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Preface

The purpose of this book is twofold: First, we present elementary math-
ematical background to help the student of linguistics formulate gener-
alizations concerning the structure of languages, most particularly syn-
tactic and semantic structure. This is a goal we fully share with Partee
et al. (1990), a book with similar goals to our own. And to stress a basic
point: the background mathematical work we present is well known and
well understood. The primary loci of this material is in Chapters 2, 3,
6, 7 and 9. But the linguistic phenomena we study are much less well
understood—they are what we are trying to understand. A major step
in understanding is formulating what we are trying to understand in
terms of things we already understand, hence the drive towards mathe-
matical formulation. This enables us to notice and formulate linguistic
regularities in a clear and precise way, enabling us to study, correct,
test and generalize them. So this is the core answer to a question we’re
frequently asked “Why study language mathematically?”.

Our second purpose follows upon the first but is considerably more
speculative. Namely, once our mathematical description of linguistic
phenomena is sufficiently developed, we can not only model properties
of natural language, we can study our models to derive properties and
generalizations that were largely unthought of in the absence of a way
to say them. Sometimes these generalizations are quite simple: “Lexi-
cal NPs (proper nouns) denote monotone increasing functions”. Others
are deeper: “Lexical NP denotations are complete boolean generators
for the full set of possible NP denotations”. Chapters 5, 8, 10, and
11 here focus on such generalizations. Formulating them is exciting:
looking at our world through mathematical lenses enables us to see
vistas heretofore unsuspected. But of course, no sooner are new gener-
alizations formulated than new empirical work challenges them, forcing
refinements and extensions, so the half-life of a new generalization is
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x / Mathematical Structures in Language

relatively short. But this is the result of a healthy feedback relation
between theory and observation.

We invite you to criticize our proposed generalizations and welcome
you to Linguistics!

Helpful Hints on How to Read this Book Chapter 1 just intro-
duces the reader to iterative processes in natural language. Learning a
few good examples plus the form of argument that the set of expres-
sions of English is infinite is all that is needed from this chapter. The
material in Chapter 2 is used throughout the book, but it is standard,
and readers with some mathematics background should read it quickly.
Chapters 3 and 4 illustrate some basic syntactic formalization, broadly
presupposed in Chapter 5. Chapter 5 itself, especially the second half, is
a bit advanced for an introductory work and might be omitted on first
reading. The chapter on formal language theory is largely self contained
(though it uses the earlier formal work from Chapter 2). Chapters 7
through 11 are all semantic with each presupposing the previous ones,
though Chapter 9 is relatively self-contained. Chapters 10 and 11 have
fewer exercises than the others and focus more on empirical generaliza-
tions we can make using the mathematical notions we have developed.

Words of Thanks We thank our classes over the years for helping
us to develop the material. Both authors would like to thank Uwe
Moennich, Richard Oehrle, and Jeff Heinz for comments on a much
earlier version of this manuscript. As well we both owe a debt to Nico-
las LaCasse not only for the fine LaTeX presentation, but for several
reorganizational changes that improved the clarity of presentation. In
addition, Edward Keenan would like especially to thank his wife Carol
Archie for having made it all possible and suffering through endless
weekends of an apparently endless effort. She still thinks we should
call the book Sex, Lies and Language. Larry Moss thanks Hans-Joerg
Tiede for teaching a version of the material many years ago and for
many discussions over the years about pedagogic issues in the area. He
also thanks Madi Hirschland for her unfailing love and support, and
for continuing to remind him that as beautiful as language and math-
ematics are, there are many other aspects of the world that need to be
understood and even changed.
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The Roots of Infinity

We begin our study with a fundamental query of modern Linguistics:

(1) How do speakers of a natural language produce and understand
novel expressions?

Natural languages are ones like English, Japanese, Swahili, . . . which
human beings grow up speaking naturally as their normal means of
communication. There are about 5,500 such languages currently spo-
ken in the world1. Natural languages contrast with artificial languages
consciously created for special purposes. These include programming
languages such as Lisp, C++ and Prolog and mathematical languages
such as Sentential Logic and Elementary Arithmetic studied in math-
ematical logic. The study of natural language syntax and semantics
has benefited much from the study of these much simpler and better
understood artificial languages.

The crucial phrase in (1) is novel. An ordinary speaker is competent
to produce and understand arbitrarily many expressions he or she has
never specifically heard before and so certainly has never explicitly
learned. This chapter is devoted to supporting this claim, introducing
some descriptive mathematical notions and notations as needed.

In the next chapter we initiate the study of the linguists’ response
to the fundamental query: namely, that speakers have internalized a
grammar for their language. That grammar consists of a set of lexical
items – meaningful words and morphemes – and some rules which
allow us to combine lexical items to form arbitrarily many complex
expressions whose semantic interpretation is determined by that of the
expressions they are formed from. We produce, recognize and interpret
novel expressions by using our internalized grammar to recognize how

1This figure is “rough” for both empirical and conceptual reasons. For example,
how different may two speech varieties be and still count as dialects of the same
language as opposed to different languages?

1



2 / Mathematical Structures in Language

the expressions are constructed, and how expressions constructed in
that way take their meaning as a function of the meanings of what
they are constructed from – ultimately the lexical items they are built
from. This last feature is known as Compositionality.

In designing grammars of this sort for natural languages we are
pulled by several partially antagonistic forces: Empirical Adequacy
(Completeness, Soundness, Interpretability) on the one hand, and Uni-
versality on the other. Regarding the former, for each natural language
L the grammar we design for L must be complete: it generates all the
expressions native speakers judge grammatical; it must be sound: it
only generates expressions judged grammatical, and it must be inter-
pretable: the lexical items and derived expressions must be semantically
interpreted. Even in this chapter we see cases where different ways of
constructing the same expression may lead to different ways of semanti-
cally interpreting it. Finally, linguists feel strongly that the structure of
our languages reflects the structure of our minds, and in consequence,
at some deep level, grammars of different languages should share many
structural properties. Thus in designing a grammar for one language
we are influenced by work that linguists do with other languages and
we try to design our (partial) grammars so that they are similar (they
cannot of course be identical, since English, Japanese, Swahili, . . . are
not identical).

1.1 The Roots of Infinity in Natural Language

Here we exhibit a variety of types of expression in English which
support the conclusion that competent speakers of English can pro-
duce, recognize and understand unboundedly many expressions. What
is meant by unboundedly many or arbitrarily many? In the present
context we mean simply infinitely many in the mathematical sense.
Consider for example the set N of natural numbers, that set whose
members (elements) are the familiar 0, 1, 2, . . .. Clearly N has in-
finitely many members, as they “continue forever, without end”. A less
poetic way to say that is: a set L is infinite if and only if for each natu-
ral number k, L has more than k members. By this informal but usable
definition we can reason that N is infinite: no matter what number k
we pick, the numbers 0, 1,. . . , k constitute more than k elements of N;
in fact precisely k + 1 elements. So for any k, N has more than k ele-
ments. This proves that N is an infinite set according to our definition
of infinite.

Jargon In mathematical discourse if and only if, usually abbreviated
iff, combines two sentences to form a third. P iff Q means that P and
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Q always have the same truth value: in an arbitrary situation s they
are both true in s or both false in s. iff is often used in definitions, as
there the term we are defining occurs in the sentence on the left of iff
and the sentence we use to define that term occurs on the right, and
the purpose of the definition is to say that whenever we use the word
being defined, we may replace it by the definition which follows.

When are sets the same? In what follows we shall often be inter-
ested in defining sets—for example, sets of English expressions with
various properties. So it will be important to know when two appar-
ently different definitions define the same set. We say that sets X and
Y are the same iff they have the same members2. For example, let X
be the set whose members are the numbers 1, 2, 3, and 4. And let Y be
the set whose members are the positive integers less than 5. Clearly X
and Y have the same members and so are the same set. To say that X
and Y are the same set we write X = Y read as “X equals Y ”. And
to say that X and Y are different sets we write X 6= Y , read as “X
does not equal Y ”. Observe that X 6= Y iff one of the sets X,Y has a
member the other doesn’t have. Were this condition to fail then X and
Y would have the same members and thus be the same set (X = Y ).

On sets and their sizes. The number of elements in a set X is noted
|X| and is called the cardinality of X. We first consider finite sets. A
set X is finite iff for some natural number k, X has exactly k elements.
That is, |X| = k. This definition is in practice useful and easy to apply.
For example, the set whose elements are just the letters a, b, and c is
finite, as it has exactly three elements. This set is usually noted {a, b, c},
where we list the names of the elements separated by commas, with the
whole list enclosed in curly brackets (not angled brackets, not round
brackets or parentheses). To say that an object x is a member (element)
of a set A we write x ∈ A, using a stylized Greek epsilon to denote the
membership relation. For example, 3 ∈ {1, 3, 5, 7}. To say that x is not
a member of A we write x /∈ A. For example, 2 /∈ {1, 3, 5, 7}.

One finite set of special interest is the empty set, also called the null
set, and noted ∅. It is that set with no members. Note that there could
not be two different empty sets, for then one would have to have a
member that the other didn’t, so it would have a member and thus not
be empty.

We have already mentioned that the set N of natural numbers is
infinite. Sometimes we refer to it with a pseudolist such as {0, 1, 2, . . .}

2In fact this criterion for identity of sets is one of the axioms (the Axiom of

Extensionality) of Set Theory. It reads: For all sets A,B A = B iff for all x, x ∈ A
iff x ∈ B.
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where the three dots means simply that “the reader knows how to
continue the list”. This is a useful notation when in fact we know how
to continue the list. But it does not count as a definition since there
are many ways the initial explicitly given segment of the list, namely
0, 1, 2, could be continued. Here we take it that in practice the reader
has a working familiarity of the natural numbers. For example 2 ∈ N,
but 1

2 /∈ N.
We demonstrate shortly that English has infinitely many expres-

sions. To show this we consider three ways of showing that a set A is
infinite. The first we have already seen: show that for every natural
number k, A has more than k elements. This is how we convinced our-
selves (if we needed convincing) that the set N of natural numbers was
infinite. A second way uses the very useful subset relation, defined as
follows:

Definition 1.1. A set A is a subset of a set B, noted A ⊆ B, iff every
element of A is also an element of B. More formally, A ⊆ B iff for all
objects x, if x ∈ A then x ∈ B.

When A ⊆ B, it is possible that A = B, for then every element of
A is, trivially, an element of B. But it is also possible that B has some
element(s) not in A, in which case we say that A is a proper subset of
B, noted A ⊂ B. Note too, that if A is not a subset of B, noted A * B,
then there is some x ∈ A which is not in B.

And we can now give our second “infinity test” as follows: a set B
is infinite if it has a subset A which is infinite. The reasoning behind
this plausible claim is as follows. If A ⊆ B and A is infinite then for
each natural number k, A has more than k elements. But each of those
elements are also in B, so for any k, B has more than k elements and
is thus infinite.

A last, and the most useful infinity test, is to show that a set B is
infinite by showing that it has the same cardinality as a set (such as N)
which is already known to be infinite. The idea of sameness of cardinal-
ity is fundamental, and does not depend on any pretheoretical notion
of natural number. We say that sets A and B have the same number
of elements (the same cardinality) iff if we can match the elements of
one with the elements of the other in such a way that distinct elements
of one are always matched with distinct elements of the other, and no
elements in either set are left unmatched. The matching in (2) shows
that A = {1, 2, 3} and B = {a, b, c} have the same number of elements.
The matching illustrated is one to one with nothing left over:
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(2) A B

1

**UUUUUUUUUUUUUUUUUUU a

2 // b

c

44iiiiiiiiiiiiiiiiiii 3

Other matchings, such as 1 with b, 2 with c and 3 with a, would have
worked just as well. A more interesting illustration is the matching given
in (3), which shows that the set EVEN, whose elements are just 0, 2, 4,
. . ., is infinite. To give the matching explicitly we must say what even
number an arbitrary natural number n is matched with.

(3) N 0 1 2 · · · n · · ·
l l l l

EVEN 0 2 4 · · · 2n · · ·
So each natural number n is matched with the even number 2n.

And distinct n’s get matched with distinct even numbers, since if n is
different from m, noted n 6= m, then 2n 6= 2m. And clearly no element
in either set is left unmatched. Thus EVEN has the same size as N and
so is infinite.

Exercise 1.1. This exercise is about infinite sets.

a. Show by direct argument that EVEN is infinite. (That is, show
that for arbitrary k, EVEN has more than k elements).

b. Let ODD be the set whose elements are 1, 3, 5, . . ..

a. Show directly that ODD is infinite.
b. Show by matching that ODD is infinite.

We turn now to an inventory of types of expression in English whose
formation shows that English has infinite subsets of expressions.

Iterated words There are a few cases in which we can build an in-
finite set of expressions by starting with some fixed expression and
forming later ones by repeating a word in the immediately previous
one. GP below is one such set; its expressions are matched with N
showing that it is an infinite set.

(4) N GP
0 my grandparents
1 my great grandparents
2 my great great grandparents
· · · · · ·
n my (great)n grandparents
· · · · · ·
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In line n, (great)n on the right denotes the result of writing down
the word great n times in a row. Thus great1 = great, great2 = great
great, etc.

When n = 0 we haven’t written anything at all: so my (great)0

grandparents is simply my grandparents. We often leave spaces between
words when writing sequences of words from a known language (such
as English). We usually do not do this when concatenating random
sequences of letters: (aab)3 = aabaabaab.

One sees immediately from the matching in (4) that the set GP is
infinite. Hence the set of English expressions itself is infinite since it has
an infinite subset. Moreover the expressions in GP all have the same
category, traditionally called Noun Phrase and abbreviated NP. So we
can say that PH(NP), the set of phrases of category NP in English is
infinite.

Note too that each expression in GP is meaningful in a reasonable
way. Roughly,my grandparents denotes a set of four people, the (biolog-
ical) parents of my parents. my great grandparents denotes the parents
of my grandparents, an 8 element set; my great great grandparents de-
notes the parents of my great grandparents, a 16 element set, and in
general the denotation of my (great)n+1 grandparents denotes the par-
ents of my (great)n grandparents. (For each n ∈ N, how many (great)n

grandparents do I have3?).
We turn in a moment to more structured cases of iteration which

lead to infinite subsets of English. But first let us countenance one rea-
sonable objection to our claim that my (great)n grandparents is always
a grammatical expression of English. Surely normal speakers of English
would find it hard to to interpret such expressions for large n, even say
n = 100, so can we not find some largest n, say n = 1, 000, 000, beyond
which my (great)n grandparents is ungrammatical English?

Our first response is a practical one. We want to state which se-
quences of English words are grammatical expressions of English. To
this end we study sequences that are grammatical and ones that aren’t
and try to find regularities which enable us to predict when a novel se-
quence is grammatical. If there were only 25 grammatical expressions
in English, or even several hundred, we could just list them all and be
done with it. The grammaticality of a test expression would be decided
by checking whether it is in the list or not. But if there are billions in
the list that is too many for a speaker to have learned by heart. So we
still seek to know on what basis the speaker decides whether to say Yes
or No to a test expression. In practice, then, characterizing membership

3This is a tricky question.
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in large finite sets draws on the same techniques used for infinite sets.
In both cases we are looking for small descriptions of big sets.

Our task as linguists is similar to designing chess playing algorithms.
Given some rules limiting repetitions of moves, the number of possible
chess games is finite. Nonetheless we treat chess as a game in which pos-
sible sequences of moves are determined by rule, not just membership
in some massive list.

The second response is that even for large n, speakers are reluctant
to give a cut off point: n = 7?, 17?, 1017 ? In fact we seem competent
to judge that large numbers of repetitions of great are grammatical,
and we can compute the denotation of the derived expression, though
we might have to write it down and study it to do so. It is then like
multiplying two ten digit numbers: too hard to do in our head but the
calculation still follows the ordinary rules of multiplication. It seems
reasonable then to say that English has some expressions which are
too long or too complicated to be usable in practice (in performance as
linguists say), but they are nonetheless built and interpreted according
to the rules that work for simple expressions.

We might add to these responses the observation that treating cer-
tain sets as infinite is often a helpful simplifying assumption. It enables
us to concentrate on the simple cases, already hard enough! We return
now to the roots of infinity.

Postnominal Possessives Syntactically the mechanism by which we
build the infinite set GP above is as trivial as one can imagine: arbitrary
repetition of a single word, great. But English presents structurally less
trivial ways of achieving similar semantic effects with the use of relation
denoting nouns, such asmother, sister, friend, etc. Here is one such case,
with the matching defined more succinctly than before:

(5) For each natural number n, let M(n) be the result of writing
down the sequence the mother of n times followed by the
President. That is, M(n) = (the mother of)nthe President.

Clearly M matches distinct numbers n and n′ with different English
expressions since M(n) and M(n′) differ with regard to how many
times the word mother occurs: inM(n) it occurs n times, andM(n′) it
occurs n′ times. Clearly then the set whose elements are M(0), M(1),
. . . is an infinite set of English NPs .

Moreover, what holds syntactically holds semantically: when n 6= n′,
M(n) and M(n′) denote different objects. Think of the people M(n)
arranged in a sequence M(0), M(1), M(2), . . . = the President, the
mother of the President, the mother of the mother of the President, . . ..
Now think of the sequence of denotations y0, y1, . . ., they determine.
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the President denotes some individual y0, and each later expression,
(the mother of)k the President, denotes an individual yk who is the
mother of the immediately preceding individual yk−1 . Since no one
can be their own (biological) mother, grandmother, greatgrandmother,
etc., all these individuals yi are different. So yn, the denotation of (the
mother of)n the President, is different from yn′ , the denotation of (the
mother of)n

′

the President.

Exercise 1.2.

a. Exhibit the matching in (5) using the format in (4).

b. Like great above, very can be repeated arbitrarily many times in
expressions like He is tall, He is very tall, He is very very tall,. . ..
Define a matching using any of the formats so far presented which
shows that the number of expressions built from very in this way
is infinite.

Observe that the matching function M introduced in (5) has in ef-
fect imposed some structure on the expressions it enumerates. For any
n > 0,M(n) is an expression which consists of two parts, (constituents),
namely the mother of, written n times, and the President. And the left-
most constituent itself consists of n identical constituents, the mother
of. We exhibit this structure for M(1) and M(2) below. (6c) is a tree
representation of the constituent structure of M(2).

(6) a. M(1): [the mother of][the President]
b. M(2): [(the mother of)(the mother of)][the President]
c.

the mother of the mother of
the President

Now M(1) is not a constituent of M(2). Therefore given Composi-
tionality, the meaning ofM(1) is not part of the meaning ofM(2). This
seems slightly surprising, as one feels that M(2) denotes the mother of
the individual denoted by M(1). For example, if Martha is the mother
of the President then M(2) denotes the same as the mother of Martha.
So let us exhibit a different, recursive, way of enumerating the expres-
sions in (5) in which M(1) is a constituent of M(2).

(7) For each n ∈ N, F (n) is a sequence of English words defined by:

a. F (0) = the President,
b. For every n ∈ N, F (n+ 1) = the mother of F (n).
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(Note that F succeeds in associating an expression with each number
since any number k is either 0 or the result of adding 1 to the previous
number). Observe too that M and F associate the sequence of English
words with same number (try some examples!). So, for each n, F (n) =
M(n). But F and M effect this association in different ways, ones
which will be reflected in the semantic interpretation of the expressions.
Compare F (2) withM(2). F (2) has two constituents: the mother of and
F (1), the latter also having two constituents, the mother of and the
President. (8) exhibits the constituent structure imposed by F in F (1)
and F (2). The gross constituent structure for F (2) is given by the tree
in (8c).

(8) a. F (1): [the mother of][the President]
b. F (2): [(the mother of)[(the mother of)(the President)]
c.

the mother of

the mother of the President

On the analysis imposed by F , F (1) is a constituent of F (2), and in
general F (n) is a constituent of F (n + 1). So F (n) will be assigned a
meaning in the interpretation of F (n+ 1).

Exercise 1.3. Exhibit the constituent structure tree for F (3) analo-
gous to that given for F (2) in (8c).

So these two analyses, M and F , make different predictions about
what the meaningful parts of the expressions are4. Our original sugges-
tion for an F -type analysis was that the string M(1) – a string is just
a sequence of symbols (letters, words, . . .) – was a meaningful part of
M(2). Notice that the fact that the string M(1) occurs as a substring
ofM(2) was not invoked as motivation for an F -type analysis. And this
is right, as it happens often enough that a substring of an expression
is, accidentally, an expression in its own right but not a constituent of
the original. Consider (9):

(9) The woman who admires John is easy to please.

Now (10a) is a substring of (9), and happens to be a sentence in its
own right with the same logical meaning as (10b) and (10c).

(10) a. John is easy to please.
b. To please John is easy.

4In fact both analyses are amenable to a compositional semantic analysis, but
the analyses differ and the M one requires a richer semantic apparatus than the F
one.
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c. It is easy to please John.

But any attempt to replace John is easy to please in (9) by the
strings in (10b) or (10c) results in ungrammaticality (as indicated by
the asterisk):

(11) a. ∗The woman who admires to please John is easy.
b. ∗The woman who admires it is easy to please John.

The reason is that John is easy to please is not a constituent, a
meaningful part, of (9).

The constituent structure trees for the F analysis in (8) are right
branching in the sense that as n increases, the tree for F (n) has more
nodes going down the righthand side. Compare the trees in Figure 1.

x

a y

right z

branching tree

x

y

z

a left

branching

tree

FIGURE 1 Two trees.

Verb final languages, such as Turkish, Japanese, and Kannada (Dra-
vidian; India) are usually Subject+Object+Verb (SOV) and favor right
branching structures: [John [poetry writes]]. By a very slight margin
SOV is the most widespread order of Subject, Object and Verb across
areas and genetic families (Baker (2001) pg. 128) puts this type at
about 45% of the world’s languages. Its mirror image, VOS, is clearly
a minority word order type, accounting perhaps for 3% of world lan-
guages. It includes Tzotzil (Mayan, Mexico), Malagasy (Austronesian;
Madagascar) and Fijian (Austronesian; Fiji). VOS languages prefer left
branching structures: [[writes poetry] John]. The second most common
word order type, SVO, like English, Swahili, Indonesian, accounts for
about 42% of the world’s languages, and VSO languages, such as Clas-
sical Arabic, Welsh, and Maori (Polynesian; New Zealand) account for
perhaps 9%. The branching patterns in SVO and VSO languages are
somewhat mixed, though on the whole they behave more like VOS lan-
guages than like SOV ones. See Dryer (2007) pp. 61–131 for excellent
discussion of the complexities of the word order classification.
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Finally we note that our examples of postnominal possessive NPs in
(8) are atypically restricted both syntactically and semantically. It is
unnatural for example to replace the Determiner the with others like
every, more than one, some, no, . . .. Expressions like every mother of
the President, more than one mother of the President seem unnatural.
This is likely due to our understanding that each individual has a unique
(exactly one) biological mother. Replacing mother by less committal
relation nouns such as friend eliminates this unnaturalness. Thus the
expressions in (12) seem natural enough:

(12) the President, every friend of the President,
every friend of every friend of the President, . . ..

Now we can match the natural numbers with the elements of the
pseudolist in (12) in a way fully analogous to that in (5). Each n gets
matched directly with (every friend of )n followed by the President.

Exercise 1.4. Exhibit a matching for (12) on which every friend of
the President is a constituent of every friend of every friend of the
President.

This has been our first instance of formalizing the same phenom-
ena in two different ways (M and F ). In fact being able to change
your formal conceptualization of a phenomenon under study is a major
advantage of mastering elementary mathematical techniques. Formu-
lating an issue in a new way often leads to new questions, new insights,
new proofs, new knowledge. As a scientist what you can perceive and
formulate and thus know, is limited by your physical instrumentation
(microscopes, lab techniques, etc.) and your mental instrumentation
(your mathematical concepts and methods). Man sieht was man weiss
(One sees what one knows). Mathematical adaptability is also helpful
in distinguishing what is fundamental from what is just notational con-
vention. The idea here is that significant generalizations are ones that
remain invariant under changes of descriptively comparable notation.
Here the slogan is:

If you can’t say something two ways you can’t say it at all.

Worth emphasizing here also is that mathematically we often find dif-
ferent procedures (algorithms) that compute the same value for the
same input, but do so in different ways. Here is an example from high
school algebra: compare the functions f and g below which map natural
numbers to natural numbers:

(13) a. f(n) = n2 + 2n+ 1
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b. g(n) = (n+ 1)2

g here seems to be a simple two step process: given n, add 1 to it and
square the result. f is more complicated: first square n, hold it in store
and form another number by doubling n, then add those two numbers,
and then add 1 to the result. But of course from high school algebra
we know that for every n, f(n) = g(n). That is, these two procedures
always compute the same value for the same argument, but they do
so in different ways. A cuter, more practical, example is given in the
exercise below.

Exercise 1.5. Visitors to the States must often convert temperature
measured on the Fahrenheit scale, on which water freezes at 32 degrees
and boils at 212, to Celsius, on which water freezes at 0 degrees and
boils at 100. A standard conversion algorithm C takes a Fahrenheit
number n, subtracts 32 and multiplies the result by 5/9. So for example
C(212) = (212− 32)× 5/9 = 180× 5/9 = 20× 5 = 100 degrees Celsius,
as desired. Here is a different algorithm, C ′. It takes n in Fahrenheit,
adds (!) 40, multiplies by 5/9, and then subtracts 40. Show that for
every natural number n, C(n) = C ′(n).

Prenominal possessors are possessive NPs like those in (14a), enu-
merated by G in (14b).

(14) a. the President’s mother, the President’s mother’s mother,
the President’s mother’s mother’s mother, . . .

b. G(0) = the President, and for all n ∈ N,
G(n+ 1) = G(n)’s mother.

So G(2) = G(1)’s mother = G(0)’s mother’s mother = the Presi-
dent’s mother’s mother. This latter NP seems harder to process and un-
derstand than its right branching paraphrase the mother of the mother
of the President. We have no explanation for this.

Adjective stacking is another left branching structure in English,
easier to understand than iterated prenominal possessives but ulti-
mately more limited in productivity. The easy to understand expres-
sions in (15) suggest at first that we can stack as many adjectives in
front of the noun as we like.

(15) a. a big black shiny car
b. an illegible early Russian medical text

But attempts to permute the adjectives often lead to less than felic-
itous expressions, sometimes gibberish, as in ∗a medical Russian early
illegible text. Now if we can’t permute the adjectives, that suggests that
adjectives come in classes with fixed positions in relation to the noun
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they modify, whence once we have filled that slot we can no longer add
adjectives from that class, so the ability to add more is reduced. And
this appears to be correct (Vendler). We can substitute other nation-
ality adjectives for Russian in (15b), as in an illegible early Egyptian
medical text, but we cannot add further nationality adjectives in front of
illegible, ∗an Egyptian illegible early Russian medical text. It is plausible
then that there is some n such that once we have stacked n adjectives
in front of a noun no further ones can be added. If so, the number of
adjective-noun combinations is finite. In contrast, postnominal modifi-
cation by relative clauses seems not subject to such constraints:

Relative clauses have been well studied in modern linguistics. They
are illustrated by those portions of the following expressions beginning
with that:

(16) a. This is the house that Jack built.
b. This is the malt that lay in the house that Jack built.
c. This is the rat that ate the malt that lay in the house that

Jack built.
d. This is the cat that killed the rat that ate the malt that lay

in the house that Jack built.

These examples of course are adapted from a child’s poem, and sug-
gest that relative clauses can iterate in English: for each natural number
n we can construct a relative clause with more than n properly nested
relative clauses, whence the number of such clauses is infinite, as is the
number of NPs which contain them. One might (rightly) quibble about
this quick argument from the above example, however, on the grounds
that successively longer relative clauses obtained as we move down the
list use words not in the previous sentences. So if the number of words
in English were finite then perhaps the possibility of forming novel rel-
ative clauses would peter out at some point, albeit a very distant point,
as even desk top dictionaries in English list between 100, 000 to 150, 000
words. But in fact this is not a worry, as we can repeat words and thus
form infinitely many relative clauses from a small (finite) vocabulary:

(17) Let

H(0) = every student, and for all n ∈ N, and
H(n+ 1) = every student who knows H(n).



14 / Mathematical Structures in Language

Thus

H(1) = every student who knows H(0)
= every student who knows every student

H(2) = every student who knows H(1)
= every student who knows every student who knows every st.

And so on. Clearly H enumerates an infinite set of NPs built from a
four-word vocabulary: every, student, who, knows.

The relative clauses in these examples consist of a relative pronoun,
that or who, followed by a sentence with an NP missing. In the cases
that iterate in (16) it is always the subject that is missing. Thus in
the malt that lay in the house . . . that, which refers back to malt, is the
subject of lay in the house . . .; in the rat that ate the malt . . ., that is the
subject of ate the malt. . ., and in the cat that killed the rat. . ., that is the
subject of killed the rat . . .. In the rightmost relative clause, that Jack
built, that, which refers to house, is the object of the transitive verb build.
Notice that the matching function H in (17) provides a right branching
structure for the NPs enumerated. This analysis, naively, follows the
semantic interpretation of the expressions. Viz., in H(n + 1), H(n) is
a constituent, in fact an NP, the sort of expression we expect to have
a meaning. But as we increase n, the intonationally marked groups
are different, an intonation peak being put on each noun that is later
modified by the relative clause, as indicated by square bracketing in
(1.1) in which each right bracket ] signals a slight pause and the noun
immediately to its left carries the intonation peak:

This is the cat [that killed the rat][that ate the malt] . . .

A matching function H ′ that would reflect this bracketing in (1.1)
would be: H ′(n) = every student (who knows every student)

n
.

Attempts to iterate object relatives rather than subject ones quickly
lead to comprehension problems, even when they are right peripheral.
(18a) is an English NP built from an object relative. It contains a
proper noun Sonia. (18b) is formed by replacing Sonia with another
NP built from an object relative. Most speakers do not really process
(18b) on first pass, and a further replacement of Sonia by an object
relative NP yielding(18c) is incomprehensible to everyone (though of
course you can figure out what it means with pencil and paper).

(18) a. some student who Sonia interviewed.
b. some student who some teacher who Sonia knows

interviewed.
c. some student who some teacher who every dean who Sonia

dislikes knows interviewed
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The comprehensibility difference between the iterated object rela-
tives in (18) and iterated subject ones in (16) is quite striking. Linguists
have suggested that the reason is that the iteration of object relatives
leads to center embedding: we replace a Y in a string with something
that contains another Y but also material to the left and to the right of
that new Y , yielding XY Z. So the new Y is center-embedded between
X and Z. One more iteration yields a string of the form [X1[X2Y Z2]Z1],
and in general n+ 1 iterations yields

[X1 . . . [Xn [Xn+1 Y Zn+1 ]Zn] . . . Z1].

Postnominal Prepositional Phrase (PP) modification is illus-
trated by NPs of the form [NP Det N [PPP NP]], such as a house near
the port, two pictures on the wall, a doctor in the building. Choosing the
rightmost NP to be one of this form, [Det N [P NP]], we see the by now
familiar right branching structure. Again a children’s song provides an
example of such iterated PPs :

(19) a. There’s a hole in the bottom of the sea.
b. There’s a log in the hole in the bottom of the sea.
c. There’s a bump on the log in the hole in the bottom of the

sea.
d. There’s a frog on the bump on the log in the hole in the

bottom of the sea.

As with the relative clauses we must ask whether we can iterate
such PPs without always invoking new vocabulary. We can, but our
examples are cumbersome:

(20) a. a park near [the building by the exit]
b. a park near [the building near [the building by the exit]]
c. a park (near the building)n by the exit

Note that one might argue that PP modification of nouns is not in-
dependent of relative clause modification on the grounds that the gram-
mar rules of English will derive the PPs by reducing relative clauses: a
house near the port ⇐ a house which is near the port. Perhaps. If so,
then we have just shown that such reduction is not blocked in contexts
of multiple iteration.

Sentence complements concern the objects of verbs of thinking and
saying such as think, say, believe, know, acknowledge, explain, imagine,
hope, etc.. They would be most linguists’ first choice of an expression
type which leads to infinitely many grammatical expressions, as shown
in (21):

(21) SC(0) = he destroyed the house;
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SC(n+ 1) = he said that SC(n).

SC enumerates in a right branching way he said that he said that . . .
he destroyed the house. Note too that such expressions feed relative
clause formation: the house which (he said that)n he destroyed, yielding
another infinite class of NPs .

Sentential subjects in their simplest form resemble sentence com-
plements but function as the subject of a verb rather than as the ob-
jects. They determine center embeddings, and as with the earlier cases
become virtually impossible to understand after one embedding:

(22) a. That Sue quit surprised me.
b. That that Sue quit surprised me is strange.
c. That that that Sue quit surprised me is strange is false.

Even (22b) is sufficiently hard to understand that we perhaps should
just consider it ungrammatical. However if the sentential subjects are
replaced by sentence complements of nouns, such as the claim that Sue
left early, the resulting Ss improve:

(23) a. The claim that Sue quit surprised me.
b. The belief that the claim that Sue quit surprised me is

strange.
c. The fact that the belief that the claim that Sue quit

surprised me is strange is really outrageous.

Here (23b) can be given an intonation contour that makes it more
or less intelligible. Another variant of (22) concerns cases in which the
sentential subject has been extraposed, as in (24).

(24) a. It surprised me that Sue quit.
b. It is strange that it surprised me that Sue quit.
c. It is false that it is strange that it surprised me that Sue

quit.

These are right branching expressions and are considerably easier to
comprehend than their center embedding paraphrases in (22).

Caveat Lector On the basis of (22) and (18) we are tempted to con-
clude that center embedding in general is difficult to process. Don’t!
One robin doesn’t make a spring and English is but one of the 5,500
languages in the world. SOV languages present a variety of expression
types which induce center embedding. These types include some that
translate the right branching sentence complements in English. Con-
sider for example sentence (25) from Nepali:
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(25) Gı̄tāle
Gita

Rāmlā̄ı
Ram

Anjal̄ılā̄ı
Anjali

pakāuna
cook

sahayog garna
help

sallāh gar̄ı.
advised.

Gita advised Ram to help Anjali cook.

In these, lā̄ı is a postposition carried by human names which are
objects of transitive verbs, and le is a postposition associated with the
past tense form. The forms pakāuna and sahayog garna are infinitives.
As one can see from this example, the subjects are grouped together
ahead of all of the verbs. The form is the center embedding pattern

NP1 NP2 NP3 V3 V2 V1,

with two proper center embeddings, rather than the (rough) form of its
English translation:

NP1 V1 NP2 V2 NP3 V3.

(Again, the subjects and verbs, whether in the main clause or in em-
bedded clauses, have special endings that need not concern us.)

Now, impressionistically, Nepali speakers seem to process Ss like (25)
easily, arguing against rash conclusions concerning the difficulty of cen-
ter embedding. More psycholinguistic work is needed.

Formally though the existence of unbounded center embedding
would remove languages that have it from the class called regular those
recognizable by finite state machines (the lowest class in the Chom-
sky hierarchy). See Hopcroft and Ullman 1979:Ch 9 for the relevant
definitions and theorems.

Exercise 1.6.

a. Exhibit an enumeration of infinitely many Ss of the sort in (18)
allowing repetition of verbs, as in that he quit surprised me, that
that he quit surprised me surprised me, . . .

b. Exhibit an enumeration of their extraposed variants, (24), under
the same repetition assumptions.

Infinitival complements come in a variety of flavors in English il-
lustrated in (26–28). The infinitival complements in (26) and (27) are
the untensed verbs preceded by to. Verbs like help, make, let and per-
ception verbs like watch, see, hear take infinitival complements without
the to.

(26) a. Mary wanted to read the book.
b. She wanted to try to begin to read the book.

(27) a. She asked Bill to wash the car.
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b. She forced Joe to persuade Sue to ask Sam to wash the car.

(28) a. She helped Bill wash the car.
b. She let Bill watch Harry make Sam wash the car.

The b-sentences suggest that we can iterate infinitival phrases,
though the intransitive types in (26) are hard to interpret. What does
He began to begin to begin to wash the car mean? The transitive types in
(27) and (28), where the verb which governs the infinitival complement
takes an NP object, iterate more naturally: She asked Bill to ask Sue
to ask Sam to . . . to wash the car. She helped Bill help Harry help Sam
. . . wash the car or She watched Bill watch Mary watch the children
. . . play in the yard . Repeating proper names here, however, can be
unacceptable: *?She asked Bill to ask Bill to wash the car. But to show
that this structure type leads to infinitely many expressions it suffices
to choose a quantified NP object, as in (29).

(29) a. She asked a student to ask a student to . . . to wash the car.
b. She helped a student help a student . . . wash the car.

Exercise 1.7.

a. Exhibit an enumeration of one of the sets in (29).

b. Another way to avoid repeating NP objects of verbs like ask is
to use a previously given enumeration of an infinite class of NPs.
Exhibit an enumeration of She asked every friend of the President
to wash the car, She asked every friend of the President to ask
every friend of every friend of the President to wash the car, . . ..

Embedded questions are similar to sentence complements, but the
complement of the main verb semantically refers to a question or its
answer, not a statement of the sort that can be true or false. Compare
(30a), a True/False type assertion, with (30b), which requests an iden-
tification of the Agent of the verb steal, and (30c), an instance of an
embedded question, where in effect we are saying that John knows the
answer to the question in (30b).

(30) a. Some student stole the painting.
b. Which student stole the painting?
c. John knows which student stole the painting.

The question in (30b) differs from the assertion in (30a) by the choice
of an interrogative Determiner which as opposed to some5. The embed-

5This simple relation between declaratives and interrogatives only holds when
we question the subject. In other types of constituent questions the interrogative
expression is moved to the front of the clause and the subject is moved behind the
auxiliary verb if there is one; if there isn’t an appropriately tensed form of do is
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ded question following knows in (30c) uses the same interrogative Det.
And of course we can always question the subject constituent of sen-
tences like (30c), yielding Ss like (31a), which can in turn be further
embedded, ad infinitum.

(31) a. Who knew which student stole the painting?
b. John figured out who knew which student stole the painting
c. Which detective figured out who knew which student stole

the painting?
d. John knew which detective figured out who knew which

student stole the painting

In distinction to sentence complements, attempts to form relative
clauses from embedded questions lead to expressions of dubious gram-
maticality (indicated by ?? below):

(32) ?? the painting that John knew which detective figured out
which student stole

Exercise 1.8. The function EQ exhibited below (note the notation)
matches distinct numbers with distinct expressions, so the set of em-
bedded questions it enumerates is infinite.

EQ n 7→ Joe found out (who knew)n who took the painting.

Your task: Exhibit a recursive function EQ′ which effects the same
matching as EQ but does so in such a way as to determine a right
branching constituent structure of the sort below:

Joe found out [who knew [who knew [who took the painting]]].

Notation and a Concept The matchings we have exhibited between
N = {0, 1, 2, . . .} and English expressions have all been one-to-one,
meaning that they matched distinct numbers with distinct expressions.
More generally, suppose that f is a function from a set A to a set B,
noted f : A → B. A is called the domain of the function f , and B is
called its codomain. So f associates each object x ∈ A with a unique
object f(x) ∈ B. f(x) is called the value of the function f at x. We
also say that f maps x to f(x). “Unique” here just means “exactly
one”; that is, f maps each x ∈ A to some element of B, and f does
not map any x to more than one element of B. Now, f is said to be
one-to-one (synonym: injective) just in case f maps distinct x, x′ ∈ A
to distinct elements f(x), f(x′) ∈ B6. So a one-to-one function is one

inserted. Compare: John stole some painting with Which painting did John steal?
6A one-to-one function is actually “two-to-two.”
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that preserves distinctness of arguments (the elements of A being the
arguments of the function f). A function which fails to be one-to-one
fails to preserve distinctness of arguments, so it must map at least two
distinct arguments to the same value.

We also introduce some notation that we use in many later chapters.
Let [A→ B] denote the set of functions from A to B.

Exercise 1.9. In the diagram below we exhibit in an obvious way a
function g from A = {a, b, c, d} to B = {2, 4, 6}. The use of arrows tells
us that the elements at the tail of the arrow constitute the domain of
g, and those at the head lie in the codomain of g.

g

a

&&MMMMMMMMMMMMMM
2

b

&&NNNNNNNNNNNNNN

4
c

88qqqqqqqqqqqqqq

6

d

88qqqqqqqqqqqqqq

a. Is g one-to-one? Justify your answer.

b. Do there exist any one-to-one functions from A into B?

c. Exhibit by diagram two different one-to-one functions from B
into A.

Returning now to functions, we say that a set A is less than or equal
in size (cardinality) to a set B, written A � B, iff there is a one-to-one
map from A into B. (We use map synonymously with function). This
(standard) definition is reasonable: if we can copy the elements of A
into B, matching distinct elements of A with distinct elements of B,
then B must be at least as large as A.

Observe that for any set A, A � A. Proof: Let id be that function
from A into A given by: id(α) = α, for all α ∈ A7. So trivially id is
injective (one-to-one).

Exercise 1.10.

a. Let A and B be sets with A ⊆ B. Show that A � B.

b. Show that EVEN � N, where, EVEN = {0, 2, 4, . . .}, and N =
{0, 1, 2, . . .}.

