indeed true for any d > 1. The result follows. O

that is,

In conjunction with Sauer’s Lemma, this last result implies that when VCdim(H) = d,

we have
em

(m) < (T)d

for m > d. We shall see in the next chapter that this result is very significant, because
it gives an explicit polynomial bound for II; as a function of m.

The following consequence of the results in this section will be of use to us later.

Proposition 7.5.4 Let H be any hypothesis space consisting of at least two hy-
potheses and defined on a finite example space X. Then

In|H|

Proof Observe that two hypotheses of H are distinct precisely when they give
different classifications of the whole example space X into positive and negative
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examples. Since there are I (|X|) such classifications, we have |H| = II4(|X]). It
follows from Sauer’s Lemma and Proposition 7.5.3 that

1= ) < (1)’

where d > 1 is the VC dimension of H. Now,

|H| < (e|X|) =>d(l +In|X|) —dlnd > In|H|

d
In|H|
1+1In|X|’

as required. O

=d>

We remark that if VCdim(H) > 2, then this result can be improved to
In|H|

>
VCdim(H) 2 {

using the result ®(d,m) < mdform >d > 1.

FURTHER REMARKS

For any positive integer n, let G,, be the subset of the hypothesis space of P, consisting
of the hypotheses for which the zero vector (the origin) is a negative example. Thus,
G, is the set of characteristic functions of all those closed half-spaces of R™ which
do not contain the origin. Then one can show that G = G, has VC dimension n
(Exercise 10) and that for any m, [Ig(m) = ®(n,m) (see Vapnik and Chervonenkis
(1971)). Thus the major result of this chapter, II;(m) < ®(d,m) is the best possible
result of its kind.

EXERCISES
1. Show that if X = R and H is the set of all closed intervals, then

lm(m —1).

l'IH(m)=1+m+2

2. Describe explicitly the hypothesis space of P, and show that the VC dimension of
P, is 2.

3. Show that when H is the hypothesis space of the real perceptron P,, II4(4) =

4. Let H be a hypothesis space of finite VC dimension. For A € H, define the
{0,1}-valued function k by

h(z) =1 <= h(z) =0,
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and let the complement of H be the space {’_l | b€ H}. Prove that this space has
the same VC dimension as H.

5. Prove that ®(d,m) = ®(d,m — 1)+ ®(d—1,m —1) ford > 1 and m > 2.
6. Prove that ®(d,m) < m4, for allm >d > 1.

7. A monomial is monotone if it contains no negated literals. Prove that the space
of monotone monomials defined on {0,1}" has VC dimension precisely n.

8. A hypothesis space H is linearly ordered if it has at least two hypotheses and if
for any h,g € H, either
h(z) =1= g(z) =1

or
g(z)=1= h(z) =1.

Prove that if H is linearly ordered then VCdim(H) = 1. (This is a result of Wenocur
and Dudley (1981).) Deduce that the space of rays has VC dimension 1.

9. Suppose that H contains the identically-0 function and the identically-1 function,
and that VCdim(H) = 1. Prove that H is linearly ordered. (This is a result of
Wenocur and Dudley (1981).)

10. Let G, be the set of hypotheses of P, for which the zero vector o is a negative
example. Suppose that the sample x = (z,, z,, ..., 2,,) is shattered by G,. Why can
none of the z; be 0o? Prove that the sample (z,,...,z,,0) is shattered by P,. Using
this, prove that VCdim(G,) = n.

11. Use the result on G, stated in the Further Remarks to prove that for m > 2,
IIp,(m) =2®(n,m —1).

[Hint: Let x be a sample of length m for which IIp,(x) = IIp,(m). Without loss of
generality, we may assume that the origin o is one of the examples in X, since clearly
the number of classifications by P, of a vector is unchanged if the vector is translated.
Thus, x = (24,...,Zm-1,0). How are IIp,(x) and Ig, ((zi1,-..,Zm-1)) related?)



Chapter 8: Learning and the VC Dimension

8.1 INTRODUCTION

In the previous chapter we discussed the theory of VC dimension, with the promise
that this theory would prove useful in the study of learning. The results to be
proved in this chapter fulfil that promise. We show that, for any hypothesis space
H, the condition that H has finite VC dimension is both necessary and sufficient
for potential learnability. Thus we have a complete characterisation of potentially
learnable hypothesis spaces: they are precisely those of finite VC dimension.

The details of this characterisation provide a general upper bound for the sample
complexity of a consistent learning algorithm, when the hypothesis space is potentially
learnable. We shall also give two general lower bounds for the sample complexity of
pac learning algorithms, one in terms of the VC dimension and accuracy, the other
in terms of confidence and accuracy.

8.2 VC DIMENSION AND POTENTIAL LEARNABILITY
We shall find it useful to introduce some slight elaborations of our standard notation.
We use the notation s = (x,b) for the training sample

s = ((z1,b1), (2, 82),- - -, (Tm) b))

in (X x {0,1})™. If t is a target concept and s is a training sample for ¢ (that is,
b; = t(z;) for each ¢), then we denote s by (x,?(x)). This notation emphasises the
fact that, when s belongs to the set S(m,t) of training samples of length m for ¢, only
the values of t on the elements of the sample x are given. However, for the sake of
compactness, we shall denote the subset of H which agrees with s by H[x,t], rather
than H[(x,t(x))].

Given s = (x,b), the observed error of a hypothesis h € H on s is defined to be

er(h) = |{i : h(z) # b}

Note that H{[s] is the set of hypotheses having observed error zeroon s. If s = (x,#(x))
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*

then ery(h) isicalled the observed error of h on x with respect to ¢, and is denoted by
ery(h,t), or ery(h) when t is clear.

Our first result is that finite VC dimension is necessary for potential learnability.

Theorem 8.2.1 If a hypothesis space has infinite VC dimension then it is not
potentially learnable.

Proof Suppose that H has infinite VC dimension, so that for any positive integer
m there is a sample z of length 2m which is shattered by H. Let E = E, be the set
of examples in this sample and define a probability distribution g on X by

_J1/2m, ifz € E;
p(z) = {0, otherwise.

In other words, g is uniform on E and zero elsewhere. Informally, with respect to
i, each example in E is equally likely to be presented, and all other examples have
zero probability of being presented. We observe that 4™ is uniform on E™ and zero
elsewhere. Thus, with probability one, a randomly chosen sample x of length m is a
sample of examples from E.

Let s = (x,t(x)) € S(m,t) be a training sample of length m for a target concept
t € H. With probability 1 (with respect to u™), we have z; € E for 1 < < m. Since
z is shattered by H, there is a hypothesis h € H such that h(z;) = t(z;) for each
z; (1 <t < m), and h(z) # t(z) for all other z in E. It follows that & is in H[s],
whereas h has error at least 1 with respect to t. We have shown that for any positive
integer m, and any target concept i, there is a probability distribution g on X such
that the event H[s| N B } = @ has probability zero. Thus there is no positive integer

mo = mo(3, ;) for which we can assert that, whenever m > m,,
™ 1
I {s € S(m,t)|H[s]N By = @} >3
That is, H is not potentially learnable. O

In passing, it is worth noting that the preceding proof actually shows that there is
no suitable value of m, for any particular target concept ¢, so that there certainly is
no such value for all ¢t € H. An application requiring the full strength of the result
may be found in Exercise 1.

Example 8.2.2 A simple example of a space H with infinite VC dimension may be
constructed as follows. For each subset A C R, define the characteristic function x,

by
o _
xa(y) = {(1), iy € 4,

otherwise.
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Let U denote the collection of all subsets of R which can be expressed as a finite
union of closed intervals, and let J = {x4 | A € U}, the interval union space.

In order to show that VCdim(J) is infinite, let x = (z,,%,,...,Z,) be any sample
of distinct points in R, and let E, denote the corresponding set of examples. Given
any S C E, we can construct a set A € U such that S C A and (Ex\ S)NA =0,
as follows. For each z; € S let A; be a closed interval which contains z; but no other
element of FE,, and let A be the union of all such A;. The set A is a finite union
of closed intervals, and x4 is 1 on S and 0 on E, \ S. In other words, J shatters
x. Since this argument works for any finite sample, of whatever length, we conclude

that VCdim(J) is infinite. O

Note that the space H constructed in this example is contained in the space of (char-
acteristic functions of) closed sets in R. Thus the latter space also has infinite VC
dimension. It follows from Theorem 8.2.1 that neither space is potentially learnable.

The converse of the preceding theorem is also true: finite VC dimension is sufficient
for potential learnability. This result can be traced back to the statistical researches
of Vapnik and Chervonenkis (1971) (see also Vapnik (1982)). The work of Blumer et
al. (1986, 1989), showed that it is one of the key results in Computational Learning
Theory. The proof is rather involved, and the details will be given in the next section.
For the moment, we shall describe only the underlying ideas.

Suppose that the hypothesis space H is defined on the example space X, and let ¢ be
any target concept in H, p any probability distribution on X and € any real number
with 0 < € < 1. The objects t, u, € are to be thought of as fixed, but arbitrary, in
what follows. Define

Q. ={x€eX™|H[x,t]n B, #0}.

The probability of choosing a training sample for which there is a consistent, but
e-bad, hypothesis is
p™ {s € S(m,t) | H[s| N B # 0},

which is, by definition (Section 3.2), p™(Q¢,). Thus, in order to show that H is
potentially learnable, it suffices to find an upper bound f(m,¢) for p™(Q:,) which is
independent of both ¢ and x and which tends to 0 as m tends to infinity. For if there
is such a bound then, given any é between 0 and 1, we can use the fact that f(m,e)
tends to 0 to find m, such that for all m > m,, f(m,€) < §. The value of m, depends
on 6 and € but is independent of ¢ and g. So we have the my (4, €) required in the
definition of potential learnability.
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Note that the m, thus obtained is also an upper bound for the sample complexity of
any consistent learning algorithm for H. The hard part of the proof is to find the
upper bound f(m,¢€). In the next section we shall prove the following result, which,
in this specific form, is due to Blumer et al. (1986, 1989), and generalises a result of

Haussler and Welzl (1987).

Proposition 8.2.3 Suppose that H is a hypothesis space defined on an example
space X, and that ¢, u, and € are arbitrary, but fixed. Then

p™ {s € S(m,t)| H[s| N B. # 0} < 2114(2m) 27/

for all positive integers m > 8/e. O

The right-hand side is the bound f(m,¢) for p™(Q:,), as postulated above. We
have to show that it tends to zero as m — oo. If H has finite VC dimension then,
by Sauer’s Lemma, II;(2m) is bounded by a polynomial function of m, and there-
fore f(m,e€) is eventually dominated by the negative exponential term. Thus the
right-hand side tends to 0 as m tends to infinity and, by the above discussion, this
establishes potential learnability for spaces of finite VC dimension.

8.3 PROOF OF THE FUNDAMENTAL THEOREM

In this section, we present a proof of the key result that finite VC dimension implies
potential learnability. The proof is rather involved, and it is worth giving first a very
informal explanation of the method.

We aim to bound the probability that a given sample of length m is ‘bad’, in the
sense that there is some hypothesis which is consistent with the target concept on the
sample but which has actual error greater than e. We transform this problem into
a slightly more manageable one involving samples of length 2m. For such a sample,
the sub-sample x comprising the first half of the sample may be thought of as a
randomly drawn sample of length m, while the second half may be thought of as a
‘testing’ sample on which to evaluate the performance of a hypothesis consistent with
the target concept on x. We obtain a bound on the probability that some hypothesis
consistent with the target on the first half of the sample is ‘bad’, in the sense that
it has observed error greater than ¢/2 on the second half of the sample. A given
example is just as likely to occur in the first half as in the second half. A group
action based on this idea enables us to find the required bound by solving a simple
counting problem.

We shall assume some measure-theoretic properties of the hypothesis spaces without
explicit comment. These were mentioned in the Further Remarks of Chapter 3, and
the details are discussed fully by Pollard (1984) and Blumer et al. (1989).



90  Learning and the VC Dimension

Theorem 8.3.1 If a hypothesis space has finite VC dimension, then it is potentially
learnable.

Proof We use the notation introduced at the end of the previous section. There are
four stages.

e Bound u™(Q¢,) by the probability (with respect to u®™) of a certain subset
R: of X?*™.

e Using a group action, bound the probability of R¢, in finite terms.

e Express this bound in terms of Iy by combinatorial arguments.

e Apply the argument given in the last paragraph of Section 8.2 to conclude
that p™(Q¢,) tends to zero as m tends to infinity.

Stage 1 Given samples x,y € X™, let Xy € X?™ denote the sample of length 2m
obtained by concatenating x and y. With this notation, define

Rt = {xy e x | Jh € B, for which er,(h) = 0 and ery(h) > %} .

Lemma 8.3.2 For all m > 8/,
p"(Qn) < 20" (Ry).

Proof Let xo be the characteristic function of Q¢,; that is, xo(x) = 1 if x € @,
and xq(x) = 0 otherwise. If we define the characteristic function xg similarly, then

Xr(XY) = Xo(X)¥x(¥),

Where 1, if 3h € H[x]N B, with er,(h) > ¢/2
_ , 1 € d|x|N B, with er > €/2;
Yely) = {0, otherwise. Y

Now we have
W (Ry) = [ xaley) = [ (xal0) [9)),

where the integrals are taken over the whole of the relevant spaces, with respect to
the product measures. The inner integral is the probability that, given x, there is
some h € B, which is consistent with x and satisfies ery(h) > €/2. This is certainly
not less than the probability that a particular A € B, which is consistent with x
satisfies ery (h) > €/2. i

Thus it suffices to show that the above-mentioned quantity is at least 3, for then we
have

W (BY) 2 [ 2xa(0) = 5um(QL)
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In order to prove this, we use the following bound on the ‘tail’ of the binomial
distribution. Let 0 < p <1 and let LE(p, m,s) denote the probability of at most s
successes in m independent trials each of which has a probability p of success. Then

LE (p,m,(1 — B)mp) < e'pz"‘"/z,

for any 0 < 8 < 1. This is often known as a Chernoff bound, since it follows from a
special case of a result of Chernoff (1952). (See also Angluin and Valiant (1979) and,
for a generalisation of this result, McDiarmid (1989).)

Let h € B,, so that er,(h) = ¢, > e Fory € X™, mery(h) is the number of
components of y on which 2 and ¢ disagree, and so it is a binomially distributed
random variable. Now, applying the above Chernoff bound, we have

g {y | ery(h) < %} =pu™ {y I mery(h) < %m}

m {y l mery(h) < %‘m}

I
1
=LF (eh,m, (1 — 5) me,,)

For m > 8/e, this is at most 1/e. It follows that for any A € B,,

m € 1 1
) {ylery(h)>§}>1—;>§.

This completes the proof of Stage 1. O

Stage 2 The next stage is to bound the probability of R, by using a group action on
X?™, Following Pollard (1984), we use the ‘swapping group’ to convert the problem
into an easy counting problem.

For i € {1,...,m} let ©; be the permutation of {1,...,2m} which switches i and
m + ¢. There is an induced transformation of X?>™ defined by letting 7; act on the
coordinates, and we use 7; to denote this transformation also. Thus, for example, if
m =4,

7'2(21, 22423y 244 %5y 26y 27, Zs) = (21, 26923y 24y 254y 22y 27, Zs)-

Let G,. be the group generated by the permutations 7; (1 < ¢ < m). As an abstract
group G, is just the direct product of m copies of the group of order 2, so |G,,| = 2™.