7α is the first “lower case” letter of the Greek alphabet, given in full at the end
of this text. The reader should memorize this alphabet together with the names of
the letters in English, as Greek letters are widely used in mathematical discourse.
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c. Show that N � EVEN.

Mathematically we define sets A and B to have the same size (car-
dinality), noted A ≈ B, iff A � B and B � A. A famous theorem
of set theory (the Schroeder-Bernstein Theorem) guarantees that this
definition coincides with the informal one—matching with nothing left
unmatched—given earlier. On this definition, then, EVEN ≈ N, that is,
the set {0, 2, 4, . . .} of natural numbers that are even has the same size
as the whole set N of natural numbers. Using the cardinality notation
introduced earlier we see that A ≈ B iff |A| = |B|. So for example,
|EVEN| = |N|. Can you show that N ≈ ODD, the set {1, 3, 5, . . .} of
natural numbers that are odd?

Here are two useful concepts defined in terms of �. First, we say
that a set A is strictly smaller than a set B, noted A ≺ B, iff A is less
than or equal in size to B and B is not less than or equal in size to A.
That is, A ≺ B iff A � B and B 6� A. For example, {a, b} ≺ {4, 5, 6}.
An alternative way to say A ≺ B is |A| < |B|.

One might have expected that |EVEN| < |N| given that EVEN ⊂ N
(that is EVEN is a proper subset of N). But that is not the case.
The map sending each even number k to itself is a one-to-one map
from EVEN into N, so EVEN � N. And the map sending each natural
number n to 2n is one-to-one from N into EVEN, so N � EVEN, whence
|EVEN| = |N|

Occasionally students find it “unintuitive” that EVEN and N have
the same cardinality, given that EVEN is a very proper subset of N. N
after all contains infinitely many numbers not in EV EN , namely all
the odd numbers (ones of the form 2n+1). Here is an informal way to
appreciate the truth of EVEN ≈ N. Consider that a primary purpose
of N is to enable us to count any finite set. We do this by associating
a distinct natural number with each of the objects we are counting,
Usually the association goes in order, starting with ‘one’. Then we
point to the next object saying ‘two’, then the next saying ‘three’, etc.
until we are done. N in fact is the “smallest” set that enables us to count
any finite set in this way. But we could make do with just the set of
even numbers. Then we would count ‘two’, ‘four’, ‘six’, etc. associating
with each object from our finite set a distinct even number. So any
set we can count with N we can count Edith EVEN, since they are
equinumerous.

This relation between EVEN and N provides a conceptually pleasing
(and standard) way to define the notions finite and infinite without
reference to numbers. Namely, an infinite set is one which has the same
cardinality as some proper subset of itself. So a set A is infinite iff there
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is a proper subset B of A such that A ≈ B. And A is finite iff A is
not infinite (so A does not have the same size as any proper subset of
itself). These definitions identify the same sets as we did earlier when
we said that a set A is infinite iff for every natural number k, A has
more than k elements. And A is finite iff for some natural number k, A
has exactly k elements. But these earlier (and quite useful) definitions
do rely on prior knowledge of the natural numbers. Our later ones above
characterize finite and infinite just in terms of matchings—namely, in
terms of one-to-one functions

We return now to a final case of structure building operations in
English.

1.2 Boolean Compounding

Boolean compounding differs from our other expression building
operations which build expressions of a fixed category. The boolean
connectives however are polymorphic, they combine with expressions
of many different categories to form derived expressions in that same
category. The boolean connectives in English are (both) . . . and, (ei-
ther) . . . or, neither . . . nor . . ., not and some uses of but. Below we
illustrate some examples of boolean compounds in different categories.
We label the categories traditionally, insisting only that expressions
within a group have the same category. We usually put the examples
in the context of a larger expression, italicizing the compound we are
illustrating.

(33) Boolean Compounds in English

a. Noun Phrases Neither John nor any other student came to
the party. Most of the students and most of the teachers
drink. Not a creature was stirring, not even a mouse.

b. Verb Phrases
She neither sings nor dances, He works in New York and
lives in New Jersey, He called us but didn’t come over.

c. Transitive Verb Phrases
John both praised and criticized each student, He neither
praised nor criticized any student, He either admires or
believes to be a genius every student he has ever taught.

d. Adjective Phrases
This is an attractive but not very well built house. He is
neither intelligent nor industrious. She is a very tall and
very graceful dancer

e. Complementizer Phrases
He believes neither that the Earth is flat nor that it is
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round. He believes that it is flat but not that it is heavy. He
showed either that birds dream or that they don’t, I forget
which,

f. Prepositional Phrases
That troll lives over the hill but not under a bridge. A strike
must pass above the batter’s knees and below his chest.

g. Prepositions
There is no passage either around or through that jungle.
He lives neither in nor near New York City.

h. Determiners
Most but not all of the cats were inoculated. At least two
but not more than ten students will pass. Either hardly any
or else almost all of the students will pass that exam.

i. Sentences
John came early and Fred stayed late. Either John will
come early or Fred will stay late. Neither did any student
attend the lecture nor did any student jeer the speaker.

In terms of productivity, boolean compounds are perhaps compara-
ble to iterating adjectives: we can do it often, but there appear to be
restrictions on repeating words which would mean that the productiv-
ity of boolean compounding is bounded. There are a few cases in which
repetition is allowed, with an intensifying meaning:

(34) John laughed, and laughed, and laughed.

But even here it is largely unacceptable to replace and by or or
neither . . . nor . . .: ∗John either laughed or laughed or laughed. Equally
other cases of pure repetition seem best classed as ungrammatical:

(35) ∗Either every student or every student came to the party. ∗Fritz
is neither clever nor clever. ∗He lives both in and in New York
City.

On the other hand judicious selection of different words allows the
formation of quite complex boolean compounds, especially since and
and or combine with arbitrarily many (distinct) expressions, as per
(36b):

(36) a. either John and his uncle or else Bill and his uncle but not
Frank and his uncle or Sam and his uncle

b. John, Sam, Frank, Harry and Ben but not Sue, Martha,
Rosa, Felicia or Zelda

Note too that the polymorphism of the boolean connectives allows
the formation of Ss for example with boolean compounds in many cat-
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egories simultaneously:

(37) Every student, every teacher and every dean drank and
caroused in some nightclub or bar on or near the campus until
late that night or very early the next morning

Concluding remarks. We have exemplified a variety of highly pro-
ductive ways of forming English expressions. This led to the conclusion
that English has infinitely many expressions. Note though–an occa-
sional point of confusion—each English expression itself is finite (just
built from finitely many words). Our claim is only that there are in-
finitely many of these finite objects.

We also raised the general linguistic challenge of accounting for how
speakers of English (or any natural language) produce, recognize and
interpret large numbers of novel expressions. Our general answer was
that speakers have learned a grammar and learned how to composi-
tionally interpret the infinitely many expressions it generates. In the
remainder of this book we concern ourselves with precisely how to de-
fine such grammars and how to interpret the expressions they generate.
In the process we shall enrich the mathematical apparatus we have be-
gun to introduce here. And as with many mathematics-oriented books,
much of the learning takes place in doing the exercises. If you only read
the text without working the exercises you will miss much.

Learning mathematics is like learning to dance:
You learn little just by watching others.

1.3 References

Center-embedding was the subject of numerous papers in the linguistic
and psychological literature. Some of the earliest references are Chom-
sky and Miller (1963), Miller and Isard (1964), and de Roeck et al.
(1982).

Since 1990 the subject of center-embedding has again been taken up
by researchers interested in processing models of human speech. Some
references here are Church (1980), Abney and Johnson (1991), and and
Resnik (1992).

A paper presenting psycholinguistic evidence that increasing center
embedding in SOV languages does increase processing complexity is
Babyonyshev and Gibson (1999).
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Some Mathematical Background

2.1 More about Sets

The terms boolean connective and boolean compound derive more from
logic than linguistics and are based on the (linguistically interesting)
fact that expressions which combine freely with these connectives are
semantically interpreted as elements of a set with a boolean structure.
We use this structure extensively throughout this book. Here we exhibit
a “paradigm case” of a boolean structure, without, yet, saying fully
what it is that makes it boolean. Our example will serve to introduce
some further notions regarding sets that will also be used throughout
this book.

Consider the three element set {a, b, c}. Call this set X for the mo-
ment. X has several subsets. For example the one-element set {b} is a
subset of X. We call a one-element set a unit set. Recall that this fact is
noted {b} ⊆ X. This is so because every element of {b} – there is only
one, b – is an element of X. Similarly the other unit sets, {a} and {c},
are both subsets of X. Equally there are three two-element subsets of
X: {a, b} is one, that is, {a, b} ⊆ X. What are the other two? And of
course X itself is a subset of X, since, trivially, every object in X is in
X. (Notice that we are not saying that X is an element of itself, just
a subset.) There is one further subset of X, the empty set, ∅. This set
was introduced on page 3. Recall that ∅ has no members. Trivially ∅ is
a subset of X (indeed of any set). Otherwise there would be something
in ∅ which isn’t in X, and there isn’t anything whatsoever in ∅.

The set of subsets of a set X is called the power set of X and noted
P(X). In the case under discussion we have:

P({a, b, c}) = {∅, {a}, {b}, {c}, {a, b}, {b, c}, {a, c}, {a, b, c}}.
On the right we have a single set with 8 elements; those elements are
themselves all sets. Indeed, on the right we have just listed all of the

25
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subsets of our set X. Note that {a, b, c} has 3 elements, and P({a, b, c})
has 23 = 2× 2× 2 = 8 elements. So in this case, in fact in every case,
X ≺ P(X). Now let us arrange the 8 elements of P({a, b, c}) according
to the subset relations that obtain among them, with the largest set,
{a, b, c}, at the top of our diagram (called a Hasse diagram) and the
smallest one, ∅, at the bottom. See Figure 2.

{a, b, c}

{a, b}

uuuuuuuuu
{a, c} {b, c}

IIIIIIIII

{a}

uuuuuuuuu
{b}

uuuuuuuuu

IIIIIIIII
{c}

IIIIIIIII

∅

JJJJJJJJJJJ

uuuuuuuuuuu

FIGURE 2 The Hasse diagram of P({a, b, c})

We have used the lines (edges) between set symbols here to indicate
certain subset relations that obtain between the sets pictured in the
diagram. Specifically, if you can move up from a set A to a set B
along lines then A ⊆ B. Note that we have not for example drawn a
line directly from {a} to {a, b, c}. Our diagram allows us to infer that
{a} ⊆ {a, b, c}, since it shows that {a} ⊆ {a, b}, and also {a, b} ⊆
{a, b, c}, and we know that subset is a transitive relation:

(1) Transitivity of subset: For all sets A, B, and C: if A ⊆ B and
B ⊆ C, then A ⊆ C.

Proof. Let A, B, and C be arbitrary sets. Assume that A ⊆ B and
B ⊆ C. We must show that A ⊆ C, that is, that an arbitrary element
of A is also an element of C. Let x be an arbitrary element of A. Then
x lies in B, since our first assumption says that everything in A is in
B. But since x lies in B, we infer it also lies in C, since our second
assumption says that everything in B is also in C. Thus given our
assumptions, an arbitrary element of A is an element of C. So A ⊆ C,
as was to be shown.

There is one instance of the subset relation not depicted in Figure 2.
Namely, we have not drawn a line from each set to itself to show that
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each set is a subset of itself. This is because we know that the subset
relation is reflexive, that is, Z ⊆ Z, no matter what set Z we pick
(even Z = ∅), as we have already seen. So here we rely on our general
knowledge about sets to interpret the Hasse diagram. For the record,

(2) Reflexivity of subset: For all sets A, A ⊆ A.

(3) Non-subset-hood: A 6⊆ B iff there is some x ∈ A which is not in
B.

Exercise 2.1. Exhibit the Hasse diagram for each of:

a. P({a, b}).
b. P({a}).
c. P({a, b, c, d)}.
d. P(∅).

Hasse diagrams of power sets incorporate more structure than meets
the eye. Specifically they are closed under intersection, union, and rel-
ative complement:

Definition 2.1. Given sets A and B,

a. A∩B (read “A intersect B”) is that set whose members are just
the objects which are elements of both A and of B. For example,

i. {a, b} ∩ {b, c} = {b},
ii. {a, b} ∩ {a, b, c} = {a, b},
iii. {a, b} ∩ .{c} = ∅.

b. A∪B (read “A union B”) is that set whose members are just the
objects which are members of A or members of B (and possibly
both). For example,

i. {a, b} ∪ {b, c} = {a, b, c},
ii. {b} ∪ {a, b} = {a, b},
iii. {c, b} ∪ ∅ = {c, b}.

c. A − B (read “A minus B”) is the set whose members are those
which are members of A but not of B. For example,

i. {a, b, c} − {a, c} = {b},
ii. {a, c} − {a, b, c} = ∅,
iii. {b, c} − ∅ = {b, c}.

A − B is also called the complement of B relative to A. Now to
say that P({a, b, c}) is closed under intersection, ∩, is just to say that
whenever A and B are elements of P({a, b, c}), then so is A ∩ B. In
fact, for all sets X, P(X) is closed under ∩.
Exercise 2.2. Let K be any collection of sets. What does it mean
to say that K is closed under union? under relative complement? Is
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it true that for any set X, P(X) is closed under union and relative
complement?

Exercise 2.3. Complete the following equations:

a. EVEN ∩ODD = .

b. EVEN ∪ODD = .

c. N− EVEN = .

d. (N− EVEN) ∩ODD = .

e. (N ∩ EVEN) ∩ODD = .

f. (N ∩ EV EN) ∩ {1, 3} = .

g. {1, 2, 3} ∩ EVEN = .

h. {1, 2, 3, 4} ∩ODD = .

i. {1, 2, 3} ∩ (EVEN ∪ODD) = .

j. (N ∩ ∅) ∪ {0} = .

k. (ODD ∪ODD) ∩ODD = .

Exercise 2.4. Prove each of the statements below on the pattern used
in (1). Each of these statements will be generalized later when we dis-
cuss the semantic interpretation of boolean categories.

a. For all sets A and B, A ∩B ⊆ A (and also A ∩B ⊆ B).

b. For all sets A and B, A ⊆ A ∪B (and also B ⊆ A ∪B).

Exercise 2.5. Some Boolean Truths of Set Theory

a. Tests for subsethood. Prove each of the three statements below
for arbitrary sets A,B:

i. A ⊆ B iff A ∩B = A
ii. A ⊆ B iff A−B = ∅
iii. A ⊆ B iff A ∪B = B

b. Idempotent laws. For all sets A:

i. A ∩A = A
ii. A ∪A = A

c. Distributivity laws. For all sets A,B,C:

i. A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C)
ii. A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C)

d. DeMorgan laws. Writing ¬A for E − A, where E is the domain
of discourse:

i. ¬(A ∩B) = (¬A ∪ ¬B)
ii. ¬(A ∪B) = (¬A ∩ ¬B)
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The exercises above basically assume that to define a set it is suffi-
cient to say what its members are. Formally, the sufficiency is guaran-
teed by one of the axioms of the mathematical theory of sets. This is
the Axiom of Extensionality; we have already met it on page 3. Once
again, it says that for sets A and B,

A = B iff for all objects x, x ∈ A iff x ∈ B.

From this, it follows that if A and B are different sets, then one of them
has a member that the other doesn’t. Also, to prove that given sets A
and B are the same (despite possibly having very different definitions),
it suffices to show that each is a subset of the other. In fact, we have

(4) For all sets A, B, A = B iff A ⊆ B and B ⊆ A.

This is sometimes called the anti-symmetric property of the inclusion
relation ⊆.

2.1.1 Cardinality

We will be concerned at several points with the notion of the cardinality
of a set. The idea here is that the cardinality of a set is a number which
measures how big the set is. This “idea” is practically the definition in
the case of finite sets, but to deal with infinite cardinalities one has to
do a lot more work. We will not need infinite cardinals in this book at
many places, so we only give the definition in the finite case and the
case of a countably infinite set.

Definition 2.2. Let S be a finite set. If S = ∅, then the cardinality of
S is 0, and we write |S| = 0. If S 6= ∅ then let k be the unique natural
number such that S ≈ {1, 2, . . . , k}. Then the cardinality of S is k, and
we write |S| = k. And when S is infinite, if S ≈ N, the set of natural
numbers, then we say that S is countably infinite (or denumerable),
and write, standardly, |S| = ℵ0 (read “aleph zero”). ℵ is the first letter
of the Hebrew alphabet. This cardinal is also noted ω0 (read “omega
zero”), ω being the last letter in the Greek alphabet.

Here are some (largely familiar) examples of this notation: |∅| = 0.
For a any object |{a}| = 1. Similarly |{a, a}| = 1. For for a and b
distinct objects, |{a, b}| = 2. And of course |EVEN| = ℵ0 = |N|. We
should note that there are infinite sets that are larger than N. We have
already noted (and we prove shortly) that X ≺ P(X), where X is any
set and recall that P(X) is the set whose members are the subsets of
X. So as a special case N ≺ P(N). However larger sets than N do not
arise naturally in linguistic study.

Exercise 2.6.
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a. Say why |{5, 5, 5}| = |{5}|.
b. Is |{5, (3 + 2)}| = 2? If not say why not.

c. Prove that for all sets A,B, if A ⊆ B then |A| ≤ |B|.
d. Exhibit a counterexample to the claim that if A ⊂ B then |A| <

|B|.
e. As a corollary to part b. above say why |A ∩B| ≤ |A| and |A| ≤

|A∪B| for A,B any sets. (A corollary to a theorem P is one that
follows from P in a fairly obvious way.)

f. Let the set ODD of odd natural numbers be given by the pseu-
dolist {1, 3, 5, . . .}. Show that EVEN ≈ ODD.

2.1.2 Notation for Defining Sets

We have already seen how to define sets by listing : write down names
of the elements of the set separated by commas and enclose the list in
curly brackets. For example {0, 1} is a 2 element set. But definition by
listing is inherently limited. You can’t write down an infinite list, and
even when you know the set to be defined is finite, to define it by listing
each element of the set must have a name in whatever language you are
writing in. In mathematical discourse this condition often fails. To be
sure, in the language of arithmetic the natural numbers have names,
namely ‘0’, ‘1’, ‘2’, etc. But in the language of Euclidean geometry the
points on the plane don’t have proper names. Moreover when the set is
large defining it by listing is often impractical. The set of social security
numbers of American citizens could be listed but writing down the list
is a poor use of our time.

We have also seen productive means of defining new sets in terms
of old ones—ones that are already defined. So if we know what sets A
and B are then we can refer to A ∩B, A−B, A ∪B, and P(A).

A last and perhaps most widely used way of defining new sets in
terms of old is called (unhelpfully) definition by abstraction. Here, given
a set A, we may define a subset of A by considering the set of those
elements of A which meet any condition of interest. For example, we
might define the set of even natural numbers by saying:

EVEN =df {n ∈ N | for some m ∈ N, n = 2m}.
We read the right hand side of this definition as “the set of n in N
which are such that for some m in N, n is 2 times m”. The definition
assumes that N is already defined (it also assumes that multiplication is
defined). More generally if A is any set and ϕ any formula, {a ∈ A | ϕ}
is the set of elements a in A of which ϕ is true. So note that, trivially,
{a ∈ A | ϕ} is always a subset of A. ϕ can be any formula, even a



Some Mathematical Background / 31

contradictory one. For example, consider

{n ∈ N | n < 5 and n > 5}.
Clearly no n ∈ N satisfies the condition of being both less than 5 and
greater than 5, so the set defined above is just the empty set ∅.

Returning to the definition of EVEN above, an even more succinct
way of stating the definition is given by:

EVEN =df {2n ∈ N | n ∈ N}
Informally this commonly used format says: “Run through the numbers
n in N, for each one form the number 2n, and consider the collection
of numbers so formed. That collection is the set of even (natural) num-
bers.”

2.2 Sequences

We are representing expressions in English (and language in general) as
sequences of words, and we shall represent languages as sets of these se-
quences. Here we present some basic mathematical notation concerning
sequences, notation that we use throughout this book.

Think of a sequence as a way of choosing elements from a set. A
sequence of such elements is different from a set in that we keep track
of the order in which the elements are chosen. And we are allowed to
choose the same element many times. The number of choices we make
is called the length of the sequence. For linguistic purposes we need
only consider finite sequences (ones whose length is a natural number).

In list notation we denote a sequence by writing down names of the
elements (or coordinates as they are called) of the sequence, separating
them by commas, as with the list notation for sets, and enclosing the
list in angled or round brackets, but never curly ones. By convention
the first coordinate of the sequence is written leftmost, then comes
the second coordinate, etc. For example, 〈2, 5, 2〉 is that sequence of
length three whose first coordinate is the number two, whose second is
five, and whose third is two. Note that the sequence 〈2, 5, 2〉 has three
coordinates whereas the set {2, 5, 2} has just two members.

A sequence of length 4 is called a 4-tuple; one of length 5 a 5-tuple,
and in general a sequence of length n is called an n-tuple, though we
usually say pair or ordered pair for sequences of length 2 and (ordered)
triple for sequences of length 3.

If s is an n-ary sequence (an n-tuple) and i is a number between 1 and
n inclusive (that is, 1 ≤ i ≤ n) then we write si for the ith coordinate
of s. Thus 〈2, 5, 2〉1 = 2, 〈2, 5, 2〉2 = 5, etc1. If s is a sequence of length

1In more technical literature we start counting coordinates at 0. So the first
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n then s = 〈s1, . . . , sn〉. The length of a sequence s is noted |s|. So
|〈2, 5, 2〉| = 3, |〈2, 5〉| = 2, and |〈2〉| = 1. The following is fundamental:

(5) a. To define a sequence s it is necessary, and sufficient, to (i)
give the length |s| of s, and (ii) say for each i, 1 ≤ i ≤ |s|,
what object si is.

b. Sequences s and t are identical iff |s| = |t| and for all i such
that 1 ≤ i ≤ |s|, si = ti

For example, the statements in (6a,b,c,d) are all proper definitions
of sequences:

(6) a. s is that sequence of length 3 whose first coordinate is the
letter c, whose second is the letter a, and whose third is the
letter t. In list notation s = 〈c, a, t〉.

b. t is that sequence of length 4 given by: t1 = 5, t2 = 3,
t3 = t2, and t4 = t1.

c. u is that sequence of length 7 such that for all 1 ≤ i ≤ 7,

ui =

{

3 if i is odd
5 if i is even

d. v is that sequence of length 3 whose first coordinate is the
word Mary, whose second is the word criticized, and whose
third is the word Bill.

We frequently have occasion to consider sets of sequences. The fol-
lowing notation is standard:

Definition 2.3. For A and B sets,

a. A × B is the set of sequences s of length two such that s1 ∈ A
and s2 ∈ B. We write

A×B =df {〈x, y〉|x ∈ A and y ∈ B}.
A×B is read “A cross B” and called the Cartesian product of A
with B. Generalizing,

b. If A1, . . . , Ak are sets then A1 × · · · ×Ak is the set of sequences s
of length k such that for each i, 1 ≤ i ≤ k, si ∈ Ai. We abbreviate
A × A as A2 and A × · · · × A (n times) as An. A0 = {e}, where
e is the unique (see below) sequence of length zero. A∗ is the set
of finite sequences of elements of A. That is, s ∈ A∗ iff for some
natural number n, s ∈ An.

|A × B|, the cardinality of the set A × B, is exactly the product
|A| × |B|. This is what accounts for the notation. We have |A| many

coordinate of an n-tuple s would be noted s0 and its nth would be noted sn−1.
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choices for the first element of a pair in A×B and |B| many choices for
the second. Thus we have |A| × |B| choices in toto. So |A×A| = |A|2,
and more generally |An| = |A|n.
Exercise 2.7.

a. Exhibit the sequences (6b,c,d) in list notation.

b. Answer the following True or False; for a false statement explain
why it is false.

a. 〈2, 4, 6〉2 = 2.
b. |〈3〉| > 1.
c. |〈3, 3, 3〉| = 3.
d. for some i between 1 and 3 inclusive, 〈c, a, t〉i = b.
e. for some i < j between 1 and 3 inclusive, 〈c, a, t〉i = 〈c, a, t〉j .

c. Let A = {a, b, c} and B = {1, 2}. Exhibit the following sets in list
notation:

i. A×B.
ii. B ×A.
iii. B ×B.
iv. B × (A×B).

Note that a sequence of length zero has no coordinates. And from
(5b) there cannot be two different sequences both of length zero since
they have the same length and do not differ at any coordinate. More-
over,

(7) There is a sequence of length zero, called the empty sequence,
often noted e.

One widely used binary operation on sequences is concatenation,
noted⌢.

Definition 2.4. If s is a sequence 〈s1, . . . , sn〉 of length n and t a
sequence 〈t1, . . . , tm〉 of length m then s⌢t is that sequence of length
n + m whose first n coordinates are those of s and whose next m
coordinates are those of t. That is, s⌢t =df 〈s1, . . . , sn, t1, . . . , tm〉.

For example, 〈3, 2〉⌢〈5, 4, 3〉 = 〈3, 2, 5, 4, 3〉. Similarly, we have that
〈1〉⌢〈1〉 = 〈1, 1〉.

Observe that concatenation is associative:

(8) (s⌢t)⌢u = s⌢(t⌢u).

For example, (9a) = (9b):

(9) a. (〈3, 4〉⌢〈5, 6, 7〉)⌢〈8, 9〉 = 〈3, 4, 5, 6, 7〉⌢〈8, 9〉 =
〈3, 4, 5, 6, 7, 8, 9〉
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b. 〈3, 4〉⌢(〈5, 6, 7〉⌢〈8, 9〉) = 〈3, 4〉⌢〈5, 6, 7, 8, 9〉 =
〈3, 4, 5, 6, 7, 8, 9〉

So as with intersection, union, addition, etc. we omit parentheses
and write simply s⌢ t⌢u. But note that in distinction to ∩ and ∪,
concatenation is not commutative:

〈0〉⌢〈1〉 = 〈0, 1〉 6= 〈1, 0〉 = 〈1〉⌢〈0〉.
The empty sequence e exhibits a distinctive behavior with respect to
concatenation. Since e adds no coordinates to anything it is concate-
nated with we have:

(10) For all sequences s, s⌢e = e⌢s = s.

The role that e plays with regard to⌢ is like that which 0 plays with
regard to addition (n + 0 = 0 + n = n) and the ∅ plays with regard
to union (A ∪ ∅ = ∅ ∪ A = A). e is called an identity element with
respect to concatenation, just as 0 is an identity element with respect
to addition and ∅ an identity element with respect to union.

Note that just as sets can be elements of other sets, so sequences
can be coordinates of other sequences. For example the sequence s =
〈4, 〈3, 5, 8〉〉 is a sequence of length 2. Its first coordinate is the number
4, is second a sequence of length 3: 〈3, 5, 8〉. That is, s1 = 4 and s2 =
〈3, 5, 8〉. Observe:

(11) a. |〈j, o, h, n, c, r, i, e, d〉| = 9
b. |〈〈j, o, h, n〉, 〈c, r, i, e, d〉〉| = 2

(11a) is a 9-tuple of English letters. (11b) is a sequence of length 2,
each of whose coordinates is a sequence of letters. If we call these latter
sequences words then (11b) is a two coordinate sequence of words, that
is, an (ordered) pair of words.

Exercise 2.8. Answer True or False to each statement below. If False,
say why.

a. |〈c, a, t〉| < |〈〈e, v, e, r, y〉, 〈c, a, t〉〉|.
b. |〈a, b, a〉| = |〈b, a〉|.
c. |〈0, 0, 0〉| < |〈1000〉|.
d. |〈2, 3, 4〉⌢e| > |〈1, 1, 1〉|.
e. for all finite sequences s, t, s⌢t = t⌢s.

f. 〈2 + 1, 32〉 = 〈3, 23〉.
g. For all finite sequences s, t,

i. |s⌢t| = |s|+ |t|; and
ii. |s⌢t| = |t⌢s|.
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Exercise 2.9. Compute stepwise the concatenations in (a) and (b)
below, observing that they yield the same result, as predicted by the
associativity of concatenation.

a. (〈a, b〉⌢〈b, c, d〉)⌢〈b, a〉 =
b. 〈a, b〉⌢(〈b, c, d〉⌢〈b, a〉) =

Exercise 2.10. Fill in the blanks below, taking s to be 〈0, 〈0, 1〉, 〈0, 〈0, 1〉〉〉.
a. s1 =

b. s2 =

c. (s2)2 =

d. s3 =

e. (s3)2 =

f. ((s3)2)1 =

Prefixes and subsequences Given a sequence s, a prefix of s is a
piece of s that comes “at the front.” For example, if s = 〈2, 4, 5, 1〉,
then the prefixes of s are ǫ (the empty string), 〈2〉, 〈2, 4〉, 〈2, 4, 5〉, and
s itself.

Similarly, a subsequence of s is a string t that comes “somewhere
inside” s. That is, t might not be at the very front or the very end.
For example, the substrings of s are the prefixes of s listed above, and
also 〈4〉, 〈4, 5〉, 〈4, 5, 1〉, 〈5〉, 〈5, 1〉, and 〈1〉. But we would not count a
string like 〈2, 5〉 as a substring of s; we want substrings to be connected
occurrences.

Exercise 2.11. Let V be a non-empty set and fix a string s ∈ V ∗ (V ∗

recall is the set of finite sequences of elements of V ). Then consider the
following sets:

a. {t : for some w ∈ V ∗, s = t⌢w}.
b. {t : for some w ∈ V ∗, s = w⌢t}.
c. {t : for some w ∈ V ∗, for some u ∈ V ∗, s = w⌢t⌢u}.

Which of these defines the set of substrings of s? Which defines the set
of prefixes of s? What would should we call the remaining set?

2.3 Functions and Sequences

We have seen that a function f from a set A into a set B associates
with each α ∈ A a unique object noted f(α) in B. f(α), recall, is called
the value of the function f at the argument α. If A was a small set
whose members had names we could define f just by listing the objects
α in A and next to each we note the object in B that f maps α to,
namely f(α). Suppose for example that A is the set {1, 2, 3} and B is
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the set {1, 4, 9} and that f(1) = 1, f(2) = 4, and f(3) = 9. Then we
could define this f just by listing pairs (sequences of length 2).

(12) f = {〈1, 1〉, 〈2, 4〉, 〈3, 9〉}
In this way we think of a function f from A into B as a particular subset
of A×B, namely f = {〈α, f(α)〉 | α ∈ A}. So we represent f as a set of
sequences of length 2. This set of pairs is called the graph of f . Consider
the squaring function SQ from N to N. SQ(n) =df n · n, all n ∈ N.
(Usually SQ(n) is noted n2). The domain, N, of SQ is infinite, and the
graph of SQ is given in (13).

(13) SQ = {〈n, SQ(n)〉 | n ∈ N}
We could even define a function F from a set A into a set B as a subset
of A × B meeting the condition that for every α ∈ A there is exactly
one β ∈ B such that 〈α, β〉 ∈ F . As long as F meets this condition
then we can define F (α) to be the unique β such that 〈α, β〉 ∈ F . This
is what it means to say that β is given as a function (F ) of α.

Some terminology. A two-place function g from A into B is a func-
tion from A× A into B. So such a g maps each pair 〈α, α′〉 of objects
from A to a unique element of B. More generally an n-place function
from A into B is a function from An into B. We use the phraseology
“n-place function on A” to refer to a function from An into A. For
example the addition function is a 2-place function on N. It maps each
pair 〈n,m〉 of natural numbers to the number (n+m). Notice here that
in writing traditional expressions we tend to write the function symbol,
‘+’ in this case, between its two arguments.

The illustrative functions on numbers utilized so far used are defined
in terms of addition, multiplication, and exponentiation. But several of
the ones we used earlier to describe syntactic structure were defined in
a non-trivial recursive way. Namely the values at small arguments were
given explicitly (by listing) and then their values at larger arguments
were defined in terms of their values at lesser arguments. Recall for
example the function F from N into the set of English expressions as
follows:

(14) a. F (0) = the President and for all n > 0,
b. F (n) = 〈the⌢mother⌢of ⌢F (n− 1)〉

So we compute that F (2) = the mother of F (1) = the mother of the
mother of F (0) = the mother of the mother of the President. Recursive
functions of this sort are widely used in computer science. Here are
two household examples, the factorial function Fact and the Fibonacci
function Fib, both from N into N:
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(15) a. Fact(0) = 1 and for all n > 0, Fact(n) = n·Fact(n− 1)
(Fact(n) is usually denoted n!).

b. Fib(0) = 1, Fib(1) = 1, and for all n ∈ N,
Fib(n+ 2) = Fib(n+ 1)+Fib(n).

In defining the Fibonacci sequence Fib above we gave its value explic-
itly at both 0 and 1, and then defined later values in terms of the two
previous values. You might use a similar (not identical) tack in the
following exercise:

Exercise 2.12. Let K be the following set of informally given expres-
sions:
K = {a whisky lover, a whisky lover hater,

a whisky lover hater lover, a whiskey lover hater lover hater, . . .}
Note that the “-er” words at the end of each expression alternate be-
tween ‘lover’ and ‘hater’. For example, ‘a whiskey lover lover’ is not in
the set, nor is ‘a whiskey lover hater’, etc. Define a one to one function
from N onto K.

Bijections. When we define a function F from some A into some B
we specify B as the codomain of F . The range of F , Ran(F ), is by
definition the set of values F can take, that is, {F (α) | α ∈ A}. If
Ran(F ) = B then F is said to be onto B and is called surjective (or a
surjection). If in addition F is one-to-one (injective, an injection) then
F is bijective (a bijection). A bijection from a set A to itself is called
a permutation of A. In general bijections play a fundamental role in
defining what we mean by sameness of structure. But for the moment
we just consider two examples.

(16) Let H be that function from {a, b, c, d} into itself given by the
table below:

x a b c d
H(x) b c d a

SoH(a) = b,H(b) = c,H(c) = d, andH(d) = a. ClearlyH is both one-
to-one and onto, so H is a permutation of {a, b, c, d}. Suppose we think
of a as the upper left hand corner of a square, b as the lower left hand
corner, c as the lower right hand corner, and d as the upper right hand
corner. Then H would represent a 90 degree rotation counter-clockwise.

As a second example define a function ¬ from P({a, b, c}) to itself
as follows: for all subsets A of {a, b, x}, ¬(A) = {a, b, c} −A.

Exercise 2.13. Exhibit the table of ¬ defined above. (So you must list
the subsets of {a, b, c}—there are 8 of them—and next to each give its
value under ¬.)
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We will have much more to say about bijections in later chapters,
but first we generalize the set theoretic operations of intersection and
union in useful ways.

2.4 Arbitrary Unions and Intersections

Suppose we have a bunch of sets (we don’t care how many). Then the
union of the bunch is just that set whose members are the things in at
least one of the sets in the bunch. And the intersection of the bunch is
the set of objects that lie in each set in the bunch (if no object meets
that condition then the intersection of the bunch is just the empty set).
Let us state this now a little more carefully.

Given a domain (or universe) E of objects under study, let K be any
set whose members are subsets of E. In such a case we call K a family
(or collection) of subsets of E. Then we define:

(17) a.
⋃

K =df {x ∈ E | for some A ∈ K,x ∈ A}
b.

⋂

K =df {x ∈ E | for all A ∈ K,x ∈ A}
⋃

K is read “union K” and
⋂

K is read “intersect K”.
Here is an example. Let E be N. Let K be the collection of subsets

of N which have 5 as a member. Then {5} ∈ K, ODD ∈ K, N ∈ K,
and {3, 5, 7} ∈ K. But ∅ /∈ K, nor are EVEN or {n ∈ N | n > 7}.

If K is a finite collection of sets, say K = {A1, A2, A3, A4, A5}, then
⋃

K might be noted with a notation such as
⋃

1≤i≤5Ai. We would even
be likely to write simply A1 ∪ · · · ∪ A5. In cases such as this the set
K is called an indexed family of sets. In this example the index set
is {1, 2, 3, 4, 5}. We often use letters like I and J for arbitrary index
sets, and when say “Let K be an indexed family of sets” we mean
that for some set I, K = {Ai | i ∈ I}. And now arbitrary unions
and intersections are noted

⋃

i∈I Ai and
⋂

i∈I Ai. Writing out their
definitions explicitly we have:

(18) a.
⋃

i∈I Ai =df {x ∈ E | for some i ∈ I, x ∈ Ai}
b.

⋂

i∈I Ai =df {x ∈ E | for all i ∈ I, x ∈ Ai}
When the index set I is clear from context (or unimportant) we just
write

⋃

iAi and
⋂

iAi.

2.5 Definitions by Closure (Recursion)

Many of our definitions of linguistic sets will use this format. There
are several different ways of formulating this type of definition in the
literature. The one we opt for here is not the most succinct but is the
best for understanding the core idea behind the definitional technique.
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Definition 2.5. Given a set A, a function f from A into A, and a
subset K of A, we define the closure of K under f , noted Clf (K), as
follows:

a. Set K0 = K and for all n ∈ N, Kn+1 = Kn

⋃{f(x) | x ∈ Kn}.
b. Clf (K) =df {x ∈ A | for some n, x ∈ Kn}. That is,

Clf (K) =
⋃

nKn.

So the idea is that we start with some given set K and add in all the
things we can get by applying f to elements of K. That gives us K1.
Then repeat this process, obtainingK2, and then continue ad infinitum.
The result is all the things you can get starting with the elements of K
and applying the function any finite number of times. In the linguistic
cases of interest K will be a lexicon for a language and f (actually
there may be several f) will be the structure building functions that
start with lexical items and construct more complex expressions. Here
are two simple examples.

Example 1. Let V = {a, b}, f a map from V ∗ into V ∗ defined by:
f(s) = a ⌢ s ⌢ b, and K = {ab}. (Here we write simply ab for the
sequence 〈a, b〉; recall that for sequences of symbols we often omit the
commas and angled brackets). Then K0 = {ab}, K1 = {ab, aabb}, K2 =
{ab, aabb, aaabbb}, etc. Then provably Clf ({ab}) = {anbn | n > 0}.
Example 2. Let V = {a, b}, and let Copy be a function from V ∗ to V ∗

given by Copy(s) = s⌢s, and K = {b}. Then K0 = {b}, K1 = {b, bb},
K2 = {b, bb, bbbb}, etc., and ClCopy({b}) = {b2 | n ∈ N}.

A fundamental theorem concerning definitions by closure is given in
Theorem 2.1.

Theorem 2.1. For all functions f and sets K, Clf (K) has the follow-
ing three properties:

a. K ⊆ Clf (K),

b. Clf (K) is closed under f . That is, whenever x ∈ Clf (K) then
f(x) ∈ Clf (K), and

c. if M is any set which includes K and is closed under f then
Clf (K) ⊆ M . (This is what we mean when we call Clf (K) the
least set that includes K and is closed under f .)

Fact. N is the closure of {0} under +1, the addition of 1 function.
So if M is a set with 0 ∈ M and M is closed under addition of 1
then M contains all the natural numbers. So to show that all numbers
have some property ϕ we just let M be the set of numbers with ϕ and
show that 0 ∈M and M is closed under +1. This is usually called the
Principal of Induction.
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Definition by Closure as given above generalizes in several largely
obvious ways. It makes obvious sense to form the closure of a set under
several functions, not just one, and the functions need not be unary. We
may naturally speak of the closure of a set of numbers under multiplica-
tion for example. An only slightly less obvious generalization concerns
closure under partial functions.

Definition 2.6. A partial function f from A to B is a function whose
domain is a subset of A and whose codomain is included in B.

For example, a function whose domain was the set of even numbers
which mapped each one to its square would be a partial function from
N to N.

In defining closure under partial functions we need a slight addition
to the definition ofKn+1 as follows:Kn+1 = K

⋃{f(x) | x ∈ K and x ∈
Dom(f)}.
Exercise 2.14.

a. Let Sq be that function from N to N given by: Sq(n) = n · n.
i. Set K = {2}. Exhibit K1, K2, and K3. Say in words what

ClSq({2}) is.
ii. Do the same with K = {1}.
iii. Do the same with K = ∅. Is ∅ closed under Sq?
iv. What is ClSq(EVEN).

b. Consider the set V = {P,Q,R,&,NEG, ), (, }.
i. Define a unary function NEG from V ∗ → V ∗ which prefixes

’NEG’ to each s ∈ V ∗.
ii. Define a binary function AND which maps each pair 〈s, t〉

of elements to its conjunction.
iii. Write AF (“atomic formula”) for {P,Q,R}. So AF0 is

{P,Q,R}. Consider the closure of AF under NEG and AND.

i. What is the least n such that NEG(P & NEGQ) is in
AFn?

ii. Give an explicit argument that NEG(P & NEGQ) ∈
ClAND,NEG(AF). Your argument might begin: Q ∈
AF0. So NEGQ ∈ AF1...

iii. Prove that for all ϕ ∈ ClAND,NEG(AF) the number of

parenthesis occurring in ϕ is even. Here is how to set up
the proof:
Let M = {ϕ ∈ ClAND,NEG(AF)

| the number of parenthesis in ϕ is even}.
Step 1: Show that AF ⊆M .
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Step 2: Show that M is closed under NEG and AND.