92  Learning and the VC Dimension

Lemma 8.3.3 Given z € X?™, let I'(z) denote the number of ¢ € G,, for which oz
is in Rf,. Then
|Gml| #*"(R;,) < maxT(z),

where this maximum is taken over all z € X?™.

Proof The proof is quite general, applying to any finite group G of transformations
of a space X" induced by coordinate-permutations, and any subset S of X”. Let xs
be the characteristic function of S. Since G is finite we can interchange summation
and integration as follows (where the integral sign represents integration over the
entire space with respect to the product measure derived from y):

T [xston) = [ £ xs(on).

The left-hand side is the sum over o of the measure of 0~!(S), which is the same
as the measure of S, since coordinate-permutations preserve the product measure.
Hence the left-hand side is just |G| p"(S). The integrand on the right-hand side is
just the number of o in G for which oz € S. Since the total weight of a probability
measure is 1, the integral is bounded by the maximum of this quantity, taken over z.
Putting n = 2m, G = G,,, and S = Rt , the result follows. O

Stage 8 Given any h € B,, let
Rt (h) = {xy € X I ery(h) = 0 and ery(h) > %}

Also, for z € X?™, let I'(h, z) denote the number of o € G,, which transform z to a
vector in R:, (k).

Lemma 8.3.4 Suppose that m is any positive integer and that A € B,. Then
T(k,z) < 2m(-</2)

for all z € X,

Proof Suppose that I'(h,z) # 0. If z & R (h), then for some T € G,,,, 72 € R (h).
But the number of ¢ such that oz € R¢, (k) is precisely the number of o for which
otz € R, (h) (since G, is a group). Hence, we may, without loss of generality,
suppose that z € R¢ (h).

Now, z = xy where er,(h) = 0 and er, (k) > €/2. To simplify notation, let us suppose
that the r > me/2 entries of z on which h and the target concept t disagree are

Zm41yZm425 3y Zm4re
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Recall that a transformation o € G,, interchanges some pairs (2;,2,4;). If 0% is
in R (h) then o does not interchange (2, zm4;) for 1 < j < r. Conversely, any o
which satisfies this condition is in R, (k). Since o is uniquely determined by the set
of j for which o(z;) = 24, the number of such o is just the number of subsets of
{r+1,r+2,...,m}; that is, I'(h,z) = 2™". Since r > em /2, we have

T'(h,z) < 2m~m/?,

as required. O

Lemma 8.3.5 For any positive integer m,

u?™(R:) < Iy (2m) 2-m/2.

Proof Let z € X®® be fixed but arbitrary, and let s = Iz (z). Then there are
hypotheses h,,...,h, in B, which give s different classifications of z and, further, any
classification of z by a hypothesis in B, is one of these s classifications. We have

s = I1p,(2) < Iy (2) < Iz (2m).

Suppose 0z = ab isin R;,. This means that there is some A € H such that er,(h) =0
and erp(h) > €/2. Since all classifications of z, and hence of its rearrangement
oz = ab, are realised by some h; (1 < ¢ < s), it follows that oz is in one of the sets
R;,(h;). Thus the set of o for which 0z is in R¢, is the union of the sets of those o for
which 0z is in R (h;). In terms of the notation previously introduced, we therefore
have

I'(z) < Z_’; L(h;,2).

The last expression is the sum of s < II;(2m) terms and, by Lemma 8.3.4, each of
them is bounded above by 2™(1~¢/2), Thus, from Lemma 8.3.3, we have

(RS S (Gl mpxT(a) < 27Ty (2m) 27049 = Ty (o) 277,

as claimed. O

Stage 4 The bound
4m(Q5) < 2TTy(2m) 22

follows by combining Lemmas 8.3.2 and 8.3.5. If H has finite VC dimension then, by
Sauer’s Lemma, I1;(2m) is bounded by a polynomial function of m. The right-hand
side is eventually dominated by the negative exponential term, and tends to 0 as m
tends to infinity; so it can be made less than any given § > 0 by choosing m > m, (6, €),
a quantity depending only on é and e¢. Thus H is potentially learnable. O
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In the above proof, the ‘testing’ sample was taken to be the same length as the
original sample. It is possible to perform a similar, though rather more complicated
analysis, in which, instead of samples of length 2m, one considers samples of length
m + k, for a general k. Judicious choice of k£ then yields better bounds on x™(Q%,);
see Anthony, Biggs and Shawe-Taylor (1990) and Anthony (1991) for details.

8.4 SAMPLE COMPLEXITY OF CONSISTENT ALGORITHMS

We have seen that if a hypothesis space H has finite VC dimension, then H is
potentially learnable. In other words, given a confidence parameter § and an accuracy
parameter € (0 < §,€ < 1), there is a sample length my = my(H, 6, €) such that

m2m0=>;tm{s€,5'(m,t) ’ H[s]ﬂBc=(0}>1—6,

for any probability distribution g on X and any target concept t € H. It follows that
any consistent learning algorithm L for H is pac and, further, that any mq(H, ¥, ¢)
for which the above condition holds is an upper bound on the sample complexity
my(H,¥,€). In this section, we use Proposition 8.2.3 to obtain an explicit expression
for m,, and thus an upper bound for the sample complexity of any consistent learning
algorithm L for H.

Recall that in Chapter 4 we showed that if H is a finite hypothesis space and L is a
consistent learning algorithm for H, then L is pac and

it o)

The upper bound for m(H, é, €) which will be derived in this section depends on the
VC dimension of H, rather than the cardinality of H.

Theorem 8.4.1 Suppose that H is a hypothesis space of finite VC dimension d > 1
and that 0 < 6,e < 1. Let

=i~ [ ((2) 1 (2)]

Then for any m > m,,

um {s € S(m,t) | Hls|N B, # 0} < 6.

Proof Let t € H be any target concept and let x be any probability distribution on
X. The given value of m, exceeds 8/¢, and so it follows from Proposition 8.2.3 that,
for all m > m,,

p™ {s € S(m,t) l H[s]N B, # (0} < 204 (2m)27m/2,



8.4 Sample Complezity of Consistent Algorithms 95

Also my > d and so, by Sauer’s Lemma, I14(2m) < (2em/d)? whenever m > m,,.
Therefore, it suffices to show that for all m > m,,

d
2 (26—"‘) 9-em/? < §,

d
Now,
d
) (2e_m> 2-cm/255
d
2e em )
& _ = < hd
(=>dln(d)+dlnm : ln2_ln(2)
em 2e 2
ik _ > & 2).
<~ 5 In2 dlnm_dln(d)+ln(6)

It can be verified easily by some elementary differential calculus (see Exercise 2) that,
for any z > 0 and any ¢ > 0,

1
Inz < (ln (z) - 1) + cz.

Thus, choosing ¢ = €ln2/4d and z = m, we have

4d €ln2
< — .
dlnm_d(ln (61n2)' 1)+ 1 m

Therefore, it will suffice to have

em 2e 2 4d
- > it z -
1 ln2_dln(d)+ln(6)+dln(eln2) d,

which, observing that 8/1n2 < 12, is true if
4 12 2
> 2 (q1g (=2 2)).
= ( lg(€)+lg(6))
The result follows. o

Corollary 8.4.2 Suppose that hypothesis space H has VC dimension d > 1. Then
any consistent learning algorithm L for H is pac, with sample complexity

i <[ (ae(2) Q)]

O

This corollary is the promised extension of the bound for finite spaces, mentioned at
the beginning of the section, to spaces with finite VC dimension.
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Example 8.4.3 Let H be the space of rays, as in Section 2.5. Then VCdim(H) = 1,
and so if L is any consistent learning algorithm for the space of rays, we have

s[4 s(2) re(2)]

In particular, this is an upper bound on the sample complexity of the learning al-
gorithm described in Chapter 3. We proved directly there that this algorithm had

sample complexity at most
1 1
mo= [ (5)]

In this case, the bound obtained directly is better than that given by the VC dimen-
sion. However, direct arguments are often difficult, and it is clear that if § and € are
of the same order, then these bounds differ only by a constant factor. a

Example 8.4.4 The real perceptron P, has VC dimension n + 1. Suppose that for
any training sample for a hypothesis of P,, we can find a state w of the perceptron
such that A, is consistent with the sample. Then if we use a training sample of length

2 (016 (2) +16 )]

we are guaranteed a probably approximately correct output hypothesis, regardless of
both the target hypothesis and the probability distribution on the examples. 0

8.5 LOWER BOUNDS ON SAMPLE COMPLEXITY

At the beginning of the chapter, we proved that if H has infinite VC dimension, then
it is not potentially learnable. We can refine the argument given there to provide the
following simple result.

Theorem 8.5.1 Suppose that the hypothesis space H has VC dimension d > 1.
Then there is a consistent pac learning algorithm L for H such that, for any § and e,
the sample complexity satisfies

mr(H,é,€¢) > d(1 — e).

Proof There is a sample z of length d which is shattered by H. Let E = FE, be the
set of examples in z and let g be the probability distribution that is uniform on E
and zero elsewhere. Let ¢t be any hypothesis in H and s = (x,t(x)) € S(m,t) any
training sample for . With probability 1, x € E™. Since z is shattered by H, there
is some h € H[s] with h(z;) # t(z;) for z; € E'\ E,. Thus

d—m

d

er,(h,t) = > €,
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provided m < d(1 — €). Therefore, given any training sample s for ¢ of length
m < d(1 — €), there is a hypothesis h € H[s] N B, We may define L so that
L(s) = h: then L is a consistent learning algorithm such that

g™ {s € S(m,t) I er, (L(s)) > e} = 1.

Thus
mL(Ha 6, 6) 2> d(l - 6)’

as claimed. O

The above result, although attractively simple, applies specifically to consistent learn-
ing algorithms. Furthermore, it does not provide a universal lower bound on the sam-
ple complexity of a consistent learning algorithm; rather, it deals only with a ‘worst
possible’ consistent learning algorithm. We shall now present a more powerful result
of Ehrenfeucht et al. (1989) which provides a lower bound on the sample complexity
of any pac learning algorithm for a hypothesis space of finite VC dimension.

In order to prove this result we make use of another Chernoff bound (see Angluin
and Valiant (1979) and McDiarmid (1989)). For 0 < p < 1, let GE(p,m, s) denote
the probability of at least s successes in m independent trials each of which has a
probability p of success. Then for any 0 < 8 < 1,

GE (p,m, (1 + B)mp) < e™#’m#/3,

Theorem 8.5.2 For any hypothesis space H of VC dimension d > 1, and for any
pac learning algorithm L for H,

d—1
H R
mL( ,6,6) > 326 ,

for 6 <1/100 and € < 1/8.

Proof We shall prove that there is some probability distribution g and some hypoth-
esis t € H such that for any € < 1/8 and for any positive integer m < (d — 1)/32¢,

1

" {s € S(m,t) | er, (L(s)) 2 €} > T

Since H has VC dimension d, there is a sample z of length d shattered by H. Let
E, = E be {2z,2,23,...,2,}, where r = d — 1. Define a probability distribution p
on X by

plzo) =186 p(=)=—=(1<i<n).
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Then a randomly chosen sample x is, with probability one, a sample of examples
from E. We therefore need consider only samples drawn from FE, and we can regard
the hypothesis space H to be simply the (finite) space of all {0,1}-valued functions
defined on domain E: we make this assumption throughout the rest of this proof.

Suppose that L is a pac learning algorithm for H. For convenience, given a sample x
and h € H, we shall denote L ((x, h(x))) by L(x, k). Let Hy be the set of hypotheses
h € H for which h(2,) = 0 and let F be the set {z,,2,,...,2,}.

Fix a particular sample y € E™, and let [ be the number of distinct elements of F'
appearing as examples in y. Let A € H, and let  be any one of the (r — ) examples
in F not appearing in y. Now, H, shatters F, since H shatters E = FU{z,}. Hence
precisely half of the hypotheses A’ in H, satisfy hA’(z) = 1 (and half of them satisfy
h'(z) = 0).

For z € F, let us define A,(y,k) to be 1 if L(y,h) and h disagree on z and 0
otherwise. Then D(y,h) =3 ,cr Az(y, k) is the number of z in F' for which L(y, k)
and h disagree. By the above remarks,

S Dk =Y LA =Y X AmA> X o|Hl =5 DIH,

h€Hg h€Hy z€F z€F heHy z€F\E,

Ifl < r/2 then (r — 1) > r/2. Hence, noting that y is arbitrary in the above analysis,
if S is the set of samples which contain fewer than r/2 distinct elements of F', then
we have

D=3 Y D(x,h)> Z|HollS|

x€S he Hy

We can interchange the order of summation to obtain

D=3 Y Dixh) > 7ISl|Ho,

hGHo xGS

from which it follows that for some t € H,

Y D(x,t) > £|S|.

x€ES

For any x € S, D(x,t) < r, and so if N is the number of samples x in S such that
D(x,t) > r/8, then

7151 < X D(x,t) < Nr+ (IS - N) £,

XES
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yielding N > |S|/7. Now, if D(x,t) > r/8 then L (x,t) has error at least

8er

EX-

Hence (observing that each element of S has equal probability according to u™),

b {s € 5(m,1) | er, (L)) 2 €} > T2um(8) 2 2um(S).

N
We can now apply the result on GE(p,m,s). The probability that a point chosen
according to the distribution g lies in F' = {z,,2,,...,2,} is 8¢. The probability that
a sample of length m has at least d/2 entries from F is therefore GE(8¢,m,r/2). If
m < r/32¢, this quantity is bounded as follows:

r r 93
< — ) < e 2 g gl 12 o T
GE(8¢,m,r/2) < GE (86, - 2) <ot g i ¢ B
Therefore we have
r_4-1 m 17 1
™ 32¢ 32 = # {S € S(m,1) I er, (L(s)) =2 6} > =100 — 100°
as required. .

A trivial modification of the proof establishes that the sample complexity exceeds
(do — 1)/32¢, where d, is any positive integer satisfying VCdim(H) > d,. So we have
the following important consequence, which extends Theorem 8.2.1.

Corollary 8.5.3 If a hypothesis space H has infinite VC dimension then there is no
pac learning algorithm for H. O

These results, in particular Theorem 8.5.2, support the claim that the VC dimension
1s a good measure of the ‘expressive power’ of a hypothesis space H: the greater the
VC dimension of H, the greater must be the sample complexity for pac learning H.
In fact, the results can be generalised to cover the case when C is any concept space
with VC dimension at least dy > 1 and H is any hypothesis space (not necessarily
equal to C). If L is a learning algorithm for (C, H), the input to L must be a training
sample of length greater than (dy — 1)/32¢ in order to guarantee accuracy € < 1/8
with probability 1 — é§ > 99/100. In particular, if C has infinite VC dimension then
there can be no learning algorithm for (C, H) which is pac, for any hypothesis space
H.
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Example 8.5.4 If J is the interval union space of Example 8.2.2, then, because
J has infinite VC dimension, there is no pac learning algorithm for (J, H) for any
hypothesis space H. The above result is very strong. It shows not merely that there
is no consistent or efficient pac learning algorithm, but also that, given unbounded
computational resources, no algorithm can pac learn J, no matter how it represents
its output hypotheses. Of course, these conclusions hold for any space of infinite VC
dimension, such as the space of closed sets, or the space of characteristic functions of
all polygonal regions in R? (Exercise 3). 0

Another useful result concerning lower bounds is the following, due to Blumer et
al. (1989). This bound involves € and §, but is independent of the VC dimension of
the hypothesis space. It applies to non-trivial hypothesis spaces. By this we simply
mean hypothesis spaces which consist of more than two hypotheses.

Theorem 8.5.5 Suppose that L is any pac learning algorithm for the non-trivial
hypothesis space H. Then

mL(H, 5, 6) > (1 — 6) In (l) ’
for any 0 < 6,¢ < 1.

Proof Since H is non-trivial, it contains a hypothesis A, and another hypothesis h,
which is not the ‘complement’ of k. It follows that we can find a,b € X such that
hi(a) = hy(a) and h,(b) = 1, hy(b) = 0. We give the proof for hy(a) = hy(a) = 1; the

other case is analogous.

Let 0 < 6,e < 1 and let u be the probability distribution for which g(e¢) =1 — € and
©(b) = € (and p is zero elsewhere on X). The probability that a sample of length m
has all its entries equal to a is (1 — €)™. Now,

1 1
—e)™ > —€) > < — -.
(1—¢)" > 6§« min(l—¢) >Inf e m< _ln(l_e)ln(5)

Further,

—ln(l—e)=ln(1+ ‘ )< :

l1—e¢/ " 1—¢

m< B (5)

then, with probability greater than §, a sample x of length m has all its entries equal
to a. Let a' denote the training sample

a' =((a,1),...,(a,1))

It follows that if
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of length m. Then a' is a training sample for both &, and h,. Suppose that L is a
pac learning algorithm for H. If b is a positive example of L(a') then L(a') has error
at least € (the probability of b) with respect to h,, while if b is a negative example
of L(a') then this hypothesis has error at least € with respect to h,. It follows that
there is t € H, which is either A, or h, as above, such that

m < -(l;e)ln (-}) = p" {s € S(m,t) I er, (L(s)) > 6} > 4.

€

The result follows. 0

8.6 COMPARISON OF SAMPLE COMPLEXITY BOUNDS

We have already mentioned in passing that many of the results in preceding sections
can be generalised to deal with the case in which the concept space and the hypothesis
space are different. In all cases the proof is easily supplied by making minor alterations
to the proof as given above. In this section we shall compare the bounds for sample
complexity, in this more general context.

First, it is clear that the following generalisation of Corollary 8.4.2 holds.

Theorem 8.6.1 Let C be a concept space and H a hypothesis space, and suppose
that H has finite VC dimension at least 1. If L is any consistent learning algorithm
for (C, H), then L is pac and the sample complexity of L satisfies

mu(C86) < [ (Vedim(an)1g () +1¢ (3))]

for any 6 and e. O

Secondly, generalising and combining Theorems 8.5.2 and 8.5.5, we obtain the fol-
lowing result.

Theorem 8.6.2 Let C be a concept space and H a hypothesis space, such that C has
VC dimension at least 1. Suppose that L is any pac learning algorithm for (C, H).
Then the sample complexity of L satisfies

VCdim(C) -1 1 (1))

,—1In (=

32¢ € )

m(C,d,€) > max (

for all € < 1/8 and 6 < 1/100. O

The significant factors in the bounds are the VC dimensions of the concept and the
hypothesis spaces, and the parameters ¢ and §. To simplify matters, and to suppress
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the less important constant factors in these expressions, we can use the O-notation
and the -notation. We have already met the O-notation in our discussion of running
time in Chapter 5. We can extend its use to positive real-valued functions as follows:
we write f = O (g) when there is some constant C' such that for all relevant values of
z (which may be a vector of real values) f(z) < Cg(z). Similarly, we write f = 2 (g)
when there is some positive constant K such that f(z) > Kg(z).

Using these notations we can re-state the sample complexity bounds, remembering
that the functions involved depend on the VC dimension of C' or H and the accuracy
and confidence parameters.

o If L is pac then C' must have finite VC dimension, and

mi(C,6,€) = 0 (m—d’—:“@ + %m (-})) .

o If H has finite VC dimension and L is consistent then L is pac, and

mi(C,6,€) = O (VCdi—m(H) In (1) +1m (%)) .

€ € €

e If H is finite and L is consistent then L is pac and
1 1 1
m(C,é,¢) =0 (Eln |H| + -e—ln <3)) .

In the case when C = H, the VC dimension d is finite, and L is consistent, we have
the ‘lower’ and ‘upper’ bounds

my(H,b,€) = (g + _l_ln (%)) :

€

my(H, 8,¢) = O (g In (%) + -l—ln (%)) .

In general, the factor In(1/€) which distinguishes the upper bound from the lower
bound is unavoidable. Results of Haussler, Littlestone and Warmuth (1988) show
that, for every d > 1 there is a hypothesis space H,; and a consistent learning al-
gorithm L for H; with sample complexity meeting the upper bound. On the other
hand, it is an open problem to decide whether for every d and for every concept space
C of VC dimension d, there is some hypothesis space H and some (C, H) learning
algorithm L for which the sample complexity meets the lower bound.

In the next chapter we shall see that for many interesting hypothesis spaces there are
pac learning algorithms which are optimal, in the sense that the sample complexity
meets the lower bound.
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FURTHER REMARKS

The condition of potential learnability implies that a consistent learning algorithm is
pac. However, we should like to give performance guarantees for learning algorithms
which output hypotheses not necessarily consistent with the training sample, but
rather only consistent on at least a definite fraction of the sample. The theory
developed in Section 8.3 can be modified to cover this case; see Vapnik (1982), Pollard
(1984), Anthony (1991) for details. It follows from this theory that, for hypothesis
spaces of finite VC dimension, the following holds (as for finite spaces). For any fixed
constant a < 1, there is a function mg(a, é, €) such that if a hypothesis h disagrees
with at most a fraction ae of a training sample of length m,, then, with probability
at least 1 — 6, h has actual error less than e. Thus, for spaces of finite VC dimension,
one can, by taking long enough training samples, infer from small observed error that
a hypothesis has small actual error.

EXERCISES
1. Let H be a hypothesis space with the property that for any ¢t € H and any

0 < §,e < 1, there is my(t, 6, €) such that
m > mo(t, 8,¢) = p" {s € S(m,t) | H|NB. =0} >1-6

for any probability distribution g on the input space. Thus, m, can depend on the
target concept. Following the proof of Theorem 8.2.1, show that H must have finite
VC dimension and is therefore potentially learnable. (See Ben-David et al. (1989) for

similar results.)

2. Prove that for any ¢ > 0,

Inz < (ln (l) — 1) + cz,
c

for all £ > 0. (This result is useful in proving Theorem 8.4.1.)

3. Show that the space of characteristic functions of closed and bounded polygonal
regions of the plane R? is not pac learnable.

4. Suppose that H is any hypothesis space of finite VC dimension d > 1 and that L
1s any consistent learning algorithm for H. Given that there is some fixed probability
distribution on the example space, how large a random training sample would you
present in order to obtain, with at least a 90% chance, a hypothesis which has error
less than 5%?

5. A boolean function f is said to be symmetric if f(z) depends only on the number
of entries of £ which are equal to 1. For example, for any n, the parity concept
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defined on {0,1}" is symmetric. Let n be a positive integer, and let S, denote the
set of all symmetric functions defined on {0,1}". What is the VC dimension of S,?
Give upper and lower bounds on the sample complexity of any consistent pac learning
algorithm for S,. Note that any hypothesis A of S, can be represented by a vector
(hoyh1y--.yh,) € {0,1}", where h; is the value of h on examples having precisely ¢
ones. Devise a consistent learning algorithm for S, which represents the space in this
way.

6. Let H,G be hypothesis spaces defined on the same example space X. For hy-
potheses h € H,g € G, define h V g by
_J1, ifh(z)=1or g(z)=1;
hvg= {0, otherwise,

and let
HvG={hVg | he HgeG}.

Prove that
Oyve(m) < Iy (m) dg(m)
for all m. Defining H A G in the obvious (dual) manner, prove the analogous result

for this space. Deduce that if H and G are potentially learnable, then so too are

HV G and HAG.

7. Let H be a hypothesis space of finite VC dimension d > 1 and, for s > 1, define
H(s) inductively by setting H(1) = H and

H(k)=HV H(k—1) (k>2).

Using Exercise 6 and Sauer’s Lemma, prove that for m > d,

em sd
T < (7)

Hence show that the VC dimension of H(s) is at most 2sd1g(3s). (This is a result of
Blumer et al. (1989).)

[Hint: Use the fact that if D is the VC dimension of H(s) then Iy, (D) = 2°.
To obtain the bound on the VC dimension, it may be helpful to use the result of
Exercise 2.]

8. Suppose that H,, H,,..., H, are hypothesis spaces on the same example space, and
that each is linearly ordered (see Exercise 8 of Chapter 7). Prove that the hypothesis
space H = H, V H,V ...V H, has VC dimension at most s. (This is a result of
Wenocur and Dudley (1981).)

[Hint: Let x be a sample of length s + 1. How many vectors with only one entry
equal to 1 can be realised as classification vectors of x by H?]



Chapter 9: VC Dimension and Efficient Learning

9.1 GRADED REAL HYPOTHESIS SPACES

In Chapters 5 and 6 we made a careful study of the efficiency of learning algorithms
for graded boolean hypothesis spaces. In this chapter, we shall consider the cor-
responding notions for real hypothesis spaces, obtaining a comprehensive theory of
efficiency of learning algorithms, for both real and boolean spaces.

Recall that a graded boolean hypothesis space is defined to be a disjoint union
H = UH, of spaces of boolean functions, where H, consists of hypotheses defined
on {0,1}". Similarly, we define a graded real hypothesis space to be a disjoint union
H = UH,, where H, is a real hypothesis space defined on (possibly some subset
of) n-dimensional Euclidean space R". Thus, the ezample size of a vector with real
entries is taken to be precisely the length of the vector, or the dimension of the
space containing the vector. This corresponds to the definition of example size in the
boolean case, since a boolean example is a vector with coordinates 0 and 1, and its
size is simply the length of this vector.

Example 9.1.1 A simple example of a graded real space is the perceptron space
P = UP,, where P, is the hypothesis space of the real perceptron on n inputs
(as defined in Section 7.1). Here, following the usual convention, we use the same
notation for the machine and its hypothesis space. Recall that P, has a geometric
interpretation; it is the set of characteristic functions of closed half-spaces in n-
dimensional Euclidean space R". a

Example 9.1.2 The non-negative quadrant R} in two dimensions is the set of points
(y1,¥2) with y; > 0,9, > 0. The translate of R2Z by any vector v = (vy,v;) is also
known as a quadrant:

R} +v={(y1,¥2) | y1 2 v1,y2 > va} = [v1,00) X [v5, 0).

In general, for a positive integer n, the non-negative quadrant R is the set of vectors
in R" with every entry non-negative, and the translate of R?} by the real n-vector
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v = (vy,vy,...,V,) is the quadrant
R} + v = [v;,00) X ... X [v,,00).

We denote by @, the space of characteristic functions of such sets, together with the
empty quadrant — the identically-0 function. We call Q),, the n-dimensional quadrant
space. The hypotheses of ), are the identically-0 function and the functions g, for
v € R*, where

W(¥iyz- .- ¥n) = {0: otherwise. ’
Note that the space @, is precisely the space of rays, introduced in Chapter 3. We
call the graded space @ = U@, the quadrant space. a

Example 9.1.3 In Exercise 6 of Chapter 3, we defined the space of intervals. This
is the space of characteristic functions of all closed and bounded intervals [a, £] in
R. Here we shall denote this space by B;. An obvious generalisation is obtained
by considering the subsets of R? of the form [a;, 1] X [az, B2], which consists of all
(¥1,y2) with a; < y; < B, and a; < y, < B,. We shall call this set, the cartesian
product of two closed and bounded intervals, a boz, and we define B,, the space of
boxes in R?, to be the space of characteristic functions of all such sets. It is clear that
we may generalise further; B, is the space of characteristic functions of subsets of
R"” which are n-fold cartesian products of closed and bounded intervals. In addition,
each B, shall contain the identically-0 function, which in this context is called the
empty box. We shall call the graded space B = |J B, the space of bozes. O

We may define a learning algorithm for a graded real space as for graded boolean
spaces. Thus, a learning algorithm for H = |J H, is a function L, from the set of
training samples for hypotheses in H, to H, such that when s is a training sample
for a hypothesis in H,, we have L(s) € H,.

Example 9.1.4 There is a simple learning algorithm for the quadrant space
Q@ = UQ.. Given a training sample s for a hypothesis of @Q),, if s contains posi-
tive examples, we take L(s) to be (the characteristic function of) the ‘least’ translate
of the non-negative quadrant that contains all the positive examples in the sam-
ple. That is, if there are positive examples in s, we have L(s) = g, where, for each
1<j<n,

v; = min {(z;); | b = 1}.

1<i<m

The actual calculation of the minima may be done by the same technique as used
for the space @), of rays (Section 3.1). Indeed, the algorithm for @, may be thought
of as n learning algorithms for ); running in parallel. If s contains only negative
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examples, we let L(s) be the empty quadrant. In either case, it is clear that L(s) is
consistent with s. O

Example 9.1.5 There is also a consistent learning algorithm for the space of boxes.
To help motivate this algorithm, consider first the space B;. Suppose the target
concept t is the characteristic function of [a@*, 8], and that we are given a training
sample s for . Let us suppose that s contains at least one positive example; for
any such example z, we know o* < =z < f*. Let a denote the minimal positive
example in the sample, and B the maximal one. Then the characteristic function of
[, B] correctly classifies all examples in s; furthermore, it is, in a sense, the ‘smallest’
hypothesis of B; consistent with s. Therefore if s contains positive examples, we
take L(s) to be this hypothesis. On the other hand, if s consists only of negative
examples, then we take L(s) to be the empty interval, which is again consistent with
s. The action of L on B, is defined similarly: given a training sample which contains
some positive examples, L finds the smallest box consistent with the sample, and
returns the corresponding hypothesis. If the training sample contains no positive
examples, then L outputs the empty box. It is easy to see that L is a consistent
learning algorithm. Explicitly, the algorithm may be described as follows.

empty:= true;
for i:= 1 to m do
if b; =1 then
if empty then
begin
for j:= 1 to n do
set a; = (x;); and B; = (z;);;
empty:= false

end
else
for j:=1 to n do
begin

if (z;); > B; then set f; = (z;);;
if (z;); < a; then set o; = (z;);
end
if empty then set L(s) = empty box
else set L(s) = [ay, 0] X [z, 8:) X ... [@n, Bl
O

The measure of example size and the definition of learning algorithms for graded real
hypothesis spaces are, as we have seen, generalisations of those for graded boolean
spaces. Therefore we shall often use the term graded hypothesis space to refer to
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either a graded boolean hypothesis space or a graded real hypothesis space.