Note that AND and NEG are functions defined on V ∗ and so apply
to strings over that vocabulary. For example, NEG(&&))Q) = NEG⌢
&&))Q and AND(QNEG((, RRR) = (QNEG((⌢&⌢). The functions
must be defined independently of the set we form the closure of.

Exercise 2.15. Prove that for all sets A,
⋃P(A) = A.

We conclude this chapter by stating and proving a fundamental the-
orem in set theory due to Georg Cantor in the late 1800s. For the
linguistic material covered in subsequent chapters of this book it is not
necessary to understand the proof of this theorem. But it is one of the
foundational theorems in set theory, and our brief introduction actually
gives us (almost) enough to follow the proof, so we give it here. The
basic claim of the theorem is that any set is strictly smaller than its
power set. So forming power sets is one way of forming new sets from
old that always leads to bigger sets. In presenting the properly formal
version of the theorem we do need to assume the Schroeder-Bernstein
mentioned earlier and stated more rigorously here (we give a proof at
the end of Chapter 8):

Theorem 2.2 (Schroeder-Bernstein). For all sets A,B, A ≈ B iff
there is a bijection from A into B.

(Our original definition of ≈ just says there is an injection from A
to B and an injection from b to A.)

Theorem 2.3 (Cantor). For all sets A, A ≺ P(A).

You might try a few simple examples to see that the theorem holds
for them. For example, ∅ ≺ P(∅) = {∅} since |∅| = 0 and |{∅}| = 1.
Similarly {a} ≺ P({a}) = {∅, {a}}, so {a} has one element, P({a}) has
2. If A has just 2 elements then P(A) has 4 elements. If A has just 3
elements P(A) has 8. In general for A finite with n elements, how many
elements does P(A) have?

We now prove theorem 2.3.

Proof. Let A be an arbitrary set. We show that A ≺ P(A). First we
show that A � P(A). Clearly the function f mapping each element
α in A to {α} is a map from A into P(A) which is one to one. Thus
A � P(A).

Now we show that there is no surjection from A to P(A). From this
it follows that there is no bijection from A to P(A). By Schroeder-
Bernstein then A 6≈ B. Thus A ≺ P(A).

Let h be an arbitrary function from A into P(A). We show that h is
not onto. For each x ∈ A, h(x) ⊆ A, so it makes sense to ask whether
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x ∈ h(x) or not. Let us writeK for {x ∈ A | x /∈ h(x)}. TriviallyK ⊆ A,
so K ∈ P(A). We show that for every α ∈ A, h(α) 6= K, whence we
will infer that h is not onto. Suppose, leading to a contradiction, that
there is an α in A such that h(α) = K. Then either α ∈ K or α /∈ K
(this is a logical truth). If α ∈ K then since α ∈ A we infer by the
defining condition for K that α /∈ h(α). But h(α) is K, so we have a
contradiction: α ∈ K and α /∈ K. Thus the assumption that α ∈ K
is false. So α /∈ K. But again since h(α) = K then α /∈ h(α) and
since α ∈ A, α satisfies the condition for being in h(α). And since
h(α) = K we infer that α ∈ K, contradicting that α /∈ K. Thus the
assumption that there is an α such that h(α) = K is false. So for all α,
h(α) 6= K. Thus h is not onto. Since h was an arbitrary function from
A into P(A) we have that all such h fail to be onto. Thus A 6≈ B, so
A ≺ P(A) completing the proof.

Corollary 2.4. N ≺ P(N).

This follows immediately as a special case of Cantor’s Theorem.

Now let us define the following infinite sequence H of sets:

(19) H(0) =df N and for all n, H(n+ 1) =df P(H(n)).

Thus we have an infinite sequence of increasingly large infinite sets:

(20) N ≺ P(N) ≺ P(P(N)) ≺ · · · .

2.6 Bijections and the Sizes of Cross Products

Cantor’s power set theorem shows that forming power sets always leads
to bigger sets, since A ≺ P(A), all A. It is natural to wonder whether
there are other operations that always lead to bigger sets. Here are
two natural candidates (neither of which works, but this is not obvious
without proof).

First if A and B are disjoint, non-empty finite sets then A ≺ A ∪B
and B ≺ A ∪ B. So union looks like it leads to larger sets, but this
fails when A or B are infinite. Consider first a near trivial case: Let
A = {a} ∪ N = {a, 0, 1, . . .}. Consider the mapping in (21b), indicated
informally in (21a):

(21) a. x = a 0 1 · · ·
F (x) = 0 1 2 . . .

b. Define F : A→ N by setting F (a) = 0 and for all natural
numbers n, F (n) = n+ 1.

It is easy to see that F is a bijection from A into N, thus A ≈ N by
the Schroeder-Bernstein Theorem. Still, we may wonder if the union
of two disjoint infinite sets leads to sets bigger than either of those we
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take the union over. Again the answer is no. Here is simple, non-trivial,
case:

(22) Set N+ = {1, 2, . . .} and N− = {−1,−2, . . .}. Then
N ≈ N+ ∪ N−. Elements of N+ are called positive integers and
elements of N− are negative integers.

A bijection from N+ ∪ N− into N is informally sketched in (23a) and
given formally in (23b):

(23) a. 1 −1 2 −2 3 −3 · · ·
↓ ↓ ↓ ↓ ↓ ↓
1 2 3 4 5 6 · · ·

b. Define F from N+ ∪ N− into N by:

F (n) =

{

2n− 1 if n is positive
−2n if n is negative.

Clearly F is one to one, and is in fact onto. So N+ ∪ N− ≈ N. Thus
taking (finite) unions does not always increase size—indeed when A
and B are infinite A ∪ B has the same size as the larger of A,B (that
is, A ∪B ≈ A if B � A, otherwise A ∪B ≈ B).

Does forming cross products produce sets larger than the ones we
form the product from? Certainly for A and B finite sets each with at
least two elements A ≺ A×B and B ≺ A×B since |A×B| = |A| · |B|.
But what about the infinite case? It doesn’t seem silly to think that
there are more pairs of natural numbers than natural numbers. After
all, each natural number is paired with infinitely many others in forming
N × N, and there are infinitely many such sets of pairs in N × N. But
again it turns out that N × N ≈ N, though it is harder to see than in
the case of unions. (24a) gives an explicit bijection from N × N to N,
and (24b) provides a pictorial representation illustrating the bijection
(Büchi (1989) pg. 22, Enderton (1977) pg. 130).

(24) a. Define F : N× N → N by
F (x, y) = x+ ((x+ y + 1)(x+ y)/2.
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b. 0 1 2 3 4 5 · · ·
0 0 2 5 9 14 20 · · ·
1 1 4 8 13 19

. . .

2 3 7 12 18
. . .

3 6 11 17
. . .

4 10 16
. . .

5 15
. . .

...
...

We close this section by noting three basic characteristics of bijec-
tions, ones that arise often in formal studies. First, for any set A, let
us define a function IdA from A to A by:

(25) For all α ∈ A, IdA(α) = α.

IdA is the identity function on A. It is clearly a bijection. Second, for
A,B,C arbitrary sets,

(26) If h is a bijection from A to B then h−1 (read: “h inverse”) is a
bijection from B to A, where for all α ∈ A, all β ∈ B,

h−1(β) = α iff h(α) = β.

In other words, h−1 maps each β in B to the unique α in A which h
maps to β. (There is such an α because h is onto, and there isn’t more
than one because h is one to one). So h−1 just runs h backwards. The
domain of h−1 is B, h−1 maps distinct β and β′ to distinct α and α′

in A (otherwise h would not even be a function) so h−1 is one to one,
and finally h−1 is onto since each α in A gets mapped to some β in B.
And thirdly,

(27) Given a bijection h from A to B and a bijection g from B to C
we define a bijection noted g ◦ f (read: “g compose f”) from A
to C as follows: for all α ∈ A,

(g ◦ f)(α) = g(f(α)).

Clearly g ◦ f is one to one: if α 6= α′ then f(α) 6= f(α′) since f is one
to one, thus (g ◦ f)(α) = g(f(α)) 6= g(f(α′)), since g is one to one, this
equals g ◦ f(α′)). And since f is onto, the range of f is all of B, and
since g is onto the range of g ◦ f is all of C, so g ◦ f is onto, whence
g ◦ f is a bijection.

So far we have just used bijections to show that two sets are the
same size. Deeper uses arise later in showing the different mathematical
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structures are isomorphic. Even here these definitions allow us to draw
a few conclusions that reassure us that we have provided a reasonable
characterization of “has the same size as”. For one, if A ≈ B, i.e. there
is a bijection h from A into B, then h−1 is a bijection from B into A, so
we infer that B has the same size as A. If our mathematical definition
of has the same size as allowed that some A had the same size as
some B but did not support the inference that B had the same size as
A then our mathematical definition would have failed to capture our
pretheoretical notion. Similarly the fact that the composition of two
bijections is a bijection assures us that if A has the same size as B, and
B the same size as C, then A has the same size as C.

Some notation and terminology.

1. As already noted, a set of the same size as N is said to be denu-
merable. A set which can be put in a one to one correspondence
with a subset of N is called countable. So countable sets are either
finite or denumerable. When a countable set is denumerable we
tend to say it is countably infinite.

2. We often abbreviate the statement x ∈ A and y ∈ A by x, y ∈ A.
And we abbreviate A ⊆ X and B ⊆ X by A,B ⊆ X.

2.7 Suggestions for Further Study

If you are interested in getting more background on set theory, we
recommend Enderton (1977) and Halmos (1974).

2.8 Addendum: Russell’s Paradox

In defining sets by abstraction we require that the set so defined be a
subset of an antecedently given set. And we consider all the members
of that set that satisfy whatever requirement we are interested in. This
approach is one way to avoid what is known as Russell’s Paradox,
which we give here for the interested reader, noting that paradoxes
tend to be confusing and understanding the paradox deeply is a not a
prerequisite for following the rest of this book. The paradox, historically
very important in the development of set theory, arises if we allow
ourselves to (try to) define sets without requiring that the elements in
the defined set be drawn from an antecedently given set. If we could do
this then (this begins Russell’s Paradox) we would consider A below to
be a set:

(28) A = {x | x is a set and x /∈ x}.
So suppose that A, as apparently defined, is a set. Is it a member of
itself? Suppose (leading to a contradiction) that A ∈ A. Then A fails
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the condition for being in A, so A /∈ A, a contradiction. Thus the
assumption that A ∈ A is false. That is, A /∈ A. But then, since A is
a set by assumption, A meets the conditions for being a member of A.
That is, A ∈ A, contradiction. Thus the assumption that A was a set
must be false.
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Syntax I: Trees and Order Relations

We think of a language as a set of meaningful, pronounceable (or
signable) expressions. A grammar is a definition of a language. As
linguists, we are interested in defining (and then studying) languages
whose expressions are approximately those of one or another empiri-
cally given natural language (English, Japanese, Swahili, . . .). If a pro-
posed grammar of English, for example, failed to tell us that Every cat
chased every mouse is an expression of English, that grammar would
be incomplete. If it told us that Cat mouse every every chased is an
expression of English, it would be unsound. So designing a sound and
complete grammar for a natural language involves considerable empir-
ical work, work that teaches us much about the structure and nature
of human language.

And as we have seen in Chapter 1, a grammar for a natural language
cannot just be a finite list of expressions: natural languages present too
many expressions to be listed in any enlightening way. Moreover, a
mere list fails to account for the productivity of natural language—our
ability to form and interpret novel utterances—as it fails to tell us how
the form and interpretation of complex expressions depends on those
of its parts.

Consequently, a grammar G of a language is presented in two gross
parts: (1) a Lexicon, that is, a finite list of expressions called lexical
items, and (2) a set of Rules which iteratively derive complex expres-
sions from simpler ones, beginning with the lexical items. The language
L(G) generated by the grammar is then the lexical items plus all those
expressions constructable from them by applying the rules finitely many
times.

In this chapter, we present some standard techniques and formalisms
linguists use to show how complex expressions incorporate simpler ones.
So here we concentrate on generative syntax, ignoring both semantic

47
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representation (see Chapters 7–9) and phonological representation. In
Chapter 4, we consider a specific proposal for a grammar of a fragment
of English.

3.1 Trees

The derivation of complex expressions from lexical items is commonly
represented with a type of graph called a tree. Part, but not all, of what
we think of as the structure of an expression is given by its tree graph.
For example, we might use the tree depicted in (1) to represent the
English expression John likes every teacher (though the tree linguists
would currently use is more complicated than (1) and would indicate
that likes is present tense, as opposed to the simple past tense form
liked).

(1) S

��
��

�
II

III
II

I

DP VP

��
��

�
::

::
:

TV DP

��
��

�
??

??
??

Det N

John likes every teacher

This tree is understood to represent a variety of linguistic informa-
tion. First, its bottommost items John, likes, every, and teacher are
presented here as underived expressions (lexical items) having the cat-
egories indicated by the symbols immediately above them. Specifically,
according to this tree (given here for illustrative purposes only), John
is a DP (Determiner Phrase), likes is a TV (Transitive Verb), every is
a Det (Determiner), and teacher is a N (Noun).

The tree in (1) identifies not only the lexical items John likes every
teacher is constructed from, it also defines their pronunciation order.
Specifically, we use the convention that the word written leftmost is
pronounced first, then the next leftmost item, and so on. (Other writing
conventions could have been used: in Hebrew and Arabic items written
rightmost are pronounced first; in Classical Chinese reading may go
from top down, not left to right or right to left).

Finally, (1) identifies which expressions combine with which oth-
ers to form complex ones, resulting ultimately in the expression John
likes every teacher. The expressions a derived expression is built from
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are its constituents. (1) also identifies the grammatical category of
each expression. This in (1), every and teacher combine to form a con-
stituent every teacher of category DP. The TV knows combines with
this constituent to form another constituent, knows every teacher of
category VP. And this in turn combines with John of category DP
to form John likes every teacher of category S. Note that some sub-
strings of the string John likes every teacher are not constituents of it
according to (1): they were not used in building that particular S. For
example, knows every is not a constituent, and that string has no cate-
gory. Similarly, John knows and John knows every are not constituents
of (1).

The tree in (1) does not exhibit the rules that applied to combine
various words and phrases to form constituents. In the next chapter,
we formulate some such rules. Here we just suggest some candidates so
that the reader can appreciate the sense in which (1) records the deriva-
tional history of John likes every teacher, even though some structurally
relevant information has been omitted.

To build the DP every teacher from the Det every and the N teacher,
the simplest rule would be the concatenative one whose effect is given
in (2):

(2) if s is a string of category Det and t is a string of category N,
then s⌢t is a string of category DP.

Recall that s⌢t denotes the concatenation of the sequences s and t.
Similarly, we might derive the VP knows every teacher by concate-

nating knows of category TV with every teacher of category DP. And
then we might derive the S John likes every teacher by concatenating
John with that VP string.

Linguists commonly assume that the trees they use to represent the
derivation of expressions are in fact derived by concatenative functions
of the sort illustrated in (2). Such functions will take n expressions
as arguments and derive an expression by concatenating the strings of
those expressions, perhaps inserting some constant elements. For exam-
ple, we might consider a function of two arguments, which would map
John of category DP and cat of category N to John’s cat of category
DP. This function introduces the constant element ’s.

We are not arguing here that the rules of a grammar—its structure
building functions—should be concatenative, we are simply observing
that linguists commonly use such functions. And this in turn has a lim-
iting effect, often unintended, on how expressions can be syntactically
analyzed and hence how they can be semantically interpreted. Here is
an example which illustrates the use of a non-concatenative function. It
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introduces some non-trivial issues taken up in more detail in our later
chapters on semantics.

Ss like (3) present a subtle ambiguity. (3) might be interpreted as in
(a), or it might be interpreted as in (b).

(3) Some editor read every manuscript.

a. Some editor has the property that he read every
manuscript.

b. Every manuscript has the property that some editor read
it.

One the a-reading, a speaker of (3) asserts that there is at least one
editor who read all the manuscripts. But the b-reading is weaker. It
just says that for each manuscript, there is some editor who read it.
Possibly different manuscripts were read by different editors. Thus in
a situation in which there are just two editors, say Bob and Sue, and
three manuscripts, say m1, m2, and m3, and Bob read just m1 and
m2, and Sue read just m2 and m3, we see that (3) is true on the b-
reading: every manuscript was read by at least one editor. But (3) is
false on the a-reading, since no one editor read all of the manuscripts.
Ambiguities of this sort are known as scope ambiguities and are taken
up in Chapter 8.

One approach to representing these ambiguities originates with the
work of Montague (1974). This approach says that (3) is syntactically
ambiguous – derived in two interestingly different ways. In one way,
corresponding to the a-reading, it is derived by the use of concatenative
functions as we have illustrated for (1). The difference this time is that
the last step of the derivation concatenates a complex DP some editor
with the VP read every manuscript; earlier we had used not a complex
DP but rather the lexical DP John. The derivation of the S whose
interpretation is the b-reading is more complicated. First we derive by
concatenation a VP read it using the pronoun it. Then we concatenate
that with the DP some editor to get the S Some editor read it. Then
we form every manuscript by concatenation as before. In the last step,
we derive Some editor read every manuscript by substituting every
manuscript for it. So the last step in the derivation is a substitution
step, not a concatenation step. It would take two arguments on the left
in (4) and derive the string on the right.

(4) every ms, some editor read it =⇒ some editor read every ms

Let us emphasize that while the a-reading has a standard tree deriva-
tion, the b-reading does not, since read every manuscript is not formed
solely by concatenative functions. Thus if we were to limit ourselves to
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the use of standard trees in representing derivations of natural language
expressions, we would exclude some ways of compositionally interpret-
ing semantically ambiguous expressions. For the record, let us formally
define the core substitution operation.

Definition 3.1. Let s be a string of length n > 0. Let t be any string,
and let i be a number between 1 and n. Then s(i/t) is the string of
length n whose ith coordinate is t and whose jth coordinate is sj , for
all j 6= i. We call s(i/t) the result of substituting the ith coordinate of
s by t.

Exercise 3.1. Complete the following in list notation.

a. 〈2, 5, 2〉(2/7) = .

b. 〈2, 2, 2〉(2/7) = .

c. 〈John, ’s, cat〉(3/dog) = .

d. 〈every, cat〉(2/fat cat) = .

Trees as mathematical objects Having presented some motivation
for the linguists’ use of trees, we now formally define these objects
and discuss several of the notions definable on trees that linguists avail
themselves of. For convenience, we repeat the tree in (1).

(5) S

ttt
ttt

QQQQQQQQQQ

DP VP

wwww
GGGG

TV DP

wwww
IIIII

Det N

John likes every teacher

The objects presented in (5) are linguistic labels—names of gram-
matical categories, such as S, DP, VP, etc., or English expressions such
as John, knows, etc. These labels are connected by lines, called branches
or edges. We think of the labels as labeling nodes (or vertices), even
though the nodes are not explicitly represented. But note, for example,
that the label DP occurs twice in (5), naming different nodes. The node
representing the category of John is not the same as that representing
the category of every teacher, even though these two expressions have
the same category. So we must distinguish nodes from their labels, since
different nodes may have the same label. In giving examples of trees be-
low, we shall commonly use numbers as nodes, in which case (5) could
receive a representation as in (6).
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(6) (1, S)
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(8, John) (9, likes) (10, every) (11, teacher)

Now we can say that node 2 and node 5 have the same label, DP.
Our formal definition of tree will include nodes, and their absence on
specific occasions is just one more typical instance of simplifying a
notation when no confusion results.

Now let us consider what is distinctive about the graph structure
of trees. Some nodes as we see are connected to others by a line (a
branch). If we can read down along branches from a node x to a node
y, we say that x dominates y. And the distinctive properties of trees
lie in the properties of this dominance relation. First, we understand
that if we can move down from a node x to a node y (so x dominates
y), and we can move down from y to a node z (so y dominates z), then
we clearly can move down from x to z, whence x dominates z. Thus
dominates is a transitive relation.

We have already seen one transitive relation, namely inclusion of
subsets (⊆): given a collection of sets, we see that if X ⊆ Y and Y ⊆ Z,
then also X ⊆ Z. Many common mathematical relations are transitive.
For example, the ≥ relation on natural numbers is transitive: if n ≥ m
and m ≥ p, then n ≥ p. So let us define more generally.

Definition 3.2. R is a binary relation on a set A if R is a subset of
A × A. Instead of writing (x, y) ∈ R, we often write xRy, read as “x
stands in the relation R to y.”

In general, to define a binary relation R on a set A we must say for
each choice x and each choice y of elements from A whether xRy or
not. In particular this means that we must say for x ∈ A, whether xRx
or not.

In what follows we are concerned with whether various relations we
define of interest are reflexive, antisymmetric, asymmetric, or transitive.
These notions are defined below.
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Definition 3.3. A relation R on a set A is transitive if for all x, y,
z ∈ A, if xRy and yRz, then xRz.

As we have seen, the dominates relation among nodes in a given tree
is transitive. Further, dominates is “loop-free”, meaning that we can
never have two different nodes each of which dominates the other. The
traditional term for “loop free” is antisymmetric:

Definition 3.4. A binary relation R on a set A is antisymmetric iff for
x, y ∈ A, xRy and yRx jointly imply x = y. (Antisymmetry should not
be confused with asymmetry, defined as follows: A binary relation R
on a set A is asymmetric iff for x, y ∈ A, if xRy, then yRx is false. For
example the proper subset relation ⊂ is asymmetric: if A is a proper
subset of B, B is certainly not a subset of A, hence not a proper subset
of A. Similarly the ‘is strictly less than’ relation < in arithmetic is
asymmetric, as is the ’is a parent of’ relation on people.

Again, ⊆ is antisymmetric. If X ⊆ Y and Y ⊆ X, then X and Y
have the same members and are hence equal. Similarly, one checks that
the arithmetical ≥ is antisymmetric.

Note that the antisymmetry of a relation R still allows that a given
element x stand in the relation R to itself. In what follows, we treat
dominates as a reflexive relation, meaning that each node is understood
to dominate itself. For the record:

Definition 3.5. A binary relation R on a set A is reflexive iff for
x ∈ A, xRx. R is irreflexive iff for x ∈ A, it is not the case that xRx.
We write ¬xRx in this case as well.

Now the cluster of properties that we have adduced for dominates,
transitivity, antisymmetry, and reflexivity, is a cluster that arises often
in mathematical study. We note:

Definition 3.6. A binary relation R on a set A is a reflexive partial
order iff R is reflexive, transitive, and antisymmetric. The pair (A,R)
is often called a partially ordered set or poset

In practice, when we refer to partial order relations, we shall assume
that they are reflexive unless explicitly noted otherwise. Note that ⊆
and ≥ are reflexive partial orders.

Exercise 3.2. Exhibit a binary relation R on {a, b, c} which is neither
reflexive nor irreflexive.

Exercise 3.3. We define a binary relation R on a set A to be symmetric
if whenever xRy then also yRx. R is asymmetric if whenever xRy then
it is not the case that yRx. Let R be a reflexive partial order on a set
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A, and define another binary relation SR, strict-R, on A by

for all x, y ∈ A, xSRy iff xRy and x 6= y.

Prove that SR is irreflexive, asymmetric, and transitive. Such relations
will be called strict partial orders.

For example, the strictly greater-than relation on numbers, >, is the
strict-≥ relation. So by this exercise, it is is a strict partial order. So is
the strict-⊆ relation defined on any collection of sets. This relation is
written ⊂.

Exercise 3.4. Given a relation R on a set A, we define a relation R−1

on the same set A, called the converse of R by: xR−1y iff yRx, for all
x, y ∈ A. Show that

a. If R is a reflexive partial order, so is R−1.

b. If R is a strict partial order, so is R−1.

In each case, state explicitly what is to be shown before you show it.

Returning to dominates, it has two properties that go beyond the
partial order properties. First, it has a root, a node that dominates all
nodes. In (6) it is node 1, the node labeled S.

Observation If R is a partial order relation on a set A, then there
cannot be two distinct elements x and y such that each bears R to all
the elements of A. The reason is that if both x and y have this property,
then each bears R to the other. Hence by the antisymmetry of R, we
have x = y. This shows that x and y are not distinct after all.

The second and more important property of the dominance order is
that its branches never coalesce: if two nodes dominate a third, then one
of those two dominates the other. We summarize these conditions below
in a formal definition. The objects we define are unordered, unlabeled
trees which we call simple trees (usually omitting ‘simple’). We do not
impose a left-right order on the bottommost nodes, and we do not
require that nodes be labeled. For this reason, simple trees might well
be called mobiles. Simple trees are ideal for studying pure constituent
structure. Once they are understood, we add additional conditions to
obtain the richer class of trees that linguists use in practice.

Definition 3.7. A simple tree T is a pair (N,D), where N is a set
whose elements are called nodes and D is a binary relation on N called
dominates, satisfying (a) - (c):

a. D is a reflexive partial order relation on N .

b. the root condition: There is a node r which dominates every
node. This r is provably unique and called the root of T .
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c. chain condition For all nodes x, y, z, if xDz and yDz, then
either xDy or yDx. 1

On this definition, the two pictures in (7) are the same (simple) tree.
The difference in left-right order of node notation is no more significant
then the left-right order in set names like ‘{2, 3, 5}’; it names the same
set as ‘{5, 2, 3}’.
(7) 5 66��

6 7

5 66��
7 6

Unordered trees are frequently used to represent structures of quite
diverse sorts – chain of command hierarchies, classification schemes,
genetic groupings of populations or languages. These often do not have
a left-right order encoded. For example, Figure 3 is a tree representing
the major genetic groupings of Germanic languages.
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Anglo-
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O. Saxon
Low Fran-
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Mid. Eng.
Mid.-Low
German

Mid.
Dutch

Swedish
Danish

Norwegian,
Icelandic,
Faroese

German Yiddish Frisian English
Platt-
deutsch

Dutch,
Flemish

FIGURE 3 The major Germanic Languages

The root node of Figure 3 represents a language, Germanic, from
which all other languages shown are genetically descended. The leaves

1The reason for this name is that the chain condition as defined above is equiv-
alent to the assertion that the set of nodes dominating any given node is a chain,
that is, linearly ordered, by D. For the definition of a linear order, see page 72.
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(at the bottom) are languages or small groups of closely related lan-
guages. Notice that Gothic is also a leaf. To see how closely related two
languages are, read up the tree until you find the first common ancestor.
For example, (Modern) German and Yiddish are more closely related
than either is to (Modern) English, since they are descended from High
German, itself coordinate with Low German. So the least common an-
cestor of English and German is W. Germanic, itself a proper ancestor
of High German.

And observe that the left-right order on the page of the names of the
daughter languages has no structural significance. There is no sense in
which Icelandic is to the left of, or precedes, English, or Dutch to the
right of English

Let us consider in turn the three defining conditions on trees. The
discussion will be facilitated by the following definitions:

Definition 3.8. Let T = (N,D) be a tree. Then for all x, y ∈ N ,

a. x strictly dominates y, xSDy, iff xDy and x 6= y.

b. x immediately dominates y, xIDy, iff x strictly dominates y, but
there is no node z such that x strictly dominates z and z strictly
dominates y.

In drawing pictures of trees, we just draw the ID relation. So in
(6), 1ID2 and 1ID3, but ¬1ID4. This last fact holds despite the fact
that 1D4 and indeed 1SD4. Observe that when ϕ is a sentence, we
sometimes write ¬ϕ for the sentence “it is not the case that ϕ”.

Definition 3.9. A tree T = (N,D) is finite if its node set N is finite.

In this book we only consider finite trees.
Consider the dominance relation D on trees. Because D is an or-

der relation (transitive and antisymmetric), we know that there can be
no non-trivial cycles, that is, no two sequences of two or more nodes
that begin and end with the same node and in which each node (ex-
cept the last) immediately dominates the next one. Such a sequence
couldn’t have the form 〈x, x, x, . . .〉 because no node x can immedi-
ately dominate itself (since then x would strictly dominate itself and
hence be non-identical to itself). Nor could such a sequence have the
form 〈x, y, . . . , x, . . .〉, with x 6= y, since then we could infer that xDy
and yDx, whence x = y by antisymmetry of D. This contradicts our
assumption.

Second, linguists often don’t consider the case where a given node
might dominate itself. Usually when we speak of x dominating y, we
are given that x and y are different nodes. In case where x and y are
intended as different but not independently given as different, it would
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be clearer for the linguist to say “x strictly dominates y”.
Third, our tree pictures do not include the transitivity edges – there

is no edge directly from 1 to 4 in (6), for examples. Nor do we have
to put in the reflexivity loops, the edges from each node to itself. We
just represent the immediate dominance relation (sometimes called the
cover relation), the rest being recoverable from this one by the assump-
tions of transitivity and reflexivity. Now, of the three conditions that
the dominance relation D must satisfy, the root condition rules out
relations like those with diagrams in (8):
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9 4 7 8

In (8a) there is clearly no root, that is no node that dominates every
node. And (8b) is just a pair of trees. There is no root since no node
dominates both a and 5. (A graph with all the properties of a tree
except the root condition is sometimes called a forest.) So neither (8a)
nor (8b) are graphs of trees.

The truly distinctive condition on trees, the one that differentiates
them from many other partial orders, is the chain condition. Consider
the graph in (9), as always reading down.
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(9) violates the chain condition: for example, both 2 and 3 dominate
5, but neither 2 nor 3 dominates the other.

We present in Figure 4 a variety of linguistic notions defined on
simple trees (and thus ones that do not depend on labeling or linear
order of elements).

Exercise 3.5. For each graph below, state whether it is a tree graph
or not (always reading down for dominance). If it is not, state at least
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one of the three defining conditions for trees which fails.
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Exercise 3.6. Below are four graphs of trees, T1, . . ., T4. For each
distinct i, j between 1 and 4, state whether Ti = Tj or not. If not, give
one reason why it fails.

T1 1
 11

2 3 22��
6 4 5

T2 1
 11

3
�� 22 2

5 4 6

T3 1
 11

2
�� 22 6

4 5 3

T4 1
 11

2
�� 22 3

4 6 5

Exercise 3.7. Referring to the tree below, mark each of the statements
T (true) or F (false) correctly. If you mark F , say why.
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yyy
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E

6 7 10 8

a. 4 and 9 are sisters b. 2SD7 c. 1ID8
d. 2 and 8 are sisters e. 1 is mother of 8 f. 3 is a leaf
g. depth(5) = 3 h. depth(T ) = depth(7) i. 5IND7
j. depth(8) > depth(2) k. depth(7) = depth(10) l. 2CC5
m. 〈4, 2, 3, 2〉 is a path n. 〈7, 5, 4, 2, 3〉 is a path o. 5CC3
p. 〈8〉 is a path

q. 8 asymmetrically c-commands 3.
r. For all nodes x, y, if x is mother of y, then y is mother of x.

We conclude with an important fact about trees:

Theorem 3.1. If x and y are distinct nodes in a tree T , then there is
exactly one path from x to y in T .



Syntax I: Trees and Order Relations / 59

Let T = (N,D) be a tree, and let x and y be nodes of N .

a. x is an ancestor of y, or, dually, y is a descendant of x, iff xDy.

b. x is a leaf (also called a terminal node) iff {z ∈ N | xSDz} = ∅.
c. the degree of x, noted deg(x), is the size of {z ∈ N | xIDz}.

(Some texts write out-degree where we write simply degree).
So if z is a leaf then deg(z) = 0.

d. x is a n-ary branching node iff |{y ∈ N | xIDy}| = n. We write
unary branching for 1-ary branching and binary branching for
2-ary branching. T itself is called n-ary branching if all nodes
except the leaves are n-ary branching. In linguistic parlance, a
branching node is one that is n-ary branching for some n ≥ 2.
(So unary branching nodes are not called branching nodes by
linguists).

e. x is a sister (sibling) of y iff x 6= y and there is a node z such
that zIDx and zIDy.

f. x is a mother (parent) of y iff xIDy; Under the same conditions
we say that y is a daughter (child) of x.

g. The depth of x, noted depth(x), is |{z ∈ N | zSDx}|.
h. Depth(T ) = max{depth(x) | x ∈ N}. This is also called the

height of T . Note that {depth(x) | x ∈ N} is a finite non-empty
subset of N. (Any finite non-empty subsetK of N has a greatest
element, noted max(K).)

i. x is (dominance) independent of y iff neither dominates the
other. We write IND for is independent of. Clearly IND is a
symmetric relation. This relation is also called incomparability.

j. A branch is a pair (x, y) such that xIDy.

k. p is a path in T iff p is a sequence of two or more distinct nodes
such that for for all i, 1 ≤ i < |p|, piIDpi+1 or pi+1IDpi.

l. x c-commands y, noted xCCy, iff

i. x and y are independent, and
ii. every branching node which strictly dominates x also

dominates y.

We say that x asymmetrically c-commands y iff x c-commands
y but y does not c-command x.

FIGURE 4 Linguistic notions defined on trees.
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The topic of trees is standard in mathematics and computer science
books (these will be on topics like graph theory, discrete mathematics or
data structures). But there, the basic definition is often graph theoretic:
one takes vertices and symmetric edges as primitive, and the definition
of a tree is as in Theorem 3.1: between every two vertices there is a
unique path. One can also go the other way, starting with a tree in the
graph-theoretic sense, specify a root, and then recover the dominance
relation.

3.2 C-command

Figure 4 defines a number of concepts pertaining to trees. Perhaps
the only one of these that originates in linguistics is c-command. We
want to spell out in detail the motivations for this concept. Here is
one: Reflexive pronouns (himself, herself, and a few other self forms)
in Ss like (10) are referentially dependent on another DP, called their
antecedent.

(10) John’s father embarrassed himself at the meeting.

In (10) John’s father but not John is the antecedent of himself.
That is, (10) only asserts John’s father was embarrassed, not John. A
linguistic query: Given a reflexive pronoun in an expression E, which
DPs in E can be interpreted as its antecedent? (11) is a necessary
condition for many expressions:

(11) Antecedents of reflexive pronouns c-command them.

Establishing the truth of a claim like (11) involves many empiri-
cal claims concerning constituent structure which we do not undertake
here. Still, most linguists would accept (12) as a gross constituent anal-
ysis of (10). (We “cover” the proper constituents of at the meeting with
the widely used “triangle”, as that internal structure is irrelevant to the
point at hand).
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We see here that node 2, John’s father, does c-command node 11,
himself. Clearly 2 and 11 are independent, and every branching node
which strictly dominates 2 also dominates 12 since the only such node
is the root 1. In contrast, node 7, John does not c-command 11, since
both 2 and 4 are branching nodes which strictly dominate 7 but do not
dominate 11.

One might object to (11) as a (partial) characterization of the con-
ditions regulating the distribution of reflexives and their antecedents
on the grounds that there is a less complicated (and more traditional)
statement that is empirically equivalent but only uses left-right order:

(13) Antecedents of reflexive pronouns precede them

In fact for basic expressions in English the predictions made by (11)
and (13) largely coincide since the c-commanding DP precedes the re-
flexive2. But in languages like Tzotzil (Mayan: see Aissen (1987)) and
Malagasy (Malayo-Polynesian; Keenan (1995)) in which the basic word
order in simple active Ss is VOS (Verb + Object + Subject) rather than
SVO (Subject + Verb + Object) as in English, we find that antecedents
follow reflexives but still c-command them. So analogous to (10), speak-
ers of Malagasy understand that (14) only asserts that Rakoto’s father
respects himself, but says nothing about Rakoto himself. So c-command
wins out in some contexts in which it conflicts with left-right order.
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2Some known empirical problems with the c-command condition are given by:

i. It is only himself that John admires.

ii. Which pictures of himself does John like best?

iii. The pictures of himself that John saw in the post office.

But these expressions are derivationally complex. It may be that c-command holds
in simple expressions (e.g., John admires only himself) and that the antecedent-
reflexive relation is preserved under the derivation of more complex ones.
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Rakoto’s father respects himself (Malagasy)

Pursuing these observations it is natural to wonder whether c-
command is a sufficient condition on the antecedent-reflexive relation.
That is, can any DP which c-commands a reflexive be interpreted as
its antecedent? Here the answer is a clear negative, though moreso for
Modern English than certain other languages. Observe first that in
(15a), the DP every student is naturally represented as a sister to the
VP thinks that Mary criticized himself and

(15) a. ∗Every student thinks that Mary criticized himself
b. ∗Every student thinks that himself criticized John

And since himself lies properly within that VP, we have that every
student (asymmetrically) c-commands himself. But it cannot be inter-
preted as its antecedent. Comparable claims hold for (15b). But pat-
terns like those in (15), especially (15b), are possible in a variety of
languages: Japanese, Korean, Yoruba, even Middle English and Early
Modern English:

(16) (Japanese)

1

3

54

7

to
that

6

2

Taroo-wa
Taroo-top

zibun-ga tensai da
self-Nom genius is

omotte iru
thinks is

lllllllllllll

OOOOOOOOOOO

��
��
��

22
22

22

ooooooooooo

OOOOOOOOOOO

<<
<<

<<
<

��
��

��
�

ooooooooooo

OOOOOOOOOOO

sssssss
KKKKKKK

Taroo thinks that he (Taroo) is a genius.

(17) . . . a Pardonere . . . seide that hymself myghte assoilen hem alle
Piers Plowman c.1375 . . . a Pardoner . . . said that himself might
absolve them all Keenan (2007)

(18) he . . . protested . . ., that himselfe was cleere and innocent
Dobson’s Drie Bobbes, 1607. Keenan (2007)

(19) But there was a certain man, . . . which . . . bewitched the people
of Samaria, giving out that himself was some great one (King
James Bible, Acts 8.9, 1611)

So the possible antecedents for a reflexive pronoun in English thus
appear to be a subset of the c-commanding DPs with the precise de-
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limitation subject to some language variation. See Büring (2005) for an
overview discussion.

Exercise 3.8. For each condition below exhibit a tree which instanti-
ates that condition:

a. CC is not symmetric.

b. CC is not antisymmetric.

c. CC is not transitive.

d. CC is not asymmetric.

In each case say why the trees show that CC fails to have the property
indicated. We note regarding part (c) that asymmetric c-command is
a transitive relation.

Exercise 3.9. In any tree,

a. if aCCb and bDx does aCCx?

b. Do distinct sisters c-command each other?

c. c-command is irreflexive. Why?

d. For all nodes a, {x ∈ T | xDa} 6= ∅. Why?

3.3 Sameness of Structure: Isomorphism

Our interest in trees concerns the structural relations between nodes
– relations defined in terms of dominance – not the identity of the
nodes themselves. For example the tree T1 below whose nodes are the
numbers 1 through 5 and T2 whose nodes are the letters a through e
are regarded as “essentially” the same. They have the same “branching
structure”, differing just by identity of nodes. And these, as we have
noted, are normally not even noted in tree graphs used by linguists.

T1 1

��
��

��
� ;;

a

��
��

��
� ;;

; T2

3
<<��

c
@@

@
��

2 4 5 b d e

Thus we want away of saying that T1 and T2 have the same struc-
ture, are isomorphic, even though they fail to be identical. Then any
structural claim we can make of one will hold of the other as well. For
example the statement “All non-terminal nodes are binary branching”
holds of both; “The total number of nodes is 9” fails of both trees. But
no structural statement can hold of one but fail of the other.

Here is the core idea of isomorphism (an idea that generalizes nat-
urally to other types of structures such as boolean algebras, groups,
etc. and so is not peculiar to trees): Trees T and T ′ are isomorphic iff
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(1) we can match up their nodes one for one with none left over and
(2) whenever a node x dominates a node y in one tree the node x is
matched with dominates the one y is matched with in the other tree,
and conversely. Formally:

Definition 3.10. A tree T = (N,D) is isomorphic (∼=) to a tree T ′ =
(N ′, D′) iff there is a bijective function m from N to N ′ satisfying:

for all x, y ∈ N , xDy iff m(x)D′m(y).

Such a bijection is called an isomorphism (from T to T ′).

Thus, to prove that T1 above is isomorphic to T2, we must show
that there is a bijection from the nodes of T1 to those of T2 satisfying
the condition in Def 3.10. We do this by exhibiting such a bijection, m
below as a dotted arrow.

(20) T1 1

��
��

��
��

� 44
44

m
// a







44
44

T2

3
55

5
		

	
// c

88
88

		
		

2 444
))

5 44b d e

To establish that the m shown in (20) is an isomorphism, we must
verify (1) that m is a bijection, and (2) that m satisfies the condition
in Def. 3.10. Visual inspection establishes that m is a bijection. To
visually establish that m strongly preserves dominance check first that
whenever xDy in T1 than m(x) dominates m(y) in T2 . Then you must
check the converse: whenever x′ dominates y′ in T2 then m−1(x′), the
node in T1 that m maps to x′, dominates m−1(y′) in T1 . This verifies
that T1 and T2 have the same dominance structure.

Exercise 3.10. Let T be any collection of trees. Each statement below
is true. Say why.

a. For all T ∈ T, T ∼= T .

b. For all T, T ′ ∈ T, if T ∼= T ′ then T ′ ∼= T .

c. For all T, T ′, T ′′ ∈ T, T ∼= T ′ and T ′ ∼= T ′′, then T ∼= T ′′.

When two relational structures are isomorphic they have the same
structurally definable properties. In particular, if two trees are isomor-
phic then they have the same tree definable properties. For example,

Fact 1 Let T = (N,D) and T ′ = (N ′, D′) be isomorphic trees, let h
be an isomorphism from T to T ′. Then, for all a, b ∈ N :

a. aSDb iff h(a)SD ′h(b).

b. aIDb iff h(a)ID ′h(b).
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Basic Facts About Isomorphisms

Let (A,R) and (B,S) be relational structures (So R is a binary
relation defined on the set A, and S is a binary relation defined on
B). Then (A,R) is isomorphic to (B,S), noted (A,R) ∼= (B,S), iff
there is a bijection h from A into B satisfying

for all x, y ∈ A, xRy iff h(x)Sh(y).

Such an h is called an isomorphism (from (A,R) to (B,S)).

a. If h is an isomorphism from (A,R) to (B,S) then h−1 is an
isomorphism from (B,S) to (A,R).

b. If h is an isomorphism from (A,R) to (B,S) and g is an isomor-
phism from (B,S) to some (C, T ) then g ◦h is an isomorphism
from (A,R) to (C, T ).

c. Every relational structure (A,R) is isomorphic to itself, using
the identity map idA : A→ A. This map is defined by idA(a) =
a for a ∈ A.

c. deg(a) = deg(h(a)).

d. a is 3-ary branching iff h(a) is 3-ary branching.

e. leaf (a) iff leaf (ha).

f. depth(a) = depth(ha)

g. aINDb iff h(a)INDh(b).

h. h(root(T )) = root(T ′).

i. aCC b iff h(a)CCh(b).

j. a and b are sisters iff h(a) and h(b) are sisters.

k. |N | = |N ′|.

Remark You don’t really know what the structures of a given class are
until you can tell when two such are isomorphic. Using the fundamental
fact that isomorphic structures make the same sentences true we see
that trees T1 and T2 below are not isomorphic. T2 for example has one
node of out-degree 2, T1 has no such node.

Fact 2 If T is a simple tree with exactly four nodes, then T is isomor-
phic to exactly one of the following:
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T1 1

2

3

4

T2 1

2
�� 22

3 4

T3 1
 11

2 3

4

T4 1
zzz

z DDD
D

2 3 4

Exercise 3.11.

a. In (20) we exhibited an isomorphism from T1 to T2 . Exhibit
another isomorphism from T1 to T2 and conclude that there may
be more than one isomorphism from one structure to another (in
fact a very common case).

b. Exhibit a set of five-node trees with the following two properties:

i. no two of them are isomorphic, and
ii. any tree with exactly five nodes is isomorphic to one you

have exhibited (Hint: the set you want has exactly 9 mem-
bers).

3.3.1 Constituents

We turn to the important definition of constituent.

Definition 3.11. Let T = (N,D) be a tree. For each node b of T , we
define Tb =df (Nb, Db), where

i. Nb =df {x ∈ N | bDx},
ii. for all x, y ∈ Nb, xDby iff xDy.

We show that each Tb as defined is a tree, called the constituent of
T generated by b. (Note already that Nb is never empty. Why?)

For example, consider the tree T depicted on the left in (21); T3 is
depicted on the right in (21):

(21) 1

nnnnnnn
PPPPPPP

2

��
��
�� AAA

3
AAA

4

6 8

5 10 7 11 9

3
AAA��

7 8

11

Exercise 3.12. Using the T exhibited on the left in (21), exhibit

a. T2
b. T10
c. T1
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Theorem 3.2. Let T = (N,D) be a tree. For all b ∈ N , Tb = (Nb, Db)
is a tree whose root is b.

Definition 3.12. For all trees T = (N,D) and T ′ = (N ′, D′), T ′ is a
constituent of T (T ′CON T ) iff for some b ∈ N , T ′ = Tb.

Theorem 3.3. Consider the set T (N) of finite trees (N,D) with N ⊆
N. CON, the “is a constituent of” relation defined on T (N) is a reflexive
partial order relation.

Remark Our mathematically clear and simple definition of constituent
should not be confused with the empirical issue of identifying the con-
stituents of any given expression in English. This is often far from obvi-
ous. Here are a few helpful rules of thumb given just so the reader can
see that our examples of constituents are not utterly arbitrary. Suppose
that an expression s is a constituent of an expression t. Then, (1) s is
usually semantically interpreted (has a meaning). (2) s can often be
replaced by a single lexical item. (3) s has a grammatical category and
can often be replaced by another expression of the same category. And
(4), s will usually form boolean compounds in and, or, and neither . . .
nor . . . with other expressions of the same category.

3.4 Labeled Trees

We now enrich the tree structures we have been considering to include
ones whose nodes are labeled. The basic idea of the extension is fairly
trivial; it becomes more interesting when the set of labels itself has
some structure (as it does in all theories of grammar).

Definition 3.13. T is a labeled tree iff T is an ordered triple (N,D,L)
satisfying:

i. (N,D) is a simple tree, and

ii. L is a function with domain N .

Terminology For x ∈ N , L(x) is called the label of x. When we say
that a labeled (unordered) tree is a triple we imply that to define such
an object there are three things to define: a set N of nodes, a dominance
relation D on N , and a function L with domain N .

Graphically we represent an (unordered) labeled tree as we repre-
sented unlabeled ones, except now we note next to each node b its label,
L(b):
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(22) 1, S

mmmmmmmmm
QQQQQQQQQ

2,NP

||
|| EE

EE
3,VP

xx
xx @@

@@

4,Det 5,N 6,V 7,NP

8, every 9, teacher 10, knows 11,Bill

So the labeled tree represented in (22) is that triple (N,D,L), where
N = {1, 2, . . . , 11},D is that dominance relation onN whose immediate
dominance relation is graphed in (22), and L is that function with
domain N which maps 1 to ’S’, 2 to ‘DP’, . . ., and 11 to ‘Bill’.

Labeled bracketing One often represents trees on the page by la-
beled bracketing, flattening the structure, forgetting the names of the
nodes of the tree, and showing only the labels. For example, the labeled
bracketing corresponding to (22) is

[[[every]Det[teacher]N]NP[[knows]V[Bill]NP]VP]S.

Given our discussion above, a natural question here is “Under what
conditions will we say that two (unordered) labeled trees are isomor-
phic?” And here is a natural answer, one that embodies one possibly
non-obvious condition:

(23) h is an isomorphism from T = (N,D,L) to T ′ = (N ′, D′, L′) iff

a. h is an isomorphism from (N,D) to (N ′, D′) and
b. for all a, b ∈ N , L(a) = L(b) iff L′(h(a)) = L′(h(b)).

Condition (23a) is an obvious requirement; (23b) says that h maps
nodes with identical labels to ones with identical labels and conversely.
It guarantees for example that while T1 and T2 below may be isomor-
phic, neither can be isomorphic to T3:

T1 1, A

��
�� ;;

;;

2, B 3, C

T2 4, X

��
�� ;;

;;

5, Y 6, Z

T3 7, J

��
�� ;;

;;

8,K 9,K

The three trees obviously have the same branching structure, but
they differ in their labeling structure. In T3, the two leaf nodes have the
same label, ‘K’, whereas the two leaf nodes of T1 (and also of T2) have
distinct labels. Hence no map h which preserves the branching structure
can satisfy condition (23b) above, since h must map leaf nodes to leaf
nodes and hence must map nodes with distinct labels to ones with the
same label.
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A deficiency with (23), however, is that all current theories of gener-
ative grammar use theories in which the set of category labels is highly
structured. But we have not committed ourselves to any particular lin-
guistic theory, only considering the most general case in which nodes
are labeled, but no particular structure on the set of labels is given.
When such structure is given, say the set of labels itself is built by ap-
plying some functions to a primitive set of labels, then that structure
too must be fixed by the isomorphisms.

Below we consider informally one sort of case based on work in GB
(Government & Binding) theory Lasnik and Uriagereka (1988). Within
GB theory category labels (we usually just say “categories”) are par-
titioned into functional ones and content ones. The latter include Ns
(like book and mother), Vs (like sleep and describe), Ps (like for and to)
and As (like bold and bald). The former include categories of “gram-
matical” morphemes like Poss for the possessive marker ’s (as in John’s
book) or I for the inflection which marks tense and person/number on
verbs, such as the is in John is running, or the will in John will sleep.

Cross classifying with the functional content distinction is a “bar
level” distinction. A basic category C comes in three bar levels: C0, C1,
and C2. The bar level of a category pertains to the internal complexity
of an expression having that category. Thus C0’s, categories of bar level
zero, are the simplest. Expressions of zero level categories are usually
single lexical items like book and sleep, or grammatical morphemes
like ’s and will. C2’s, categories of bar level 2, are complete phrasal
expressions. For example John will sleep and John’s cat have (different)
categories of bar level 2. A category X of bar level 2 is called a phrasal
category and noted XP.

Phrasal categories combine with categories of bar level 0 to form ones
of bar level one according to the tree schema below (nodes suppressed,
as is common practice).

(24) A1

		
	 55

5

A0 B2

The expression of category A0 in (24) is called the head of the entire
A1, and the expression of category B2 is called its Complement. An
example is the V1 describe the thief whose head is the V0 describe and
whose complement is the thief. Similarly, in the garden is a P1 headed
by the P0 in. A second type of labeled tree accepted by GB grammars
is illustrated in (25).
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(25) A2

		
	 55

5

C2 A1

A category of level 2 which is sister to a one level category as in
(25) is called the Specifier of the entire expression. The head of an
expression like (25) is the head of the A1 expression. In the next figure,
we exhibit two expressions each illustrating (24) and (25), noting that
we allow that Specifiers and Complements may be absent.

(26) a. I2
FFF

mmmmmmm

D2 I1
II

I

��
��
��
��
��
�

D1 V2

V1

D0 I0 V0

John will sleep

b. Poss2
KKKqqq

q

D2 Poss1
HHH

��
��
��
��
��
�

D1 N2

N1

D0 Poss0 N0

John ’s book

These two expressions have different categories. (26a) is an I2, that
is, an Inflection Phrase (IP) and (26b) is a Poss2, that is, a Possessive
Phrase (PossP ). It is easy to see that (26a) and (26b) are isomorphic.
Having drawn the graphs to scale we can superpose (26a) and (26b) in
such a way that (1) the branching structures coincide and (2) the bar
levels of labels on matching nodes coincide and (3) the labels on nodes
in (26a) are distinct iff the ones they are matched with in (26b) are
distinct. Note that this last condition does not follow from the others.
Suppose for example that we replaced the label N0 in (26b) with D0 (a
replacement which is not in fact sanctioned by GB grammars). Then we
have not changed branching structure nor bar level of labels (since we
replaced a zero level label with a zero level one) but now the distinct D0

and V0 nodes in (26a) correspond to two distinct D0 nodes in (26b);
that is, nodes with distinct labels are matched with ones having the
same label and thus the trees are not isomorphic.

In addition to trees whose labels satisfy the schema in (24) and (25),
we also find GB trees like those in (27), called Adjunction structures
(Adv2 is read “Adverb Phrase”):
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(27) I1
FFF

kkkkkkk

Adv2 I1
II

I

��
��
��
��
��
�

Adv1 V2

V1

Adv0 I0 V0

Usually will sleep

(27) has the same branching structure as (26a) and (26b). So if
the labeling on these trees were erased the resulting unlabeled trees
would be isomorphic. But none of those isomorphisms can preserve
distinctness of node labels or their bar level. Any isomorphism from
(26a) to (27) must map the root to the root and hence associate a 2
level label with a 1 level one. And since it must map daughters of the
root to daughters of the root, it cannot preserve label distinctness since
both root daughters in (26a) have different labels from the root label.
But this is not so in (27).

We see, then, that if h is an isomorphism from a GB tree T =
(N,D,L) to a GB tree T ′ = (N ′, D′, L′), then, in addition to the con-
ditions in (23), we should require:

(28) For all nodes x of T ,

a. the bar level of L(x) = the bar level of L′(hx), and
b. L(x) is a functional category iff L′(hx) is a functional

category.

Exercise 3.13. For all distinct T , T ′ in the set of (unordered) labeled
trees below, exhibit an isomorphism between them if they are isomor-
phic, and give at least one reason why they are not isomorphic if they
are not. (The nodes are exhibited to facilitate your task).

T1 1, e
===��

2, b
<<<��

3, c

4, d 5, a

T2 9, a
===��

2, b
<<<��

3, c

4, d 5, e

T3 3, a
===��

2, b
<<���

1, c

4, c 5, d

T4 2, a
===��

3, b
<<<��

4, c

5, d 6, a

T5 1, a
===��

9, d
==���

4, s

5, w 6, a
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3.5 Ordered Trees

As already noted, linguists use labeled trees to represent the pronunci-
ation order of expressions. Pronounced expressions are represented by
the labels on the leaf nodes of trees, and the pronunciation order is
given by the left-right order in which the labels on leaf nodes are writ-
ten on the page: the leftmost expression is pronounced first, then the
second leftmost, etc. Thus in ordinary usage the tree graph in (22), re-
peated below as (29), not only represents constituents and their labels,
it also tells us that every is pronounced before knows, knows before
Bill, etc.

(29) 1, S

mmmmmmmmm
QQQQQQQQQ

2,NP

||
|| EE

EE
3,VP

xx
xx @@

@@

4,Det 5,N 6,V 7,NP

8, every 9, teacher 10, knows 11,Bill

We consider more precisely the properties of the pronunciation order
of expressions. Clearly it is transitive: if x is pronounced before y, and
y before z, then, obviously, x is pronounced before z. It is also clearly
asymmetric: if x is pronounced before y, then y is not pronounced
before x. (This also means that antisymmetry holds, albeit vacuously).

Let us write simply ‘<’ for the left-right order on the leaf nodes of
a tree. When x < y we say that x precedes y or that y follows x. And
observe that for any two distinct leaves one must precede the other.
That is, < is a total (synonym: linear) order of the leaf nodes. Here is
the definition:

Definition 3.14. A binary relation R on a set A is a linear (total)
order iff

i. R is transitive, and

ii. R is antisymmetric, and

iii. R is total (that is, for all x 6= y ∈ A, xRy or yRx).

Examples Clearly ≤ in arithmetic is a linear order. We have already
seen that it is transitive and antisymmetric. And for totality we observe
that for any distinct numbersm and n, eitherm < n or n < m. Also the
strictly less than relation, <, is a linear order. It is obviously transitive.
Since it is asymmetric (n < m implies ¬(m < n)), it is antisymmetric.
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And it is total: for distinctm and n, eitherm < n or n < m. In contrast
the subset relation ⊆ defined on P(A) (the power set of A) for A with
at least two distinct elements, say a and b, . . ., is not total. There are
subsets of A such that neither is a subset of the other. For example
{a} and {b} have this property. So in general the subset relation on
a collection of sets is a properly partial order, not a total (or linear)
order. Note further, in analogy to >, that the proper subset relation is
irreflexive, asymmetric and transitive, and again, normally not a total
order.

Using these notions we define the notion ordered tree. We take a
conservative approach at first, defining a larger class of ordered trees
than is commonly considered in linguistic work. Then we consider an
additional condition usually observed in the linguistic literature but
which rules out some trees which seem to have some utility in modeling
properties of natural language expressions.

Definition 3.15. a. T = (N,D,L,<) is a leaf ordered labeled tree (or
lol tree) iff

i. (N,D,L) is a labeled tree, and

ii. < is a strict linear order of the terminal nodes.

The graphical conventions for representing lol trees are those we
have been using, with the additional proviso that the left-right written
order of leaf labels represents the precedes order <. The notions we
have defined on trees in terms of dominance carry over without change
when passing from mere unordered or unlabeled trees to lol trees. Only
the definition of “constituent” needs enriching in the obvious way. Each
node b of a tree T determines a subtree Tb, the constituent generated
by b, as before, only now we must say that nodes of the subtree have
the same labels they have in T and the leaves of the subtree are linearly
ordered just as they are in T . Formally,

Definition 3.16. Let T = (N,D,L,<) be a lol tree. Then for all
b ∈ N , Tb =df (Nb, Db, Lb, <b, ), where

Nb = {x ∈ N | bDx}
Db = D ∩ (Nb ×Nb)

Lb(x) = L(x), all x ∈ Nb

<b= {(x, y) | x, y ∈ Nb and x < y}
And one proves that Tb is a lol tree, called, as before, the constituent

generated by b.
An additional useful notion defined on lol trees is that of the leaf

sequence of a node. This is just the sequence of leaves that the node
dominates. It is often used to represent the constituent determined by
the node. Formally we define:
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Definition 3.17. For b a node in a lol tree T , LS(b) or the leaf se-
quence determined by b, is the sequence 〈b1, . . . , bn〉 of leaves which b
dominates, listed in the < order.

That is, the leaf sequence of a node is the string of leaf nodes it domi-
nates.

What we have defined as lol trees differ from the type of tree most
widely used in generative grammar in that we limit the precedes order
< to leaves. It is the labels of leaves which represent the words and
morphemes that are actually pronounced and our empirical judgments
of pronunciation order are highly reliable. Now the < order on the leaf
nodes extends in a straightforward way to certain internal (non-leaf)
nodes as follows:

Definition 3.18. For x, y nodes of a lol tree T, x <∗ y iff every leaf
node which x dominates precedes (<) every leaf node that y dominates.

Note that when x and y are leaves, then, x <∗ y iff x < y since the
leaf nodes that x dominates are just x and those that y dominates are
just y. When being careful, we read <∗ as derivatively precedes. But
most usually we just say precedes, the same as for the relation <. By
way of illustration consider (30), reading ‘Prt’ as particle:

(30) 1, S

��
��

��
��

��
��

��
��

��
�

SSSSSSSSSS

3,VP

llllllll
OOOOOO

4,TVPp

vvv
vv HHH

HH
5,NP

��
�� EEE

EE

2,NP 6,TVP 7,Prt 8,Det 9,N

10, John 11,wrote 14, down 12, the 13, names

Here 4 precedes (<∗) 12, since every leaf that 4 dominates, namely 11
and 14, precedes every leaf that 12 dominates (just 12 itself). Equally
4 precedes 5, 8, 9, and 13. But 4 does not precede 7: it is not so that
every leaf 4 dominates precedes every leaf that 7 dominates since 4
dominates 14 and 7 dominates 14, but 14 does not precede 14 since <
is irreflexive. Observe now that (31) is also an lol tree:
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(31) 1, S

		
		

		
		

		
		

		
		

	
LLL

LLL

3,VP

rrrrr
DD

DD

4,TVPp

!!

5,NP

zz
zz III

II

2,NP 6,TVP 8,Det 9,N 7,Prt

10, John 11,wrote 12, the 13, names 14, down

The lol trees in (30) and (31) are different, though they have the same
nodes and each node has the same label in each tree. They also have
identical dominance relations: n dominates m in (30) iff n dominates
m in (31). But they have different precedence relations since in (30),
14 precedes 5 and everything that 5 dominates, such as 12 and 13.
But in (31), 14 does not precede 5 or anything that 5 dominates. In
consequence the constituents of (30) are not exactly the same as those
of (31), though there is much overlap. For example (32a) is a constituent
of both (30) and of (31). So is (32b)

(32) a. 4,TVPp

FFFF
wwww

6,TVP 7,Prt

11,wrote 14, down

b. 5,NP

DD
DD

��
��

8,Det 9,N

12, the 13, names

Exercise 3.14. Exhibit the smallest constituent of (30) that is not a
constituent of (31).

The constituent T4 in (31) is a classical example of a discontinuous
constituent : its sequence of leaf nodes 〈11, 14〉 is not a subsequence of
the leaf sequence 〈10, 11, 12, 13, 14〉 of the entire tree. (Recall that a
sequence s is a subsequence of a sequence t iff there are sequences u,v
(possibly empty) such that t = usv). Formally,

Definition 3.19. For all lol trees T and T ′, T ′ is a discontinuous
constituent of T iff T ′ is a constituent of T and the leaf sequence of T ′

is not a subsequence of the leaf sequence of T .

Note that we have here defined a binary relation between trees: is
a discontinuous constituent of. Whether a tree like (32a) is a discon-
tinuous constituent of a tree T depends crucially on the relative linear
order of leaves of (32a) with the leaves of T . We cannot tell just by
looking at a tree T ′ in isolation whether it is discontinuous or not.
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Most work in generative grammar does not countenance discontin-
uous constituents so our understanding of the role they might play in
linguistic description, and theory, is limited. Still, drawing on Blevins
(1994), Huck and Ojeda (1987), McCawley (1988, 1982), Ojeda (1987),
and Blevins (1994) here are three phenomena whose representation by
discontinuous constituents is prima facie plausible.

i. cooccurrence restrictions. The simplest cases here are ones
in which the possibility of occurrence of a certain word depends on
the presence of another. This is naturally accounted for if the two
words are introduced as a single unit, though perhaps presented in
non-adjacent positions. In fact the Verb+Particle construction in (30)
and (31) illustrates this case. The choice of particle, down in our exam-
ples, depends significantly on the choice of verb: we do not say ∗John
printed/erased/memorized/forgot the names down. One way to repre-
sent this would be to treat the ordered pair 〈(write,TV), (down,PRT)〉
as a complex lexical item, the rules which combine it with a DP object
like ‘the names” being defined in such a way as to allow the particle on
either side of the DP . Formalism aside, the effect of the rules would
be:

(33) If 〈x, y〉 is a TVP-Particle pair and z is a DP, then

i. xzy is a string of category VP, and
ii. if z is not a pronoun, xyz is a string of category VP.

(The condition ii. blocks generating strings like ∗write down them).
There are many other sorts of lexical cooccurrence restrictions in

English. For example observe that in humble coordinations we find
that the presence of both, either, and neither conditions the choice or
coordinator and, or, or nor:

(34) a. Neither Mary nor Sue came early;
∗Neither Mary and Sue came early

b. Either Mary or Sue came early;
∗Either Mary nor Sue came early

c. Both Mary and Sue came early;
∗Both Mary nor Sue came early

We might represent these cooccurrence restrictions by treating
〈both, and〉, 〈either, or〉, and 〈neither,nor〉 as complex lexical items
and code this in our representations as in (35):
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(35) 1,DP

XXXXXXXXXXXXXXXXXXXX

ppp
ppp

2,Conj

oooooo
WWWWWWWWWWWWWWWWW 3,DP 4,DP

5, neither 6,Mary 7, nor 8, Sue

Node 5 labeled neither precedes 6, labeled Mary, but node 2, which
represents the complex conjunction neither . . . nor . . . neither precedes
nor follows 6, Mary.

ii. semantic units. In mathematical languages the syntactic con-
stituents of an expression are precisely the subexpressions which are
assigned denotations. But it seems that in (36) and (37) the prenominal
adjectives easy and difficult form a semantic unit with the postnominal
to-phrase. Note that the (a,b) pairs are paraphrases of the right-hand
ones in which the the adjective occurs postnominally and more clearly
forms a constituent with the to-phrase.

(36) a. an easy rug to clean
b. a rug which is easy to clean

(37) a. an easy theorem to state but a difficult one to prove
b. a theorem which is easy to state but difficult to prove

Rugs of the sort mentioned in (36a) are understood to have the prop-
erty expressed by easy to clean; (overtly expressed by the postnominal
constituent which is easy to clean in (36b)). Typically the constituents
of an expression are assigned a meaning. But easy rug in (36a) does not
have a meaning, nor does easy theorem in (37b). It seems then that we
want to think of easy to clean as having a semantic interpretation in
(36a) and easy to state and also difficult to prove as having semantic in-
terpretations in (37b). Assuming that only constituents are interpreted
we can represent these judgments of interpretation by:

(38) DP

MMM
MMM

M

tttttttttttttt

N

qqq
qqq

q
LLLLLLL

Det AP

YYYYYYYYYYYYYYYYYYYYYYYYY N

Adj Inf

an easy rug to clean

iii. binding (Blevins (1994)). Here we consider some expression
types that play an important role in current linguistic theorizing. In



78 / Mathematical Structures in Language

expressions like (39) the pronoun his can be understood as bound by
each teacher, indicated here by the use of the same subscript i.

(39) Each teacheri criticized many of hisi students

Linguists have observed that in cases like this the antecedent each
teacher c-commands the referentially dependent expression his (as well
as his students and many of his students). The relevant constituency
relations in (39) are given by (40):

(40) S

VP

NPTV

DP

many of hisi studentscriticized

each teacheri

oooooooooo

OOOOOOOOOO

??
??

??
?

��
��

��
�

ooooooooo

OOOOOOOOO

LLLLLLLLL

rrrrrrrrr

But when the c-command relations are reversed, as in (41a,b) graphed
in (41c), the pronominal expressions are not naturally interpretable
with his bound to each teacher.

(41) a. ∗Many of hisi students criticized each teacheri
b. ∗Which of hisi students criticized each teacheri?
c. S

VP

NPTV

DP

each teachericriticized

many of hisi students

oooooooooo

OOOOOOOOOO

LLLLLLLLL

rrrrrrrrr

tttttt
OOOOOOOOO

??
??

??
?

��
��

��
�

But suppose we question the object of criticize in (39). In such
cases the interrogative DP, noted DP[+Q] here, occurs initially in the
question, noted S[+Q], and the subject DP, which denotes the ones
doing the criticizing, remains in place preverbally. To avoid irrelevant
complications due to auxiliaries, we present the questions in an indirect
context determined by the frame I don’t know .

(42) a. I don’t know which of hisi students each teacheri criticized.
b. I don’t know how many of hisi students each teacheri

criticized.

Now under standard ways of presenting the constituent structure of
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(42a,b) the interrogative DPs which of his students and how many of
his students would not be c-commanded by each teacher so we should
predict that we cannot interpret these Ss in such a way that the pronom-
inal DPs are referentially dependent on each teacher. But in fact we can.
The judgments of referential dependency are those appropriate to the
case where each teacher c-commands the pronominal DPs. But that
would be the structure on the discontinuous constituent analysis in
(43). (We only graph that part of (42a,b) following I don’t know).

(43) S[+Q]

DP

VP[+Q]

every teacheri

TV

criticized

DP[+Q]

which of hisi students

%%
%%
%%
%%
%%
%%

��
��

��
�

BB
BB

BB
B

TTTTTTTTTTT

ggggggggggggggggggggggggggg

LLLLLLLLL

ssssssss

Thus the discontinuous constituent (DC) analysis preserves the gen-
eralization that quantified DP antecedents of pronominal expressions
c-command them.

Our purpose here is not to claim that DC analyses can be used to
represent the full range of facts concerning the distribution of refer-
entially dependent expressions and their antecedents. Much has been
discovered about these relations in the past twenty years, and we have
just mentioned one of the relevant facts. No current analysis adequately
represents all the (known) facts. But DC analyses have not been exten-
sively investigated in these or other regards, and we now understand
that lol trees are mathematically clear and respectable objects which
allow DCs. As students of language structure, then, we have a new tool
of analysis at our disposal and should feel free to use it.

The constituent structure trees most commonly used by linguists
are required to satisfy an additional conditions, called the Exclusivity
Condition :

Definition 3.20. A leaf ordered tree T satisfies the Exclusivity Con-
dition iff for all nodes b, d, if b and d are independent then b <∗ d or
d <∗ b. (Nodes x and y are independent, recall, iff neither dominates
the other).

(31) fails Exclusivity since nodes 4 and 5 are independent but neither
precedes the other. So the lol trees satisfying Exclusivity constitute a
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proper subset of the lol trees.

Exercise 3.15. On the basis of the data in (a), exhibit plausible tree
graphs using discontinuous constituents for the expressions in (b). (You
may hide small amounts of ignorance with little triangles). State why
you chose to represent the discontinuous expressions as single con-
stituents.

a.1. More boys than girls came to the party.
Five more students than teachers signed the petition.
(Many) fewer boys than girls did well on the exam.
More than twice as many dogs as cats are on the mat.
Not as many students as teachers laughed at that joke.

a.2. ∗More boys as girls came to the party.
∗Five more students as teachers signed the petition.
∗Fewer boys as girls did well on the exam.
∗More than twice as many dogs than cats are on the mat.
∗Not as many students than teachers laughed at that joke.

b.1. More boys than girls

b.2. Exactly as many dogs as cats

Exercise 3.16. Consider the intuitive interpretation of the Ss in (i)
below:

(i.) a. some liberal senator voted for that bill
b. every liberal senator voted for that bill
c. no liberal senator voted for that bill

We can think of these three Ss as making (different) quantitative claims
concerning the individuals who are liberal senators on the one hand and
the individuals that voted for that bill on the other. (i.a) says that the
intersection of the set of liberal senators with the set of individuals
who voted for that bill is non-empty; (i.c) says that that intersection is
empty; and (i.b) says that the set of liberal senators is a subset of the
set of those who voted for that bill. In all cases the Adjective+Noun
combination, liberal senator, functions to identify the set of individu-
als we are quantifying over (called the domain of quantification) and
thus has a semantic interpretation. That interpretation does not vary
with changes in the Determiner (every, some, no). Similarly we can
replace liberal senator with, say, student, tall student, tall student who
John praised, etc., without affecting the quantitative claim made by the
determiners (Dets) some, every, and no. So the interpretation of the
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Det is independent of that of the noun or modified noun combination
that follows it. These semantic judgments are reflected in the following
constituent analysis:

(ii.) DP
oooo KKK

Det N
sss

LLL
LL

AP N

some
every
no

liberal senator

Similarly, in (i.c), the relative clause that we interviewed functions
to limit the senators under consideration to those we interviewed and
thus seems to form a semantic unit with senator to the exclusion of the
Dets every, no, . . . as reflected in the constituent structure in (i.d).

c. every senator that we interviewed; no senator that we interviewed

DP

Det

N

N

MOD

Rel

S[+rel]

DP

VP[+rel]

DP[+rel]

e

TV

interviewedwethatsenatorevery

III
I

III
I

II

II

II
































		
		

		
		

		
		

		
		

	

		
		

		
		

		
		

		
		

		
		

		

Current linguistic theories vary with regard to the categories as-
signed to the constituents in (i.b) and (i.d), but for the most part they
agree with the major constituent breaks, specifically that the adjective
and relative clause form a constituent with the common noun senator
to the exclusion of the Dets every, no, . . . But consider the expressions
in (e):

e. the first man to set foot on the moon; the next village we visited;
the second book written by Spooky-Pooky; the last student to
leave the party

Question 1 give a semantic reason why we should not treat the ap-
parent adjectives (first, next, . . . ) as forming a constituent with the
following common noun (man, village, . . .) to the exclusion of the ma-
terial that follows the common noun. So your semantic reason should
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argue against a constituent structure of the sort below:

DP

Y

the first man

X

to set foot on the moon

ooooooooo

OOOOOOOOO

??
??

??

??
??

??

��
��

��

rrrrrrrrr

LLLLLLLLL

Question 2 give a semantic reason why the apparent adjectives (first,
next, . . .) should be treated as forming a unit with the expression that
follows the common noun (man, village, . . .).

Question 3 give a syntactic reason why the apparent Det the forms
a syntactic unit with the apparent adjective (first, next, . . .). Exhibit a
discontinuous tree structure for these expression which embodies both
the facts.

Exercise 3.17. Consider the DPs below:

the tallest student in the class the fastest gun in the west
the most expensive necktie John owns the worst movie I ever saw

a. Give a semantic reason why we do not want to treat the superla-
tive adjective (tallest, fastest, worst, most expensive) as forming
a constituent with the following common noun to the exclusion
of the postnominal material (in the class, in the West, . . .).

b. Give a syntactic reason why the initial occurrence of the should
form a constituent with the comparative adjective to the exclusion
of the common noun.

c. Exhibit a gross constituent structure for one of these DPs which
incorporates these judgments. (“gross” means you can use little
triangles to avoid detailing irrelevant structure).

Exercise 3.18. Consider the DPs below:

John’s favorite book; his latest play; my most treasured pictures

Find reasons supporting a constituent analysis compatible with (i.a)
rather than (i.b)

(a)

◦
ppppp

AA
AA

AA
A

◦
ttt

t LLL
L

John’s favorite play

(b)

◦

zz
zz

zz
zz NNNNN

◦
rrr

r FFF

John’s favorite play
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Exercise 3.19. Exhibit gross constituent structures for each of the Ss
below Ojeda (1987).

a. Tu quieres poder bailar tangos “You want to be able to dance
tangos”

b. Quieres tu poder bailar tangos? “Do you want to be able to dance
tangos?”

c. Quieres poder tu bailar tangos? “Do you want to be able to dance
tangos?”

d. Quieres poder bailar tu tangos? “Do you want to be able to dance
tangos?”

Exercise 3.20. Provide a discontinuous tree structure for the sentence
below in which wrote down is a constituent and the names of my col-
leagues and their spouses is a constituent. (The example is modeled on
one in Chomsky (1996) pg. 324.)

I wrote the names down of my colleagues and their spouses.

Exercise 3.21. Let T = (N,D,L,<) and T ′ = 〈N ′, D′, L′, <′〉 be lol
trees. Complete the following definition correctly (the correct definition
is the same regardless of whether T and T ′ are required to satisfy
Exclusivity):

A function h : N → N ′ is an isomorphism from T to T ′ iff .

Exercise 3.22. Linear orders were defined in this chapter, on page 72.
Let A be a finite set, say listed in some fixed order as a1, a2, . . ., an.
Define the dictionary order ≤ of A∗ as follows s ≤ t iff there is some
common prefix u of s and t such that either u = s, or else there is i < j
such that u⌢〈ai〉 is a prefix of s and u⌢〈aj〉 is prefix of t. Prove that
≤ is a linear order.

The dictionary order is usually called the lexicographic order.

Exercise 3.23. In their book on minimalist syntax, Lasnik and with
Cedric Boecks (2003) define c-command as follows (p. 51):

Definition 3.21. A c-commands B iff (1) and (2) both hold:

a. A does not dominate B.

b. Every node that dominates A dominates B.

This is simpler than the definition which we gave in Figure 4.

Query. Are these definitions equivalent? That is, in an arbitrary tree
is it the case that a node x c-commands a node y using the original
definition iff x c-commands y in the alternative sense mentioned just
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above. Hint: the answer is NO. Give an example illustrating the differ-
ence. Consider separately the cases in which (1) the dominance relation
is taken to be reflexive, and (2) the dominance relation is irreflexive.

Concluding Reflection. We have seen that order relations—ones
that are transitive and antisymmetric—are basic to linguistic represen-
tation. And they will recur in various guises throughout later work in
this text. It is then of some interest to consider operations on relations
that preserve these order properties. Here is one basic one:

Definition 3.22. Let R be a binary relation on a set A. Then the
R-converse of R, written R−1, is the binary relation on A defined by

for all x, y ∈ A, 〈x, y〉 ∈ R−1 iff 〈y, x〉 ∈ R.

For example, consider the ≤ relation in arithmetic. Its converse is the
≥ relation: n ≥ m iff m ≤ n, for all numbers m,n. Equally the converse
of the strictly < relation is the strictly > relation: m > n iff n < m.
For another example, suppose we are considering the subset relation on
P(N). Its converse is the superset relation: X ⊇ Y iff Y ⊆ X. And as
well the converse of the proper subset relation, ⊂, is the proper superset
relation, ⊃.

Now let us observe the following two properties of the converse
operation—that function noted −1 which maps a binary relation R
to its converse:

Theorem 3.4. For R a binary relation on a set A,

a. if R is transitive then R−1 is transitive, and

b. if R is antisymmetric then R−1 is antisymmetric.

Thus we infer that if R is an order relation then so is R−1.

Proof.

a. Let R be transitive. Assume that 〈x, y〉 ∈ R−1 and 〈y, z〉 ∈ R−1.
We must show that 〈x, z〉 ∈ R−1. By the assumptions both 〈y, x〉
and 〈z, y〉 must be in R. So by the transitivity of R, 〈z, x〉 ∈ R,
whence by the definition of −1, 〈x, z〉 ∈ R−1, which is what we
desired to show.

b. Let R be antisymmetric. Assume 〈x, y〉 and 〈y, x〉 are both in
R−1. Show that x = y. But by the assumptions 〈y, x〉 and 〈x, y〉
are in R, so y = x, which is what we desired to show.

Suppose now that we know that the converse of a relation R is tran-
sitive (antisymmetric). Can we infer that the relation R itself is transi-
tive (antisymmetric)? The answer is yes. By the theorem immediately



Syntax I: Trees and Order Relations / 85

above we see that if a relation R−1 is transitive (antisymmetric) then
its converse must be transitive (antisymmetric), and we see below that:

Theorem 3.5. For R a binary relation on a set A, (R−1)−1 = R.

Proof. We know that for all x, y ∈ A, 〈x, y〉 ∈ R iff 〈y, x〉 ∈ R−1

iff 〈x, y〉 ∈ (R−1)− 1.
Thus the pairs 〈x, y〉 in R are the same as those in (R−1)−1 so the

two relations are the same.
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Syntax II: Design for a Language

Broadly speaking, a grammar G consists of three parts: a generative,
syntactic, component and two interpretative components, a phonologi-
cal one and a semantic one. The syntactic component defines a (typi-
cally infinite) set of expressions, the semantic component tells us what
they mean, and the phonological component tells us how to pronounce
them or gesturally interpret them in the case of signed languages such
as ASL (American Sign Language). The language L(G) generated by
a grammar G is the set of phonologically and semantically interpreted
expressions it defines. A grammar G for an empirically given natural
language L, such as English, Swahili, Japanese, etc. is said to be sound
if all its interpreted expressions are judged by competent speakers to
be expressions of L, that is, L(G) ⊆ L. G is complete if L ⊆ L(G); that
is, every expression competent speakers judge to be in L is generated
by G.

In this chapter we illustrate this by constructing a generative gram-
mar to be called Eng. We also want to go through the process of reason-
ing from an existing proposal to one that is more adequate. Specifically
we present a lexicon and some rules which together generate a fragment
of English. In a later chapter, we illustrate how a grammar of this sort
can be semantically interpreted.

We should emphasize that at the time of this writing there does
not exist a sound and complete grammar for English, and extensive
on-going research offers a great diversity of formats in which rules and
lexicons are formulated. We attempt to be fairly generic in our approach
here rather than committing ourselves to one or another particular
theory. Still, explicitness requires we make some commitments if only
for illustrative purposes.

87
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4.1 Beginning Grammar

We choose as lexical items expressions we feel are not built from others.
Crucial in designing the lexicon is the choice of when to assign two ex-
pressions the same grammatical category. The reason is that assigning
the same category to expressions is our way of grouping them together
for purposes of the rules of the grammar the ways we build complex
expressions from simpler ones. Expressions with the same grammatical
category are treated alike by the rules. So if a rule tells us that a string
s of category C combines with a string t of category D to form a string
u of category E then, in general, any other string s′ of category C will
combine with any t′ of category D to form a string u′ of category E.
Choosing a category name for a lexical string is much less important
than deciding that two different strings have the same category.

An issue that arises immediately in choosing a category for an ex-
pression concerns cases in which a given string apparently has more
than one category. Compare the use of walk as a noun in (1a) and as a
verb in (1b):

(1) a. We take a walk after dinner.
b. We walk to school in the morning

In this case we feel that the verbal use of walk in (1b) is more basic
(we do not justify this here), and that the nominal use in (1a) might
reasonably be derived in some way. So rules that derive expressions
from expressions have the option of changing category without audibly
changing the string component of the expression. Conversely the nomi-
nal use of shoulder in He hurt his shoulder is felt to be more basic than
the verbal use in He will shoulder the burden without complaining.

However, many apparently simple expressions have both nominal
and verbal uses where we find no intuition that one is more basic than
the other. Compare the nominal use of respect in He gives me no respect
with the verbal use in We respect her a lot. Similarly judge and honor
are equally easy as nouns and as verbs. But the distribution of such
expressions as nouns is quite different from their use as verbs. As a
noun respect (judge, honor) combines with possessive adjectives to form
complex nominals, my respect (for him), his judge, etc. and as a verb
they form imperatives, as in Respect your elders!, and take past tense
marking (They respected him for his leadership qualities).

And as an item like respect does not appear to be derivationally
complex, it will be entered into the Lexicon for English twice: once as
a noun and once as a verb. To handle these facts we represent lexi-
cal expressions, indeed expressions in general, as ordered pairs (s, C),
where s is a string of vocabulary items and C is a category name. s is
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called the string coordinate of (s, C) and C is its category coordinate.
Linguists usually write (s, C) as [Cs]. Thus (honor,N) and (honor,V)
could be distinct lexical items in our grammar, ones differing just by
their category coordinate. In fact we do not treat abstract nouns such
as (honor,N), but we will use extensively the possibility of assigning a
given string many categories. We note too that many complex strings
seem to have more than one category. For example, Ma’s home cooking
might be a Sentence, meaning the same as Ma is home cooking, or it
might be some kind of nominal, as in Ma’s home cooking is the best
there is.

Now consider some fairly basic expressions of English which we will
design our grammar Eng to generate:

(2) a. Dana smiled.
b. Dana smiled joyfully.
c. Sasha praised Kim.
d. Kim criticized Sasha.
e. He smiled.
f. She criticized him.
g. Sasha praised Kim and smiled.
h. Some doctor cried.
i. No priest praised every senator.
j. He criticized every student’s doctor.
k. Adrian said that Sasha praised Kim.

Competent speakers of English recognize (2a), . . ., (2k) as expres-
sions of English, indeed as expressions of category S (Sentence). (We
shall accept the S terminology here though some theories of grammar
use other category designations, such as IP “Inflection Phrase” instead
of S).