9.2 EFFICIENT LEARNING OF GRADED SPACES

In an attempt to discuss efficiency of learning algorithms for graded spaces, we may
take an initial approach similar to that of Section 5.3. Let H = |J H,, be a graded
hypothesis space, and suppose that L is a learning algorithm for H. Then we have

VCdim(H,) finite => H,, potentially learnable;
H, potentially learnable and L consistent for H, = L pac learns H,,.

The first of these implications is the main result of the previous chapter (Theo-
rem 8.3.1), while the second comes from Chapter 4.

A learning algorithm L for the graded space H = |J H,, is efficient with respect to
ezample size if, for fixed confidence and accuracy parameters, L can pac learn H, in
time bounded polynomially in n. In addition, we say that L is efficient with respect
to confidence and accuracy if, for a fixed n, L can pac learn H, to accuracy € with
confidence 1 — § in time polynomial in 6* =In(6~') and €~'. An immediate problem
is to formulate conditions which ensure that, in these terms, L pac learns H = J H,
efficiently.

We now describe some important general results which extend those of Chapters 5
and 6 for boolean spaces. As we shall see in the next section, these results provide
more complete answers to some of the issues raised in previous chapters. It will
be convenient to discuss simultaneously efficiency with respect to example size and
efficiency with respect to confidence and accuracy. The following straightforward
result, analogous to Theorem 5.3.1, provides sufficient conditions for a consistent
learning algorithm to be efficient with respect to example size.

Theorem 9.2.1 Let H = | H, be a graded hypothesis space and suppose that L is
a consistent learning algorithm for H with running time R;(m,n). If

® R;(m,n) is polynomial in m and n, and

e VCdim(H,) is polynomial in n,
then L is a pac learning algorithm for H, efficient with respect to example size,
confidence, and accuracy.

Proof By Corollary 8.4.2, L, as a consistent learning algorithm for H,, is pac and
its sample complexity satisfies

mz, (Ha, 6, €) < mo(Ha, 6,€) = E (VCdim(Hn) lg (1—62-) +lg (%))] .
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An upper bound on the running time of L to pac learn H, is R;(m¢(H,,$é,¢€),n).
Since VCdim(H,,) is polynomial in n, m, is polynomial in n,é* and €~!. Further,
since R;(m,n) is polynomial in m and n, it follows that the running time is also
polynomial in n,é* and €. O

In this theorem, the quantity VCdim(H,,) replaces the In |H,| of Theorem 5.3.1. When
H, is finite for each n, we have the relationship VCdim(H,) < lg|H,|. Therefore
if In|H,| is polynomial in n, so too is VCdim(H,). Hence this result subsumes
Theorem 5.3.1. (Of course, a corresponding result holds for ungraded spaces: if H is
a hypothesis space of finite VC dimension and L is any consistent learning algorithm
for H which runs in time polynomial in m, then L is a pac learning algorithm, efficient
with respect to confidence and accuracy.)

Example 9.2.2 The learning algorithm L for the quadrant space @ = U @, is consis-
tent, and has running time R;(m,n) = O(mn) since, for each of the positive examples
in the sample, the algorithm makes n comparisons.

We shall show that VCdim(Q,) = n. (In fact, only the result VCdim(Q,) < n is
needed for the present application, but we obtain the exact result for the sake of
completeness.) Let x = (z,,%,,...,Zn4;) be a sample of length n + 1, where each
example is a real n-vector. For each coordinate position j, let j* be such that the
example z;. has the least jth coordinate of the examples in x; if there are several
examples with this property, choose any one of them. Since there are n values of j
and n + 1 examples, there is an example which is not in the set {z;« | 1 < 57 < n}.
We may suppose the notation is chosen so that z, is such an example. Then

(1); 2 (z;0); (1< <m)
Now, there can be no hypothesis ¢, € @, for which

qv(ml) =0, ‘Iu(m2) =...= qv(mn-{-l) =1.

For if all conditions except the first hold we must have v; < (z;); for all (z,7) in the
ranges (2<:<n+1,1<j <n). The choice of z; ensures that v; < (z;+); < (z,);
for j between 1 and n, so that we must have ¢,(z;) = 1 also. This shows that not all
classifications of an (n + 1)-sample can be realised, whence VCdim(Q,,) < n.

In order to show that VCdim(Q,) = n we construct an n-sample z = (2, 2,,...,25)
which is shattered by @,. Let z; (1 < ¢ < n) be the vector with 1 in all coordinates
except the ith, which is 0. Let T be any subset of {z,, 25,...,2,}. If T = 0 take v to
be the all-1 vector. If T # () define v = (vy,...,v,) as follows:

o — { 1, if (z); =1 for all z; € T;
7710, otherwise.
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Clearly, ¢,(z;) = 1 for all z; € T. On the other hand, if z; ¢ T then every member
of T has ith coordinate equal to 1. Then, by definition, v; = 1, and since (z;); = 0 it
follows that ¢,(z;) = 0. Hence z is shattered by @,, as claimed.

It follows from Theorem 9.2.1 that L is a pac learning algorithm for @ = U@, which
is efficient with respect to example size, confidence and accuracy. a

Example 9.2.3 The consistent learning algorithm for the space B = |J B, of boxes,
described in Example 9.1.5, has running time O(mn). Furthermore, it can be shown
that B, has VC dimension 2n (Exercise 5). It follows that B is pac learnable efficiently
with respect to example size, confidence, and accuracy. We may follow the argument
given in the proof of Theorem 9.2.1 to obtain an explicit bound on the running time
of L as a pac learning algorithm. Since VCdim(B,) = 2n, the sample complexity of
L on H, satisfies

my (Ha,6,€) < mo (Ha,8,€) = O (gln (%) + %ln (%)) ~0 (g In (é)) .

It follows that L pac learns H,, in running time

n

Ry (mo (Ha,6,¢) ,n) = O (—21n (%)) ,

€

polynomial in n, §* and € 1. |

The following key result from the paper of Blumer et al. (1989) (see also Pitt and
Valiant (1988) and Haussler et al. (1988)) provides necessary conditions for a graded
hypothesis space to be pac learnable efficiently with respect to example size.

Theorem 9.2.4 Let H = |J H, be a graded hypothesis space and suppose there is a
learning algorithm for H which pac learns H,, in time polynomial in ¢~! and n. Then
e VCdim(H, ) is polynomial in n, and
e there is a randomised algorithm L which solves the problem of finding a hy-
pothesis in H,, consistent with a given training sample, and which has running
time R;(m,n) polynomial in m and n.

Proof To obtain the first condition we use the lower bound result, Theorem 8.5.2.
Suppose that L is a pac learning algorithm for H = |J H, which has running time
polynomial in n. By Theorem 8.5.2, the sample complexity of L satisfies

mr (H,,, %, %) = Q(VCdim(H,)) .

Since L must be presented with at least this many examples in order to produce a
probably approximately correct hypothesis, the running time of L is Q (VCdim(H,,)).
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Therefore, if the running time is polynomial in n, then we certainly must have
VCdim(H,) polynomial in n.

Theorem 6.2.1, which provides a link between pac learning boolean spaces efficiently
with respect to accuracy and the existence of randomised consistent-hypothesis-
finders, is equally valid for real hypothesis spaces, as can be seen from inspection
of its proof. Thus, if there is a learning algorithm L for H, which has running time
polynomial in €=}, then there is a polynomial time randomised consistent-hypothesis-
finder for H,. If L runs in time polynomial in n, then so too does this latter algorithm.
This gives us the second of the necessary conditions. O

Thus, allowing randomised learning algorithms, H is pac learnable efficiently with
respect to example size, confidence and accuracy if and only if the VC dimension of
H, is bounded by some polynomial in n and there is an efficient consistent-hypothesis-

finder for H.

9.3 VC DIMENSION AND BOOLEAN SPACES

In this section, we return again to learning algorithms for graded boolean hypothesis
spaces. We have remarked that the results in the previous section apply to such
spaces, and that they generalise corresponding results from Chapters 5 and 6. How-
ever, as we shall see, these results have other significant implications for learning
boolean spaces.

Suppose that H = |J H,, is a graded boolean space. In Theorem 5.3.1 we showed that
if L is a consistent learning algorithm for A with running time R;(m,n) polynomial
in m and n, and if In [H,| is polynomial in n, then L is a pac learning algorithm for
H which is efficient with respect to example size (and also with respect to confidence
and accuracy). This was a one-way implication, and at that stage we could not claim
the converse: that if such an algorithm exists, then In |H, | must be polynomial in n.
However, one can use the results of the previous section to prove a strong version of
the converse, which applies to any pac learning algorithm, consistent or not.

We require a simple but important lemma which provides a connection between VC
dimension and cardinality for boolean spaces.

Lemma 9.3.1 Suppose that H = |J H, is a boolean hypothesis space. Then In |H,|
is polynomial in n if and only if VCdim(H,,) is polynomial in .

Proof If In|H,| is polynomial in n then certainly so is lg|H,|. The ‘only if’ impli-
cation then follows directly from the fact that VCdim(H,) < lg |H,|-.
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Conversely, suppose VCdim(H,) < p(n) for some polynomial p. H, is defined on the
finite example space {0,1}", of cardinality 2". Hence, by Proposition 7.5.4,

, In |H,|
> —_—.
p(n) > VCdim(H,) > T+ nin2
Therefore
In|H,| <p(n)(1+nln2),
which is polynomial in n. a

The following result is due to Natarajan (1989) and Blumer et al. (1989). In view of
the previous lemma, the result is a consequence of Theorem 9.2.4.

Theorem 9.3.2 Suppose that H = |J H,, is a graded boolean space and that there
is a pac learning algorithm for A which has running time polynomial in n. Then
In|H,| is polynomial in n. O

It is worth remarking that a stronger result is true. Suppose that C' = |JC,, is any
graded boolean concept space, and that H = |J H,, is any graded boolean hypothesis
space. Using the more general lower bound result, Theorem 8.6.2, the proof of the
above theorem can be adapted to show that if In|C,| is not polynomial in n, there
can be no pac learning algorithm for (C, H) which is efficient with respect to example
size.

Example 9.3.3 Consider the graded space DNF = |JDNF, of all boolean func-
tions (represented in disjunctive normal form). We have |[DNF,| = 2%", so that
In|DNF,| = 2*In2. This is exponential in n and so there is no pac learning al-
gorithm for DN F' which has running time polynomial in n. Note, however, that as
explained in Section 6.7, this result does not preclude the existence of an epac learning
algorithm for DN F', with respect to the disjunctive normal form representation. O

Combining Lemma 9.3.1 with Theorem 9.2.4, we have

Theorem 9.3.4 Let H = |J H, be a graded boolean hypothesis space and suppose
there is a learning algorithm for H which pac learns H,, in time polynomial in €™*
and n. Then
e In |H,| is polynomial in n, and
e there is a randomised algorithm which solves the problem of finding a hy-
pothesis in H,, consistent with a given training sample, and which has running
time R;(m,n) polynomial in m and n. |

Hence, allowing randomised algorithms, a boolean space is pac learnable efficiently
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with respect to example size, confidence and accuracy if and only if In|H,| is poly-
nomial in n and there is an efficient consistent-hypothesis-finder for H.

9.4 OPTIMAL SAMPLE COMPLEXITY FOR BOOLEAN SPACES
We say that a pac learning algorithm L for a graded space H = |J H, has optimal
sample complezity if, for any pac learning algorithm L’ for H,

my(H,,6,¢) =0 (mp(H,,6b¢)).

Informally, L has optimal sample complexity if any other pac learning algorithm for
H requires at least (of the order of) as many examples as does L in order to produce
a probably approximately correct hypothesis.

Section 8.6 provides explicit upper bounds on the sample complexity of consistent pac
learning algorithms, and lower bounds on the sample complexity of (not necessarily
consistent) pac learning algorithms, in terms of the VC dimension of the spaces
involved. Using these bounds, we obtain the following result, due to Ehrenfeucht et
al. (1988).

Theorem 9.4.1 Let H = | H, be a graded boolean hypothesis space. If
In|H,| = O (VCdim(H,)),
then any consistent learning algorithm for H has optimal sample complexity.

Proof Suppose that
In|H,| = O (VCdim(H,)),

and that L is a consistent learning algorithm for H. Since H,, is finite, we have

mi(Ha,6,€) = O (lln Ha|+ Z1n (1)) _o(YCdim(#,) 1, (l) ,
€ € 6 € € )

Now, as in Section 8.6, if L’ is any pac learning algorithm for H, then

mp(H,,6,¢) =Q (VCdiren(H,,) + lln (1)) .

€ )
Comparing these two results,
mg(H,,6,¢) = O (mp/(H,,d,¢))

and hence L has optimal sample complexity. O
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Note that the ‘reverse’ condition VCdim(H,) = O (In |H,|) always holds because

In |H,|

VCdim(H,) <lg|H,| = 2

However, there are boolean spaces for which the condition In |H, | = O(VCdim(H,,))
fails; one such space BP, will be defined in the next chapter. But from Proposi-
tion 7.5.4 we have

In|H,| < (1+nln2)VCdim(H,),

(assuming H, consists of more than one hypothesis) and hence for any boolean hy-

pothesis space, In |H,| = O (nVCdim(H,)).

Example 9.4.2 Consider the space M = |J M,, of monomials. Recall (Example 7.3.4)
that n < VCdim(M,) < nln3 and In [M,| = nln3. Therefore

In|M,| = O (VCdim(M,)) = O(n).

It follows that the standard learning algorithm for monomials has optimal sample
complexity, since it is consistent. O

Example 9.4.3 We described, in Chapter 2, a consistent learning algorithm L for
the space Dy = |J D, x of disjunctions of small monomials. Ehrenfeucht et al. (1988),
showed, as follows, that VCdim(D, ) = 2(n*). Consider the set S of examples
in {0,1}" which have precisely k entries equal to 1. Then S can be shattered by
D, ;. Indeed, suppose T is any subset of S. For each z = (2,,2,,...,2,) € T, form
the monomial which is the conjunction of those literals u; such that z; = 1. Since
z € S, this monomial has k literals; further, z is the only positive example in .S of
this monomial. The disjunction of these monomials, one for each member of T, is
therefore a hypothesis in D, ; whose positive examples in S are precisely the members
of T. But T was any subset of S and hence S is shattered by D, ;. Now,

n\ nmn-1)...(n—k+1)
|S|=(k)_ k(k—1)...1

which, for a fixed k, is Q(n*). Further, forn > k > 1, |D, | < 2(n)* (see Chapter 2,
Exercise 7), and so

In|D,i| < (2n)*In2 = O(n*).

It follows that
In|D, ;| = O (VCdim(D, ;)) = O(n*),

and the learning algorithm L has optimal sample complexity. a
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9.5 EFFICIENCY WITH RESPECT TO REPRESENTATIONS
Recall that the space B, of intervals is the space of characteristic functions of all
closed intervals [a, 8] on the real line (together with the identically-0 function). For
any r > 1, let B} be the space of (characteristic functions of) subsets of R which
can be realised as the union of r disjoint closed intervals. For example, for each
w = (a1, B, s, B2) with a; < f; < a; < B, we have the hypothesis h, € B} defined
by

ho(y) = {(1), if o <y< Biora; <y < B

, otherwise.