Independent of the category name chosen, it is reasonable that (2a),
(2b), . . ., be assigned the same category. Here are three such reasons:
One, each can be substituted for the others in embedded contexts like
the one following that in (2k). Thus Adrian said that Dana smiled
is grammatical English, as is Adrian said that Dana smiled joyfully,
Adrian said that Sasha praised Kim, . . . and even, Adrian said that
Dana said that Sasha praised Kim, Adrian said that Dana said that
Robin said that . . ., etc. (see Chapter 1).1

Two, distinct members of this set can generally be coordinated with

1Intersubstitutivity as a test for sameness of grammatical category works better
when applied to lexical items or expressions derived in just a few steps from lexical
items than it does when applied to ones that have undergone many rule applications
where various stylistic factors become more important.
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and and or (and with a slight complication, neither . . . nor . . .2. So the
expressions in (3) are grammatical and of the same category as their
conjuncts - the expressions that combined with and and or in the first
place.

(3) a. Either Sasha praised Kim or Kim praised Sasha.
b. Sasha praised Dana and Dana smiled.
c. Kim criticized Sasha but Adrian said that Sasha criticized

Kim.
d. Either Kim praised Dana and Dana smiled or Dana praised

Kim and Kim smiled.

Often expressions of the same category can be coordinated, and ones
of different categories cannot. For example, Ss and NPs do not naturally
coordinate:

(4) ∗Dana smiled joyfully or Sasha

And three, the expressions in (2) are semantically similar: all “make
a claim” that is, they are true, or false, in appropriate contexts. This
property relates to the traditional definition of Ss as expressions which
express complete thoughts. Dana described cannot be said to be true
or false since it is incomplete, it simply fails to make a claim. If we
complete it, as in Dana described the thief, it then makes a claim, and
(given appropriate background information) we can assess whether that
claim is true or not.

So we want our grammar Eng to generate the expressions in (2)
with category S. That is, (Sasha praised Kim, S) will be an expression
in L(Eng). But these expressions are syntactically complex, so they
will not be listed in LexEng, the lexicon for Eng. Rather they will be

derived by rule.
In contrast, consider the expressions Dana, Sasha, Adrian, Robin,

and Kim. These are traditionally called Proper Nouns (or Names) and
they appear to be syntactically simple and so are candidates for being
lexical items. We shall in fact treat them as lexical items of category
NP. That is, (Dana,NP) ∈ LexEng, (Sasha,NP) ∈ LexEng, etc. Note

2Coordination of an expression with itself is often bizarre, but not always so.
The repetition in (b) below is an intensifying effect, and makes the example natural
in a way in which (a) not.

a. ?Sasha criticized Kim and Sasha criticized Kim
b. Sasha laughed and laughed and laughed

We do not consider such repetition problems here. But note had we decided that
(a) above were ungrammatical, we would not want to change our overall approach
to coordination. Rather we would conclude that the acceptability of conjoining
expressions depends on more than just having the same category.
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that these expressions satisfy our criteria for being assigned the same
category (regardless of what we call it). They can substitute one for
another in the expressions in (2), they are semantically similar in that
they all function to denote individuals, and they coordinate with each
other: both Dana and Kim, either both Dana and Kim or both Sasha
and Adrian, neither Kim nor Dana, etc. So far, then, LexEng is a set

with five elements: (Dana,NP), (Sasha,NP), etc. We abbreviate this
notation slightly in giving LexEng to date as:

(5) NP: Dana, Sasha, Adrian, Kim, Robin

Now consider how we might generate the S Dana smiled. The tree
in (6) represents what we know so far:

(6) S
vvv

JJJ
JJ

NP ?

Dana smiled

We want to design a category X for smiled and then formulate a
rule whose content will be: A string s of category NP followed by a
string t of category X is a string of category S. Traditionally we might
assign smiled the category Vi, intransitive verb. However most current
theories of grammar use a more systematic notation here rather than
just inventing a totally new category symbol. We shall use the notation
NP\S, read as “NP under S” or “look left for an NP to become an S”3.
The category symbol NP\S is built from other category symbols. And
once we give the rules of our grammar it will follow that an expression
of category NP\S is one that concatenates with a string of category
NP to its left (the direction in which the “slash” \ leans) to form an
expression of category S. More generally an expression of category B\A
combines with an expression of B to its left to form an expression of
category A.

So the set CatEng of category symbols used in our grammar is not

just an unstructured list, rather it is constructed from some primitive
categories using some functions that build derived categories from sim-
pler ones. Here is an initial definition with primitive members NP and
S (to which we later add some others):

Definition 4.1. CatEng is the least set satisfying (i) and (ii) below:

3The slash notation is taken from an approach to grammar called Categorial
Grammar (see Oehrle et al. (1988)). Our use of that notation is compatible both
with traditional subcategorization notation as well as current Minimalist approaches
to grammar.
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i. NP and S belong to CatEng.

ii. If A and B are in CatEng , then (A/B) and (B\A) are in CatEng.

We treat the right slash, /, and the left slash, \, as two place function
symbols, writing them between their arguments. We can equally well
describe CatEng as the closure of {NP, S} under the functions / and

\. We might write our definition explicitly as:

(7) a. Cat0 = {NP, S} and for all n ≥ 0,
b. Catn+1 = Catn ∪ {(A/B) | A,B ∈ Catn}

∪ {(B\A) | A,B ∈ Catn}.
Then CatEng is defined to be

⋃

0<n Catn. That is, a string s over

the six symbols {NP, S, /, \, (, )} is an element of CatEng iff for some

n ∈ N, s ∈ Catn. And the reader should be aware that there are many
ways besides our “union” approach to define the closure of a set under
some functions. A very common one is by intersections. Thus we might
define CatEng to be the intersection of the sets which include {NP, S}
and are closed under / and \. The resulting set is the same as the one
we defined via unions. Categories of the form A/B and B\A are called
slash categories ; B is the denominator category, A the numerator.

In general, in such cases, parentheses are needed to avoid ambiguity:
A/(B/C) is not the same category as (A/B)/C, just as 2+(3×4) = 14
is different from (2 + 3) × 4 = 20. (One way to avoid parentheses is
to write all function symbols initially, as in Polish notation; another
is to write them all at the end, resulting in reverse Polish notation.
Either of these ways avoids ambiguity, but neither is as readable as
writing the operation between its arguments. You will see an example
of Polish notation when we turn to propositional logic in Chapter 7, see
page 7.2.3.) That said, we eliminate parentheses from category names
when no confusion results.

Having defined the category symbols we will use we now define our
first structure building operation. It is a binary function called FA
(Function Application) defined by:

(8) For all A,B ∈ CatEng,

a. FA((s,B), (t, A/B)) = (t⌢s,A), and
b. FA((s,B), (t, B\A)) = (s⌢t,A).

We understand here that the domain of FA is the set of all pairs of
possible expressions consisting of a string s of any category B and a
string t either of category A/B or of category B\A, A any category.
Informally we can read this as saying that a t of category A/B is looking
to the right for any s of category B, and it will concatenate with s to
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form t⌢s of category A. Similarly a t of category B\A is looking left
for a string s of category B and s will concatenate with t to form an
expression s⌢t of category A. So t is always looking in the direction
the slash leans.

Note that there are no conditions on the rule FA, but normally in
defining a structure building function for a grammar, we stipulate a
variety of Conditions on the domain of the function. These conditions
limit what the function applies to—what it can “see”. These constraints
are actually responsible for much of the “structure” a particular gram-
mar has Keenan and Stabler (2003). Later on, functions we discuss
will have a more specialized role in the grammar and only apply to
expressions that satisfy various conditions, both on their category and
on their string coordinates.

We now enrich the lexicon of Eng by adding:

(9) NP\S: smiled, laughed, cried, grinned

The criteria we have been using support treating these as lexical
expressions of the same category. They can substitute for each other,
as in: Dana said that Kim smiled =⇒ Dana said that Kim laughed,
etc. They all denote activities that individuals may experience, and
they coordinate among themselves: Kim both laughed and cried, Dana
neither laughed nor cried, etc. And with this category assignment we
can generate (Dana smiled, S) by applying FA to the relevant lexical
items:

(10) FA((Dana,NP), (smiled,NP\S)) = (Dana smiled, S).

We now have a small lexicon and a set of Rules {FA}. So L(Eng),
the language generated from the lexicon by the rules, is small but non-
empty. Recall:

Definition 4.2. L(Eng) is the least set of possible expressions which
includes LexEng and is closed under the rule FA.

Here is a natural way to represent the argument that (Dana smiled, S)
is an expression of L(Eng).
(11) (Dana smiled, S)

FA

(Dana,NP)(smiled,NP\S)
EE

EE
EE

yy
yy

yy

We refer to such tree structures as Function-Argument (F–A) trees. The
leaves of F–A trees are lexical items. At each mother node in the tree,
we indicate the function which applied to the daughters and what the
value of that function is at the daughters. Typically, just one function
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could apply; that is, the daughters only lie in the domain of one of the
structure building functions. Thus we can omit the designation of the
function without loss of information. The sense in which (11) represents
the argument that (Dana smiled, S) is in L(Eng) is as follows: We know
that the leaves of the tree are in L(Eng) since they are lexical items. And
we know that L(Eng) is closed under the structure building functions
RFA and LFA. Hence

LFA((Dana,NP), (smiled,NP\S)) = (Dana smiled, S)

is in L(Eng).
But note that our generating function FA is concatenative, so we

can represent derivations of expressions by standard trees as well.

(12) S
xxx

x HHH

NP NP\S

Dana smiled

The simple category forming apparatus we have at hand allows us
to form categories quite productively for a variety of expressions not
yet considered. Consider for example:

(13) Dana praised Kim

We want this to be a string of category S for reasons given earlier
(substitution with other Ss, coordination with them, meaning similar-
ity), and we are already committed to assigning Dana and Kim the
category NP. At issue is to find a category for praised which permits
the sequence of lexical items to cancel to S. There are a couple of
logically acceptable candidates, but the best one draws on the sort of
linguistic reasoning we have been using. Namely (14) shows that praised
Kim coordinates with lexical expressions of category NP\S, suggesting
that it should have that category:

(14) a. Dana both praised Kim and smiled.
b. Dana neither praised Kim nor smiled.

And if we treat praised Kim of category NP\S, it suffices to assign
praised the category (NP\S)/NP. For then by FA, it will combine with
the NP Kim on its right to form an NP\S, praised Kim. You will find
the standard tree summarizing this discussion in (15) below; the F–A
tree is similar.
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(15) S

ppppppppppppppp
TTTTTTTT

NP\S
kkkkk

NNNN

NP (NP\S)/NP NP

Dana praised Kim

So let us further enrich the Lexicon of Eng by:

(16) (NP\S)/NP: praised, criticized, interviewed, teased
Note that such expressions coordinate easily:

(17) a. Dana both praised and criticized Kim.
b. Dana neither praised nor criticized Kim.

As well they are often intersubstitutable in embedded contexts, and
they are semantically similar in expressing a binary relation between
individuals, such as Dana and Kim above.

The relation is expressed in two steps: Dana is in the praise relation
to Kim iff Dana has the property expressed by praised Kim.

4.2 Manner Adverbs

Let us move on to manner adverbs such as joyfully in (2b). In general,
the result of combining a manner adverb with an NP\S yields an NP\S
that is meaningful in the same way as the original one. Indeed observe
the entailment below:

(18) a. Dana smiled joyfully.
b. Dana smiled.

To say that a sentence P entails a sentence Q, noted P |= Q, is just to
say that Q is interpreted as True in every situation (model) in which
P is True. So the truth of P guarantees that of Q. See Section 7.1 for
a discussion of entailment.

Let us now add manner adverbs such as joyfully, quickly, and care-
fully to LexEng, as in ((2b). Such modifiers combine with expressions

of category NP\S to form ones that coordinate with expressions in
that same category, as in Dana smiled joyfully and praised Kim. So
they should combine with an NP\S on the left to form an NP\S. This
means that they should have category

(NP\S)\(NP\S)
as in the F–A tree (19a) or the standard tree (19b). In (19a) we have
not explicitly noted the two uses of FA which derived the non-lexical
items.
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(19) a. (Dana smiled joyfully,S)

}}
}}

}}
}}

}}
}} VVVVVVVVV

(smiled joyfully,NP\S)
hhhhhhhhh

(Dana,NP) (smiled,NP\S) (joyfully,(NP\S)\(NP\S))
b. S

��
��

��
��

� LLL
L

NP\S
sss RRRRR

NP NP\S (NP\S)\(NP\S)

Dana smiled joyfully

Formally we enrich LexEng to include:

(20) (NP\S)\(NP\S): joyfully, quickly, carefully, tactfully
Simplifying notation We shall often write P1, “one place predicate”,
for NP\S. Similarly, P2, “two place predicate”, abbreviates

(NP\S)/NP
(and P3, “three place predicate” abbreviates

((NP\S)/NP)/NP).
Using this notation, manner adverbs have category P1\P1. Occasionally
we will use P0, “zero place predicate”, instead of S. For n ≥ 0, Pns are
n place predicates, and hence combine with n NP arguments to form
a P0; the order of combination is rightward, except that the last NP is
to the left.

Pronouns At first blush it might seem that he and she could be added
to the Lexicon in the category NP, the same as for proper nouns like
Dana and Kim. They can, for example, grammatically replace Dana
in Dana laughed, they may coordinate with NPs, as in Both he and
Kim praised Robin. And they seem semantically similar in that in He
laughed, we understand that he refers to an individual, just as in the
case of Robin laughed.

Despite these similarities, however, these pronouns have a vastly
different distribution from proper nouns. For example, he (she) cannot
grammatically replace Robin in (21a), which would yield the ungram-
matical (21b,c).

(21) a. Kim praised Robin.
b. ∗Kim praised he.
c. ∗Kim praised she.
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Traditionally, he and she are nominative pronouns, combining with
P1s to form a P0 (Sentence). We shall refer to such occurrences of NPs
as subject occurrences. So Dana is the subject of Dana praised Kim.
(We also call it the subject of the P1 praised Kim and also the subject
of the P2 praised). To continue the traditional account, he and she are
subject pronouns, but do not occur as objects NP occurrences which
combine with a P2 to form a P1 or a P3 to form a P2. We may capture
the relevant distributional facts for subjects by the following category
assignment to he and she:

(22) S/(NP\S): he, she, they
Thus we generate He praised Kim as per (23):

(23) (he praised Kim,S)

tttttttttttt VVVVVVV

(praised Kim,P1)

hhhhhhh

(he,S/P1) (praised,P1/NP) (Kim,NP)

But our grammar will not generate (Robin praised he, S) since praised
has category P1/NP and so is looking right for an NP to make a P1.
But he does not have category NP. Similarly he does not have a left
looking category X\Y , so FA cannot apply.

Exercise 4.1. Add him, her, and them to the Lexicon, assigning them
the same category, in such a way that the grammar generates Kim
praised him but ∗Him laughed. Say in words why the grammar does
not generate (Him laughed, S).

This simple addition of pronouns with their restricted distribution
turns out to have some unexpected consequences for the category as-
signment to proper nouns. We have been taking coordination as a guide-
line for sameness of category. But given the grammaticality of (24a,b)
below, this argues that Kim should have the same category as he and
also the same category as him, a contradiction as these two categories
must be different!

(24) a. Both he and Kim laughed joyfully.
b. Dana praised both him and Kim.

This is really our first interesting problem in category assignment.
Here we offer a brute force solution whose main merit is empirical
adequacy. But first we must enter coordinations in the grammar, since
that is the environment which triggers our problem.

Coordination Traditional categorial grammar would attempt to ex-
tend Eng so that it generates (both) Kim and Dana, neither laughed nor
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cried, either praised Robin or criticized Adrian by assigning an appro-
priate category to and, or, and nor. But this approach is not without
problems. One of some interest is that it forces a coordination such as
Kim and Dana to have an internal constituent structure, typically

[Kim [and Dana]],

where Dana is subordinate to Kim, specifically it is c-commanded by
it.

We opt for a different approach. Linguists have observed that coor-
dinate structures differ from subordinate ones, ones constructed with
conjunctions such as because, since, etc., in that certain processes must
treat each conjunct alike, whereas only the main clause is affected by
that process in a subordination context. An example here is the “across
the board” constraint on relativization. Consider the coordination in
(25a). We can simultaneously relativize into each conjunct, as in (25b),
but we cannot relativize into just one of the conjuncts, (25c,d).

(25) a. Sasha praised Kim and Adrian criticized Dana.
b. the woman whoi Sasha praised ti and Adrian criticized ti
c. ∗the woman whoi Sasha praised Kim and Adrian criticized
ti

d. ∗the woman whoi Sasha praised ti and Adrian criticized
Kim

In contrast, in Ss built with subordinate clauses, we can just rela-
tivize into the main clause, (26a) below, not the subordinate one, (26b)
or both, (26c):

(26) a. the woman whoi Sasha praised ti because Adrian criticized
Kim.

b. ∗the woman whoi Sasha praised Kim because Adrian
criticized ti.

c. ∗the woman whoi Sasha praised ti because Adrian
criticized ti.

So we will present coordination rules independently of Function Ap-
plication. Once their behavior is well understood, perhaps they can be
insightfully assimilated to the slash notation. We begin by adding a new
primitive category to CatEng, namely Conj (coordinate Conjunction).

The lexicon is extended by

(27) Conj: and, or, nor

Then we give the coordination Rule, Coord in Figure 5. In giving ex-
amples we may ease readability by omitting the use of both and either.
(We could extend the Coord rule to allow this formally but our interest
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(c,Conj)(s, C)(t, C) =⇒







(both s and t, C) if c = and
(either s or t, C) if c = or
(neither s nor t, C) if c = nor

C must be one of P0, P1, P2, P1\P1, P0/P1 or P2\P1.

FIGURE 5 The coordination rule, Coord.

here does not lie in the optionality of these items).
You should check that L(Eng) is infinite. Here is one of the new

expressions in it, along with its F–A tree:

(28)

(Kim neither laughed nor praised Dana, S)

(Kim, NP)

(neither laughed nor praised Dana, P1)

(nor, Conj) (laughed,P1) (praised Dana, P1)

(Dana,NP)(praised, P2)

VVVVVVVVV

MMMMMMMMMMMMM

**
**

**

}}
}}

}}
}}
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Exercise 4.2. Provide F–A trees for each of the following

a. Dana either praised or criticized Sasha.

b. Dana criticized Sasha neither joyfully nor tactfully.

c. Both Dana cried and Sasha laughed.

Let us turn now to the problematic cases involving coordinations of
pronouns and proper nouns. Clearly we want our grammar to generate
(29) as an S:

(29) Either he or Sasha criticized Kim.

Currently, Eng does not generate (29), since it only coordinates ex-
pressions of the same category, and he and Sasha have different cate-
gories: S/(NP\S) and NP, respectively. In fact, NP is not among the
coordinable categories, so at the moment Eng will not even generate
Either Adrian or Sasha criticized Kim.
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We overcome both shortcomings by allowing proper nouns to have
the category S/(NP\S), as well as their current category, NP. Specifi-
cally, enrich LexEng by:

(30) a. P0/P1: Sasha, Adrian, Dana, Kim, Robin
b. P2\P1: Sasha, Adrian, Dana, Kim, Robin

Thus proper nouns combine with P1s on the right to form a P0, and
they combine with P2s on the left to form a P1. (And in general, proper
nouns will combine with Pn+1s to form Pns). To anticipate a worry, we
note that

(31) (Kim,NP), (Kim, (P0/P1)), (Kim, (P2\P1)), and (Kim, (P3\P2))
are four different lexical expressions (with the same string coordinate
but different category coordinates). So they can be assigned different
denotations by a semantic interpretation function.

Here now are some F–A trees illustrating coordination with proper
nouns, which can be coordinated in category P0/P1 or P2\P1.
(32) (either he or Dana, S/(NP\S))

nnnnnnnnnnn

RRRRRRRRRRRRRR

(or, Conj) (he, S/(NP\S)) (Dana, S/(NP\S))
From this we can build the S either he or Dana smiled.

(33) (Kim praised both him and Sasha, S)

(Kim, NP)

(praised both him and Sasha, P1)

(praised, P2)

(both,Conj)

(both him and Sasha, P2\P1)

(Sasha,P2\P1)(him, P2\P1)

VVVVVVVVV

EE
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EE

**
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Note that the result of replacing (Kim,NP) here with (Kim,P0/P1)
also yields a good derivation, but with different categories. As the sen-
tence is not felt to be semantically ambiguous, when we give a semantics
for this language, we must make sure that the two structures are in fact
interpreted the same.

Exercise 4.3. Provide F–A trees for the following, recalling that NP
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is still not coordinable.

a. Either Dana or Kim criticized Sasha

b. Either both Dana and Kim or both Dana and Adrian criticized
Sasha

Exercise 4.4. For each of the Ss below, provide a syntactic analysis
tree. You must invent a category for at. Give a few reasons to support
your analysis.

a. Robin smiled joyfully at Sasha

b. Robin smiled at Sasha joyfully

Quantified NPs We want to extend Eng so that it generates expres-
sions such as some doctor, no priest, every senator, etc. as they occur
in Ss like (2h) and (2i). Since these expressions combine with Pn+1s
to form Pns quite generally, they appear to have the same distribution
as proper nouns and so shall be assigned some of the same categories.
But they also have some internal structure, consisting of a Det (every,
no, some, etc.) and a common N (doctor, priest, lawyer, etc.). Common
nouns exhibit a few similarities to P1s, but there are also very many
differences. For example, P1s are marked for tense (present walks, past
walked) and person (I walk, she walks) whereas Ns are not. So again we
shall take the safe if unimaginative route and treat N (Noun) as a new
primitive category. Thus we enrich the Lexicon as follows:

(34) N: doctor, lawyer, priest, student, teacher
(P0/P1)/N: every, no, some, the, a
(P2\P1)/N: every, no, some, the, a

Clearly Dets like every, some, no, most, etc. combine with Ns on the
right to yield “DPs” (Determiner Phrases)— expressions that combine
appropriately with Pn+1s to from Pns. So in one way or another we want
to say that every student behaves as though it had category P0 → P1,
since it combines with P1 on the right to form P0s, as in Every student
laughed. But equally it combines with P2s on the left to form P1s, as in
John praised every student and finally it combines with P3s on the left
to form P2s, as in John gave every student a book. So let us say that a
sequence of slash categories is unifiable iff their denominator categories
are all distinct. So for C = 〈C1, . . . , Cn〉 a sequence of unifiable slash
categories each Ci is of the form Ai/Bi or Bi\Ai. And we will say
that a string s has category C iff for each 1 ≤ i ≤ n, it combines
with expressions of category Bi appropriately to form expressions of
category Ai. (By “appropriately” here we just mean that s finds its Bi

on the side towards which the slash in category Ci leans).
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Specifically now, we use DP for the category 〈P0/P1,P2\P1,P3\P2〉.
We enrich the Lexicon as follows (note that Sasha, Kim, etc. still have
category NP):

(35) DP: Sasha, Adrian, Kim, Dana, Robin
DP/N: every, some, no, most, the, a

We can now generate No student criticized every teacher, as shown
by the F–A tree below:

(36) (no student criticized every teacher, S)

(criticized every teacher, P1)

(every teacher, DP)

(criticized, P2)

(no student, DP)

(student, N)

(no, (DP)/N)

(every, ((DP)/N)

(teacher, N)

lllllll
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Exercise 4.5. Provide F–A trees for each of the following:

a. Kim and some student laughed.

b. Sasha interviewed some student and every teacher.

c. They interviewed either him or the teacher.

d. Neither Kim nor Adrian criticized every teacher.

Exercise 4.6. Design a category for give and offer below, and then
exhibit the F–A trees for (a) and (b). Assume that apple is a N.

a. Every student gave some teacher an apple.

b. No student offered every teacher an apple.

Exercise 4.7. Add traditional adjectives such as tall, industrious,
clever, and female to the Lexicon. Exhibit F–A trees for the follow-
ing, using the category you have found.

a. No clever student praised every industrious doctor

b. Every industrious female student laughed

Possessives In English, possessors such as Kim’s in Kim’s doctor
behave like Dets in the sense of occurring in the same prenominal po-
sition: ∗Every Kim’s doctor, etc. So we should like to add ’s to our
Lexicon in such a way that it combines with a DP on the left to form
a Det. Here is one solution:



Syntax II: Design for a Language / 103

(37) DP\(DP/N): ’s.

Here is a simple sentence built with ’s :

(38) (some doctor criticized Dana’s teacher, P0)

(criticized Dana’s teacher, P1)

(Dana’s teacher, DP)

(criticized, P2)

(some doctor, DP)

(doctor, N)

(some, (DP)/N)

(Dana’s,(DP)/N)

(Dana, DP) (’s,((DP)\((DP)/N))

(teacher, N)

lllllll
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Exercise 4.8. Exhibit F–A trees for the expressions below

a. Every student’s doctor laughed.

b. Kim’s teacher’s doctor cried.

Sentence Complements We are concerned here with Ss built from
verbs like think, say, and believe. These combine with Sentence Com-
plements to form a P1, as in (39).

(39) Adrian said that Sasha praised Kim

The sentence complement consists of a full S preceded by that, called
a complementizer. Linguists distinguish the category of Sasha praised
Kim, which is S (Sentence), from that of that Sasha praised Kim,
called a CP “Complementizer Phrase”. Here, too, we shall make a cat-
egory distinction, though instead of the cumbersome ‘Complementizer
Phrase’ we shall use S (read: “S bar”). One reason for making a cate-
gory distinction here is that sometimes the presence vs. absence of the
complementizer leads to differences in interpretation. Compare (40a,b).

(40) a. Kim believes either that there is life on Mars or that there
isn’t.

b. Kim believes that either there is life on Mars or there isn’t.

In (40a), we have a disjunction of two Ss. The whole S claims that
Kim believes one of the disjuncts, though the speaker is not sure which.
In contrast, (40b) seems to simply assert that Kim believes a certain
disjunction So (40a,b) differ in meaning, and they differ in form just
by the presence vs absence of the complementizer that.

Accepting this category distinction then we are obliged to add a
new primitive category to our grammar, S. And we enter that into the
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Lexicon as in (41), and sentence complement taking verbs as in (42).

(41) S/S: that

(42) (NP\S)/S: think, say, believe, regret, resent
Then (43) is an F–A tree for (39), in which the derivation of the

embedded S Sasha praised Kim is omitted as familiar.

(43) (Adrian said that Sasha praised Kim, S)

(Adrian, NP)

(said that Sasha praised Kim, NP\S)

(said,(NP\S)/S)

(that Sasha praised Kim, S)

(that, S/S) (Sasha praised Kim, S)

III
I

II
II

II
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Let us note a last somewhat subtle distinction to be made among
the sentence complement taking verbs. For many such verbs, especially
semantically “weak” ones like say, think, and believe, the use of the
complementizer that is optional.

(44) a. Adrian said (that) Sasha was fleeing the country.
b. Sasha thought Adrian said that Kim criticized Robin.

But for some “semantically richer” verbs, the complementizer is not
easily omitted:

(45) a. Winston resented that his wife was wealthier than him.
b. ??Winston resented his wife was wealthier than him

Though judgments are not always crisp, let us accept as a first ap-
proximation to reality that some sentence-complement-taking verbs re-
quire a complementizer, and for others it is optional. This regularity
can then be captured by allowing a second categorization in the Lexicon
of the optional-that verbs:

(46) (NP\S)/S: say, think, believe
Thus our grammar also generates (47).



Syntax II: Design for a Language / 105

(47) (Adrian said Sasha praised Kim, S)

(Adrian, NP)

(said Sasha praised Kim, NP\S)

(said,(NP\S)/S)

(Sasha praised Kim, S)

III
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Note that in (47) said cannot be replaced by resented as the latter does
not combine with S to form anything. resented only combines with S,
and no substring of (47) is an S.

Exercise 4.9. Exhibit an F–A tree for each S below. Describe a situ-
ation in which (a) is true and (b) is not.

a. Sasha believes either that Kim laughed or that Dana laughed.

b. Sasha believes that either Kim laughed or Dana laughed.

Summary Grammar For purposes of later reference, we summarize
in Figure 6 our grammar Eng as developed so far. We use the category
abbreviations where convenient.

Remarks on Eng L(Eng) contains several fundamental structure
types in natural language: Predicate+Argument expressions, Modifier
expressions, Sentence Complements, Possessives, and coordinations.
Arguably all languages have expression types of these sorts. The reader
might get the impression that we could attain something like a sound
and complete grammar for English just by continuing in the spirit in
which we have already been moving. But this would be naive. There are
simply a great number of linguistic phenomena we have not attempted
to account for: Agreement phenomena, impersonal constructions, ex-
traposition phenomena, clitics, selectional restrictions, Raising, nom-
inalizations, ellipsis, . . .. The structure types we have considered are
all built by concatenating expressions with great freedom beginning
with lexical items. But natural languages present a significant variety
of expression types which generative grammarians have treated with
different types of structure building operations, specifically movement
operations. Here we consider one such basic case, Relative Clauses.
We extend Eng to account for these structures, together with various
constraints to which they are subject.
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CatEng is the closure of {Conj,N,NP, S, S} under / and \.
(DP is used as a variable ranging over P1/P0, P2\P1, and P3\P2.)
Categories of LexEng are listed below, with vocabulary items:

N: doctor, lawyer, student, teacher
NP\S: smiled, laughed, cried, grinned
(NP\S)/NP: praised, criticized, interviewed, teased, is
(NP\S)/S: think, say, believe, regret, resent
(NP\S)/S: say, think, believe
(NP\S)\(NP\S): joyfully, quickly, carefully, tactfully
NP: Dana, Sasha, Adrian, Kim, Robin
DP: Dana, Sasha, Adrian, Kim, Robin
(DP)/N: every, some, no, the, a
P0/P1: he, she, they
P2\P1: him, her, them
N/N: tall, industrious, clever, female
(P1\P1)/(P0/P1): at, to
Conj: and, or, nor
DP\(DP/N): ’s
S/S: that

The rules are listed below:

a. FA (Function Application):
For all A,B ∈ CatEng, for all strings s, t of vocabulary items,

a. (s,A/B), (t,B) =⇒ (s⌢t,A).
b. (t,B), (s,A\B) =⇒ (t⌢s,A).

There are no conditions associated with RFA and LFA.

b. Coord (coordination)

(c,Conj)(s, C)(t, C) =⇒







(both s and t, C) if c = and
(either s or t, C) if c = or
(neither s nor t, C) if c = nor

C must be one of P0, P1, P2, P1\P1, or DP.

FIGURE 6 Our grammar Eng up until this point.

4.3 Relative Clauses

Consider the DP in (48a). The substring following the N teacher is
called a relative clause. Most approaches to generative grammar would
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derive it from something like (48b) by moving the wh- word (who in
this case) to the complementizer position in front of the S. That posi-
tion is here filled by a special expression e which is not phonologically
interpreted. The position from which the wh- word was moved is filled
by another unpronounced symbol, t, called a trace. The trace and the
moved wh- word are co-indexed, enabling one to retrieve the site from
which movement took place.

(48) a. every teacher whoi Kim criticized ti
b. every teacher [ e [Kim criticized who]]

Linguists have discovered quite a variety of constraints regulating the
formation of relative clauses (RCs) as well as other syntactically related
phenomena such as wh- questions as in (Whoi did Kim criticize ti?).
On this standard approach, these constraints are given as constraints on
the positions from which the wh- word can move and the material across
which it is moved. Below we summarize instances of these constraints.
Then we formulate RC Formation within the format we have been
presenting, and we show how the classical constraints are satisfied.

Some classical constraints on Relative Clause Formation (RCF)

a. No Vacuous Binding. The remnant following the wh-word must
contain an appropriate gap (traditionally marked t): ∗every
teacher who Kim criticized Sasha.

b. The Coordinate Structure Constraint. We cannot relativize into
just one conjunct of a coordinate expression. So we have ∗every
teacher whoi Kim criticized Robin and Adrian praised ti But a
systematic phenomenon called the Across the Board exception
allows relativization into all conjuncts simultaneously, as in Every
teacher whoi Kim criticized ti and Robin praised ti. We discussed
this above in (25) and (26).

c. Subjacency. Given a sentence with an RC, one cannot relativize
out of that RC: So we have John knows the student whoi [ ti
criticized the teacher] but not ∗I see the teacher whoj [John knows
the student whoi [ ti criticized tj]].

d. The Empty Category Principle (ECP): We can relativize the sub-
ject of a sentence complement provided it is not preceded by a
complementizer. Here are some relevant examples:

(49) a. John said the teacher criticized Amy

b. the teacher whoi John said ti criticized Amy

c. John said that the teacher criticized Amy

d. ∗the teacher whoi John said that ti criticized Amy
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e. Pied Piping: we can relativize possessors provided the entire pos-
sessive DP is incorporated into the wh- word. For example, John
knows every student’s teacher and also every student [[whose
teacher]i John knows ti] but not

∗every student whoi John knows
[ ti ’s teacher]

f. Wh- phrases coordinate, but not lexical ones. So we have

the student [[whose teacher and whose doctor]i Dana interviewed ti]

but not
∗the student [[who and whose teacher]i Dana interviewed ti]

Similarly, conjuncts into which we have relativized cannot be ex-
hausted by the relativization site, as in the starred example below.
The first example (not generated by Eng) shows that in carefully
selected cases it is possible in English to relativize into coordinate
DPs.

(50) a. the senator who Sue interviewed several friends of t
and several enemies of t

b. ∗the senator who Sue interviewed t and several enemies
of t

The first five constraints are representative of major ones the stan-
dard analysis is subject to. The sixth is less widely acknowledged but
in fact difficult to capture on the standard analysis.

Let us now extend Eng to a grammar Eng∗ in Figure 7 whose lan-
guage is a superset of L(Eng) which includes RCs and satisfies the
constraints above.

The core idea. Wh- words, such as who and whose teacher will com-
bine with expressions which resemble Ss, but which lack a NP argu-
ment. This gap will be coded in the category of what follows the wh-
words. In the simplified version of RCF we present here, we allow only
NP gaps; in richer versions one would allow Prepositional Phrase gaps
as well, as in the man [with whom]i Mary went to the movies ti (see
Keenan and Stabler (2003)), So we will now allow categories of the
form S[NP], meaning an S with an NP gap. Similarly (NP\S)[NP] is a
P1 with an NP gap, etc.

RCs themselves have category N\N, they combine with a N to their
left to form a N. The main point on our treatment is the following:
In forming DPs with RCs, only rules of FA, with or without feature
passing are used. So we have no movement rules per se.

We need some new rules of function application. The idea in the
FA[NP] rule is that each instance of FA in Eng now extends so that one
but not both of the two items concatenated may carry the feature [NP],
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which is passed to the category of the derived expression. We impose
one limitation on the pairs in the domain of FA[NP]. This limitation
is a response the constraints on English relative clauses that we noted
above.

Cat∗Eng = CatEng ∪ {C[NP] | C ∈ CatEng}
∪ {(N\N)/(S[NP]), ((N\N)/(S[NP]))/N}

Lex∗Eng includes LexEng plus the following special items:

NP[NP] : t
(N\N)/(S[NP]) : who, that
((N\N)/S[NP])/N : whose

Rule Eng∗ adds two rules to those of Eng: “feature passing” exten-
sions of those FA rules, called FA[NP], and one additional clause on
the Coord rule.

rule name how it works conditions

RFA[NP] (s,A/B[NP]), (t, B) =⇒ (s⌢t,A[NP]) see below
(s,A/B), (t, B[NP]) =⇒ (s⌢t,A[NP])

LFA[NP] (t, B[NP]), (s,B\A) =⇒ (t⌢s,A[NP]) none
(t, B), (s, (B\A)[NP]) =⇒ (t⌢s,A[NP])

In order to apply RFA[NP] to (s, S/S) and (t, S[NP]), we require
that none of the immediate constituents of (t, S[NP]) be of the form
(u,NP\S).
The additional clause in the Coord rule is:

(c,Conj)(s, C)(t, C) =⇒







(both s and t, C[NP]) if c = and
(either s or t, C[NP])) if c = or
(neither s nor t, C[NP])) if c = nor

C must be one of P0, P1, P2, P1\P1, P0/P1 N/N, N\N, or (N\N)/
(S[NP]), or some category C[NP], where C is P0, P1, P2, P0/P1, P2\P1,
or P1\P1.
Also we require that nether (s, C) nor (t, C) belongs to

{(who, (N\N)/S[NP]), (that, (N\N)/S[NP]), (t,NP[NP])}

FIGURE 7 The grammar Eng∗ used to generate relative clauses.

Here are some examples, with explanations for why the constraints
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are stated as they are. First, a simple RC in standard tree form.

(51) P0/P1

(P0/P1)/N

N

N

N\N

(N\N)/S[NP]

S[NP]

NP

(NP\S)[NP]

NP[NP]

t

P2

criticizedSashawhoteacherevery

III

III

II

II

KK































		
		

		
		

		
		

		
		

	

		
		

		
		

		
		

		
		

		
		

	

In (51) we see that the trace t has category NP[NP], which we may
read as “an NP with an NP gap”. It combines with a P2 on its left to
form a P1 with an NP gap (so the gap feature is passed up). The P1
with an NP gap combines with an NP on its left to form an S[NP], an
S with an NP gap. And now the relative pronoun who combines with
that to form an N\N. So the gap feature is now eliminated.

Example (51) makes it easy to see why No Vacuous Binding occurs:
what follows the wh-word (who, that, whose teacher,. . .) must, by the
category of the wh- words, be of category S[NP]. And the only way to
build an S[NP] is to construct an S with a trace t of category NP[NP];
that is, a gap, in some NP position.

To save space in the examples below, we just diagram the RC it-
self, the part beginning with the wh- word, omitting the initial “every
teacher” which is treated the same in all cases. Usually we just give an
F–A tree.

(52)

(who Sasha praised t and Robin criticized t, N\N)

(who, (N\N)/S[NP]))

(Sasha pr t and Robin cr t, S[NP])

(and, Conj)

(Robin cr t, S[NP])

(Sasha pr t, S[NP])

VVVVVVVVV

JJJJJJJJJJJJJ

iiiiiiiiiiiiiisssssssssss

The two conjuncts shown are generated just like the gapped phrase
(Sasha criticized t, S[NP]) in (51b). Coord applies to the bottom line
as the conjuncts have the same, coordinable, category, S[NP]. And we
see that the coordinate structure Constraint holds, since if only one
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conjunct had an NP gap, it would have category S[NP]. But the other
would have category S, a different category. So the pair together with
(and,Conj) would not lie in the domain of Coord. The Across the Board
“exception” holds since if all conjuncts have an NP gap, they all have
the same category, S[NP]. So the Coord rule applies.

Third, it is also easy to see why we cannot relativize twice into the
same clause (Subjacency):

(53) ∗ I see the teacher whoj [John knows the student whoi [ti
criticized tj ]]

The problem is that strings with traces in two argument positions
of a given predicate are not derived in our grammar. Consider:

(54) (t criticized t,?)

rrrrrrrrrr

RRRRRRRRRRRRR

(t, NP[NP]) (criticized t, (NP\S)[NP])
The strings t and criticized t have only the categories indicated, and
such a pair does not lie in the domain of any of our FA feature passing
rules as they just combine with pairs in which only one element has the
feature [NP].

(55) below shows that we can relativize the subject of a sentence
complement when there is no immediately preceding complementizer,
and (56) indicates that we cannot so relativize when there is a comple-
mentizer.

(55) (who Kim said t praised Sasha, N\N)

(who, (N\N)/S[NP])

(Kim said t praised Sasha, S[NP])

(Kim,NP)

(said t praised Sasha, NP\S[NP])

(said, (NP\S)/S)

(t, NP[NP])

(t praised Sasha, S)

(praised Sasha, NP\S)

III
I

II
II

II

II
II

II

{{
{{

{{
{{

{{
{{

{{
{

xx
xx

xx
xx

xx
xx

xx
wwwwwwwww

22
22

22
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{{
{

Consider what happens when we try to derive a RC of this sort
which does have a that complementizer. Reading from the top down,
we see that the line corresponding to the next to the last one in (55)
above would be

(56) (said, (NP\S)/S) (that t praised Sasha, S[NP])

The only way to derive the right-hand expression would be to com-
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bine

(57) (that, S/S) (t praised Sasha, S[NP])

But this configuration is precisely the one explicitly ruled out by the
condition on the domain of RFA[NP], since (praised Sasha,P1) is an
immediate constituent of (t praised Sasha, S[NP]). Hence

(that t praised Sasha, S[NP])

is not derivable in Eng∗.
We imposed this condition on the domain of RFA[NP] precisely to

block deriving expressions like

(∗every teacher who Kim said that t praised Sasha,P0/P1).

This restriction does not follow from some deep principle of grammar.
It is rather an ad hoc and fairly superficial condition, one that varies
across languages. Spanish, for example, does not really object to rela-
tivizing right after a that-complementizer:

(58) Creo
I believe

que
that

los
the

niños
children

caminaban
were running

en
in

el
the

parque.
park.

los
the

niños
children

que
that

creo
I+believe

que
that

t
t

caminaban
were running

en
in

el
the

parque.
park.