That is, h, is the characteristic function of the set [a, 3] U [a3,8;). There is a
representation R* — Bf for each r; a hypothesis in Bj is represented by the real
numbers ay, fi, az, Ba,. .., a,, B, the end-points of the r intervals forming the union.
The representation size of a hypothesis in B] may be taken as 2r, the number of
real numbers needed to describe it. Note that this takes no account of the need
to approximate a real number by a finite decimal expansion; such an approach is
characteristic of what is known as the unit cost model for computations with real
numbers.

Example 9.5.1 Let I, = U B], be the hypothesis space of (characteristic functions
of) finite unions of n-dimensional boxes. We call I,, the n-dimensional box union
space. So I, is the interval union space J (Example 8.2.2). For completeness, we
shall assume the empty boz, the identically-0 function, belongs to each I,,. Clearly,
an n-dimensional box can be represented by 2n real numbers; for example, the box
[y, B1] X [az, B2] in R? is represented by (a3, 81, @3, B2). In general, 2nr real numbers
are needed to represent a hypothesis in Bf: 2n real numbers for each of the r boxes.
We therefore take the representation size of a hypothesis in B! to be 2nr. a

As for boolean hypothesis spaces, we may grade a real space by representation size.
For example, the interval union space J can be graded as J = |J J,, where J, = B]
comprises unions of r intervals. (Note that the hypotheses of J, have representation
size 2r, not r; this causes no difficulty.) We may discuss the learnability of such
spaces in the usual way. Suppose that H = | H, is a hypothesis space graded by
representation size. We say that a learning algorithm L for H is efficient with respect
to representation size if for each r, L is a pac learning algorithm for (H,, H), with
running time polynomial in r.

Example 9.5.2 We shall describe a consistent algorithm for learning the space J, of
r-fold interval unions by J. Suppose the training sample

s = ((21,b1), (T2, 02), - - -, (T, b))

for a hypothesis in J, is given. The first step is to arrange the examples in increasing
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order, which requires O(mInm) comparisons. Assuming this has been done, we

choose the notation so that
T, <z, <

Lz,
The main part of the algorithm is as follows.

if b; =1 then begin k:=1; set oy = z; end
else k:=0;
for i:= 2 to m do
begin
if b; =1 and b;_; = 0 then
begin
k:=k+1;
set ap = x;
end;
if b; =0 and b,_;, = 1 and k>0 then
set By, = x;_,
end
if k=0 then set L(s) = empty interval
else set L(s) = [, 5] U...U[ax, B

Observe that the algorithm produces a hypothesis which is formed from the union of
k intervals, where k cannot exceed, but may equal, r. It can be shown that J, has
VC dimension 2r (Exercise 7), and hence it follows from Corollary 8.4.2 that L is a
pac learning algorithm for J, with sample complexity

mi=0(cn(2) + (1)) =0 (2 (1),

The running time of the main part of the algorithm is O(m), and hence the whole
procedure runs in polynomial time. The bound for the sample complexity is poly-
nomial in r, and L is therefore a pac learning algorithm for J which is efficient with
respect to the representation size. O

As in our discussion in Section 6.7, efficiency with respect to representation size can
be regarded in two different ways. That discussion was in the context of doubly-
graded boolean spaces. However, similar points can be made for hypothesis spaces
graded only by representation size.

Suppose first that L is a pac learning algorithm for a space H which can be graded
by representation size as H = |J H,. In this situation, demanding that L be efficient
with respect to representation size is an additional restriction on the performance of
L: not only must it be pac, but it must also learn the ‘simpler’ hypotheses ‘more
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quickly’, and the rate of increase for more complex hypotheses must be polynomial.
Here, efficiency with respect to representation size can be thought of as a stronger
form of pac learning,.

On the other hand, consider again the interval union space J. This space has infinite
VC dimension and therefore is not pac learnable (see Example 8.5.4). However, if we
grade the space as J = J J,, then there is a pac learning algorithm L (as described
above) for each J,. Furthermore, this algorithm operates in the same manner for
each J,. Quite explicitly, L is not a pac learning algorithm for the ungraded space J,
because the running time it requires to learn a hypothesis in J, to prescribed degrees
of accuracy and confidence, is (by the lower bound result Theorem 8.5.2) proportional
to r, and r may be arbitrarily large. However, it is clear that if we know that the
target concept has representation size r (or if we know an upper bound for this value),
then we can use L to produce a probably approximately correct approximation to
the target. What is more, the running time of L varies only polynomially with r.
Thus, even though a space may not be pac learnable, it may be learnable efficiently
when graded by representation size. Hence, in some cases, the idea of efficiency with
respect to representation size allows useful widening of the definition of pac learning.

9.6 DIMENSION-BASED OCCAM ALGORITHMS

Suppose that H = | H, is a hypothesis space (real or boolean) graded by representa-
tion size, according to a representation 2 — H. We have seen (Section 6.4) that, for
a boolean space, it may be NP-hard to find the simplest hypothesis consistent with a
training sample. The same is true of real hypothesis spaces graded by representation
size. A result of Masek (from an unpublished manuscript of 1978) shows that the
following problem is NP-hard: given a training sample for a hypothesis in some Bj,
find a hypothesis h € B} consistent with the sample. In other words, it is hard to find
a hypothesis consistent with a training sample for some target concept in I, such that
the hypothesis is as simple as possible, involving the union of fewest possible boxes.
However, as with boolean spaces, it will sometimes be sufficient to find a consistent
hypothesis which is ‘simple enough’, rather than the simplest possible.

In our discussion of Occam algorithms in Chapter 6, the output of a learning algorithm
L for H = | H, was deemed to be ‘simple enough’ if, given a training sample s of
length m for a hypothesis in H,, L(s) has representation size at most m®r?, for fixed
constants 0 < a@ < 1 and B > 1. In this case, the set of hypotheses used by L to
approximate hypotheses in H, is a subset of

m%rP

U .

=1

Learnability then follows from the fact that this space is finite; efficiency with respect
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to r from the fact that it is ‘small enough’.

This discussion suggests that, for any hypothesis space H = |J H, and for any learning
algorithm L for H, we should define the effective hypothesis space L(m, H,) to be the
set of all hypotheses L(s) obtained as s ranges through all training samples of length
m for hypotheses in H,,

L(m,H,)= | {L(s) | s € S(m,1)}.

teHy

Thus the Occam algorithms for boolean spaces are consistent learning algorithms
which have effective hypothesis spaces with ‘small enough’ cardinalities. The ap-
propriate generalisation to general (and, in particular, real) hypothesis spaces, is to
define an Occam algorithm to be a consistent learning algorithm for which the ef-
fective hypothesis spaces have ‘small enough’ VC dimension. Following Blumer et
al. (1989), we make the following definition.

We say that a learning algorithm L for H is Occam with respect to the representation

Q— Hif

e L is consistent;
e VCdim (L(m, H,)) < m°r?, where 0 < a < 1 and § > 1 are constants.

As for boolean spaces, we have the following result.

Theorem 9.6.1 Let H be a space of real or boolean hypotheses having representation
@ — H. If L is an Occam learning algorithm (with respect to the representation)
then, for each r, L is a pac learning algorithm for (H,, H), with sample complexity

my(H,,¥6,€) polynomial in r,8* and €',

Proof Let t € H, be a given target concept, u any distribution on X, and § and
e given confidence and accuracy parameters. Consider these quantities as fixed but
arbitrary in what follows. For convenience, denote L(m, H,) by H*. By definition of

the effective hypothesis space, L is a learning algorithm for (H,, H*). It is easy to
see that Proposition 8.2.3 can be modified to yield

pu™ {s € S(m,t) | H*[s]N B, # 0} < 21 4.(2m) 2™/,

We are given that H* has VC dimension at most D = m*r?. If m > D then, by
Sauer’s Lemma, the quantity on the right-hand side of the inequality is less than

2em\?
2 ( ) Q- em/2
D
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We need to show that this can be bounded by é for a value of m which is polynomial

in r,6* and € !. Now,
2em\ 2e em 6
2(—D) 2 <é <<= m*r’In o + m®rfIn(m" %) 5 1n2_1n(2)

Now (see Chapter 8, Exercise 2), for any > 0 and any ¢ > 0,

Inz < <ln (%) - 1) + cz.

Taking ¢ = €Iln2/4r® and z = m'~“, we see that it suffices to have

ﬁ 's
& In2 —m*r? [ In GL —1] >m*rPIn (E) + In (g) .
4 € rh 6

Since a < 1, this holds if

1/(1-e)
m2m0=[(A+B> }

€

where i 19 . )
r
4="18(7) 2= e (5)
This is an upper bound on the sample complexity m(H,, 6, €), and it is polynomial
in 7,6* and 1/e. The result follows. O

We remark that if the running time of L is polynomial in m then the running time
of L as a pac learning algorithm for H, is polynomial in r,6* and e¢~'. That is, an
efficient Occam algorithm is a pac learning algorithm for H = U H,, efficient with
respect to representation size, confidence and accuracy. It is worth noting that a
more careful analysis yields an upper bound on sample complexity better than the
value m, given above; see Blumer et al. (1989).

Suppose H is a boolean hypothesis space, graded by representation size as H = |J H,,
and that L is an Occam learning algorithm for H, as defined in Section 6.5. Then
there are constants @ < 1 and 8 > 1 such that if s is a training sample for a hypothesis
of H, then L(s) has representation size at most m*r?. The proof of Theorem 6.5.1
then shows that

lg|L(m, H,)| < m®r? + 1.

By Proposition 7.3.3, we therefore have

VCdim (L(m, H,)) < lg|L(m, H,)| < m*r® 4+ 1 < m*rf+,
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It follows that any Occam algorithm for a boolean space, as defined in Chapter 5, is an
Occam algorithm as defined above. Hence Theorem 9.6.1 subsumes Theorem 6.5.1.

The algorithm for learning the space J = I, of unions of intervals on the real line can-
not be extended or generalised to I,,, n > 2. Indeed, in view of the NP-hardness result
of Masek mentioned above, (under the assumption P # NP) there can be no polyno-
mial time learning algorithm for general I, which produces a consistent hypothesis
in B whenever the target concept is in B! . However, there is an Occam algorithm
for the space I,. This is based on the greedy method for MINIMUM COVER, and
it has running time polynomial in m. Therefore the space I,, of finite unions of n-
dimensional boxes is pac learnable efficiently with respect to representation size. The
learning algorithm is due-to Blumer et al. (1989), and we refer the reader to their
paper for the details.

9.7 EPAC LEARNING AGAIN

Suppose that H = |J H,, is a graded (real or boolean) hypothesis space, and that each
H, can be graded by representation size as H, = UH,,. As usual, H = UUH,, is
said to be doubly-graded, and we conventionally omit one of the union signs.

A learning algorithm for a doubly-graded space H = |JH,, is simply a learning
algorithm for the graded space |J H,,. The learning algorithm L is said to be efficiently
pac or epac if it pac learns each H,, and if it does so efficiently with respect to
example size, representation size, and confidence and accuracy. More formally, as in
the definition of epac learning for boolean spaces, we say that L is epac if

¢ the running time R;(m,n) of L is polynomial in m and n;

e the sample complexity m (H,,, ¥, €) is polynomial in n,r,é*, and e

Thus a learning algorithm is epac if in time polynomial in n,r,8* and €' it can

produce a hypothesis which, with probability at least 1 — 8, has error less than € with
respect to a target hypothesis in H,, ,.

We observed in the previous section that if there is an Occam algorithm L for the
space H = |J H,, graded by the size of a representation  — H, then L pac learns
H, by H and has sample complexity m(H,, 6, ¢) polynomial in §*,¢~! and r. We say
that a learning algorithm for the doubly-graded space H = |J H,, is Occam if the
conditions in Section 9.6 hold for each H,, and with the same value of the constants

a and B for each H,,. We have

Theorem 9.7.1 Suppose that L is an Occam algorithm for the space H = J H,, ,
and that L has running time R (m,n) polynomial in m and n. Then L is an epac
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learning algorithm for H.

Proof In the proof of Theorem 9.6.1 we obtained the upper bound

A + B) 1/0‘“)"

€

mp (Hn.raaa 6) S mO(Hn,r,61 6) = [(

where i 1 . 0

r

= 81g(2) potig(2).

e 5\ ¢ ¢ e\s
As we noted there, this is polynomial in r,6* and €~! and, further, it is independent
of n. The result follows on observing that the upper bound R; (m, (H,,,9,€),n) on
the running time of L as a pac learning algorithm for H, , is polynomial in n,r,§*
and €. O
We remark that the observations made in Section 6.7 concerning the ‘meaning’ of
epac learning are equally valid here. The notion of epac learning can be regarded as
a refinement or as a generalisation of pac learning, depending on the context.

FURTHER REMARKS

Board and Pitt (1990) have given a more general definition of an Occam algorithm
for a doubly graded space. An efficient randomised Occam algorithm for a doubly-
graded space H = |JH,,, is a randomised algorithm L such that for some constant
a < 1 and some polynomial p of three variables, the following condition holds, for
any positive integers m,n,r and any ¢ > 0.

There is a subset L(m, H,) of H with VC dimension at most m®p (n,r,1/c)
such that if L is given as input a training sample s for a hypothesis of
H, . then L halts in time polynomial in m,n,r,1/c and with probability
at least 1 — c outputs a hypothesis L(s) € L(m, H,,) consistent with s.

Thus, the algorithm is an efficient randomised algorithm, and the VC dimension of
the effective hypothesis space can depend polynomially on n, in addition to being
polynomial in r and sublinear in m. With this extended definition, Board and Pitt
have shown for ‘most’ doubly-graded hypothesis spaces that the space is epac learn-
able if and only if there is an efficient randomised Occam algorithm for the space.
(More specifically, they have shown that this holds if the space is polynomially closed
under exception lists, a condition satisfied by many natural hypothesis spaces; see
their paper.)
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EXERCISES
1. Write a program for the quadrant space learning algorithm described in Exam-
ple 9.1.4. Is this a memoryless on-line algorithm?

2. Modify the quadrant space learning algorithm to obtain a consistent learning
algorithm which makes no use of the empty quadrant.

3. Design a memoryless on-line learning algorithm for the quadrant space which has
as initial hypothesis g, where, for each 7, v; = large, some large positive real number.
Under what conditions is your algorithm consistent?

4. Prove directly that the algorithm for learning boxes in R? has sample complexity
at most 4/eln (4/6) . Compare this with the bound that follows from the more general
analysis given in Example 9.2.3.

5. Prove that the space B, of n-dimensional boxes has VC dimension 2n.

6. Explain why the proof of Theorem 9.4.1 fails in general for infinite real hypothesis
spaces.

7. Prove that the space B of r-fold interval unions has VC dimension 2r.

8. Using Exercise 7 of Chapter 8, prove that the VC dimension of B! is bounded
above by 4rnlg(3r).

9. Prove that if there is an epac learning algorithm for the doubly-graded hypothesis
space H = |JH, , then VCdim(H,,,) is polynomial in n and r.
[Hint: see Theorem 8.5.2.]



Chapter 10: Linear Threshold Networks

10.1 THE BOOLEAN PERCEPTRON

The linear threshold machine with boolean inputs was introduced in Example 2.5.2,
and in Chapter 7 we discussed its generalisation, the real perceptron, in which the
inputs are allowed to be real, rather than boolean. In this chapter we shall deal with
both the boolean case and the real case, and we shall discuss more general networks
of ‘cells’ with threshold characteristics. We shall use the term boolean perceptron in
place of ‘linear threshold machine’, and denote (the hypothesis space of) the boolean
perceptron with n-bit inputs by BP,.