We turn to the matter of relativizing on possessors. Simple Pied
Piping works straightforwardly:

(59) (whose teacher Dana praised t, N\N)

(whose teacher, (N\N)/S[NP])

(Dana praised t, S[NP])

(Dana, (NP) (praised, (NP\S)/NP)

(praised t , NP\S[NP])

(t, NP[NP])

IIIIIIIIIII

II
II

II

wwwwwwwwwwwwwwwww

ooooooooo

??
??
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��
��
�

iiiiiiiiiiiii

UUUUUUUUUUUUU

The reason we do not generate expressions such as ∗the student who
John knows t’s teacher is that the trace t only has category NP[NP],
and ’s only combines with expressions of category P0/P1 or P2\P1. So
our grammar does not generate [t’s]. (We’ll see in Chapter 5 that NP
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denotations play a role rather different from P0/P1 or P2\P1 denota-
tions).

We are motivated however to extend the lexical entries in (37) as
follows:

(60) (X\(X/N)): ’s, all X = DP, or ((N\N)/S[NP])

Exercise 4.10. Exhibit an FA tree for

(a student whose teacher’s doctor t interviewed her, P0/P1).

Lastly, observe that Eng∗ does generate (61).

(61) (the student whose doctor and whose lawyer

Kim interviewed t, N\N)

(whose doctor and whose lawyer, (N\N)/S[NP])

(Kim interviewed t, S[NP])
SSSSSSSSSS

��
��

��
��

Coord applies to whose doctor and whose lawyer in part of (61)
which is not shown. The reason is that (N\N)/(S[NP]) is among the
coordinable categories, and the expressions are not among those ex-
cluded. If either or both are replaced simply by (who, (N\N)/S[NP])
or

(that, (N\N)/S[NP]),
the resulting triple would not be in the domain of Coord and so cannot
be coordinated. We note that this constraint is easy to state on the
approach we are proposing, since that approach builds expressions from
the bottom up. We start with lexical items and construct increasingly
complex expressions by applying our generating functions to them. Of
course, we must define the domains of the functions, and to that end
we can rule out anything we find motivated.

Exercise 4.11. Exhibit tree derivations (FA or standard) for the ex-
pressions whose string coordinates are given below:

a. a teacher who t criticized Sasha

b. every student who Sasha said that Robin thought that Dana
praised t

c. a student whose teacher’s doctor Sasha interviewed t

Exercise 4.12. Can the grammar of this chapter generate the following
strings?
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a. Every teacher who Sasha criticized t and who t praised Amy
smiles.

b. Every teacher who t likes a student who studies smiles.

c. Every teacher who a student who studies likes t smiles.

If so, give a derivation; if not, say why not.

Exercise 4.13. The ability to assign expressions novel categories has
played perhaps an unexpectedly large role in enabling us to formulate
original answers to problems of generative syntax. Here is a last curious
if not fundamental case. English permits the productive formulation of
modifying phrases consisting of an adjective followed by a body part
Nwith an -ed suffixed, as in: a rosy cheeked girl, a broad shouldered
man, a flat footed cop, etc. Your problem: treating cheek, etc. as an
N, rosy, etc. as an Adj, N/N, design a category for -ed such that we
generate rosy cheeked girl, etc. as an N but do not generate cheeked girl
as an N.

This completes our illustrative grammar fragment. We turn now in
the next chapters to discussion of semantic interpretation.

Further Reading The use of the division notation and the function-
argument conception of categories dates from Ajdukievicz (1967). Early
foundational works in this style of grammar, called Categorial Gram-
mar, are Lambek (1958) and Bar-Hillel, Gaifman and Bar-Hillel et al.
(1960). Wood (1993) is an introductory book on it. A linguistically
useful collection of articles on various aspects of categorial grammar is
Oehrle, Oehrle et al. (1988). A more recent overview is Chapter 1 in
Bernardi (2002). A technically more advanced work is Moortgat (1996).
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Syntax III: Linguistic Invariants

and Language Variation

Work in generative grammar goes well beyond our our simple grammar
in Chapter 4. For one, it extends the rules to ones that move, copy
and delete constituents. And, our concern here, it attempts to general-
ize the rules and constraints at any given time to new cases, drawing
on diverse languages. Ultimately as linguists we are interested in gen-
eral properties of human language, not just, say, English with all its
peculiarities.

In this chapter (which draws extensively on Keenan and Stabler
(2003)) we consider some models of languages in which morphol-
ogy plays a significantly greater structural role than in English. It
enables those languages to ignore the c-command generalization on
anaphors mentioned in Chapter 3. To represent this linguistic variation
we present a notion of structural invariant of a grammar which en-
ables us to generalize across non-isomorphic grammars. It also enables
us to show that morphology and lexical items may be “structural” in
exactly the same sense in which properties like is a VP and relations
like c-commands are. We draw on notions of invariance used elsewhere
in physical science (Chemistry: Cotton (1990); Vision: Mundy and Zis-
serman (1992). See Weyl (1952) and Gardner (2005) for more general
studies. Then we support the following claim:

(1) Anaphora Universals:
For G any grammar of a natural language,

a. the property of being an anaphor is structurally invariant
in G, and

b. the Anaphor-Antecedent relation is a structural invariant
of G.

Of course these claims assume a language independent definition

115
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of anaphor, the Anaphor-Antecedent relation, and structural invariant.
We turn to the latter task first.

5.1 A Model Grammar and Some Basic Theorems

We present a model grammar Eng for English with co-argument
anaphora. It is a reduced version of the grammar in Chapter 4, with
just enough structural diversity to cover the basic (and a few not so
basic) instances of reflexive anaphora in English. It derives sentences
like (2) with the constituent bracketing indicated and so satisfies the
c-command condition.

(2) a. [John [criticized [himself]]]
b. [John [criticized [both himself and Bill]]]

Then we present similarly simple models for two languages in which
morphology rather than constituency relations controls the distribution
of anaphors. We show how to compositionally interpret the morphology
permitting anaphors to asymmetrically c-command their antecedents.
So the structure of simple sentences in these languages is not isomorphic
to those of English.

We exhibit our grammars in a theory-neutral format. We intend that
a grammar given in any particular theory—GPSG, LFG, RG, Minimal-
ism, etc—can be presented in this format, so no constraints on expres-
sions derive from the format itself; it is not a theory in the sense in
which LFG, Minimalism, etc. are theories.

Definition 5.1. A grammar G is a four-tuple 〈VG,CatG,LexG,RuleG〉,
where (omitting subscripts) V and Cat are non-empty sets—the vocab-
ulary and category indices respectively. The set of possible expressions
is V ∗ × Cat, noted PEG. Lex, the set of lexical items of G, is a finite
subset of PEG, and Rule is a set of structure building partial functions
of bounded arity from PE∗

G into PEG. (A function F is of bounded arity
iff for some n, all s ∈ Dom(F ) are of length ≤ n.) L(G), the language
generated by G, is the closure of LexG under the F ∈ RuleG.

5.1.1 The grammar Eng

V: laughed, cried, sneezed, praised, criticized, punished, congratu-
lated, John, Bill, Sam, Ed, himself, and, or, nor, both, either,
neither

Cat: P0, P1, P2, P01/P12, P1/P2, CJ

Lex: P1: laughed, cried, sneezed (I.e. (laughed, P1) ∈ LexEng, etc.)

P2: praised, criticized, punished, congratulated
P01/P12: John, Bill, Tom, Ed (P01/P12 is often noted NP)
P1/P2: himself
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CJ: and, or, nor

Rule: {Merge,Coord}, defined below for s and t arbitrary elements
of V ∗.

Merge:

(s,A), (t, B) → (s⌢t,P0) A = P01/P12, B = P1,
(s,A), (t, B) → (t⌢s,P1) A ∈ {P1/P2,P01/P12}, B = P2.

We understand from this notation (here and later) that Merge is a two
place function. Its domain is the set of pairs of possible expressions
mentioned on the left above. Its value at each argument is given at the
head of the arrow. The Function-Argument tree in (3) summarizes the
argument that (John laughed,P0) is in L(Eng).
(3) Merge: (John laughed,P0)

(John,P01/P12) (laughed,P1)

The leaf nodes are lexical items and since L(Eng) is closed un-
der Merge, which applies to the pair of leaf nodes, we infer that
(John laughed,P0) ∈ L(Eng). The tree is just a pictorial represen-
tation of the argument that (John laughed,P0) ∈ L(Eng). It has no
status in our definition of grammar. Our second rule is Coordination:
Coord:

(and, CJ)(s, C)(t, C) → (both s and t, C) C ∈ Cat− {CJ},
(and, CJ)(s, C)(t, C ′) → (both s and t,P1/P2) C 6= C ′, and

C,C ′ ∈ {P1/P2,P01/P12}.
(4)

Merge: (Ed criticized both himself and Bill,P0)

(Ed,P01/P12) Merge: (criticized both himself and Bill,P1)

(criticized,P2) Coord: (both himself and Bill,P1/P2)

(and, CJ) (himself,P1/P2) (Bill,P01/P12)

Exercise 5.1.

a. Write out the rules introducing either...or... and neither...nor....
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b. Exhibit function-argument derivation trees for:

i. John both laughed and criticized either himself or Bill.
ii. Ed neither criticized himself nor punished both himself and

Bill.
iii. Neither John nor Bill criticized both himself and Ed.

Note that John and himself differ in category. (himself cried,P0) /∈
L(Eng), nor is (both himself and John cried,P0).

5.1.2 Some general syntactic notes

1. Different grammars may use different categories. In Eng they are ad
hoc but mnemonic: Pn is n-place predicate. Expressions of category P0,
zero place predicates (they require 0 arguments to make a sentence)
are interpreted as True or False.

2. For an expression s = (w,C) ∈ PEG,Cat(s) =df s2, the sec-

ond coordinate of s, and string(s) =df s1. This notation facilitates
defining the F ∈ Rule and renders trivial the identification of the
category of an expression. Also it avoids much lexical ambiguity; e.g.
(respect,N) and (respect,V) are distinct lexical items—same string
coordinate but different category coordinates. Analogously for honor,
judge, desire, envy, love, etc. Also, some rules, such as Type Lifting:
(Ed,NP) → (Ed, S/(NP\S)) and rules deriving deverbal nouns and de-
nominal verbs: (shoulder,N) → (shoulder,V) just target the category
coordinate. Others may primarily affect the string coordinate, such as
Reduplication (Malagasy), Preposition + Article fusion (German: in +
das = ins ‘in the’; Hebrew: b@ + ha = ba ‘in the’, Italian: de + il = del
‘of-the’, Greek se + to = sto ‘to-the’, etc.) and like-form constraints
(Spanish: Les ‘them.dat’ → se when immediately followed by a l -initial
pronoun: ∗Les la di → Se la di ‘to.them it I-gave’.

3. We require a compositional semantics, so derived expressions are
interpreted as a function of the interpretations of what they are derived
from and the functions used to derive them. For most lexical items we
must learn their meanings de novo, and only finitely many independent
meanings can be so learned, so Lex is finite.

4. The complexity hierarchy is the chain

Lex0 ⊆ Lex1 ⊆ · · ·
given by:

Lex0 = LexG, and for all n,
Lexn+1 = Lexn ∪ {F (s) | F ∈ RuleG & s ∈ Lex∗n ∩Dom(F )}.

So Lex1 is Lex0(= LexG) plus all expressions obtained by applying
Merge and Coord to appropriate sequences of expressions in Lex0. Lex2
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is Lex1 plus all expressions obtained by applying Merge and Coord to
appropriate sequences of expressions from Lex1, etc.

Theorem 5.1.

a. L(G) = ⋃

n∈N
Lexn, and

b. RuleG is finite → each Lexn is finite.

We turn now to the crucial notion of an automorphism of a gram-
mar. Informally, an automorphism of G is a way of substituting expres-
sions for expressions without changing how expressions are derived. The
substitution must map distinct expressions to distinct expressions, and
each expression in L(G) must have something mapped to it.

Definition 5.2. An automorphism of a grammar G is a bijection
h : L(G) → L(G) which fixes each F ∈ RuleG, that is, h(F ) = F . AutG
is the set of automorphisms of G.

So treating F ∈ RuleG as a set of sequences, F = h(F ) just means
that F = {h(d) | d ∈ F}. To say F (a1, . . . , an) = b is just to say
that 〈a1, . . . , an, b〉 ∈ F , so 〈h(a1, . . . , an), h(b)〉 ∈ h(F ) = F . Thus,
F (h(a1, . . . , an)) = h(b) = h(F (a1, . . . , an)), so h commutes with F ,
h ◦ F = F ◦ h.
Exercise 5.2. For F and h as above, show that h(F ) = F if h com-
mutes with F .

Fact. We define an h ∈ AutG just by giving its values on lexi-
cal items. Its values on all derived expressions follow, given that
h(F (s1, . . . , sn)) = F (h(s1), . . . , h(sn)).

Notation. For f : A → B, f extends to a map (also noted f when
no confusion results) from A∗ into B∗ by setting f(〈a1, . . . , an〉) =
〈f(a + 1), . . . , f(an)〉. And if f has been extended to a set D then f
extends to the power set of D by setting f(X) = {f(x) | x ∈ X}.

Perm(A) is the set of permutations of A—the bijections from A to
A, and |A| is the cardinality of A Since LexG is finite and |AutG| ≤
mboxPerm(LexG), it follows that

Theorem 5.2. AutG is finite.

Exercise 5.3. For A finite with |A| = n, |Perm(A)| = n!. Say why.

Definition 5.3. A group A is a four-tuple 〈A, ·,−1 , e〉, where A is a
set, the domain of A, · is a binary function on A, −1 is a unary function
on A, and e is an element of A, which satisfy the three conditions below
for all x, y, z ∈ A:

a. Associativity: ((x · y) · z) = (x · (y · z)),
b. Identity: (x · e) = (e · x) = x, and
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c. Inverses: ((x−1 · x) = (x · x−1) = e.

Theorem 5.3. AutG contains the identity map idG on L(G) and is
closed under function composition and inverses and is thus a group.

So whenever h ∈ AutG then so is h−1 (which maps y to x iff h maps
x to y), and whenever g, h ∈ AutG so is h◦g, which maps x to h(g(x)).
AutG is called the automorphism group of G and also the symmetry
group of G.

Here are some more examples of groups. The first is infinite, but our
interest lies in finite groups since AutG is finite for any grammar G.

(5) The set Z of integers (positive, negative and 0) with · = +,
e = 0, and n−1 = −n. To verify this claim we check that + is
associative: ((n+m) + p) = (n+ (m+ p)); 0 is an identity
element: n+ 0 = 0 + n = n; and − is the inverse −1:
n+−n = −n+ n = 0.

(6) The set {1,−1} with × (multiplication) as the binary operation.
What is the identity element? For each n ∈ {1,−1}, what is
n−1?

(7) Consider a regular pentagon P (regular = all angles the same,
all sides the same length) with vertices named a, b, c, d, e in
counterclockwise order. A rotation of P rotates P around the
geometric center moving each vertex a given multiple of 72 deg
so that each vertex moves to the spot where another vertex was.
There are clearly just 5 rotations, r0, r1, . . . , r4 where each ri
maps each node i vertices ahead. We may represent the five
rotations in the table below.

x = a b c d e
r0(x) = a b c d e
r1(x) = b c d e a
r2(x) = c d e a b
r3(x) = d e a b c
r4(x) = e a b c d

So each ri is a a permutation of the vertices (but there are
5! = 120 permutations of the vertices, so most permutations are
not rotations). In fact the set of the ri is a group, where rj · ri
informally is first apply ri then apply rj .

Exercise 5.4. For the rotation group in the above example,

a. i. Define the · operation explicitly.
ii. Which ri is the identity element?
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iii. For each ri, what is its inverse?

b. For each vertex v let fv be the permutation of P obtained by
reflecting the pentagon around the line bisecting the angle sub-
tended by v. The bisecting line meets the opposite side perpen-
dicularly. For example, fa is given by:

x = a b c d e
fa(x) = a e d c b

i. Complete the table, giving values for fb(x), fc(x), fd(x), and
fe(x).

ii. The set of these reflections does not form a group under
function composition. Give a sufficient reason why not.

iii. If we add the five reflections to the set of five rotations we
do get a group (called a dihedral group). Exhibit by table
each of the following: r1 ◦ fa, fa ◦ r1, r2 ◦ fb, and fa ◦ fa.

Exercise 5.5. Let Q+ be the set of positive fractions, and let · =
× (multiplication). What choice can we make for e and the inverse
function so that the result is a group?.

Exercise 5.6. Let A be a non-empty set and Perm(A) the set of per-
mutations of A. We claim that Perm(A) is (the domain of) a group,
where · = ◦ (function composition), e = idA, the map sending each
a ∈ A to itself, and −1 is function inverse (that is, by definition h−1

maps a to b iff h itself maps b to a).

a. State the three things you must prove to show that Perm(A)
above is a group.

b. Prove each of those three statements.

Theorem 5.4 (Cayley). Every group is isomorphic to a group of per-
mutations of a set A. (Though this group may just be a proper subset
of Perm(A)).

Exercise 5.7. Let A be an arbitrary group. Prove each of the following
(always understood as universally quantified). We often do half the
problem, which serves as a hint about how to do the other half. We
sometimes write xy for x · y.

a. Right cancellation: xa = ya→ x = y,
Proof: Assume xa = ya. Then

(xa) · a−1 = (ya) · a−1 (· is a function)
x(a · a−1) = y(a · a−1) (· is associative)
xe = ye (axiom on inverses)
x = y (axiom on e )
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b. State and prove the left cancellation law.

c. Prove that e−1 = e.

d. Uniqueness of e. Let z satisfy condition 2 in Definition 5.3, that
is, for all x, x · z = z · x = x. We show that z = e. Since xz = x,
all x, then xz = xe, so by left cancellation, z = e. Your problem:
Suppose that zx = x, all x. Show that z = e.

e. Uniqueness of inverses. We show more: namely, for each x ∈ A
there is a unique y such that x · y = e. Let x be given. Suppose
that x ·y = e. Then x ·y = x ·x−1, so by left cancellation y = x−1,
which is what we wanted to show. Your problem: Show that for
each x ∈ A there is a unique y such that y · x = e.

f. Prove that (x−1)−1 = x.

g. Prove that (x · y)−1 = y−1 · x−1.

Definition 5.4. We define a binary relation ≃, is structurally equiva-
lent to, on L(G) by:

s ≃ t iff there is an h ∈ AutG such that h(s) = t.

So expressions d and d′ in some L(G) have the same structure iff
there is an h ∈ AutG which maps d to d′ (whence h−1 maps d′ to d).
Since by definition automorphisms do not change the structure building
functions this is a pretheoretically reasonable way to characterize same-
ness of structure. It also decides some cases which our pretheoretical
intuitions leave undecided: Compare the sentences in (8).

(8) a. John criticized Bill.
b. John criticized himself.

In Eng these expressions are derived in exactly the same way, dif-
fering just by a lexical item. If we replace himself in (8a) by Ed for
example there is an automorphism that derives one from the other.
But no automorphism can map one of (8) to the other. The rea-
son (omitting several steps) is because no automorphism can map
an NP, say (Bill,P01/P12), to (himself,P1/P21) since such an auto-
morphism or a variant of it would provably map (Bill laughed,P0) to
(himself laughed,P0), which is not in L(Eng), contradicting that the
range of an automorphism of Eng is L(Eng). We note the following
theorem.

Theorem 5.5. The relation ≃ is an equivalence relation. Writing [s]G
for the equivalence class of s, we have [s]G =df {t ∈ L(G) | s ≃ t}.

So [s]G is the set of expressions with the same structure as s. Equiv-
alence relations are studied more explicitly in the next chapter. Here
we just note that to say that ≃ is an equivalence relation means: (1) for
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all s ∈ L(G), s ≃ s; (2) for all s, t ∈ L(G), s ≃ t → t ≃ s, and (3) for
all s, t, u ∈ L(G), ((s ≃ t & t ≃ u) → s ≃ u). These are all natural
properties for a “sameness of structure” relation to have. Note that we
have defined sameness of structure between expressions without saying
what “the” structure of any expression is.

We turn now to the crucial notion of an invariant. Loosely, they are
properties of the grammar which are unchanged under any way of sub-
stitution of expressions for expressions which preserves how expressions
are derived. Formally,

Definition 5.5. A linguistic object d over G is structurally invariant
iff for all h ∈ AutG, h(d) = d. (We generalize this definition slightly
later).

Definition 5.6. A linguistic object over G is an element of L(G), a
subset of L(G) (that is, a property of expressions), a relation on L(G),
a (partial) function from L(G)∗ to L(G), etc.
Definition 5.7. A fixed point of a function F is an object b in its
domain such that F (b) = b.

Definition 5.8. The invariants of a grammar are the fixed points of
its syntactic automorphisms.

Theorem 5.6. The following are invariants of Eng:

a. LexEng, in fact for each n, Lexn,

b. All PH(C), where PH(C) =df {s ∈ L(Eng) | Cat(s) = C}, and
c. (himself,P1/P2) but not (john,P01/P12).

Theorem 5.7. The PH(C) and (himself,P1/P2) are invariant.

The proof begins with three lemmas.

Lemma 5.8. Automorphisms fix ⊆ (and all operations definable in
terms of it), that is X ⊆ Y → h[X] ⊆ h[Y ].

Proof. If b ∈ h[X] then b = h(x), for some x ∈ X, so b = h(y),
for some y ∈ Y (namely y = x), so b ∈ h[Y ]. Since b was arbitrary,
h[X] ⊆ h[Y ].

Lemma 5.9. For A ⊆ L(G), if h(A) ⊆ A, for all automorphisms h,
then h(A) = A, for all automorphisms h.

Proof. Assume the antecedent and let h be arbitrary in Aut. Then
h−1(A) ⊆ A. Since h preserves subset (by lemma 5.8) h(h−1)(A)) ⊆
h(A). But h(h−1(A)) = A, so A ⊆ h(A), completing the proof (since h
was arbitrary).
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Lemma 5.10. LexEng is invariant.

Proof. Suppose for some s ∈ Lex, h(s) /∈ Lex. Then h(s) is the value
of Merge or Coord at some arguments, hence h−1(h(s)) = s is also the
value of Merge or Coord at some arguments, hence its string coordinate
is a concatenation of two or more vocabulary items. But that is false,
no element of LexEng has such a string coordinate. Hence h(s) ∈ Lex,

proving the lemma.

We now proceed to the proof of theorem 5.7.

Proof. We do PH(NP) below, and the other categories in the Adden-
dum to this chapter. Inspection of Merge shows that:

a. If s ∈ Range(Merge) then Cat(s) = P0 or Cat(s) = P1.

b. If Cat(s) = NP then Cat(h(s)) = NP, for all h ∈ AutEng. Choose

t and u of category NP and P2 respectively. Then 〈s,Merge(t, u)〉 ∈
Dom(Merge). So 〈h(s), h(Merge(t, u))〉 = 〈h(s), Merge(h(t), h(u)〉 ∈
Dom(Merge). Since no expression of category P0 is a coordinate
in Dom(Merge), Merge(h(t), h(u)) has category P1, so the only
possibility for Cat(h(s)) is NP, as was to be shown. Thus PH(NP)
is invariant.

c. h(himself,P1/P2) = (himself,P1/P2). Note that by lemma 5.10,
h(himself,P1/P2) ∈ Lex, and by lemma 7 (Addendum), it has
category P1/P2. The only candidate is (himself,P1/P2).

So (himself,P1/P2) is a grammatical morpheme in Eng. No structure
preserving map can replace it by anything else. Note that (and,CJ)
is not fixed by all automorphisms; it can be mapped to (or,CJ) and
(nor,CJ), but those are the only possibilities.

5.2 A Semantic Definition of Anaphor

Studying Eng we see that (himself,P1/P2) shares many properties with
NPs. They all combine with P2s to form P1s. And they coordinate
with each other. Still, himself (we omit the category coordinate when
unnecessary) in distinction to NPs, does not combine with P1s to form
P0s. Now we intend that himself is an anaphor. But suppose we were
Martians just discovering English—how would we know that it was an
anaphor, and not simply an NP with a slightly restricted distribution—
though the restriction extends to boolean compounds which contain
it: (neither himself nor John also does not combine with P1s to form
P0s). What we need is a way of identifying expressions as anaphors
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independently of their category name or syntactic distribution on pain
of making claims about their distribution circular. We now provide such
a way.

5.2.1 Generalized Quantifiers

Given a domain E, a generalized quantifier F over E maps P(E), the
power set of E, into {False,True}, usually noted {0, 1}. F extends ac-
cusatively to maps Facc from P(E × E) to P(E) by Facc(R) = {a ∈
E | F (aR) = 1}, where aR =df {b ∈ E |( a, b) ∈ R}. For example,

(9) For A and B subsets of E, every(A) maps B to 1 (True) iff
A ⊆ B. So Every poet daydreams is True iff poet ⊆ daydream,
that is, the set of poets is a subset of the set of daydreamers.

Similarly some(A) maps B to 1 iff A ∩ B 6= ∅; no(A)(B) = 1 iff
A∩B = ∅ and most(A)(B) = 1 iff |A∩B| > |A|/2 (A assumed finite).

In general R-expressions, which we call Referentially Autonomous
expressions, denote generalized quantifiers, and their value at a binary
relation (denoted say by a transitive verb phrase) is determined by the
values they assign to the subsets of E, as given in above. The maps Facc
below are just those that satisfy the Accusative Extensions Condition
(AEC), Keenan (1987b).

The Accusative Extensions Condition (AEC): For all a, b ∈ E,
all R,S ⊆ E × E, if aR = bS then a ∈ F (R) iff b ∈ F (S).

The denotation of the higher order most of John’s students in (10a)
satisfies the AEC:

(10) a. Sam criticized most of John’s students.
b. Sam criticized himself.

If the people Sam criticized are just those who Bob praised then Sam
criticized most of John’s students has the same truth value as Bob
praised most of John’s students.

But the denotation of himself fails the AEC: if Sam criticized just
Fred, Mark, Bob and Ben, and those are just the people Bob praised,
then Sam criticized himself is False and Bob praised himself is True.
But the denotation of himself does satisfy the weaker Accusative
Anaphor Condition (AAC) below:

The Accusative Anaphor Condition (AAC): For all a ∈ E, all
R,S ⊆ E × E, if aR = aS then a ∈ F (R) iff a ∈ F (S)

An appropriate denotation for himself in L(Eng), as well as the
grammars we provide for Korean and Toba Batak shortly, is self:

(11) self(R) = {a ∈ E | (a, a) ∈ R}
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One verifies that for any E with |E| ≥ 2, self satisfies the AAC and
fails the AEC. So will the denotation of conjunctions and disjunctions of
himself with proper nouns in all those languages. This yields a language
independent semantic definition of anaphor.

Definition 5.9. An element u ∈ L(G) is an anaphor iff all its non-
trivial1 denotations satisfy AAC and fail AEC.

Fact. The set of anaphors in L(Eng) is exactly PH(P1/P2), so the
property of being an anaphor in Eng is invariant.

Further expressions containing anaphors are interpreted composi-
tionally as in Chapter 4. We note that even in our utterly simple gram-
mar antecedents may occur arbitrarily far from their anaphors:

(12) John either praised Ed or both laughed and criticized both
himself and Bill.

Definition 5.10. In L(Eng), s is a possible antecedent of an anaphor
t in u (or sAAt in u iff Cat(s) = P01/P12 and there is a constituent v of
category P1 in u such that s is sister of v and t is a proper constituent
of v.

In (12) both himself and both himself and Bill are anaphors, and
John is the antecedent of each of them according to our definition. It is
immediate from the definition that antecedents of anaphors in L(Eng)
c-command them. That condition is not sufficient however, as Bill is
not a possible antecedent of himself in both Bill and himself.

Our definition of the AA relation above is ultimately unsatisfactory,
though it is significant that the cases it identifies we judge pretheoret-
ically correct. Still it doesn’t apply to grammars that lack a category
called P01/P12. So it wouldn’t apply to the trivial variant of Eng in
which ‘P01/P12’ is everywhere replaced with ‘DP’. We don’t (quite)
have a language independent definition analogous to that for anaphor.
It is thus nearly trivial that the AA relation above is invariant since
it is defined as a logical compound of invariant properties and rela-
tions. (We show below that constituency relations and their boolean
compounds are universally invariant).

Open Problem 5.1. Find a language independent definition of the
AA relation.

5.3 A Model of Korean

We turn now to a model Kor of Korean illustrating a different, but still
structurally invariant way of presenting anaphors.

1F is trivial iff either for all relations R, F (R) = ∅ or for all R, F (E) = E.
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Kor models case marking and word order in Korean: Verbs are fi-
nal in their clauses and NPs are suffixed with (here) one of two case
markers, -nom and -acc. The resulting phrases we call Kase Phrases
(KPs). KPs are freely ordered preverbally with no topicality difference.
Kor illustrates how morphology can be directly structural in lieu of
c-command. The anaphor asymmetrically c-commands its antecedent
in (13b).

(13) a. P0

KPn

NP

John

Kn

-i

P1a

KPa

NPrefl

caki-casin

Ka

-ul

P2

piphanhayssta

John
John

-i
-nom

cacki-casin
self

-ul
-acc

piphanhayssta
criticized

John criticized himself

b. P0

KPa

NP

caki-casin

Ka

-ul

P1n

KPn

NP

John

Ka

-i

P2

piphanhayssta

cacki-casin
self

-ul
-acc

John
John

-i
-nom

piphanhayssta
criticized

John criticized himself

To get a better sense of the basic role of morphology here let us see
first that the acc-first order in (13b) differs dramatically from English
object-first orders as in Himself John likes (but no one else). For one,
in English object-first orders with reflexives are not very natural with
non-individual denoting arguments such as quantified or interrogative
ones. But in both (13a) and (13b) John can be replaced preserving
naturalness with nwuka ‘who?’ ormotun haksayng-tul ‘all the students’.
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(14) a. Caki-casin-ul
self-acc

nwuka
who

/
/

motun
all

haksayng-tul-i
student-pl-nom

piphanhayssta
criticized

Who criticized himself? / All the students criticized
themselves

b. ??Himself who criticized?
c. ??Himself every student criticized.

Secondly, the object-first order in English is largely a root clause phe-
nomenon. We cannot for example relativize the subject after fronting
the object:

(15) a. Himself the man likes
b. ∗the man who himself likes

But relativizing from a reflexive first order in Korean is natural:

(16) a. Caki-casin-ul
Self-acc

John-i
John-nom

hoyuy-eyse
meeting-loc

piphanhayssta
criticized

John criticized himself at the meeting
b. [Caki-casin-ul

Self-acc
John-i
John-nom

piphanhay-n
criticize-sub

hoyuy-ka]
meeting-nom

ecey
yesterday

iss-ess-ta
be-pst-decl

There was a meeting yesterday at which John criticized
himself

(Nom marking in Korean is -i with consonant final Nouns, -ka with
vowel final ones. Acc marking -ul vs -lul is similarly conditioned, as is
topic marking -un vs -nun).

Third, topicalization effects in Korean are achieved by morphological
means with a topic marker -(n)un rather than syntactic fronting:

(17) John-i
John-nom

Ed-un
Ed-topic

piphanhayssta
criticized

John criticized ED

Finally, while the relative preverbal order of case marked arguments
is free, what we can’t naturally change is the morphological marking:

(18) ∗Motun
All

haksayng-tul-ul
student-pl-acc

caki-casin
self

-i
-nom

piphanhayssta
criticized

All the students criticized themselves

Also the result of replacing motun haksayng-tul-ul ‘all the students
-acc’ with other accusatively marked arguments such as kwukwu-lul



Syntax III: Linguistic Invariants and Language Variation / 129

‘who-acc?’ or john-ul ‘John-acc’ remains ungrammatical.
The moral of these observations is that naively Korean syntax uses

bound morphology, case and topic marking, in a way not present in En-
glish. So the observable syntax of simple clauses in these two languages
is systematically different.

Here is a grammar of minimal main clauses with reflexives, com-
parable to Eng, which illustrates case marking invariants and direct
compositional interpretation of Ss with anaphors c-commanding their
antecedents. Note that we have “dissimilated” the P1 categories so that
once a KP in a certain case combines with a P2 then no KP in that
same case can combine with the resulting P1.

5.3.1 The grammar Kor

Cat: NP, NPrefl, Ka, Kn, KPa, KPn, P2, P1a, P1n, P0, CJ

Lex: NP: John, Bill, Sam, Kim
NPrefl: self
Kn: -nom
Ka: -acc
CJ: and
P1n: laughed, cried sneezed
P2: praised, criticized, teased
CJ: and

Rule: CM (Case Mark), PA (Predicate-Argument), Coord

CM:

Domain Value Conditions
(-nom,Kn )(t,NP) → (t-nom,KPn) none
(-acc,Ka )(t, C) → (t-acc,KPa) C ∈ {NP,NPrefl}

PA:
Domain Value Conditions
(s,KPx)(t,P1n) → (s⌢t,P0) x ∈ {n, a}
(s,KPx)(t,P2) → (s⌢t,P1) x 6= y ∈ {n, a}

Coord:

Domain Value Conditions
(and,CJ)t,Cu,C → (t⌢ and ⌢u,C) C ∈ {NP,NPrefl,P0,

P1n,P1a,P2}
(and,CJ)t,Cu,C’ → (t⌢ and ⌢u,NPrefl) C 6= C ′ ∈ {NP,NPrefl}
So (self-acc john-nom praised,P0) and (john-nom self-acc praised,P0) ∈
L(Kor).
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5.3.2 Some invariants of Kor

a. (-nom,Kn), (-acc,Ka) and (self,NPrefl) but not (bill,NP). So the
case marking suffixes are structural in Korean, as linguists naively
assume. Thus our formal account captures our basic intuitions
here.

b. For all C ∈ Cat,PH(C).

c. For each n, Lexn.

d. Anaphors (as defined semantically earlier). Provably the anaphors
in Kor are just the expressions s with Cat(s) = KPa and
(self,NPrefl) as a constituent.

e. The AA relation, where: for s, t constituents of u, sAAt in u iff
t is an anaphor, Cat(s) = KPn and for some constituent v of u,
either

i. v has category P1n, s is a sister of v and t is a constituent of
v, or

ii. v has category KPa, t is a constituent of v and for some w
of category P1a, v is a sister of w and s is a constituent of w.

We omit proofs for reasons of space, but we emphasize that whether
a linguistic object of a grammar is invariant is a matter of proof, not
pretheoretical intuition. One does not ponder long and hard to conclude
“Hmmm. I can get (-nom,Kn) as invariant”.

Notice too that, like (4) in English, (19) contains two anaphors and
John-nom antecedes both.

(19) (John-nom [[[Bill and self ]-acc] [criticized]])

On the other hand, L(Kor) presents an anaphoric possibility not
present in L(Eng): what we are calling a P1a (an accusative taking P1)
in (13b) can coordinate:

(20) Caki-casin
Self

-ul
-acc

[John-i
John-nom

piphanha-ko
criticize-and

Bill-nom
Bill-nom

chingchanhayssta]
praised

John criticized and Bill praised himself

Here both John-i and Bill-i are antecedents of caki-casin-ul. An
analogous type of binding in English would be Right Node Raising
sentences, as in (21b) (if grammatical).

(21) a. [John bought but Bill cooked] [the turkey]
b. ?[John punished but Bill congratulated][himself]

Note lastly an essential similarity between the distribution of anaphors
in L(Eng) and L(Kor). In Eng anaphors can combine with two place
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predicates to make one place ones, but can not combine with one
place ones to form Sentences (truth bearing expressions). In L(Kor)
the analogous restriction is given by case marking: Anaphors can be
case marked accusative, but not nominative2 in main clauses. Hence
they cannot combine to form main clauses with intransitive predicates.
In this sense then Korean handles morphologically a constraint that
English handles syntactically.

5.3.3 Interpreting anaphors in L(Kor)

We interpret (self, NPrefl) as self, as with (himself, P1/P2) in L(Eng).
We interpret (-acc, Ka) as an identity function, so (John-acc, KPa)
denotes the same individual that (John,NP) denotes. A KPn maps
P(E) to truth values as expected, but maps binary relations R to
maps taking type-1 functions into {0, 1} by: F (R)(G) = F (G(R)). So
(kim-nom(R))(self) = (kim-nom)(self(R)), the correct interpreta-
tion. (-nom, Kn) maps NP denotations to KPn denotations. So the
entire complication here rests with the interpretation of a grammatical
formative, (-nom, Kn).

5.4 Toba Batak

Toba Batak (see Schachter (1984), Cole and Hermon (2008), Keenan
(2009)) is a simple example of a structure type characteristic of West
Austronesian languages (Tagalog in the Philippines, Malagasy in Mada-
gascar). The languages are verb initial and voice marking, “dual” to
case marking. Voice affixes (primarily maN- and di- in Toba) combine
with verbal roots determining the structure of the clause. Anaphors
may asymmetrically c-command their antecedents (23b).

(22) a. [mang-ida
AF-see

si
art

Ria]
Ria

si
art

Torus
Torus

Torus sees Ria
b. [di-ida

PF-see
si
art

Torus]
Torus

si
art

Ria
Ria

Torus saw Ria

(23) a. [mang-ida
AF-see

dirina]
self

si
art

Torus
Torus

Torus sees himself
a’. ∗mang-ida si Torus dirina
b. [di-ida

PF-see
si
art

Torus]
Torus

dirina
self

2This holds for main clauses, but as is well known, bare caki can occur nomina-
tively in a complement clause, bound to the subject of the matrix verb.
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Torus saw himself
b’. ∗di-ida dirina si Torus

(24) a. P0

P1n

P2a

Vaf

mang-

P2

see

NPrefl

self

NP

Bill

b. P0

P1a

P2n

Vpf

di-

P2

see

NP

Bill

NPrefl

self

The papers in Schachter (1984) provide very strong support for the ma-
jor constituent break in (24a-b). We note that bothmang-ida and di-ida
require two arguments. And with both verbs the immediate postverbal
argument cannot be separated from the verb by adverbs like nantoari
’yesterday’. More dramatically, the immediate postverbal NP cannot be
relativized or questioned by movement, only the clause final NP above
can. Consider the paradigm below (which holds mutatis mutandis in
Tagalog and Malagasy).

(25) a. Manjaha
read

buku
book

guru
teacher

i
Det

‘The teacher reads the book’
b. Dijaha

read
guru
teacher

buku
book

i
Det

‘The teacher read the book’
c. guru

teacher
na
lnk

manjaha
read

buku
book

i
Det

‘the teacher who is reading a book’
d. buku

book
na
lnk

dijaha
read

guru
teacher

i
Det

‘the book the teacher read’
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e. ∗buku
book

na
lnk

manjaha
read

guru
teacher

i
Det

f. ∗guru
teacher

na
lnk

dijaha
read

buku
book

i
Det

Judgments on (25e-f) are strong and immediate. They reflect the basic
interpretative mechanisms of simple clauses, not just arbitrary con-
straints on what can be extracted. (25f) for example can only mean
the teacher that a book read, which is nonsense. Finally Emmorey
(1984) provides spectographic evidence for the major constituent break
in (24a-b). She shows that the verb, whether a mang- or a di- one, plus
its following DP form an intonation group in which the nuclear pitch
accent falls on the stressed syllable of the last lexical item in the Pred-
icate Phrase (PredP). Pitch accent placement identifies the immediate
post-verbal DP in mang- and di- verbs as the last lexical item in their
PredP’s. In conjoined PredP’s both conjuncts receive this accent (Em-
morey op.cit.):

(26) a. [[Manuhor
Buy

baoang]
onions

jala
and

[mangolompa
cook

mangga]]
mangos

halak
man

an
Det

The man buys onions and cooks mangos
b. [[Dituhor

di-buy
si
art

Ore]
Ore

jala
and

[dilompa
di-cook

si
art

Ruli]]
Ruli

mangga
mangos

Ore buys and Ruli cooks mangos

5.4.1 A Grammar for Toba Batak

Cat: Vaf, Vpf, P2, P2a, P2n, P1a, P1n, P0, NP, NPrefl, CJ

Lex: Vaf: mang-
Vpf: di-
P2: praised, criticized, saw
P1n: laughed, cried
NP: john, bill
NPrefl: self
CJ: and, or

Rule: VM (Verb Mark), PA (Predicate-Argument), Coord

VM:

Domain Value Conditions
(mang, Vaf)(t,P2) → (mang⌢t,P2a) none
(di, Vpf)(t,P2) → (di⌢t,P2n) none
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PA:

Domain Value Conditions
(s,P2x)(t,NP) → (s⌢t,P1y) x 6= y ∈ {n, a}
(s,P1x)(t,NP) → (s⌢t,P0) x ∈ {n, a}
(s,P2a)(t,NPrefl) → (s⌢t,P1n) none
(s,P1a)(t,NPrefl) → (s⌢t,P0) none

Coord:

Domain Value Conditions
(and,CJ)(t, C)(u,C) → (t⌢ and ⌢u,C) C ∈ {NP,NPrefl,

P0,P1n,P1a,P2}
(and,CJ)(t, C)(u,C ′) → (t⌢ and ⌢u,NPrefl) C 6= C ′ ∈ {NP,NPrefl}
5.4.2 Some Invariants of Toba Batak

We write x con y, here and later, for x is a constituent of y.

a. (mang-, Vaf), (di-, Vpf) and (self, NPrefl). So as with Korean,
the bound morphemes are structural invariants, coinciding again
with our intuitions as linguists.

b. Lex; in fact all Lexn.

c. For C ∈ Cat, PH(C).

d. The set of anaphors in Toba. (We note without proof that the set
of anaphors in Toba is just PH(NPrefl)).

e. sAAt in u iff Cat(s) = NP and either there is a constituent v of
u with Cat(v) = P1n, s sister v and t con v or there is a t′ con v
with Cat(v) = P1a and t con t′ and s con v.