We begin with some remarks on the expressive power of the boolean perceptron. The
analysis carried out in Section 7.4 applies equally to the boolean case, requiring only
the trivial observation that the sample (o, €y,...,e,), which is shattered by BP,, can
be regarded as a sequence of boolean vectors. It follows that

VCdim(BP,) =n + 1.

Proposition 10.1.1 The number of hypotheses in BP, satisfies
|BP,| < 2"

for n > 4.

Proof In the boolean case the example space X = {0,1}" has cardinality 2". For
any hypothesis space H defined on X, we have

|H| =g (|X]) = I (2").

The reasoning is as in the proof of Proposition 7.5.4; the right-hand side is just
the number of ‘classification vectors’ determined by H on X — in other words, the
number of distinct functions in H. Applying Sauer’s Lemma, in conjunction with
Proposition 7.5.3, and observing that VCdim(BP,) = n + 1, we have

62" ntl 2 1 26 n+l
IBE| HBP"(2)<<n+1 2 {2 n+1 }
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Now, the sequence (2¢/(n 4+ 1))"*' is decreasing, and when n = 4 the quantity in
braces is less than 1. Therefore, for n > 4, BP, has cardinality at most o as
claimed. O

This result shows that the space BP, contains only a minute fraction of the 22"
boolean functions, for all values of n except the very small ones. Even when n = 2
we have only 14 of the 16 possible functions, the two which cannot be realised being
the exclusive-or function and its complement. (See also Example 10.5.2 below.)

The consistency problem for BP, can be stated as follows.

LINFAR THRESHOLD CONSISTENCY
Instance A training sample s of m labelled n-bit vectors.
Question Is there a linear threshold function consistent with s?

If the answer to the existence problem is ‘yes’, then there remains the problem of
finding a suitable linear threshold function. Because the weights o; (1 < ¢ < n)
and the threshold 6 are real numbers we need rather different techniques from those
discussed previously in this book, even though the inputs are boolean. We shall
explain first how the techniques of linear programming can be used.

It is convenient to begin by remarking that there is no loss of generality in taking
the threshold value 8 to be 1. To verify this, note first that since the example space
is boolean, and thus finite, we can alter the parameters of a linear threshold function
very slightly without affecting the classification. (Geometrically, this corresponds to
the fact that the hyperplane separating the positive and negative examples is not
uniquely determined.) In particular, we can always assume that & # 0. Then, by
interchanging the positive and negative examples if necessary, we can assume that
6 > 0 — this is equivalent to saying that the zero vector o is a negative example.
(In practice, we may be unable to tell from the training sample whether the positive
and negative examples should be interchanged. However, at worst, this means we
should have to run the procedures we describe twice.) Finally, suppose there is a
weight-vector a = (a;, @,,...,@,) and a threshold § > 0 such that the function
ha,o(y) — {(1), if gy + ...+ anyn > 0;

otherwise;

is consistent with the training sample. Since

aly1+a2y2+'“+anyn20 = (%)"‘(%)"}'.‘*‘(%) 2 ].,

it follows that we can take a new weight-vector @’ = a/f and a new threshold
¢’ = 1, as required. From now on, we shall denote the boolean perceptron with

fixed threshold 1 by ©,,.
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Suppose that, for a given s, the answer to the LINEAR THRESHOLD CONSIS-
TENCY problem for BP, is ‘yes’. Then the answer to the corresponding problem
for O, is also ‘yes’. If there are no negative examples in s then, since we are working
in ©,, the zero vector o cannot be in the training sample. Thus, if all examples are
positive, then they all have at least one 1. In this case the problem of finding a con-
sistent hypothesis in O, is trivial: we can take the weight-vector a to be (1,1,...,1).
If the training sample s contains negative examples, it can be arranged so that the
negative examples come first, say

s=(z1,—1),...,(zq,—1),(zg41,1)5- -, (Zm, 1).

We claim that when ¢ > 1 a suitable weight-vector can be found by solving ¢ linear
programs. Let N denote the ¢ X n matrix whose rows are the vectors z,,...,z,,
and let P denote the (m — ¢) X n matrix whose rows are z,41,...Zn,. Since there is
a function in ©, consistent with s, there is a corresponding weight-vector a which
(regarded as a column vector) is a solution of the system of inequalities Na < 1,
Pa > 1. Here 1 denotes an all-1 column vector of the appropriate size, and each
component inequality in the first set is strict.

Consider the linear programs A(z) (1 < < q) defined as follows:
minimise z;a, subjectto Na <1,Pa > 1.

The remarks at the end of the previous paragraph imply that the feasible region for
A(2) is not empty. Thus there is a solution o® for A(z) and, furthermore, it satisfies
the :th component N-inequality strictly. It follows that the vector

1
o' = a(a(l) +a® +... 4 a9)
satisfies each N-inequality strictly, and therefore defines a function in ©, which is
consistent with s.

It is known that there are algorithms for linear programming which are, in certain
senses, efficient. The simplex algorithm works well in almost all cases, but is not
strictly a polynomial time algorithm. Karmarkar’s algorithm (Karmarkar 1984) does
have polynomial running time, although in practice it may not out-perform the sim-
plex algorithm.

10.2 AN INCREMENTAL ALGORITHM

The learning algorithms described in earlier chapters are all inspired by the principles
of formal logic. Each step involves using an example (or examples) to make a signif-
icant change in the current hypothesis, based on logical deductions. In the case of
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linear threshold functions we have already seen that linear programming algorithms,
which are based on rather different ideas, can be used to solve the consistency prob-
lem. In this section we shall describe another kind of algorithm which can be used
to solve the same problem.

The germ of the idea can be traced back to Hebb (1949). Hebb was trying to explain
how a network of living brain cells could adapt to different stimuli. He suggested
that connections which were used frequently would gradually become stronger, while
those which were not used would fade away. This idea was given an explicit mathe-
matical formulation by Rosenblatt (1959, 1962). The procedure may be described as
incremental, because it operates by making small changes, rather than by bold logi-
cal steps. As we shall see, this technique has the desirable features of a memoryless
on-line algorithm.

In terms of the boolean perceptron ©, with fixed threshold 1, Rosenblatt’s perceptron
learning algorithm may be described as follows. Suppose the perceptron is in the
state @ = (a;,0a,...,a,), and that the labelled example (y,b) is supplied, where
Y= (Y1,¥2---,Yn)- If ha(y) = b, the example is classified correctly and no change
to the state is made. If the example is negative but is classified as positive (that
is, if b = 0 but h,(y) = 1), then we make a small reduction in the weights on all
the ‘active’ lines. Precisely, for a given constant v > 0, we define a new state o’ by
changing the weights according to the rule

o = [a—v if y; = 1;
i Q;, if Y = 0.
On the other hand, if b = 1 but h,(y) = 0, then we increase the weights on the active
lines according to the rule

o _faitry, ify =1,
a‘_{a,-, lfy,=0

The overall effect of these changes can be summarised in a single equation. For each
fixed value of the constant v, we have a learning algorithm L,. The action of L, is
determined by its effect on the weight-vector a: when the labelled example (y, b) is
supplied in a state a, the new state o’ = L,(a,y, b) is given by

o = a+ (b= ha(y))vy.

The term b — h,(y) can take the values 1, —1, or 0. In the first two cases, which
correspond to an actual change in the state, we shall say that L, is invoked.
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10.3 A FINITENESS RESULT
In this section we shall investigate the properties of the incremental algorithm de-

scribed above.

The following technical lemma will be useful. We shall use the angled-bracket nota-
tion (, ) for the inner product of vectors, and || || for the Euclidean norm:

(-’73, y) =TI Y + ZTaY2 + ... + Tpln;
Izl = (e, 2) = /(a2 + 23 + ...+ 22).

As in Section 10.1, ©, denotes the set of boolean functions defined on {0,1}" which
are realisable by a linear threshold unit with threshold 1. The function k, € O,

corresponding to the state a is given by

ha(y) = { 1, if{a,y) >1

0, otherwise.

Lemma 10.3.1 Given ¢t € O,,, there is a vector o' and a constant ¢, > 0 such that
ty) =0 = (a',y) <1 —c;
ty) =1 = (a',y) 2 1 +c.

(In geometrical terms, this says that the positive and negative examples of ¢ can be
separated by a strip of width 2¢,/||a*||. See Figure 10.1.)

(a,,y>= ]._Cr. ]. ]. +C,

+++

+++

Figure 10.1: Separation of positive and negative examples

Proof It follows from the definition of a threshold unit that there is a weight-vector
o® such that
ty)=1 < () > 1.

Since the set of negative examples X~ = {y | t(y) = 0} is finite, there is a constant
¢; > 0 such that

;Iéi_.)_((&%g) =1 - 2¢,.
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Let o' be defined by o = a°/(1 — ¢,). Then we have

1
tly) =1 = (o,y) = (@ y) > >1+¢
1—oc¢ — ¢
1 1—2¢c
t(y) =0 = (a',y) = °y) < -<1-
(y) (a y) 1_C¢<a ’y)— 1—C¢ — ct

O

The next theorem is a version of the Perceptron Convergence Theorem, originally
due to Rosenblatt (1959), and discussed at length by Minsky and Papert (1969). It
provides a bound on the number of times that the algorithm L, can be invoked, for a
given target function t € O,. As we shall see, its implications require careful analysis.

Theorem 10.3.2 Suppose we are given a training sample for ¢t € O,, and L, is
applied with initial weights all zero. Then, provided v is small enough, there is a
positive integer I = I(t,v) such that L, is invoked at most I times.

Proof Given t, choose o' and ¢, as in the lemma. Each time L, is invoked, the
weight-vector « is changed to a new value o' given by

o = a+nuy,

where 7 = t(y) — ho(y) is either +1 or —1. When 5 = +1 we have #(y) = 1 and
he(y) =0, that is
(a',y) > 1+ ¢ and (a,y) < 1.

Thus in the case n = +1, (&' — @,y) > ¢;. Similarly, when n = —1 we have t(y) =0
and h.(y) =1, that is
(a',y) <1—¢ and (a,y) > 1.

Thus in the case n = -1, (o — a',y) > ¢.

These two conclusions can be combined into one statement: for each invocation of
L,
b]

n{a' — a,y) > c,.
Now we can calculate the change in ||a* —«||? following an invocation of L,, as follows.
lo’ = | = lo* — = nuyl|?

= |lo' — a|® — 2pv(a’ — a,y) + 0*V°||y||
<ot = afl® + |ly||* - 2ve..



10.3 A Finiteness Result 129

Since y is an n-bit vector, ||y||* < n, and so, provided v < ¢,/n, the term »?||y||? is
not greater than ve,. In this case

le’ —o|* < fla* = af* - ve..

In other words, every time L, is invoked, the value of ||a* — «||*> decreases by at
least v¢,. Initially the value is ||@]|?, and it cannot become negative. Therefore the
number of invocations cannot exceed

1) = | ).

ve,

Example 10.3.3 Let n be odd, say n = 2r + 1. Define the target concept ¢ by

t(y) = 1, if y contains at least r + 1 ones;
Y)=10, otherwise.

(This is known as the majority concept.) It is easy to verify that ¢ is in ©,; in other
words, there is a weight-vector a such that ¢ = h,. In fact,

2
a = ;(1,1,...,1)
has the required property. Furthermore, all positive examples y* satisfy
2 1
> — )=1+4+=
(y™) 2 —(r+1) =1+,

and all negative examples y~ satisfy '

2 1
N =r=1—-=-.
(oy7) < =r ~
It follows that, in this case, we can take the quantities o' and ¢, guaranteed by
Lemma 10.3.1 to be o = a and ¢, = 1/n. Since ||&*||> = 4/n, the bound for the

number of invocations is I = [4/v], provided that v» < ¢,/n = 1/n?.

Thus, if we consider the efficiency of the algorithm as a function of n, then for this
specific concept the number of invocations is O(n?). O

The preceding theorem is essentially a result about the finiteness of the incremental
algorithm. It tells us that the algorithm will be invoked only finitely many times,
provided that the target function is representable. Without the theorem, it would
be conceivable that the algorithm could ‘cycle’, continuing to make changes forever.
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Indeed, this behaviour might occur if the target is not representable by a linear
threshold function, and it might also occur if the constant v is too large.

The proof of the theorem provides an upper bound on the number of invocations
required. This bound depends upon the inverse of the ‘gap’ 2¢,/||c!|| between the
positive and negative examples of the target concept, and need not be polynomial in
n (see Littlestone (1988) and Muroga (1971)). We have not, therefore, shown that
the incremental algorithm is efficient. But the conceptual simplicity of the Hebbian
approach, and the ease of implementation, make this an attractive algorithm in many
practical situations.

10.4 FINDING A CONSISTENT HYPOTHESIS
The finiteness theorem for ©,, shows that the incremental algorithm can be used to
find a hypothesis consistent with a given training sample

s = ((z1,b1), (z2,02)y . -« s (T bm)).

The idea is simply that we can repeatedly run through the examples until no changes
are made.

set o = the zero vector;
repeat
consistent:= true;
for i:=1 tom do
if b; # ho(z;) then
begin
consistent:= false;
seta = L,(a,x;,b;)
end
until consistent

Each time we run through the training sample there are two possibilities. It may be
that a change is made; on the other hand, if no change is made the current hypothesis
must agree with the entire training sample. If there is a hypothesis in ©,, consistent
with the training sample, then the procedure will terminate. This is because there
is a bound I on the number of changes that can be made, and so after at most I
repetitions no more changes are possible.

The running time of this algorithm for finding a consistent hypothesis in 0, is there-
fore proportional to mI. In specific cases we may be able to express this in a more
helpful way. For example, in the previous section we showed that, for the majority
concept, v can be chosen so that I is O(n?). It follows that in this case the running
time is O(mn?).
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10.5 FEEDFORWARD NEURAL NETWORKS

A perceptron contains only one ‘active unit’, and is consequently severely limited in
its capabilities. The idea that more complex assemblies of units may have greater
power is an old one, motivated by the fact that living brains seem to be constructed
in this way,.and it has led to the intensive study of ‘artificial neural networks’. In
the final sections of this book we shall examine such networks in the context of
Computational Learning Theory.

The basic structure is a pair of sets (N, A), where N is a finite set whose members are
called nodes, and A is a subset of N x N whose members are called arcs. The structure
(N, A) is a directed graph, or digraph, which we think of as a fixed architecture for a
‘machine’. For simplicity, we consider only digraphs which have no directed cycles:
that is, there is no sequence of arcs beginning with (r,s) and ending with (g,r), for
any node r. In the present context this is known as the feedforward condition.

In order to present this set-up as a ‘machine’, in the general sense described in
Chapter 1, we require some additional features (Figure 10.2). First we specify a
subset J of the nodes, which we call input. nodes, and a single node z ¢ J which
we call the output node. The underlying idea is that all nodes receive and transmit
signals; the input nodes receive their signals from the outside world and the output
node transmits a signal to the outside world, while all other nodes receive and transmit
along the relevant arcs of the digraph. Each arc (r,s) has a weight, w(r, s), which is
a real number representing the strength of the connection between the nodes r and
s. A positive weight corresponds to an ‘excitatory’ connection, a negative weight to
an ‘inhibitory’ connection. Another feature is that all nodes except the input nodes
are ‘active’, in that they transmit a signal which is a predetermined function of the
signals they receive. For this reason, the nodes in N\ J are called computation nodes.

Ox
O\ :

O~
O

Figure 10.2: A typical feedforward network
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To make this idea precise, we introduce an activation function f, for each computation
node r. The activity of such a node is specified in two stages. First the signals
arriving at r are aggregated by taking their weighted sum according to the connection
strengths on the arcs with terminal node r, and then the function f, of this value
is computed. Thus the action of the entire network may be described in terms of
two functions p: N — R and ¢: N — R, representing the received and transmitted
signals respectively. We assume that a vector of real-valued signals y = (y;)jes is
applied externally to the input nodes, and p(j) = ¢q(j) = y; for each j in J. For each
computation node [ the received and transmitted signals are defined as follows.

()= > q(i)w(il)

{ili.HeA}

q(1) = fi(p(1)).
The output is the value ¢(z) transmitted by the node z.

For our purposes it is sufficient to assume that every activation function is a simple
linear threshold function:

f(u)={1’ if u>0;

0, otherwise.

We shall write 6, to denote the value of the threshold for the node r. (It should be
noted that the discontinuous nature of the threshold functions causes some problems
if we wish to apply analytical techniques to these models. For example, the usual
derivation of the ‘backpropagation algorithm’ requires that the activation functions
be differentiable. However, it is possible that a similar algorithm could be obtained
by discrete methods.)

When all the computation nodes are linear threshold nodes, a state w of the machine
is described by the real numbers

w(r,s), (r,s)€A; 0, re N\J

The set of all states which satisfy some given rules (such as bounds on the values
of the weights and thresholds) will be denoted by 2. Now we are firmly within the
framework developed in the earlier chapters of this book. The function computed by
the machine in state w will be denoted by k,, so that h,(y) = ¢q(z). Note that this is
a boolean value, because the output node has a linear threshold activation function.
The set {h, | w € 2} of functions computable by the machine is the hypothesis space
H, and the assignment w + h,, is a representation } — H.

We can now look at some very simple examples.
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Example 10.5.1 The real perceptron P,, as described in Section 7.1, is obtained
by taking J = {a;,as,...,a,}, N = JU {2}, A = {(a1,2), (as,2),...,(as,2)}, and
letting

w(a,,2) = a;, w(az,z) =ay, ..., w(a,,z) =a,; 0, =4.

a

Example 10.5.2 We have already remarked that the perceptron with two input
nodes cannot compute the exclusive-or function; that is, there is no choice of a;, a,
and @ which represents the function

00—0,0l—1,10—1, 11— 0.
This is because a state implementing this function would have to satisfy the conditions
0<0, 0220, 0120, a1+a2<9,

which are inconsistent. However, it can be verified easily that the machine depicted
in Figure 10.3, with the weights and thresholds shown, does compute the function. O

|

0/1

Y>

Figure 10.3: A machine which computes the exclusive-or function

Proposition 10.1.1 shows that, in general, not more than 27" of the 22" boolean
functions are computable by the perceptron with n inputs. The preceding example
indicates that more complex architectures do extend the ‘power of expression’ of
the model, but the general picture is still far from clear. The old, but very useful,
book by Muroga (1971) contains an extensive discussion of ‘threshold logic’, based
on classical techniques of logic and combinatorics. In the next section we shall look
at the problem using the VC dimension.
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10.6 VC DIMENSION OF FEEDFORWARD NETWORKS

We shall prove a result of Baum and Haussler (1989), which gives an upper bound on
the VC dimension of a feedforward linear threshold network in terms of the number
of nodes and arcs.

Suppose that we have a feedforward network of linear threshold nodes, with underly-
ing digraph (N, A) and set of states ). The feedforward condition allows us to label
the computation nodes by the positive integers in their natural order, 1,2,...,z2, in
such a way that z is the output node and (z,j) € A implies j > ¢. (This may be done
by numbering first those computation nodes which are linked only to input nodes,
then those which are linked only to input nodes and already-numbered computation
nodes, and so on.)

For each state w € (), corresponding to an assignment of weights and thresholds to
all the arcs and computation nodes, we let w' denote the part of w determined by the

thresholds on computation nodes 1,2,...,/ and the weights on arcs which terminate
at those nodes. Then for 2 < | < z we have the decomposition
W' = (W', ¢)

where (; stands for the weights on arcs terminating at ! and the threshold at . In
isolation, the output of a computation node [/ is a linear threshold function, deter-
mined by (;, of the outputs of all those nodes j for which (7, 1) is an arc; some of these
may be input nodes and some may be computation nodes with j < . We denote the
space of such functions by H, and the growth function of this ‘local hypothesis space’
by II,.

Suppose that x = (z,, z,,...,2,) is a sample of inputs to the network. (Each example
z; is a |J|-vector of real numbers, where J is the set of input nodes.) For any
computation node ! (1 < I < z), we shall say that states w,,w, of the network are
[-distinguishable by x if the following holds. There is an example in x such that, when
this example is input, the output of at least one of the computation nodes 1,2,...,1,
is different when the state is w, from its output when the state is w,. In other words,
if one has access to the signals transmitted by nodes 1 to [ only, then, using the
sample X, one can differentiate between the two states. We shall denote by S;(x) the
number of different states which are mutually /-distinguishable by x.

Lemma 10.6.1 With the notation defined as above, we have
Si(x) < II(m) M (m) ... II(m), (1 <1<2).

Proof We prove the claim by induction on I. For I = 1 we have S)(x) < II,(x),
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because two states are 1-distinguishable if and only if they give different classifications
of the training sample at node 1. Thus S,(x) < II;(m).

Assume, inductively, that the claim holds for | = k — 1, where 2 < k£ < 2. The
decomposition w* = (w*~!, () shows that if two states are k-distinguishable but not
(k — 1)-distinguishable, then they must be distinguished by the action of the node k.
For each of the S;_,(x) (k — 1)-distinguishable states there are thus at most II;(m)
k-distinguishable states. Hence

Sy(x) < Su_y(x) I(m).

By the inductive assumption, the right-hand side is at most II,(m) II,(m). .. II,(m).
The result follows. O

Theorem 10.6.2 Let (N, A) be a feedforward linear threshold network, and let H
be the hypothesis space of (N, A) represented by some given set of states ). Then,
with II; as above,

My (m) < I, (m) Oy(m)...IL(m),

for any positive integer m.

Proof Suppose an m-sample x is given. If, for one of the examples in x, two
states give different outputs at the output node z then these states are certainly z-
distinguishable. Thus IIy(x) < S,(x). By Lemma 10.6.1, S,(x) < II;(m)...II,(m)
for all m-samples x, and so the result follows. O

Corollary 10.6.3 Let (N,A) be a feedforward linear threshold network with =2
computation nodes, and denote the total number of variable weights and thresholds
by W = |N \ J| + |A|. Let H be the hypothesis space of the network. Then for
m > W, we have

zem)w

(m) < ( 7

Proof Certainly, W > d(¢)+1 for 1 <i < z and so, for each such : and for m > W,

em d(i)+1
i(m) < (d(z')+ 1)

by Sauer’s Lemma and since the VC dimension of H; is d(z) + 1. It follows from
Theorem 10.6.1 that

em ) d(i)+1
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Now, if a; (1 < i < 2) are positive real numbers with 3;_, a; = 1 then (Exercise 6)

Zz: —a;Ine; <lnz.

i=1

Observing that W = ¥°;_, (d(5) + 1), and setting o; = (d(¢) + 1) /W, we obtain

3 d(il); Lin (d(z,l)”+ 1) <Inz.

i=1

Hence

;(d(z‘) +1)In (d(z_)1+ 1) <Wilnz - (; (d(3) + 1)) InW=Wlnz—WhW,

.ﬁ (d(i)1+ 1)"“’“ < (%) "

i=1

and so

from which the result follows. O

Theorem 10.6.4 The VC dimension of a feedforward linear threshold network with
z computation nodes and a total of W variable weights and thresholds is at most

2W lg (ez).

Proof Let H be the hypothesis space of the network. By the above result, we have,
form>W w
zem
I, (m) < (_) ,

H(m) i W

where W is the total number of weights and thresholds. Now,

(2ezW1g(ez)

w
W ) < 2Wl(e) s 2ezlg(ez) < (e2)? <= 2lg(ez) < ez,

which is true for any z > 1. Therefore, II5(m) < 2™ when m = 2W lg(ez), and the
VC dimension of H is at most 2W lg(ez), as claimed. ]

Notice that this bound on the VC dimension depends only on the ‘size’ of the network;
that is, on the number of computation nodes and the number of arcs. That it is
independent of the structure of the network — the underlying directed graph —
suggests that it may not be a very tight bound. Nonetheless, it is an attractively
simple one.

The following result is immediate from the above result and Corollary 8.4.2.
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Corollary 10.6.5 Let N be a feedforward linear threshold network having z com-
putation nodes and a total of W variable weights and thresholds. Suppose there is
some probability distribution on the set of inputs to the network, and let 0 < §,¢ < 1.
If a randomly drawn training sample of length at least

¢ wmcens(2) v (2)

is successfully ‘loaded’ onto the network then, with probability at least 1 — 8, the
network will compute a function which has error less than ¢; that is, it will correctly
classify with probability at least 1 — € a further randomly chosen input. O

We remark that if, as in Baum and Haussler (1989), we substitute the bound of Corol-
lary 10.6.2 directly into the result of Proposition 8.2.3 and use the by now familiar
techniques for obtaining a bound on sample length, then we can derive a better bound
— one which contains a lg (z/¢) term, rather than the product expression lg z1g (1/¢).
(See Exercise 7.) ‘

10.7 HARDNESS RESULTS FOR NEURAL NETWORKS

In Section 5.5 we showed that the consistency problem for a particular kind of ‘par-
allel’ machine is hard, in the NP-hard sense. The fact that similar results hold for
neural networks was first shown by Judd (1988), using rather complicated construc-
tions. In this section we shall prove a hardness result along the lines of one due to
Blum and Rivest (1988), which uses a construction of a linear threshold network very
similar to the parallel machine described in Section 5.5.

The machine is illustrated in Figure 10.4. There are n input nodes and k£ + 1 com-
putation nodes (k > 1). The first k computation nodes are ‘in parallel’ and each of
them is connected to all the input nodes. The last computation node is the output
node; it is connected by arcs with fixed weight 1 to the other computation nodes, and
it has fixed threshold k. The effect of this arrangement is that the output node acts
as a multiple AND gate for the outputs of the other computation nodes. We shall
refer to this machine (or its hypothesis space) as P~.

A state w of P is described by the thresholds 6, (1 < I < k) of the first k£ com-
putation nodes and the weights w(i,!) on the arcs (z,!) linking the input nodes to
the computation nodes. We shall use the notation a!" for the n-vector of weights on
the arcs terminating at I, so that o’ = w(3,1). The set Q2 of such states provides a
representation 8 — P¥ in the usual way.
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Figure 10.4: The network P}

We shall prove that the consistency problem for P* = (J P* is NP-hard (provided
k > 3) by a method very similar to that used in Section 5.5. Specifically, we shall
reduce the problem to the graph k-colouring problem. Let G be a graph with vertex-
set V ={1,2,...,n} and edge-set E. We construct a training sample s(G) as follows.
For each vertex ¢ € V we take as a negative example the vector v; which has 1 in the
ith coordinate position, and 0’s elsewhere. For each edge :j € E we take as a positive
example the vector v; + v;. We also take the zero vector 0 = 00...0 to be a positive
example.

Proposition 10.7.1 There is a function in P* which is consistent with s(G) if and
only if the graph G is k-colourable.

Proof Suppose h € PF is consistent with the training sample. By the construction
of the network, h is a conjunction

h=h1/\h2/\.../\hk

of linear threshold functions. Specifically, there are weight-vectors o), o, ..., o®)
and thresholds 6,,6,,..., 6, such that

h(y) =1 < (V)y) >0, (1 <I<LKk).
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Note that, since o is a positive example, we have
0=(a",0) > 6

foreachl=1,2,...,k.

For each vertex ¢, h(v;) = 0, and so there is at least one function h; (1 < f < k) for
which k;(v;) = 0. Thus we may define a function x : V — {1,2,...,k} as follows:

x(¢) = min{f | h;(v;) = 0}.

It remains to prove that x is a colouring of G. Suppose that x(z) = x(j) = f, so that
hs(vi) = hs(v;) = 0. In other words,

(a(f),'v,-) < 0f, (a('f),v_,-) < 0;.
Then, recalling that 6, < 0, we have
(a(f),'v,- + ’UJ-) < 0; + 0f S 0}.

It follows that h;(v; + v;) = 0 and h(v; + v;) = 0. Now if :j were an edge of G,
then we should have h(v; +v;) = 1, because we assumed that h is consistent with the
training sample. Thus ¢7 is not an edge of G, and x is a colouring, as claimed.

Conversely, suppose we are given a colouring x : V — {1,2,...,k}. For1 <1<k
define the weight-vector o as follows:

o — {—1, if x(2) =1,

1, otherwise;

and the threshold 6, to be —1/2. Let h,, h,, ..., h; be the corresponding linear thresh-
old functions, and let A be their conjunction.

We claim that h is consistent with s(G). Since 0 > 6, = —1/2 it follows that h;(0) =1
for each /, and so h(0) = 1. In order to evaluate h(v;), note that if (i) = f then

(@, n) = o) = -1 < —1/2,

) hf(v;) = 0 and h(v;) = 0, as required. Finally, for any colour ! and edge ¢j we
know that at least one of x(z) and x(7) is not I. Hence

(@, v; +v;) = &l + ",

where either both of the terms on the right-hand side are 1, or one is 1 and the other
is —1. In any case the sum exceeds the threshold —1/2, and h;(v; + v;) = 1. Thus
h(v; +v;) = 1. a
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The proof that the decision problem for consistency in P* is NP-hard for & > 3
follows directly from Proposition 10.7.1. If we are given an instance G of the graph
k-colouring problem, we can construct the training sample s(G) in polynomial time.
If the consistency problem could be solved by a polynomial time oracle, then we could
answer the graph k-colouring problem in polynomial time by the following procedure:
given G, construct s(G), and consult the oracle. The Proposition tells us that:the
answer given by the oracle is the same as the answer to the original question. But
the graph k-colouring problem is known to be NP-complete, and hence it follows that
the P*—~CONSISTENCY problem is NP-hard if k¥ > 3. (In fact, the same is true if
k = 2. This follows from work of Blum and Rivest (1988) — see Exercise 8.)

The work of Chapter 9 shows that if there were an efficient pac learning algorithm
for the graded space P* = |J P* then there should be a randomised algorithm which
in polynomial time finds a hypothesis consistent with a given training sample. Under
the RP # NP assumption, the preceeding discussion therefore proves that there is no
efficient pac learning algorithm for P* (k > 2).