5.4.3 Interpreting anaphors in Toba Batak

Briefly: (self, NPrefl) denotes self, as expected, the rest is deter-
mined by the denotations of the voice affixes: mang(R)(G)(F ) =
F (G(R)) and di(R)(G)(F ) = G(F (R)). So e.g. di(see)(john)(self) =
john(self(see)). So as in Kor, interpreting Ss with asymmetrically
c-commanding anaphors is unproblematic.

5.5 Some Mathematical Properties of Grammars and
their Invariants

There are at least two reasons for presenting grammars in a mathemati-
cally explicit way. One, it enables us to formulate clearly pretheoretical
notions that motivate our work as linguists. And two, we can study
mathematically explicit models of grammars, proving theorems about
them, thereby extending our knowledge of language structure. Often
a precise mathematical formulation of an issue allows us to ask new
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questions, ones we could not have really formulated without the math-
ematical notions and notation at hand. In the first category we suggest
the following three ideas.

5.5.1 Degree of grammaticization

The degree of grammaticization of a linguistic object is the percent of
automorphisms that fix it. Since AutG is finite it makes sense to speak
of percentage here. So it makes sense to say that Prepositions and
Conjunctions in English are more grammaticized than common nouns
but less grammaticized than personal pronouns.

5.5.2 Historical grammaticization

Commonly, grammatical morphemes derive historically from content
words, such as common nouns and verbs. In several languages such as
Basque, Hausa, Georgian and Tamazight Berber the content word head
came to be interpreted as self (see Heine and Kuteva (2002)). We might
(partially) characterize that evolution as a progressive decrease in the
percentage of automorphisms that “move” the item (that is, map it to
something else). At the end point of change no automorphisms would
move it, that is, all would fix it.3 So in Berber “his head” sometimes
means himself and sometimes his head. For further reading, see Givon
(1971), Hopper and Traugott (1993), Bybee et al. (1994).

5.5.3 Grammatical morphemes

We have proposed a rigorous characterization of grammatical mor-
phemes as ones fixed by all the automorphisms of the grammar. Here we
generalize that idea, prompted by an observation in Keenan and Stabler
(2003) concerning masculine and feminine noun classes in Spanish.4 Ad-
jectives and determiners take agreement markers which vary with the
noun class of noun they combine with and it turns out that for some nat-
ural choices of lexicon some automorphisms systematically interchange
masculine and feminine nouns (also interchanging the agreement mark-
ers). But we still want to say that the property of being a masculine
(feminine) noun is a structural property even though not all automor-
phisms fix it. So we shall distinguish between variable automorphisms
and non-variable ones, which we call stable.

Definition 5.11. For f and g functions,

a. g is a restriction of f iff Dom(g) ⊆ Dom(f) and for all x ∈
3A more precise statement would be more complicated. As is well acknowledged

(Hopper (1991), Heine and Reh (1984)) a grammaticized item may also retain its
original meaning.

4We are indebted to Philippe Schlenker (pc) for pushing us on this point.
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Dom(g), g(x) = f(x).

b. f extends g iff g is a restriction of f .

c. If B ⊆ Dom(f), f |B is that restriction of f with domain B.

Definition 5.12. For G = 〈VG,CatG,LexG,RuleG〉,
a. For each S ⊆ VG ×CatG, G[S] =df 〈VG,CatG,LexG ∪ S,RuleG〉.

When S is a singleton {s} we write simply G[s] for G[{s}].
b. For s ∈ VG × CatG, G is free for s iff s /∈ L(G) and there is an

h ∈ AutG[s] such that for some t ∈ LexG, h interchanges s and t
and fixes all other u ∈ LexG[s]. The intuition: G being free for s
means we can add s to G without changing any of the pre-existing
structural relations between the elements of L(G)5.

c. G is free for S ⊆ VG × CatG iff for all s ∈ S, G is free for s and
G[s] is free for S − {s}. (Note that all G are free for ∅).

d. h ∈ AutG is stable iff for all finite S for which G is free there is a
k ∈ AutG[S] such that k extends h.

e. A linguistic object d over G is a stable invariant iff h(d) = d, for
all stable h ∈ AutG.

We note that the automorphisms of L(Span) which can interchange
the masculine and feminine Nouns and the agreement markers are not
free for (poet,Nfem). Observe also that the stable invariants of G are
always a superset (not necessarily proper) of the invariants of G since
they are only required to be fixed under a subset of the automorphisms
of G, namely the subset of stable automorphisms.

Thesis 5.1. The grammatical morphemes of a grammar are the lexical
items which are stable invariants.

Theorem 5.11. The set of stable automorphisms of a grammar G con-
tain the identity function, are closed under inverses and composition,
and thus form a subgroup of AutG.

Our second motivation for presenting grammars mathematically is
that by proving theorems about them we gain knowledge of their formal
structure. Theorem 5.11 above is already one example. We exhibit some
others below.

5.6 Invariants of Type 0

The type 0 invariants of a grammar G are the expressions fixed by
the stable automorphisms. Are there any universal invariants of type
0? To find some we might look for uniformly defined semantic objects,

5Adding new lexical items typically results in new derived expressions. Recall
that the structure building functions are defined on V ∗ × Cat.
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like the function self, and see if we feel that an expression in any
natural language which denotes one of those objects is a stable invari-
ant. Negation is a candidate. In the next chapter we define the notion
boolean complement, often (but not exclusively) denoted in English by
not or n’t. We call an expression a negation if it always denotes boolean
complement. Then we claim:

(27) Claim: For all natural languages G, if d ∈ L(G) is a negation
then d is a stable invariant.

Note that (27) does not claim that all natural languages have an ex-
pression denoting negation. This is largely true, but, it seems, not quite
always. Old Tamil can express negation just by eliminating the tense
morpheme on the verb (see Pederson (1993)).

Equally several languages (French, Hausa, Middle English) may use
discontinuous expressions of negation, whose interpretation would have
to be studied carefully—are the parts independently meaningful? Or is
it just one expression which is very superficially split into two phono-
logical parts? Note too that (27) just claims that if d is a negation
in a language then it is syntactically distinguished, but it doesn’t say
that its syntactically distinctive properties are the same in different
languages, just as the coding of anaphors may be distinctive in differ-
ent languages (some may code it in terms of case marking, others in
terms of voice marking, etc).

In a way similar to negation we feel that other boolean operators are
conditional invariants. Namely, boolean greatest lower bound operators
(see Chapter 8) denoted in English by and and every/all, and least
upper bound operators, denoted by or and some.

(28) Claim: For all natural language G, if d ∈ L(G) always denotes a
boolean greatest lower bound (least upper bound) operator then
d is a stable invariant.

There seem to us a variety of other semantically defined opera-
tions which are commonly expressed as type 0 invariants (though we
have studied none of these in detail as yet): monomorphemic expres-
sions of case, voice, tense, number, gender, cause, verbal nominaliza-
tion (e.g.gerundive -ing). This claim assumes, non-trivially, language
independent definitions of these notions and then of course detailed
investigation of the grammars of many languages.

Finally, the candidates for type 0 invariants proposed above are all
empirical invariants in the sense that none of them (not even the
boolean ones) follow from our definition of invariant. But below we
see there are some invariants of types 1 and 2 which are universal in
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this sense, that is, they hold of all G regardless of whether G is a can-
didate for modeling a natural language or not. We call these uniform
invariants as opposed to empirical invariants.

5.7 Invariants of Type (1)

Invariants of type (1) are subsets of L(G), that is, properties of expres-
sions.

5.7.1 Universal uniform invariants (INV1)

These follow from our definitions of grammar, automorphism, and in-
variant.

Theorem 5.12. For all grammars G:

a. ∅ and L(G) are invariant.

b. For all F ∈ RuleG, Dom(F ) and Ran(F ) are invariant. Intuitively
much “structure” is imposed by what the structure building func-
tions can apply to.

c. [s]G is invariant, for all s ∈ L(G). No non-empty proper subset
of [s]G is invariant.

d. If no s ∈ LexG is derived (LexG∩Ran(F ) = ∅ for all F ∈ RuleG)
then each Lexn ∈ INV1.

e. (Closure Conditions) INV1 is closed under relative complement
and arbitrary unions and intersection. So it is a complete atomic
Boolean algebra, (See Chapter 7). For example, if the properties
of being a feminine Noun and of being a plural Noun are invariant
then so are the properties of being a feminine plural Noun and a
feminine non-plural Noun.

Exercise 5.8. Describe the atoms of INV1 for arbitrary G. (Assumes
some knowledge of Boolean Algebra. See Chapter 8.

5.7.2 Universal empirical invariants

These are ones that hold for models G for a natural language NL but
may fail for artificially constructed G that satisfy our definitions.

(29) Claim: The set of anaphors of NL is a stable invariant.

In general it is interesting to determine which semantically defined sets
of expressions are “coded in syntax”, i.e. invariant.

(30) The set K of nouns denoting aquatic mammals in English is not
invariant. We find no grammatical difference between porpoise
and shark, so there is an automorphism h of English which
switches them, so h(K) 6= K.
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(31) Is the set of polar (Yes/No) questions in English invariant? We
don’t know. A Yes answer would mean that whenever ϕ is a
polar question so is h(ϕ), for all automorphisms h of English.
And do we expect that in any NL the property of being a polar
question is invariant?

(32) Is the set of monotone decreasing DPs in English invariant?
Very possibly. Such DPs (Keenan (1996), Chapter 10 here)
include no doctor, neither John nor Mary, at most ten students,
fewer than ten students, no student’s doctor, not more than ten
boys, neither applicant.

5.7.3 On the role of categories

For C ∈ CatG, PH(C), the set of phrases of category C, may fail to be
invariant, per our discussion of gender classes of Nouns in Spanish (but
also Latin, Kinyarwanda).

Theorem 5.13 below however does yield one condition, which arises
in the study of formal languages and models of artificial languages
(Propositional Logic, First Order Logic), which does imply that each
PH(C) is invariant.

Definition 5.13. G is category functional iff for each F ∈ RuleG,
each u ∈ L(G)∗ ∩Dom(F ), Cat(F (u)) is a function of the categories of
u1, . . . , u|u|.

So the category of a derived expression is predictable from the func-
tion F used to derive it and the categories of the arguments of F .

Theorem 5.13. Given G, if each Lex(C), the lexical expressions of
category C, is invariant, and G is category functional then all PH(C)
are invariant.

Otherwise, we the most we can claim is that sameness of category is
invariant:

Definition 5.14. G is category uniform iff for all s, t ∈ L(G), if
Cat(s) = Cat(t) then for all h ∈ AutG,Cat(h(s)) = Cat(h(t)).

Category Uniformity does not follow from our definition of invariant,
but it is a condition on the role of categories that seems to us satisfied
in many cases. We tentatively propose it as an axiom that NLgrammars
must satisfy.

Exercise 5.7.3.1. Show that Category Uniformity can be strengthened
to an “if and only if”.

When G is category uniform each h ∈ AutG lifts to a permutation
h′ of {PH(C) | C ∈ Cat}, where h′(PH(C)) = PH(C ′) iff for some
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s ∈ PH(C), h(s) ∈ PH(C ′).
Automorphisms which uniformly permute sets of expressions repre-

sent natural linguistic symmetries. And an important syntactic role of
grammatical categories is to provide the structural means of express-
ing these regularities. That is, if an automorphism h maps one member
of some PH(C) to a member of some PH(C ′), then h must map all
s ∈ PH(C) to PH(C ′). Gender classes are a common linguistic sym-
metry. And we observe (Corbett (1991)) that languages with gender
classes normally exhibit gender agreement of various kinds: Adj+Noun,
Det+Noun, Subject+Predicate, etc. “Why, after all, would a language
have many noun classes and not use them for anything?” Latin and
Russian have three gender classes, and more noun classes when the
imperfect cross product with declension classes is taken into account.
Kinyarwanda (Kimenyi (1980)), typical for Central Bantu, has 16 noun
classes, several the plurals of others.

Natural languages present many symmetries in addition to noun
classes. Conjugation classes in Romance come to mind. Thus along
with many irregular verbs, Spanish has three regular verb classes dis-
tinguished according as their infinitives end in -ar, -er, -ir. Structurally
deeper however are voice classes—active vs passive. In W. Austrone-
sian (Tagalog, Malagasy) there may be a half dozen voice distinctions,
not just a twofold active/passive one. Mood classes—indicative vs sub-
junctive, and aktionsart classes—active vs stative, accomplishment vs
achievement, are further candidates.

The linguistic symmetries of G induce additional structure on AutG
according as they permute whole PH(C) or just expressions within each
PH(C).

5.8 Invariants of Type (2) and higher

5.8.1 Universal uniform invariants (INV2)

The F ∈ RuleG are trivially invariant as automorphisms by definition
fix them.

Moreover, several of the syntactic conditions investigated in genera-
tive grammar over the last two generations (“island constraints”, such
as Coordinate Structure, Subjacency, etc.) can be stated as invariant
properties of the FinRuleG. For example

a. If F ∈ RuleG is a movement rule then F satisfies island con-
straints.

b. If F ∈ RuleG is a copy rule (Kandybowicz (2008), Kobele (2006))
F does not iterate. (For example, usually reduplication rules do
not iterate; but see Blust (2001)).
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Note that these last two conditions concern the action of the structure
building functions—obviously a critical domain to investigate, but not
one we have discussed until now.

INV2, the set of invariant binary relations, includes ∅ and L(G) ×
L(G), and like INV1 is a complete atomic boolean algebra—in fact it
is a proper relation algebra as it is closed under composition, converse,
and contains the identity relation.

If A,B ∈ INV1 then A×B and [A→ B], the set of functions:A→ B,
are in INV2.

Structural equivalence, ≃, and logical equivalence, ≡, are indepen-
dent, where we say that sentences ϕ and ψ are logically equivalent iff
they have the same truth value in all situations (models), a notion we
explore in more detail in the next chapter.

Proof. In one direction consider that s and t below are logically equiv-
alent.

s = (Exactly half of American males are overweight, S)

t = (Exactly half of American males are not overweight, S)

But t is not structurally equivalent to s; its predicate is the negation
of that of s.

Going the other way, consider s and t below:

s = (Seven boys sang eight songs each, S)

t = (Eight boys sang seven songs each, S)

As there seem to be no grammatical differences between seven and eight
it is reasonable that an automorphism of English could interchange
these sentences, so they are structurally equivalent. But obviously they
are not logically equivalent.

But there are other uniformly definable relations of major linguistic
interest that are not prominent in the more general algebraic setting.
Fundamental here are constituency relations. We define immediate con-
stituent (ICON), proper constituent (PCON), and constituent (CON)
below:

Definition 5.15.

a. sICONt iff for some F ∈ RuleG, some u ∈ L(G)∗ ∩ Dom(F ),
t = F (u) and s = ui, for some 1 ≤ i ≤ |u|.

b. sPCONt iff for some n > 1, there is a u ∈ L(G)n with s = u1,
t = un and each uiICONui+1 for 1 ≤ i < n.

c. sCONt iff s = t or sPCONt.
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d. These relations are invariant in all G, as are ones defined in terms
of them, such as sister of and c-command : s sister t in u iff
for some constituent v of u, sICONv, tICONv and s 6= t. s c-
commands t in u iff t is a constituent of a sister of s in u.

5.8.2 Remarks on constituency relations

Firstly, we do not define them in terms of trees. The use of stan-
dard trees in generative grammar only depicts derivations for a very
restricted class of concatenative functions. They cannot represent sub-
stitution functions, such as Montague’s quantifying which derived Ev-
ery student likes some teacher from ((some teacher), (every student
likes v)) by substituting some teacher for v (see Montague (1974)) .
We do expect however that our constituency analysis would coincide
with usual ones in a grammar whose rules just concatenate arguments,
inserting fixed lexical items if needed.

Second, we can now see how our grammars—algebras of partial
functions—differ massively from ordinary numerical algebras. Consider
for example the set Z of integers (positive, negative and zero) under
the binary function +. Since any two integers can be added, every pair
of integers (n,m) is in the domain of +. That is, + is a total function.
Now, let n be an arbitrary integer. We claim that any integer m is a
“constituent” of n. That is, there is an integer x such that +(m,x) = n.
Just choose x = (n−m). But a derived expression in a natural language
never has all expressions in the language as constituents.

Third, CON as defined is reflexive and transitive but may fail to
be antisymmetric, contrary to the ordinary usage of is a constituent
of. That is, it may be that sCONt and tCONs but that s 6= t. To see
this in the general algebraic setting consider the squaring function 2

(on the positive real numbers) and the positive square root function√
. 3CON9 since 32 = 9, and 9CON3 since

√
9 = 3. But 9 6= 3. As

an artificial linguistic case let f, g ∈ Rule with g(x,A) = (xb,A) and
f(yb,A) = (y,A), all x, y ∈ V ∗. So g suffixes a b and f erases string
final b’s. So (x,A)CON(xb,A) by g, and (xb,A)CON(x,A) by f , but
(x,A) 6= (xb,A). Note that in this case, (x,A)PCON(x,A).

In practice we find no convincing cases where an expression, espe-
cially a lexical item, is a proper constituent of itself. Pullum (1976)
studies a properly broader class of cases he calls Duke of York Deriva-
tions. His examples are mostly phonological and critiqued in McCarthy
(2003), who points out that the B forms in the apparent A-B-A deriva-
tions are not well formed as is, so we lack motivation for deriving them.
Pullum notes one syntactic case in which an operation in Italian in-
serts a clitic that is later deleted after triggering verb agreement. But
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the expression derived by the deletion isn’t identical to the one into
which the clitic was inserted since it has undergone verb agreement
and no longer hosts clitic insertion. The sequence of operations which
apparently leads to an sPCONs configuration does not iterate yielding
derivations s→ · · · → s→ · · · , so we lack a clear case of sPCONs. We
propose then Foundation as an axiom of natural languages grammars:

Axiom 5.1. For all natural language G:

a. Full Foundation: for all s, t ∈ L(G), sPCONt→ s 6= t.

b. Lexical Foundation: for all s ∈ LexG, all t ∈ L(G), sPCONt→
s 6= t.

Lexical Foundation is weaker than Full Foundation (and properly
entailed by it). But it suffices for our later purposes, as automorphisms
are decided by their behavior on the lexical items. We note further:

Theorem 5.14.

a. G satisfies Full Foundation → CON is antisymmetric.

b. Lexical Foundation → Eliminability of derived lexical items.

Proof.

a. Lemma: PCON is transitive. Let sPCONt and tPCONu. Then the
derivation of t from s followed by that of u from t is a derivation
of u from s in n > 1 steps, so sPCONu.
Now, let sCONt & tCONs. Assume for contradiction that s 6= t.
Then sPCONt and tPCONs, so by the lemma, sPCONs. By Full
Foundation s 6= s, a contradiction. So s = t.

b. Let G satisfy Lexical Foundation with s ∈ LexG derived, so s =
F (u), for some u ∈ L(G)∗. LetG\s be that grammar likeG except
LexG\s = LexG−{s}. Then L(G\s) = L(G) and AutG = AutG\s.
Suppose for some i, sCONui. Then sPCONs since s = F (u), so
by Lexical Foundation s 6= s, a contradiction. So ¬sCONui any i.
So any derivation of F (u) in L(G) consists entirely of expressions
in L(G\s), so s ∈ L(G\s) whence L(G\s) = L(G) and trivially
AutG = AutG\s.

Corollary 5.15. Since LexG is finite, induction using Theorem 5.14b
allows us to remove all derived lexical items without changing L(G) or
AutG. So a G with Lexical Foundation behaves like a G with no derived
lexical items (whence LexG and thus all Lexn are invariant).
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Lexical Foundation also implies a deeper property, Bounded Struc-
ture (Keenan and Stabler (2003)). The idea is that the structural com-
plexity of a natural language is determined by a finite initial fragment.
Beyond a certain complexity level more complex expressions iterate
structure already known. We can state this intuition explicitly. We be-
gin by treating each Lexn as a language in its own right:

Definition 5.16. For each n, a local automorphism of Lexn is a map
h : Lexn → Lexn satisfying:

a. h is bijective,

b. for each F ∈ RuleG, hfixesDom(Fn), where Fn =df (F |Lexn),
and

c. if n > 0 then h(Fn(t)) = Fn(h(t)), all t ∈ Lex∗n−1 ∩Dom(F )

For h ∈ AutG, h|Lexn is a local automorphism of Lexn. But there
may be other local automorphisms of Lexn that do not extend to h′

in AutG. In our model of Korean Lex0 has NPs, case markers, and P1.
NPs and case markers combine to form KPn’s and KPa’s, nominative
(and accusative) Kase Phrases, in Lex1. Then in Lex2 KPns but not
KPas combine with P1 to form P0. So local automorphisms of Lex0 can
interchange the -nom and -acc case markers but they don’t extend to
automorphisms in general, not even to automorphisms of Lex2. And
Bounded Structure says that for some n, the automorphisms of Lexn
are just the restrictions of the h ∈ AutG to Lexn. So in this sense the
structures of expressions in L(G) is expressed by a finite subset of L(G).

Theorem 5.16 (Bounded Structure). If G satisfies Lexical Foundation
then there is an n such that the automorphisms of Lexn are exactly the
automorphisms of G restricted to Lexn.

5.8.3 The role of categories in recursion

A last approach to the types of recursion in natural language is built on
the notion of a derivational cycle. Let us say that a cycle is a sequence
C ∈ Catn, for some n > 1 with C1 = Cn, such that for every positive
integer k there is a t ∈ L(G) which embeds k·C = (C1, . . . , Cn−1)

k−1, C.
That is, there is a sequence of n+(n−1)(k−1) expressions with each si
of category Ci an immediate constituent of si+1, and the last expression
in the sequence is an immediate constituent of t.

For examplei, a grammar of English might have C = 〈NP,Det,NP〉
as a cycle. Then an expression of English which embeds 1 ·C would be
John’s teacher, where John has category NP, John’s has category Det,
and John’s teacher has category NP. (33a) below embeds 2 · C, and
(33b) embeds 3 · C.
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(33) a. John’s teacher’s doctor
b. John’s teacher’s doctor’s father

Axiom 5.2. Cyclicity: All G for natural languages have a cycle.

Cyclicity guarantees that L(G) is infinite as long as the last expression
instantiating a cycle (Cm, . . . , Cm+n−1) is longer than the first. Full
Foundation has the same effect.

5.8.4 Universal empirical invariants?

Plausible cases, assuming language independent definitions of the rele-
vant notions, are:

a. Category Uniformity (sameness of grammatical category)

b. The Anaphor-Antecedent relation

c. Agreement relations (gender, number, case, definiteness)6

Lastly, we also hypothesize that Theta Role assignment is invariant.
Theta roles (Agent, Recipient, Patient,...) are relations between indi-
viduals and the properties and relations expressed by predicates. Some-
what more precisely:

(34) For s, t constituents of u: θ(s, t) iff sPCONt and s is assigned θ
in t but not in any proper constituent of t.

(35) a. John praised the teacher
Agent(John, John praised the teacher)
Theme (the teacher, praised the teacher)

b. The teacher was criticized by John
Agent(John, was criticized by John)
Theme (the teacher, the teacher was criticized by John)

c. The teacher’s criticism of John
Agent(the teacher, the teacher’s criticism of John)
Theme (John, criticism of John)

We claim that the θ relations are invariant: θ(s, t) iff θ(hs, ht), for all
automorphisms h. So if expressions are isomorphic their corresponding
constituent pairs stand in the same theta relations. So if the theta roles
of corresponding constituent pairs in (36a,a’) are different then (36a,a’)
are not isomorphic. Similarly for (36b,b’):

(36) a. John produced the play
a’. John enjoyed the play
b. John danced
b’. John vanished

6See Corbett (1991) and Barlow and Ferguson (1988) for some of the possibilities.
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In contrast, theta equivalence does not imply structural equivalence.
Each of (35a,b,c) is theta equivalent to the others in the sense of pre-
senting the same number of pairs with the same theta roles but none
is isomorphic to any of the others. And of course we would like a more
rigorous definition of theta role assignment.

5.9 Structure Preserving Operations on Grammars

Such operations are ones which do not change L(G) or AutG but they
may change derivations. The most important is generalized composition.

Definition 5.17. For F,H ∈ RuleG, F ◦i H is defined by:

F (s1, . . . .si−1, H(t1, . . . , tm), si+1, . . . , sn),

for each
(t1, . . . , tm) ∈ Dom(H) and each

(s1, . . . si−1, H(t1, . . . , tm), si+1, . . . , sn) ∈ Dom(F ).

Here F ◦i H is the ith composition of F with H.

Theorem 5.17. Closing RuleG under generalized composition pre-
serves structure.

Compare now the two derivations for (Sam praised Ed,P0) in Eng
closed under ith compositions:

(37) a. Merge: (Sam praised Ed, P0)

(Sam, NP) Merge: (praised Ed, P1)

(Ed, NP) (praised, P2)

b. Merge ◦2 Merge: (Sam praised Ed, P0)

(Sam, NP) (Ed, NP) (praised, P2)

Each non-terminal node in the left-hand tree is binary branching, the
only non-terminal node in the right hand tree is ternary branching.
Adding compositions of rules to RuleG does not lose derivations, it just
adds new ones. Given G, write G◦ for the grammar that results from
closing RuleG under generalized composition (ith compositions, all i).

Corollary 5.18. If L(G) is infinite and RuleG finite (our typical case)
then

a. Every derived s ∈ L(G◦) has a derivation tree of depth 1 (and
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usually many others of greater depth). Every non-derived s ∈
L(G◦) has a derivation tree of depth 0.

b. For every n there is an m ≥ n such that some expression of
L(G) has a derivation tree of depth 1 whose root node is m-ary
branching.

c. RuleG◦ is infinite.

Corollary 5.18 suggests rethinking the significance of the binary
branching requirement (Kayne (1984)) on derivations. If G is binary
branching and RuleG is finite then just adding in (not closing) some
{F ◦i H | F,H ∈ RuleG} results in a G still with just finitely many
rules, but often some derivations with ternary branching nodes, as with
(Sam praised Ed,P0) above. So given a binary branching derivational
system we can construct an extensionally (same expressions) and struc-
turally (same automorphisms) equivalent one which fails to be binary
branching.

But Corollary 5.18 is just one datum influencing the form of rules,
learnability is another, more important one. Plus, too many cases in
nature seem to opt for just one among two or more symmetric (au-
tomorphic) alternatives: Life forms are built only from right spiraling
DNA, its left spiraling counterpart can be created in the lab and is
stable, and so does not violate any basic law of nature. Why are there
not two types of life forms—right spiraling and left spiraling ones? The
physicist Feynman can wonder “Why is nature so nearly symmetric?”
(Bunch (1989)[pg. 189]).

5.10 Addendum

We complete the proof that the PH(C) for C ∈ CatEng are invariant.

3. Show that Cat(h(u)) = P2 if Cat(u) = P2. Let s, t both of cat-
egory NP. Then 〈s,Merge(t, u)〉 ∈ Dom(Merge) and for h ∈
AutEng, h(s,Merge(t, u)) = 〈hs,Merge(ht, hu)〉 ∈ Dom(Merge),
so Cat(Merge(ht, hu) = P1, so Cat(h(u)) = P2. Thus PH(P2) is
invariant.

4. 〈(and,CJ), (praised,P2), (criticized,P2)〉 ∈ Dom(Coord) so for
h ∈ AutEng arbitrary 〈h(and,CJ), h(praised,P2), h(criticized,P2)〉 ∈
Dom(Coord) since h(PH(P2)) = PH(P2) then Cat(h(and,CJ)) =
CJ, so PH(CJ) is invariant.

5. To see that PH(P1) is invariant let Cat(s) = P1. Let t, u such that
Cat(t) = NP and Cat(u) = P2. Then 〈(and,CJ), s,Merge(t, u)〉 ∈
Dom(Coord) hence 〈h(and,CJ), h(s),Merge(h(t), h(u))〉 is also.
But since PH(NP) and PH(P2) are fixed Merge(h(t), h(u)) has



148 / Mathematical Structures in Language

category P1, so h(s) must also to coordinate with it. So, by lemma
5.9, h(PH(P1)) = PH(P1).

6. By similar reasoning any s of category P0 coordinates with
(John laughed,P0) whose constituents have fixed categories, hence
h(John laughed,P0) has category P0 so anything we coordinate
with it has category P0, whence PH(P0) is fixed.

7. Finally, PH(P1/P2) is invariant. Let s with Cat(s) =P1/P2. (Note
that there are infinitely many such s). Let h be arbitrary in
AutEng and suppose Cat(h(s)) 6= P1/P2. Then Cat(h(s)) ∈
{P0,P1,P2,NP,CJ}. But for C in this set, PH(C) is fixed, hence
Cat(h−1(h(s)) is in that set. But h−1(h(s)) = s of category P1/P2,
a contradiction. So Cat(h(s)) = P1/P2, showing that PH(P1/P2)
is invariant.



6

A Taste of Mathematical linguistics

Mathematical linguistics usually refers to a field common to mathemat-
ics and linguistics where one studies formal languages. To see what the
field is about, we need some definitions.

We start with set A called the alphabet. Recall that the words on
A are the sequences of elements of A. As with all sequences the order
of entries matters: aba is not the same as baa. Repeated entries are
permitted. And The empty sequence is a word, written ǫ. The set of
all words on A is written A∗, and the set of all non-empty words on A
is written A+. A language on A is a set L of words over A. That is,
L ⊆ P(A∗).

(1) Take A = {a, b, c} to start. Here are three languages on A.

a. L1 = {ǫ, a, b, c, aa, ab, ac, ba, bb, bc, ca, cb, cc}. This is the set
of words of length at most 2.

b. L2 = {a, aa, aaa, aaaa, . . . , an, . . .}. This is the set of words
of length at least 1 consisting of all a’s.

c. L3 = {w : w is a word on A but has no repeated letters}.
For example abca ∈ L3, but abbaca /∈ L3.

It might seem odd to call a seemingly-random set of sequences a
language. Here is why this is done. Usually in this chapter, the alphabet
A will be a small set of letters, like {a, b, c}. But it may well be that
the alphabet A consists of words of a natural language, say English. In
this case, the set of English sentences would indeed be a language in
our technical sense.

We note some special languages. For any alphabet symbol, say a, a is
the language with just one word: the one-term sequence x. So a = {a}
for all alphabet symbols a.

We also specify two operations on languages, called + and ·. Given
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any two languages on the same alphabet, say L and M , we define

L+M = the union L ∪M
L ·M = the set of all words obtained by putting one word

from L in front of one word from M

For example: a+ b = {a}∪{b} = {a, b}. And a · b = {a} · {b} = {ab}.
Finally, (a+ b) · c = {a, b} · {c} = {ac, bc}.
The empty language and the language {ǫ} The empty set ∅ is
the set with no elements. It’s like an empty bag or box. It’s also like
zero for union:

∅ ∪X = X

for all sets X.
When it comes to languages, we write 0 for ∅. We therefore have

L+ 0 = L = 0 + L

for all languages L.
But {ǫ} is different from ∅. The reason is simple: {ǫ} has an element,

while ∅ has no elements. As a short notation, we write 1 for {ǫ}.
The star operation ∗ on languages For any language L, L∗ is
the set of words which we can make by putting together zero or more
elements of L, one after the other.

For example, let L = {a, bb}. Then
{a, bb}∗ = {ǫ, a, bb, abb, bba, bbbba, bbaaabb, bbabbaabbabb, . . .}.

In words, {a, bb}∗ will have all the words consisting of only as and bs,
and with the property that the consecutive strings of b’s always have
even length.

Exercise 6.1. Let L = a∗.

a. Write L out in list notation.

b. Check that L+ L = L.

c. What language is L · L? Is it the same as L+ L?

Exercise 6.2. Try writing some languages in list notation, then if
possible describing them in English.

a. (a+ b)∗

b. a · (a+ b)∗

c. (a+ b) · (a+ b)∗

d. (a+ b)∗ · c
e. (a∗)∗

Exercise 6.3. Let A = {a, b, c}, and go the other way, producing
regular expressions from descriptions.
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a. The language of all words on A which begin with b.

b. The language of all words on A which have even length.

c. The language of all words on A which have length at least 2.

d. The language of all words on A which do not have two a’s in a
row. (This last one is harder than the others!)

Exercise 6.4. What are 0 · L and 1 · L? What are 0 + L and 1 + L?
What is 0∗? What is 1∗?

Back to the mother of the president As a way of bringing our
rather abstract discussion back to linguistic reality, we want to make
the case that the kinds of repetitive phenomena in language that we
saw in Chapter 1 can mostly be handled by regular languages. Let

A = {the, mother, of, president}.
This is an alphabet of four “letters”, the letters being in this case words
of English. Then a few simple calculations (which we hope you will work
out for yourself) show that

(the ·mother · of)∗ · (the · president)
is a set we saw before, namely

{ǫ, the president, the mother of the president, . . .}
So part of our point behind regular languages is that they cover the
basic phenomena that make language infinite. At the same time, they
lack any notion of constituency that played such a big role in Chapter 4.

6.1 Regular Expressions and Languages

Fix an alphabet A. A regular expression is something you can write
out of symbols a, for a ∈ A; fresh symbols 0 and 1; binary function
symbols + and ·, and a unary function symbol ∗. For examples, we
mention a, a+b, b+a (this is a different expression from a+b), a∗, and
b+(a∗ ·(c∗)∗). We use letters like r and s to denote regular expressions,
and we let R be the set of all regular expressions on our alphabet A.

We define a function L : R→ P(A∗), giving for each regular expres-
sion r its denotation language L(r). This function is defined as follows:

L(a) = a
L(r + s) = L(r) + L(s)
L(r · s) = L(r) · L(s)
L(r∗) = (L(r))∗
L(0) = 0 (= ∅)
L(1) = 1 (= {ǫ})

Here are some examples with A = {a, b, c}:
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regular expression r its associated language L(r)
a {a}
a+ b {a, b}
(a+ b) · a {aa, ba}
(a+ b)∗ {ǫ, a, b, aa, ab, ba, bb, . . .}
c · (a+ b)∗ {c, ca, cb, caa, cab, cba, cbb, . . .}

Each regular expression denotes a language, as we have seen. The
set Reg(A) of regular languages on A are defined to be the set of all
denotations of regular expressions:

Reg(A) = {L(r) : r ∈ R}.

R = regular
expressions

Reg(A) =
regular

languages

P(A∗) = all languages

L

L is a function from regular expressions to the set of languages. The
regular languages are defined as the image set of this function L. L is
not one-to-one.

Exercise 6.5. Let A = {John,Mary, Sam, knows, that}. Some of the
words on A are proper sentences in English, and some are not. Write
a regular expression that denotes the set of all words on A that are
English sentences.

Often one writes r = s when L(r) = L(s). For example, one would
usually write

a+ b = b+ a,

since

L(a+ b) = a+ b = {a, b} = b+ a = L(b+ a).

But it is important to see that there is a difference between an expres-
sion r and the language L(r) it denotes.
Why are we interested in regular expressions? First, regular
expressions are a very simple form of grammar. There is the tantalizing
possibility that one could take

A = the set of words of English
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and write a single (huge) regular expression that would give the set of
all English sentences.

The notion of regular expressions also has a practical value: grammar
checkers on a computer are based on regular expressions.

We are also interested in them because they highlight laws of abstract
algebra such as

L+M = M + L
L · (M1 +M2) = (L ·M1) + (L ·M2)
(L∗)∗ = L∗

that we’ll study in greater depth later on.

The operation + We have seen the ∗ operation before, and we want
a variant of it called +. L(r∗) is all sequences of words in L(r), smashed
together to give one single word, including the empty word ǫ.

In contrast, L(r+) is all sequences of words in L(r), smashed together
to give one single word, not including ǫ.

regular expression r its associated language L(r)
a∗ {ǫ, a, aa, aaa, . . .}
a+ {a, aa, aaa, . . .}
(a+ b)+ {a, b, aa, ab, ba, bb, . . .}
c · (a+ b)+ {ca, cb, caa, cab, cba, cbb, . . .}

An interesting fact If we have a regular expression r, and it just so
happens that ǫ /∈ L(r), then we can find a different regular expression
s that uses + instead of ∗ such that L(s) = L(r).

For example: let r be (a∗ · b) + (a · b∗). Then
L(r) = {a, b, ab, aab, aaab, . . . , abb, abbb, . . .}.

It is any non-empty sequence of a’s followed by any non-empty sequence
of b’s. The point is that it is also L(s), where

s = (a+ · b) + (a · b+) + (a+ b),

and this last expression used + instead of ∗.

Exercise 6.6. let r be (a∗ ·b)+(a·b∗). What is the language L(r)? Can
you find an expression s using + instead of ∗ such that L(s) = L(r)?

6.2 Simple Categorial Grammars

What we want to do at this point is to take a regular language with-
out ǫ and write a categorial grammar for it. As an first example of
what we are trying to do, consider a+ as a language over the alphabet
A = {a, b, c}. We take a basic category S. This will be our only basic
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category. We take as the lexicon

(a, S), (a, S/S).

(Actually, we mean the set with these two elements, but frequently we
omit the set braces.) And we take S to be our top-level category. So
now we have a categorial grammar that we’ll call G(a+). We can check
that L(G) = a+.

Here is a second example, a grammar for a+ + b+. We take a basic
category S, and also basic categories A and B. (We have complete
freedom over what basic categories to take. We usually use S as our
“top level” category, but this is not strictly required. And we can name
our categories A and B; they do not have to be named N , DP , etc.)
Here is our lexicon:

(a,A)
(a,A/A)
(a, S)
(a, S/A)

(b,B)
(b,B/B)
(b, S)
(b, S/B)

Let’s call this grammar G2. Try to parse aa and bbb as Ss in this gram-
mar G2. Also let’s convince ourself that ab is not parsable as S in G2.
The important point is that L(G2) = a+ + b+.

We are driving towards the following general fact:

Theorem 6.1. Let A be an alphabet. Let r be a regular expression over
A built from

◮ a, where a ∈ A.

◮ the operations +, ·, and + (but not ∗).

Then there is a categorial grammar G(r) such that

◮ L(G(r)) = L(r). In words, the set of words over A which can be
parsed in G(r) as Ss is exactly L(r), where S is the top-level symbol
of G(r).

◮ All categories in the lexicon of G(r) are either basic categories, or
are of the form X/Y for basic categories X and Y .

The proof actually gives a method of coming up with G(r) from r.
We go bottom-up.

First, we start with the simplest case, when r is a for some a ∈ A. We
take a basic category S, a lexicon {(a, S)}, and declare S to be the top-
level symbol. This gives a grammar G. Clearly L(G(r)) = {a} = L(r).
Combining grammars G(r) and G(s) to get a grammar G(r+ s)
Suppose we have G(r) for r, and also G(s) for s. Here is how to combine
these to get a grammar G(r + s) for r + s.
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◮ Re-name all the basic categories in G(r) and G(s) so that the gram-
mars have no categories in common. Make sure that S is not a basic
category in either grammar.

◮ Call the top-level symbol of G(r) T , and call U the top-level symbol
of G(s).

◮ Put the lexicons together in one big set.

◮ Add entries to the lexicon: If it has (a, T ), add (a, S). If it has (a, T/
X), add (a, S/X). If it has (a, U), add (a, S). (a, U/X), add (a, S/
X).

◮ Declare S to be the top-level symbol of the new grammar.

Combining grammars G(r) and G(s) to get a grammar G(r · s)
Suppose we have G(r) for r, and also G(s) for s. Here is how to combine
these to get a grammar G(r · s) for r · s.
◮ Re-name all the basic categories in G(r) and G(s) so that the gram-

mars have no categories in common.

◮ Let S be the top-level symbol in G(r).
◮ Let T be the top-level symbol in G(s).
◮ Put the lexicons together in one big set.

◮ Make changes to the lexicon: If X is a basic category in G(r) and
the lexicon has (a,X), then change this entry to (a,X/T ).

◮ Declare S to be the top-level symbol of the new grammar.

Changing G(r) to get G(r+) Suppose we have G(r) for r. Here is
how to modify it to get a grammar G(r+) for r+.
◮ Let S be the top-level symbol in G(r).
◮ Make a few additions to the lexicon: If X is a basic category in G(r)

and the lexicon has (a,X), then add (a,X/S).

◮ Declare S to be the top-level symbol of the new grammar.

An example: a grammar for (a · b)+ + c+. We build our grammar
from the bottom-up. First, we know how to construct grammars G(a),
G(b), and G(c). Our last point tells us how to get a grammar G(c+):
we would take a basic category S, a lexicon {(c : S), (c : S/S)}, and of
course use S as the top-level symbol.