Thus, fixing k, we have a very simple family of feedforward linear threshold net-
works, each consisting of £ + 1 computation nodes (one of which is ‘hard-wired’ and
acts simply as an AND gate) for which the problem of ‘loading’ a training sample
is computationally intractable. This is a rather pessimistic note on which to end
our discussion. However, it should be emphasised that the ‘non-learnability’ result
discussed above is a worst-case result and indicates that training neural networks
is hard in general. This does not mean that a particular learning problem cannot
be solved in practice. A number of fairly successful learning algorithms have been
devised and neural networks are finding an increasing number of useful applications
in fields as diverse as machine vision and financial prediction.

FURTHER REMARKS
Baum and Haussler (1989) have given examples of simple feedforward linear threshold
networks with W weights and thresholds for which the VC dimension is Q (W). The
result of Theorem 10.6.3 gives an upper bound of O (W In z). It is unknown whether
the factor In z is necessary.

Shawe-Taylor and Anthony (1991) have generalised the results of Section 10.6 to
feedforward linear threshold networks with more than one output node. This uses a
more general framework for pac learning, developed by Haussler (1989), in which the
pac learning of functions with values in some arbitrary finite set can be discussed. In
his paper, Haussler extends in a number of interesting ways the basic pac learning
model and obtains results for feedforward neural networks in which the activation
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functions are other than simple linear threshold functions.

EXERCISES
1. Show that |BP;| = 104.

2. Using the fact that for m > d > 1, &(d, m) < m¢, prove that [BP,| < 2***". (This
method is easier than that presented in Proposition 10.1.1, but produces a weaker

bound.)

3. Prove that |BP,| > 2™+,
[Hint: Use Proposition 7.3.3.]

4. Prove that |BP,| > 2"»~1/2, (This is a result of Muroga; see Muroga (1971).)
Note that this result shows In|BP,| # O (VCdim(BP,)): refer back to Section 9.4 to

see the significance of this.

5. We may define a slight modification of the majority concept as follows. Let
n = 2r + 1 and take v = 11...1000...0 to be the vector with r ones followed by
r + 1 zeros. Define

uly) = 1, if y has at least » + 1 ones, or y = v;
¥Y)=10, otherwise.

Verify that u is in ©,, with

1
a® = 7 _ 3(?n+2,v,2n+%,?n _2,7,2.’2 _%),
r r+l

and ¢, = 2/(n? — 3). Deduce that, for this concept and for an appropriate choice of
v, the number of invocations of the perceptron learning algorithm L, is O(n?).

6. The function f(z) = zlnz (z > 0) is convex on the positive real numbers; that is,
given z,y > 0and 0 < A <1, we have

fAz+ (1 =Ay) = Af(z)+ (1= N)f(y)

Use this to prove that for a positive integer z,if o >0 (1 <i<2)and ¥, o; =1,
then ,
—Za,- Ine; <Inz.

i=1

7. As suggested in Section 10.6, use Corollary 10.6.2 and Proposition 8.2.3 to prove
that if L is any consistent learning algorithm for a feedforward linear threshold net-
work (N, A) having z computation nodes and W variable weights and thresholds,
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ma (109 < [ (W16 () +16 (5))]

where H denotes the hypothesis space of the network. Compare this with the bound
obtained via the less direct route of Section 10.6.

then

8. For a positive integer n, let P? be as defined in Section 10.7, and let P? = |J P2.
Following an argument similar to that given in Section 10.7, prove that the NP-
complete SET SPLITTING problem, described in Exercise 7 of Chapter 5, reduces
to the P2—CONSISTENCY problem. Deduce that the consistency problem for P?
is NP-hard. Thus, unless RP = NP, there is no efficient pac learning algorithm for
P?. (This is, essentially, the result of Blum and Rivest (1988), and the details can be
found in their paper.)
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greedy learning algorithm 64, 70
learning algorithm 33-34, 35, 36,
37
number of 32, 37
Occam algorithm 64, 70
dimension-based Occam algorithm 117,
118
directed graph 131
disjunction 13
disjunctions of small monomials 14, 31,
54, 69
learning algorithm 14, 15, 18, 55
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optimality 114
running time 40, 43
number of 14, 17
VC dimension 114
disjunctive normal form (DNF) 13, 67,
70
existence of 17
distinguishable states of network 134
distribution 20
uniform 21, 53, 87, 96
DNF space 67, 70, 112
doubly-graded space
boolean 65
general 120

e-bad hypothesis 29
edge-set 45
effective hypothesis space 118
efficiency with respect to
accuracy 51, 52, 53-54, 61, 65, 66,
108, 119, 120
confidence 51, 52, 61, 65, 66, 68,
108, 119, 120
example size 41-43, 51, 52, 54-55,
65, 66, 108, 111, 120
representation size 61, 65, 66, 115,
119, 120
as generalisation of pac 117
as restriction of pac 116-117
efficient algorithm 38-39
efficient prediction 48, 67
efficiently pac, see epac
elementary function 13
quadrant 106
encoding 5
enumeration
of countable hypothesis space 6
learning by 6, 8, 31, 33, 43
epac learning 65, 120, 122
as generalisation of pac 67, 121
as restriction of pac 66, 121
of decision lists 66
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of monomials 66

robustness 69

using Occam algorithm 65, 120-121
epac prediction 68
equivalence query 7
error

during training 26, 27

of a hypothesis 20, 21

set 21

measurability of 35

Euclidean norm 127
event 20
exact learning 24-26
example 1, 2

negative 2

positive 2

presentation of 2

size of boolean 40

size of real 105
example space 2
exception lists 121
exclusive-or function 18, 124, 133
excitatory connection 131
existence problem 44

and search problem 44
expressive power 71, 74, 123, 133
extension

of potential learnability 36, 103

of O-notation 102

of training sample 4

feedforward neural network 131
hypothesis space of 132
VC dimension of 134-136, 140
with multiple outputs 140
finite example space
and exact learning 24-25
and VC dimension 83
finite hypothesis space
is potentially learnable 30
upper bound on VC dimension 76
formula

boolean 13, 15, 16, 68

for monomials 9
framework for learning 1, 3
functional model 26

generalisation 4
generalised
Occam algorithm 121
sample complexity bounds 101
graded by example size 40, 105
learning algorithm 40, 106
graded by representation size 59, 105
graph 45, 49
colouring 45, 138
GRAPH k-COLOURING 47
greedy algorithm
for learning decision lists 64, 70
is epac 66
is Occam 64
for learning monomials 17, 63, 70
is epac 66
is Occam 64
for MINIMUM COVER 61-62
performance ratio 62, 64
group action 89, 90, 91
growth function 73
and VC dimension 74, 79
of boolean perceptron 123
of feedforward threshold network 135
of interval space 84
of ray space 73
of real perceptron 84

H-CONSISTENCY 44

half-line 17

half-space 77

hardness of
consistency problem 44-48, 49, 50,

54, 140, 142

finding simplest box union 117, 120
pac learning 54-55, 68, 140, 142
SHORTEST MONOMIAL 57-59
training a neural network 137-140



hyperplane 77
hypothesis 3
output 5
hypothesis space 3
effective 118
graded by example size 40, 105
graded by representation size 59,
115
local 134
non-trivial 100

incremental algorithm 125
inductive bias 7
inductive inference 7
infinite VC dimension 74, 88
inhibitory connection 131
inner product 127
input
compression of 56, 57, 60
node 131
size 38
to algorithm 38
to machine 3, 10
interval 27, 106
learning algorithm 28
r-fold unions of 115
learning algorithm 115-116
VC dimension 116, 122
interval union space 88, 100, 117, 120
VC dimension infinite 88
invocations of incremental algorithm 126
number of 128-130, 141

labelled example 3

learning algorithm 4
for doubly-graded space 65, 120
for graded space 40, 106

learning by construction 5, 6, 17

learning by enumeration 6, 8, 31, 33, 43

length of sample 3

linear programming 124, 125
algorithms 125
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LINEAR THRESHOLD CONSISTENCY
124, 125

linear threshold machine 16, 71, 123
representation of 16

linearly ordered space 85, 104

linearly separable 73

literal 9

loading a sample 137, 140

local hypothesis space 134

M, 14
machine 1
for CF 44
for monomials 9, 10, 12, 17
linear threshold 16, 71
parallel 137
state of 1, 3,9, 10, 12, 15, 16, 17,
55, 132, 137
machine learning 7
majority concept 129, 130
modification 141
malicious errors 27
measurability 35, 89
membership query 7
memoryless on-line algorithm 6, 11, 19,
26, 64, 122, 126
running time 41
MINIMUM COVER 57
and SUBCOVER 58, 70
and SHORTEST MONOMIAL 58,
70
greedy algorithm for 61, 120
misclassification error 26
mistake-bounded learning 26
monomials 9
formula 9
greedy learning algorithm 17, 63,
70
machine 9, 10, 12, 17
monotone 85
VC dimension of 85

number of 12
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Occam algorithm 63-64
representation of 16
smallest consistent 57-59
standard learning algorithm 11, 12,
17, 25, 48
18 consistent 12
is optimal 114
running time 40, 43
sample complexity 31, 114
VC dimension 76
monotone monomial 85 .
multiple AND unit 10, 44, 137

near-consistent algorithm 36, 103
n-dimensional box union space 115

representation of 115
n-dimensional quadrant space 106
neural network 131
negative example 2
node 131
non-negative quadrant 105
non-trivial hypothesis space 100
non-uniform pac learning 27, 67
normal form 13

conjunctive 13

disjunctive 13, 17, 67, 70
notation

and terminology 8

for boolean functions 13-14
NP-complete 39
NP-hard 39

consistency problem 44-48, 50, 54,

140, 142
pac learning problem 54-55

O-notation 38-39
for real functions 102

observed error 86
Occam algorithm 60, 117, 118

comparison of boolean and dimension-

based 119-120
dimension-based 117, 118
for decision lists 64, 70

for doubly graded space 65, 120
and epac learning 66-67, 120-121
for monomials 63-64
for n-dimensional box unions 120
generalised 121
running time of 61, 119
sample complexity 60, 65, 118, 121
-notation 102
optimal sample complexity 113
disjunctions of small monomials 114
monomials 114
oracle 26, 47, 48
oracle model 26
output hypothesis 5
size of 56, 60
output node 131

P # NP conjecture 39
PF 137
P¥—CONSISTENCY 140
consistency problem 138-140
P2—CONSISTENCY 142
pac learning
algorithm 22, 23-24
and potential learnability 30
and the consistency problem 52-54,
110
and VC dimension 94-100
impossible if infinite 99
hardness of 54-55, 68, 140
of functions 140
palindrome 2, 4, 8, 17, 49
parallel machine 131
parity 2, 5, 17, 49
pattern recognition 7
perceptron
boolean 123
VC dimension of 123
cardinality of space 123, 141
convergence theorem 128
incremental algorithm 126
finiteness of 128, 129



learning algorithm 126
real 71, 72-73, 133
geometrical interpretation 72, 77,
105
growth function 84
representation of 72
graded space 105
VC dimension 75-76, 77-79, 84
polygonal region 77, 100, 103
polynomial representation size 66, 67,
70
polynomial time algorithm 39
polynomial time learning algorithm 42
polynomially evaluable 49
positive example 2
potential learnability 29-30
and VC dimension 87-93
extension to near-consistency 36, 103
implies consistent algorithm pac 30
of finite space 30
prediction 48
efficient 48, 67
epac 68
pre-processor 1
probability
distribution 20
on finite set 24
on product set 21-22
uniform 21, 53, 87, 96
measure 20
of an event 20
of training sample 22
space 20
probably approximately correct 22
probably exactly correct 25
monomial algorithm 25
product
probability distribution 21-22
set 21

query
equivalence 7
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membership 7
quadrant 105
n-dimensional 106
non-negative 105
space 106
learning algorithm 106-107, 109,
110, 122
VC dimension 109-110

Radon’s theorem 78
random number generator 52
random sample 22
randomised algorithm 52, 69
for consistency problem 53-54, 110,
112, 140
running time of 53, 110
usefulness of 53
rays 17, 19, 73, 106
growth function 73
learning algorithm 19, 20, 27, 106
is pac 23-24
sample complexity 24, 27, 96
potential learnability of 36
representation of 17
VC dimension 74, 85
real alphabet 2
real perceptron, see perceptron, real
representation 16, 17, 18
polynomially evaluable 49
size
of boolean hypotheses 55-56
of real hypotheses 105
polynomial 66, 67, 70
representation-dependent hardness 55
representation-independent hardness 68
restriction
on hypothesis space 6, 7, 35, 89
of hypotheses 73
ring-sum expansions 49
RP (random polynomial time) 54
RP # NP conjecture 54

running time
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of algorithm 38
for long-multiplication 39
of learning algorithm 40-41, 51-52,
108
and sample complexity 42
of Occam algorithm 61, 119

sample 3
length 3
sample complexity 41-42
and potential learnability 42
lower bound
consistent algorithms 96-97
general 97-99, 100-101, 101, 102
of consistent learning algorithm 42,
52, 94-95, 96-97
of Occam algorithm 60, 65, 118, 121
optimal 113, 113-114
upper bound 42, 52, 94-95, 96, 101,
102
tightness of 102
of learning algorithm for finite space
42, 94
SATISFIABILITY 39
Sauer’s Lemma 79-81, 83, 89, 95, 104,
123
tightness of 84
SET SPLITTING 50, 142
search problem 44
and existence problem 44
randomised algorithm for 52
SHORTEST MONOMIAL 58
and MINIMUM COVER 59, 70
hardness of 57-59
shattered sample 74
simplex algorithm 125
size
of example 40, 105
of input to algorithm 38
of output hypothesis 56, 60
of representation
boolean concepts 55-57

real concepts 105
smallest consistent monomial 57-59
state 1, 3, 9, 10, 12, 15, 16, 17, 55, 72,
77,79, 126, 127, 132, 137
subcover 57, 61
SUBCOVER 57, 70
supervised learning 7
swapping group 91
symmetric boolean function 103
learning algorithm 104
representation of 104
VC dimension 104

target concept 4

testing sample 89, 94

threshold 71, 124, 132

threshold logic 133

training 3-5

training sample 3
determined by sample 22
representative 4, 5
unrepresentative or misleading 4, 5,

23
truth table 13

uncountable example space 20
uniform distribution 21, 53, 87, 96

unit ball 2
universally separable space 35

variants
of learning from examples 7
of mistake-bounded learning 26
of pac model
dependence on distribution 27
dependence on target 27
fixed confidence 68
learning functions 140
weak learning 68-69
of standard learning framework 26
vertex 45
VC (Vapnik-Chervonenkis) dimension
71, 74
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general spaces 108-111
boolean spaces 111-113
and potential learnability 87-93
and sample complexity 94-96
of boolean perceptron 123
of box space 110, 122
of box unions 122
of complement of a space 85
of disjunctions of small monomials
114
of feedforward neural networks 134-
136, 140
of finite hypothesis space 76
of interval space 84
of interval union space 88
of monomials 76
of monotone monomials 85
of quadrants 109-110
of rays 74
of real perceptron 75-76, 77-79, 84
of r-fold interval unions 116, 122
of symmetric functions
polynomial for efficiency 110
when example space finite 83

weak learning 68-69
weighted sum 16, 71
weight-vector 124

weights 71, 124, 131

worst-case running time 38, 40

xor function 18, 124, 133
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