Second, we combine G(a) and G(b) as follows. Rename S to T in
G(b), change the lexicon entry (a : S) to (a : S/T ), and put the lexicons
together. We get

(a : S/T ), (b : T )

with S as the top-level symbol.
Third, to get G((a · b)+), add the entry (a : T/S) to the last lexicon.
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Finally, we make additions for the overall + operation. We get the
grammar below:

(2)
(a, T/X)
(a, S/X)
(b,X)
(b,X/T )

(c, Y )
(c, Y/Y )
(c, S)
(c, S/Y )

Once again, our top-level symbol is S.

Review and a definition Given a regular expression r, we found
a categorial grammar G(r) which generated L(r). In fact, G(r) was
“simple”.

Definition 6.1. A categorial grammar is simple if all the categories
in the lexicon are either basic categories, or else X/Y , where X and
Y are basic categories. An SCG is a simple categorial grammar with a
specified choice of a “top-level” category.

Given a regular expression r, we found an SCG G(r) whose language
is L(r). That is, L(G(r)) = L(r).
Exercise 6.7. Although we indicated the steps in constructing G(r)
from r, we did not actually prove that L(G(r)) = L(r). If you know
about induction, prove that indeed L(G(r)) = L(r).

Our next goal is to show that if someone gives us an SCG, then its
language must be a regular language without ǫ. That is, we’ll take an
SCG G and (after many steps) come up with a regular expression r
using + with the property that L(r) = L(G).

To solve this kind of problem in an insightful and general way, we
make yet another digression, to the topic of automata.

6.3 Finite-state Automata

A finite-state automaton is a mathematical object that is easy to grasp
as a picture and then to remember the definition afterwards. For ex-
ample, here is a picture of an automaton:
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(3)

Rstart T S

U

a

ba

b

a

We’ll call this A. It has four states : R, S, T , and U . R is called the
start state, indicated by the arrow. S is the accepting state, indicated
by the double circle.

We want to take words on our alphabet and ask whether or not it’s
possible to read the letters beginning at the start state and ending at
the accepting state of A, following the arrows. We can make a chart to
give some examples:

word accepted?

a
√

b ×
aa ×
ab

√

ba ×
bb ×

word accepted?

aba ×
abb ×
abaa ×
abab

√

ababab
√

abababab
√

To be accepted, a word only needs one path. It may take some trial-
and-error to see if a word actually is accepted by a given automaton,
or not. The language of the automaton A is the set of words which are
accepted by A in the sense above.

For the automaton in (3), the language is

{a, ab, abab, ababab, abababab, . . .}
= a+ (a · b)+

Converting categorial grammars to automata Here is how to
take an SCG G and associate an automaton A(G) to it:

◮ The states of automaton A(G) are the basic categories of the gram-
mar G, plus a new state that we’ll call R.

◮ The top-level state of the G is the initial state of A(G).
◮ If the lexicon has (a,X), then add an arrow from X to R labeled by
a.

◮ If the lexicon has (a,X/Y ), then add an arrow from X to Y labeled
by a.
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◮ The new state R is the accepting state of A(G).
As an example, consider our grammar for (a·b)++c+ from (2) above.

The automaton for it is shown below:

(4)

T

Sstart

R

X Y c

b
c

a b

a c

c

Proposition 6.2. In the notation above, the language of the automaton
is the one we started with:

L(G) = L(A(G)).
We are missing a piece, the function marked “solution.” This asso-

ciates a regular expression to each automaton. To get this, we shall

◮ take an automaton

◮ turn it into an algebra problem, but different from high school alge-
bra

◮ solve the problem, obtaining a regular expression.

For example, look back at the automaton in (4) above. Here is the
associated system of equations:

(5)
XR = 1
XY = cXY + cXR

XU = bXT + bXR

XT = aXU

XS = aXU + cXR + cXY

Here and below, XS and XT are variables ranging over languages. We’ll
have one variable for each state of the automaton, and one equation
per variable. We got each equation XS by looking at the outgoing edges
from S. We changed the state X to U to avoid the terrible notation
XX .

We get a system of equations in the variables. The idea is that XS

is the set of words w which when read in at state S could lead by some
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regular
expressions
using +

simple cat.
grammars

G

finite
automata A

G

A

solution
P(A∗)

L

LL

FIGURE 8 The formalisms in this section. The functions L all map into the
set P(A∗) of all languages over A. But the image sets of the three L

functions are the same, the set of regular languages without ǫ.

path to the accepting state R. (And similarly for the other variables.)
So XR = 1, since 1 = {ǫ}, and this is the only word which, when
started in R, leads back to R itself. And the equation for XS means
that a word w could be read in at state S to get to R if and only if

w = av, where v can be read in at U

or w = cv, where v can be read in at R

or w = cv, where v can be read in at Y

Solving a system Here is the most basic observation: To solveX =
vX+w, where w is a word, and w is any expression that does not involve
X. (Note: w might involve other variables besidesX.) Then the solution
of this equation is

X = v∗ · w
That is, the only language X such that X = vX +w is X∗. But to use
this key fact, you have to have a variable alone on the left side of an
equation, and it has to occur on the right side.

In addition, you can do things similar to what you do in algebra,

◮ substitute partially done work



160 / Mathematical Structures in Language

◮ use laws of algebra to simplify things

A worked example We return to (5), shown again below.

XR = 1
XY = cXY + cXR

XU = bXT + bXR

XT = aXU

XS = aXU + cXR + cXY

XR is already solved. So we go back and rewrite a few of the equa-
tions:

XR = 1
XY = cXY + c·1 = cXY + c
XU = bXT + b·1 = bXT + b
XT = aXU

XS = aXU + c·1 + cXY = aXU + c+ cXY

We see first that XY = c∗ · c = c+. We can plug this in to the equation
for XS :

XR = 1
XY = c+

XU = bXT + b
XT = aXU

XS = aXU + c+ c · c+
We then plug the right-hand side of the XT equation in for XT in the
right-hand side of the XU equation:

XR = 1
XY = c+

XU = b(aXU ) + b = (ba)XU + b
XT = aXU

XS = aXU + c+ c(c+)

We solve for XU in one step; it’s (ba)∗b. So we get

XR = 1
XY = c+

XU = (ba)∗b
XT = a(ba)∗b
XS = a(ba)∗b+ c+ c(c+)

And then we get

XS = a(ba)+b+ c+ (c · c+)
= a(ba)∗b+ c+

The overall variable that we are interested in is the start state of the
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automaton. In this case, it is XS. So the overall answer for this au-
tomaton A is

solution(A) = a(ba)∗b+ c+.

An equivalent (and better) way to write this answer is to notice that
a(ba)∗b = (ab)+. So the overall solution for this automaton A is

solution(A) = (ab)+ + c+.

This is not surprising, since we got A from a SCG for (ab)+ + c+!

A summary of what we have done The progression of ideas is

Language =⇒ SCG =⇒ automaton =⇒ system =⇒ solution

We have indicated this in more detail in Figure 8 above. We know now
that all of the L functions have the same image set, the set of regular
languages without ǫ. In particular, the language of a simple categorial
grammar is regular.

Here is the reasoning in more detail. Let G be a SCG. Then L(G) =
L(A(G)). And L(G) = L(solution(A(G))). Now solution(A(G))) is a
regular expression using +, because our solutions always are regular
expressions using +, and so L(solution(A(G))) is a regular language
without ǫ.

Therefore, L(G) is a regular language without ǫ.

Overall In this section, we have explored several ways of defining
languages:

◮ using regular expressions (with +)

◮ using categorial grammars, and (especially) simple ones

◮ using automata

By doing some significant work, we showed that all of these are equiv-
alent : they are different ways of representing the same set of languages,
the regular languages without ǫ.

Exercise 6.8. Consider the automaton below.

S T

c

b

a d

Write the system of equations, and solve it. In this way, you’ll get L(A),
the language of this automaton.

Exercises 6.9-6.13 have to do with the language L(r), where
r = (a · (b+ + c))+.
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Exercise 6.9. Find a simple categorial grammar G such that L(G) =
L(r). That is, you should come up with a set of basic categories, find a
lexicon for a, b, and c, and finally say what your top-level category is.

Exercise 6.10. Take the grammar that you found in Exercise 6.9, and
turn it into an automaton. Be sure to indicate which is your “start
state”, and also which state is your accepting state.

Exercise 6.11. Take the automaton from the Exercise 6.10, and find
the corresponding system of equations.

Exercise 6.12. Take the system of equations from the Exercise 6.11,
and find a regular expression for the set of words accepted when we
read them in, beginning in the start state of the automaton from prob-
lem 6.10. [This means that you solve the system using the version of
algebra presented in the notes.]

Exercise 6.13. If you did all the previous problems correctly, your
answer to Exercise 6.12 should be the original regular expression, (a ·
(b++ c))+. Check that it is. [As a hint, you might find it useful to note
that for all words u and v,

(u · v)∗ · u = u · (v · u)∗.
That is, use a special case of this, with a well-chosen u and v.]

Exercise 6.14. The reversal of any language L is the set of elements
in L written backwards. For example, the reversal of ab = {ab} is ba.
Write a regular expression for the reversal of L(r), where r again is
(a · (b+ + c))+.

Exercise 6.15. Prove that the reversal of every regular language is
regular.

6.4 More About Regular Languages

Our goal in this chapter is not to present an entire course on formal
language theory, only to touch on the subject. We have done most of
the background work on regular language The section begins with a
question: Are CGs more powerful than SCGs?

The answer turns on a language called anbn. This language is the
set

{anbn : n ≥ 1}
= {ab, aabb, aaabbb, . . . , anbn, . . .}

(The name is a little unfortunate, since usually “n” would be for a fixed
number.) We’ll show that anbn is not a regular language, and then use
that to argue that SCGs are not adequate for natural languages.
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We are going to assume that anbn is regular, and then get a con-
tradiction. Since regular languages can be presented in three ways, we
have presentations of anbn in all three. We thus would have a finite
automaton, say A, whose language L(A) was exactly anbn.

(Recall that L(A) is the set of words which can be read in from the
start state of A and have a path leading to the accepting state of A.)

A is finite, and so it has some number of states. Let’s say that M is
that number. One of the words in anbn is aM+1bM+1. When we read
aM+1bM+1 in to A, we begin at the start state, follow some path or
other, and somehow end up at the accepting state. But thos word is
longer than the number of states, so there must be a loop somewhere.
In fact, there has to be a loop while reading the a’s. Let’s say that when
after ith and jth a’s were read in, the automaton was in the very same
state. Call this state X, and call the accepting state Y .

letter a a · · · a · · · a · · · a b b · · · b
state start X · · · X · · · Y

Since we have a loop in the states, we can repeat the blue a’s, except
for the last one:

letter a a · · · a · · · a · · · a · · · a b b · · · b
state start X · · · X · · · X · · · Y

letter a a · · · a · · · a · · · a · · · a b b · · · b
state start X · · · X · · · X · · · Y

What word is read in? How many a’s and how many b’s do you see?
It’s

aM+j−i+1bM+1.

Since j > i, this word is not in the language anbn. But it is accepted
by A. So we have a contradiction! And our proof is done!

(The point, informally, is that since our original word was read in
using a loop in the states, we can go around the loop twice. The au-
tomaton has no memory, and so it must accept the longer word.)

We just saw that anbn cannot be the language of any finite automa-
ton, and it follows that we cannot write an SCG for it. But if we allow
ourselves the full power of categorial grammar, we can write a grammar
for it. We take basic categories X and S. The lexicon is

(a, S/X) (b, S\X) (b, X)

The top-level symbol is S.
We asked earlier: Are CGs more powerful than SCGs? We now know

that the answer to this is Yes. We next want to ask the question of
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whether SCGs are powerful enough to handle a natural language like
English. The answer requires some more theory, so we turn to that
next.

Definition 6.2. An automaton is deterministic if for every state X
and every alphabet symbol a, there is one and only one arrow out of S
labeled with a.

As an example, consider

(6)

Rstart T S
a a, b, c

c

bb a, c

Automata with more than one accepting state So far this chap-
ter, we only dealt with automata with one accepting state. But au-
tomata can have more than one accepting state.

(7)

Rstart T S
a a, b, c

c

b
b, c a, c

We say that a word w is accepted in A if w can be read in from the
start state, following the arrows as we read it in, and end up in some
accepting state or other. We still get a regular language.

Exercise 6.16. Find the language of the automaton just above. To do
this, write the equations of the automaton down, and solve them. Then
take the solutions of XR and XT (these are regular expressions), and
take their sum.

Exercise 6.17. Use the idea in the last exercise to justify the following
claim: if A is an automaton with more than one accepting state, then
L(A) is a regular language.

Now above we drew two automata; see (6) and (6). The relation
between the two of these is that the accepting states of the first are the
non-accepting states of the second (and vice-versa). The next result
clarifies the situation.
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Proposition 6.3. Suppose that A is a deterministic automaton. Let
B be the same automaton, but when we switch the accepting and non-
accepting states. Then L(B) is the complement of L(A):

L(B) = −L(A).

Proposition 6.4. For any automaton A (even a non-deterministic
A), there is a deterministic B with the same language: L(A) = L(B).

This takes a special proof that I’ll outline in homework. It’s definitely
not easy or obvious.

Putting the two facts together:

Theorem 6.5. The complement of any regular language L is also reg-
ular.

Proof. Let L be regular. This means that we have A so that L =
L(A). By Proposition 6.4, let B be deterministic and have the same
language as A. We swap accepting and non-accepting states in B to
get an automaton that we call CC . By Proposition 6.3, L(CC ) is the
complement of L(A) = L(B) = L. And L(CC ) is regular, since it is the
language of some automaton. So the complement−L of L is regular.

Corollary 6.6. If L and M are regular, so is L ∩M .

Proof. Let L and M be regular. We prove that L ∩M is also regular.
By facts earlier this semester (de Morgan’s law),

L ∩M = −((−L) + (−M)).

Now −L and −M are regular, by what we just did. And the union of
two regular languages is also regular: just add regular expressions for
them. So (−L) + (−M) is regular. And then using complement one
more time, we see that −((−L) + (−M)) is regular.

6.5 An Argument Why English is Not Regular

We have studied regular languages to such a large extent that you might
think that we felt they are particularly useful in the study of language.
The opposite is the case: we present an argument below to the effect
that natural languages are not regular. So in a sense, regular languages
are a diversion, almost a “straw man”. But the reason that we have
been interested in them is that they present a clear model that we can
easily work with. (In addition, they are very useful in areas such as
computational linguistics.) We shall go beyond the regular languages
later in this chapter, but now we turn to our argument.
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Suppose towards a contraction that English were regular. Consider
L defined by

L = English ∩ {the, boy, girl, saw, ran}+

Since the intersection of two regular languages is regular, this language
L must also be regular.

Here are some sentences in L:

the boy ran
the boy the girl saw ran
the girl the girl saw ran
the boy the girl the girl saw saw ran
the boy the girl the girl the girl saw saw saw ran

We know that nobody can possibly understand this last sentence, but
there are reasons why linguists want to take it to be part of ideal En-
glish.

And the list goes on.
The main things about L are that

(1)No sentence has two “the”s in a row.

(2)No sentence has two “boy”s in a row, or two “girl”s.

(3)the sentence has exactly as many nouns as “see”s.

Now we repeat the proof that anbn is not regular. We know now that
L is regular, so for some automaton, say A, L = L(A). Let M be the
number of states in A.

Consider

the girl the girl the girl · · · saw saw · · · saw ran

We would have one more “girl” than “saw”. But by considering loops
in A again, this automaton must also accept a string of words with
more stuff in the first part of the sentence.

As a result A would accept a string that violated one of our points
(1)–(3) above. And this string would definitely not be an English sen-
tence, hence not in L. So this proves that L(A) 6= L.

6.6 Context-Free Grammars and Languages

At this point, we have some indication that regular expressions and
SCGs are not adequate for the description of syntax. We should men-
tion that even if they were adequate, linguists would not be terribly
happy with formalisms like regular expressions, automata, and SCGs.
The reason is that they do not give a direct handle on the notion of con-
stituency. So even if the grammars “worked out” in the sense of being
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able to correctly model interesting syntactic phenomena, they would
still not be “right” in the sense that their study would lead to interest-
ing questions for syntax. We next turn to a more powerful formalism,
the context-free grammars that comes much closer to being both pow-
erful enough to represent interesting syntactic phenomena and also can
give constituency structures (trees) that are much closer to what a
syntacticians use.

We start with a set NT of non-terminals and also a set T of ter-
minals. For example, the terminals can be words or letters. And the
non-terminals can be grammatical categories. Usually we write the ter-
minals with lower case letters a, b, . . ., and the non-terminals are writ-
ten with upper case X, Y , S, A, B, . . .

A CFG rule is an expression

X → w,

where X ∈ NT and w ∈ (T ∪NT )+. A CFG is a finite set of CFG rules,
and a specification of one of the non-terminals to be the top-level non-
terminal. We have yet to say what CFG’s do, and how they generate
languages.

Here is a basic example of a context-free Grammar (CFG). We take
T = {a, b}, and NT = {S}. We have two rules: S → aSb and S → ab.
We also state that the top-level symbol is S. This is a context-free
grammar that we’ll call G.

Parse trees A parse tree for a CFG G is a tree T with a few important
properties:

a. The tree is labeled with elements of NT ∪ T .
b. The leaves must be labeled with terminal symbols (T ).

c. The non-leaves must be labeled with non-terminal symbols (NT ).

d. The root of T must be labeled with the top-level non-terminal.

e. Each non-leaf must match some rule in the grammar G.

f. T must be finite; it cannot go on forever.

The leaf sequence of a parse tree T is called the yield of T . The
language of the grammar G is the set of all yields of all parse trees of
G. Each CFG G gives us a language L(G). The context-free languages
are all the languages L(G), where G can be any CFG.
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Compare this with the regular languages. For example, let’s look at
the parse trees in our example grammar G.

S

a b

This is a good parse tree for our grammar.

S

a S b

This is not quite a parse tree, since one of the leaves is not labeled with
a terminal symbol.

Here is the second-smallest parse tree in the grammar.

S

a S

a b

b

Its yield is aabb.
What is the third-smallest parse tree?



A Taste of Mathematical linguistics / 169

S

a S

a S

a b

b

b

The yield is aaabbb.
All of the parse trees look like the three that we have seen. The set

of words which are yields of parse trees is

{ab, aabb, aaabbb, . . . , anbn, . . .}
This is the language of this grammar. We write this as L(G).
Exercise 6.18. Write grammars for some languages.

a. a+

b. a+b+

c. (a+ b)+(c+ d)+

d. ((a+ b)+(c+ d)+)+

Exercise 6.19. Prove that every regular language without ǫ is a
context-free language. There are two ways that you can go about this;
you have your choice. You can convert regular expressions into context-
free grammars, or you can convert SCG’s. Either way, you should give
some indication of how your method works (by giving an example or
two), and also why it works.

A trickier example Let T = {(, ), a, b, c,+, ·, ∗}. (Note that we have
the parentheses as terminal symbols (!) and also the symbols +, ·, and
∗. Let’s write a grammar G whose language L(G) is the set of all regular
expressions : So we want L(G) = {a, b, (a+ b), (a · b), (a+ b)∗, . . .}.

Note that we want L(G) to have very “official looking” expressions,
with more parentheses than we usually would see. We take one terminal
symbol, S.
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Of course S will be the top-level symbol of the grammar.
For the rules, we take

S → a
S → b
S → c
S → (S + S)
S → (S · S)
S → (S)∗

Exercise 6.20. Find the language of this grammar

S → S S
S → l S r

(l is for left, and r is for right.)



7

Semantics I: Compositionality and

Sentential Logic

In this chapter we consider first some of the goals of a semantic analysis
for a language and we illustrate a semantic analysis for a particularly
simple language, that of Sentential Logic (SL). Then we enrich our
analysis to include a language with some (not all) of the linguistic
complexity studied in Chapter 4.

7.1 Compositionality and Natural Language
Semantics

7.1.1 Goals of semantic analysis

Compositionality. Our primary way of understanding a complex
novel expression is understanding what the lexical items it is composed
of mean and how expressions built in that way take their meaning as a
function of the meanings of the expressions they are built from (begin-
ning with the lexical items). We illustrate this conceptually with our
semantics for Sentential Logic.

Semantic characterization of syntactic phenomena. In practice
syntactic and semantic analysis are partially independent and partially
dependent. So a variety of cases arise where the judgments that an
expression is grammatical seem to be decided on semantic grounds (See
chapters 8, 10 and 11). Here are two examples. First, negative elements
like not and n’t license the presence of negative polarity items (npi’s)
within the P1 they negate:

(1) a. Sue hasn’t ever been to Pinsk.
b. ∗Sue has ever been to Pinsk.

However some subject DPs also license npi’s, as in (2a) but not (2b):

(2) a. No student here has ever been to Pinsk.

171
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b. ∗Some student here has ever been to Pinsk.

These judgments give rise to two linguistic problems: (1) How to
define the class of subject DPs which, like no student, license npi’s in
their P1. This class must be defined in order to define a grammar for
English. And (2) what, if anything, do these DPs have in common with
not and n’t? The best answer we have to date is stated in semantic
terms, specifically in terms of the denotations of the Dets used in the
subject DP.

Second, a long standing problem in generative grammar is the char-
acterization of the DPs which occur naturally in Existential-There con-
texts:

(3) a. Are there more than two students in the class?
b. ∗Are there most students in the class?

Again the best answers that linguists have found are semantic in nature:
they are those DPs built from Dets whose denotations satisfy a certain
condition.

Issues of expressive power. Given an adequate semantic analysis
of a class of expressions in natural language we can study that anal-
ysis to uncover new purely semantic regularities about the language.
For example, we can show that natural languages present quantifier
expressions which are not definable in first order logic (Chapter 9), and
we can show that Det denotations quite generally satisfy a logically
and empirically non-trivial condition known as Conservativity (Chap-
ter 11).

7.1.2 Semantic Facts

Crucial to each of the three goals above is that we have a clear sense
of the facts that a semantic analysis of natural language must account
for1. That is, we need a way of evaluating whether a proposed semantic
analysis is adequate or not. The facts we rely on are the judgments
by competent speakers that a given expression has, or fails to have,
a certain semantic property. More generally a semantic analysis of a
language must explicitly predict that two (or more) expressions stand
in a certain semantic relation if and only if competent speakers judge
that they do. Pre-theoretically to say that a property P of expressions

1This problem arises in syntactic study as well, but it is less pressing as we begin
with a large range of syntactic facts our theory should predict. Namely facts of the
form Every cat chased every dog is an expression of English whereas Cat dog every

every chased is not. As we pursue syntactic analysis more deeply than was done in
Chs 3 and 4 further non-trivial methodological issues arise, but we do not pursue
them in this book.
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is semantic is just to say that competent speakers decide whether an
expression has P or not based on the meaning of P . Similarly a relation
between expressions is semantic just in case whether expressions stand
in that relation depends on the meaning of the expressions. The best
understood semantic relation in this sense is entailment, introduced
briefly in Chapter 4. We repeat and expand that definition:

Definition 7.1. A sentence P entails (|=) a sentence Q iff Q is true in
every situation (model) in which P is true. More generally a set K of
sentences entails a sentence Q iff Q is true in every situation (model)
in which the sentences in K are simultaneously true.

In Chapter 4 we gave examples using manner adverbs:

(4) a. John walked rapidly to the post office. |= John walked to
the post office.

b. Sue smiled mischievously at Peter. |= Sue smiled at Peter.

In a situation in which Sue smiled mischievously at Peter is true then,
obviously, in that situation, it is true that Sue smiled at Peter. Our
judgments of entailment here are good, even though we may be unclear
about precisely what a smile must be like to be mischievous. But the
judgment of entailment doesn’t require that we know precisely the truth
conditions of the first sentence, it just requires an assessment of relative
truth conditions. If a situation suffices to make the first true, does it
also suffice to make the second true?

Thus one adequacy condition on a semantic analysis of English is
that it predict the entailments in (4). More generally, an adequate se-
mantic analysis of English must tell us that an English sentence P
entails an English sentence Q if and only if competent speakers judge
that it does. Thus an adequate semantic analysis must correctly predict
the judgments of entailment and non-entailment by competent speak-
ers.

Our observations here incorporate an important assumption con-
cerning the nature of truth, one of our fundamental semantic primitives.
Namely we treat truth as a relation between a sentence in a language
and “the world” or “the situation we are talking about”, notions we
shortly represent more formally as “models”. The truth value—True
or False—of a given sentence may vary according to how the world is.
A simple sentence such as Some woodworker likes mahogany is true in
some situations and false in others. It depends on what woodworkers
there are in the situation and what they like. This is why our definition
of entailment quantifies over situations (models). It says that for P to
entail Q it must be so that in each situation in which P is true Q is
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true.

7.1.3 Further Adequacy Criteria for Semantic Analysis

Semantic ambiguity. Not uncommonly an expression is felt to ex-
press two or more distinct meanings. In such a case obviously all the
meanings must be represented. To take a classical example, the sen-
tence Flying planes can be dangerous is semantically ambiguous. On
the one hand the subject phrase flying planes can refer to the act of
flying planes, and so is presumably dangerous to those who fly them.
On this interpretation the subject phrase is grammatically singular, as
is evident in the choice of singular is in Flying planes is dangerous. But
the original sentence has another interpretation on which it means that
planes that are flying are dangerous, presumably to those in their vicin-
ity. In this case the subject phrase is plural, as seen in Flying planes
are dangerous. In our original example, Flying planes can be dangerous,
the Predicate Phrase is built with a modal can. (Some other modals, of
which there are about 10 in English, are might, may, must, should, will,
would and could). Modals in English neutralize verb agreement. One
says equally well Johnny can read and the children can read with no
change in the form of the predicate despite the first having a singular
subject and the second a plural one.

Exercise 7.1. Each of the expressions below is semantically ambigu-
ous. In each case describe the ambiguity informally.

a. The chickens are ready to eat.

b. France fears America more than Russia.

c. John thinks he’s clever and so does Bill.

d. Ma’s home cooking.

e. John and Mary or Sue came to the lecture.

f. John didn’t leave the party early because the children were crying.

Of the expressions in our model language L(Eng) two cases of pos-
sible ambiguity have arisen. First, (Kim smiled, S) was syntactically
ambiguous according as Kim had category NP or S/(NP\S). But this
S is not felt to be semantically ambiguous. So a semantic interpreta-
tion of L(Eng) must show that the two syntactic analyses are com-
positionally interpreted to yield the same result. And second, recall
DP scope ambiguities in Ss like Some student praised every teacher. In
this chapter we represent the object narrow scope reading. The object
wide scope reading, Every teacher has the property that some student
praised him is treated in Chapter 9. A related type of ambiguity is the
transparency/opacity (= de re / de dicto) one in Ss like (5):
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(5) Sue thinks that the man who won the race was Greek.

On the opaque (de dicto) reading of the man who won the race we
understand that Sue thinks that the winner was Greek. Sue may have
no direct knowledge of who the winner was, she may just know that
all the contestants were Greek men so obviously the winner was Greek.
On the transparent reading of this DP, (5) is interpreted like The man
who won the race has the property that Sue thinks that he was Greek.
Here Sue has an opinion about a certain individual, namely that that
individual is Greek, but she may not even know that he won the race.

Variations on this type of ambiguity are rife in the analysis of expres-
sions involving Sentence Complements of verbs of thinking and saying,
especially in the philosophical literature where such verbs are said to
express propositional attitudes. It is among the reasons we do not at-
tempt a quick semantic analysis here. These problems have no fully
agreed upon solution in the literature.

Selection restrictions. For most of the expression types considered
in L(Eng) we find that choices of the slash category expression seman-
tically constrain the choice of expression in the denominator category.
Here are some examples.

Adjective + Noun. It makes sense to speak of a skillful or accom-
plished writer, but not of a skillful or accomplished faucet. Faucets are
not the kinds of things that can be skillful or accomplished—those ad-
jectives require that the item modified denote something animate at
least. We say that adjectives select (impose selection restrictions on)
their N arguments.

Predicate modifiers. These exhibit similar selection properties as ad-
jectives. We use # to indicate a selection restriction violation and a
check X for selection restriction satisfaction.

(6) a. He solved the problem X in an hour / # for an hour.
b. He knocked at the door # in an hour / X for an hour.

Thus a repetitive or durative action can be modified by durational
phrases such as for an hour but not by modifiers like in an hour.
In contrast an accomplishment or achievement predicate like solve the
problem, which is over in an instant when it is over, can sensibly take
modifiers like in an hour but not duratives like for an hour (See Dowty
(1982)).

Determiners + Noun. Dets also place some selection requirements
on the Ns they determine. Many students is natural, #Many gold is
senseless. In contrast Much gold is sensible and #Much students is
not. Ns like gold, butter, hydrogen are called mass nouns, whereas ones
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like student, brick, and number are called count nouns. And Dets may
at least select for mass or count. Many abstract nouns, like honesty,
sincerity,and honor behave like mass nouns in this respect.

Predicates + Argument. P1s impose selection restrictions on their
subjects: The witness lied is fine, but #The ceiling lied is bizarre since
ceilings aren’t the kind of thing that can lie—they are too low on the
chain-of-being hierarchy. Also P2s impose selection restrictions on their
object arguments. It makes sense to say that John peeled an orange or
a grape, but not that he peeled a puddle or a rainstorm.

Beyond pointing out their existence we do not study selection re-
strictions in this text. Our examples are in general chosen to satisfy
selection restrictions.

Sense dependency. Sense dependency is a phenomenon inversely re-
lated to selection restrictions whereby the interpretation of the slash
category expression is conditioned by the denotation of the denomina-
tor category expression. Consider again Adjective + Noun construc-
tions. When we speak of a flat road or table top we interpret flat to
mean “level, without bumps or depressions”. But when we speak of flat
beer or champagne we mean “having lost its effervescence”. And a flat
tire is one that is deflated, a flat voice is one that is off-key. So the
precise interpretation of flat is conditioned by its argument.

Predicates also have their interpretation conditioned by the nature
of their arguments. In cut your finger, cut means to make an incision
in the surface of. But in cut the roast or the cake, cut means to divide
into portions for purposes of serving. In cut prices or working hours,
cut means to reduce along a continuously varying dimension.

Sense dependency is not one of the well studied semantic relations
in the linguistic literature, but dictionaries note them. The examples
here are taken from Keenan (1979).

Presupposition. Presupposition is a well studied relation, one which
plays an important role in many semantic and pragmatic studies. In-
formally we say that a sentence P (logically) presupposes a sentence Q
iff Q is an entailment of P which is preserved under Yes-No questioning
and “natural” negation. Consider for example the classical (7a).

(7) a. The king of France is bald.
b. France has a king.
c. Is the king of France bald?
d. The king of France isn’t bald.

Clearly (7a) entails (7b)—if the king of France is bald then France
must indeed have a king. And that information is not questioned in
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(7c) or denied in (7d), hence (7b) is a presupposition of (7a).
Presupposition can be used to distinguish meanings of predicates.

Consider first:

(8) a. It is true that Fred took the painting.
b. Fred took the painting.
c. Is it true that Fred took the painting?
d. It isn’t true that Fred took the painting.

Though (8a) entails (8b), (8b) is not presupposed by (8a). The infor-
mation in 8b) is questioned in (8c). Someone who asks (8c) is asking
whether the embedded S, (8b), is true or not. And similarly (8d) does
deny the information in (8b). We can replace true with false or probable
and argue, even more easily, that they do not presuppose the b-sentence
either. By contrast consider (9a).

(9) a. It is strange that Fred took the painting.
b. Fred took the painting.
c. Is it strange that Fred took the painting?
d. It isn’t strange that Fred took the painting.

Here (9a) does seem to entail (9b). And in (9c) we are not asking
whether Fred took the painting, we are accepting that and asking
whether that fact is strange or not. Similarly in (9d) we are just denying
the strangeness of the fact, but not the fact itself. It seems then that
(9a) does presuppose (9b). Moreover strange can be replaced by dozens
of other presuppositional adjectives: amazing, unsurprising, pleasing,
ironic, etc.

There is then a systematic difference between the predicates in (8)
and those in (9), one that is revealed by observing that they behave
differently with regard to whether the embedded S is presupposed or
not.

In general presupposition is a relation that is most useful is dis-
cerning how information is packaged in a sentence, as opposed to the
absolute quantity of information. To see this compare (10a) and (10b):

(10) a. John is the one doctor who signed the petition.
b. John is the only doctor who signed the petition.
c. Exactly one doctor signed the petition.

Each of (10a) and (10b) entails the other, which means that they are
true in the same situations and so in that sense they express the same
absolute information. They both entail (10c) for example. But (10a)
and (10b) present their information somewhat differently. Compare
their natural negations:



178 / Mathematical Structures in Language

(11) a. John isn’t the one doctor who signed the petition.
b. John isn’t the only doctor who signed the petition.

Now (11a) still entails (10c), it only denies that John is that doctor.
But (11b) denies that John was the only doctor who signed, implying
thereby that there was an additional doctor who signed. So (11b) does
not entail (10c). And it seems then that (10a) and (10b), while logically
equivalent, differ in that (10a) presupposes (10c) whereas (10b) does
not. Questioning or denying (10b) does not preserve that information.

Now, as we have seen, Ss in natural language are syntactically com-
plex objects, and there are normally infinitely many of them. So we
cannot just list the set of Sentence interpretations in English. Rather
we must show for each S how it’s interpretation is constructed from
the interpretation of the lexical items which occur in it. Those we can
list—that is what dictionaries do—since the number of lexical items
in a natural language is finite. Otherwise the recursive construction
of interpretations follows the same steps as the recursive construction
of the expressions themselves. And in Eng there are only two rule sets
that build complex expressions from simpler ones: the rules of Function
Application and the Coordination Rule. A more complete grammar for
English would almost certainly have more rules.

7.1.4 A basic example of compositionality

Our grammar Eng in Chapter 4 allows us to form coordinations of
Ss using and and or (and with some modification, neither...nor...).
Such syntactically complex Ss are called boolean compounds of the ones
they are built from. And, or, neither...nor... and not are called boolean
connectives.

Now in a given situation, the truth value of a boolean compound
of Ss is uniquely determined by—is a function of— the truth values in
that situation of the Ss it combined. That is, the boolean connectives
are truth functional. In a situation in which P is true and Q is true
we infer Both P and Q is true, Either P or Q is true, and Neither P
nor Q is false. Many subordinate conjunctions that build an S from
two others are not truth functional. Imagine a situation in which John
left the party early and The children were crying are both true. The
sentence John left the party early because the children were crying may
still be either true or false. So its truth value is not determined by the
truth of its component sentences. Thus because is not a truth functional
connective. Sentential Logic is used by logicians and philosophers to
study the meanings of boolean (truth functional) connectives. Below
we present it explicitly as it illustrates in a simple form how we may
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define a language and compositionally interpret it. And as a result it
provides a convenient vehicle for studying basic issues in both syntax
and semantics.

7.2 Sentential Logic

The language SL of Sentential Logic (also called Propositional Logic)
consists of denumerably many atomic formulas P1, P2,... closed under
combinations with and, or and not. So for example ((P1 and not P5)
or (P5 and not P1)) is an element of SL, whose members in general
are called formulas. Here is a more precise definition. Recall that for V
a set, V ∗ is the set of finite sequences of elements of V .

7.2.1 The Syntax of SL

Definition 7.2. AF =df {〈‘P ’, n〉 | n ∈ N}.
We usually write simply Pn for 〈‘P ’, n〉. By ‘P ’ we just mean the

letter P . Elements of AF are called atomic formulas.

Definition 7.3. V =df AF ∪ {and, or, not, ), (}
We define one unary function NEG on V∗ and two binary functions

AND, OR on V∗ as follows (writing simply uv for u⌢v).

Definition 7.4. NEG(ϕ) = not ϕ,AND(ϕ,ψ) = (ϕ and ψ),
OR(ϕ,ψ) = (ϕ or ψ).

Definition 7.5. SL is the closure of AF under NEG, AND, and OR.

Thus SL is the set of strings that can be built starting with the
atomic formulas and applying the NEG, AND, and OR functions any
finite number of times. An explicit definition of this closure, on the
model of our earlier one for CatEng, is given below. Here (and else-

where) we write x, y ∈ A as a shorthand for “x ∈ A and y ∈ A”.

(12) i. Set SL0 = AF, and
ii. for all natural numbers n,

SLn+1 = SLn ∪ {NEG(ϕ) | ϕ ∈ SLn}
∪{AND(ϕ,ψ) | ϕ,ψ ∈ SLn}∪{OR(ϕ,ψ) | ϕ,ψ ∈ SLn}.

iii. Then SL =df {τ ∈ V∗ | for some n, τ ∈ SLn}.
So SL =df

⋃

n∈N
SLn.

Then SL provably has the following three basic properties:

Theorem 7.1.

a. AF ⊆ SL.

b. SL is closed under NEG, AND, OR. That is, if ϕ,ψ ∈ SL then
NEG(ϕ), AND(ϕ,ψ) and OR(ϕ,ψ) are in SL as well.



180 / Mathematical Structures in Language

c. If a set K includes all the atomic formulas and is closed under
NEG, AND, and OR then SL ⊆ K. (This is what is meant by
saying that SL is the least subset of V∗ which includes the atomic
formulas and is closed under NEG, AND, and OR).

Some abbreviations.

i. We often write & instead of and.

ii. Ss of the form (ϕ & ψ) are called conjunctions ; ϕ and ψ are its
conjuncts.
Ss of the form (ϕ or ψ) are called disjunctions ; ϕ and ψ are its
disjuncts.

iii. For ϕ,ψ ∈ SL we use (ϕ → ψ) to abbreviate ((not ϕ) or ψ).
(ϕ → ψ) is called a conditional formula; ϕ called its antecedent
and ψ its consequent.

iv. Similarly we write (ϕ↔ ψ) to abbreviate ((ϕ→ ψ) & (ψ → ϕ)).
Formulas of the form (ϕ↔ ψ) are called biconditionals

.
In what follows it will be useful to be able to refer to the atomic

formulas which occur one or more times in a given formula ϕ. Here is
an explicit recursive definition, one that illustrates the recursive format:

Definition 7.6. For all ϕ,ψ ∈ SL,

a. AF(Pn) = {Pn} for all atomic formulas Pn,

b. AF(NEG(ϕ)) = AF(ϕ),

b. AF(AND(ϕ,ψ)) = AF(ϕ) ∪AF (ψ), and
c. AF(OR(ϕ,ψ)) = AF(ϕ) ∪AF (ψ).

AF(ϕ) is the set of atomic formulas which occur in ϕ.
AF here is a recursively defined function from SL into P(SL), the

power set of SL, since it associates with each formula of SL a set of
formulas. That AF is well defined depends on the fact that NEG, AND,
and OR are unambiguous. Imagine for example that there was a formula
σ such that σ = NEG(τ) for some τ ∈ SL and also that σ = OR(ϕ,ψ)
for some ϕ,ψ ∈ SL. Then Definition 7.6 would say that AF(σ) = AF(τ)
and also that AF(σ) = AF(ϕ)∪AF(ψ). Likely these two sets are not the
same, so AF would not be a function, it would associate two different
values with σ. But in fact this situation provably does not arise:

Theorem 7.2. SL is syntactically unambiguous. That is, (a)–(c) below
hold:

a. Each generating function NEG, AND, OR is one to one,

b. The ranges of any two of NEG, AND, OR are disjoint,and
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c. AF and the range of any of NEG, AND, and OR are disjoint.

Thus no formula gets into SL in more than one way. Here is a stepwise
computation using Definition 7.6:

(13) AF((not P2 or P3)&(P3 or P4))
= AF(not P2 or P3) ∪AF(P3 or P4)
= AF(not P2) ∪AF(P3) ∪AF(P3) ∪AF(P4)
= AF(P2) ∪ {P3} ∪ {P3} ∪ {P4}
= {P2} ∪ {P3, P4}
= {P2, P3, P4}

Exercise 7.2. Compute stepwise each of the following:

a. AF(P5 or not P5)

b. AF(not (P5 or P6))

c. AF(P6 ↔ P6)

d. AF((P1 → P9) or (P1 → not P9))

(Replace the defined formulas here with the ones that define them.)

7.2.2 The semantics of SL

To simplify notation in what follows consider the two element set {T, F}
whose elements we call truth values, with T = true, and F = false.
This set is commonly noted {0, 1} in the literature, with 0 = false and
1 = true, but here we stick with {T, F } for mnemonic reasons. We
define one unary function called complement noted ¬ on {T, F} and
two binary functions, meet ∧ and join ∨ by giving their tables:

(14) a. X ¬X
T F
F T

b. X Y X ∧ Y X ∨ Y
T T T T
T F F T
F T F T
F F F F

If a formula ϕ in our logic has truth value X then its negation has
truth value ¬X. And if formulas ϕ, ψ have truth values X and Y
respectively then their conjunction has truth value (X ∧ Y ) and their
disjunction has truth value (X ∨ Y ). More formally we define:

Definition 7.7. A model for SL is a function v : AF → {T, F}. v is
often called a valuation.

Definition 7.8. For each model v we define a function v∗ from SL into
{T, F} by setting:
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a. v∗(Pn) = v(Pn), for all atomic formulas Pn,

b. v∗(NEGϕ) = ¬(v∗(ϕ)),
c. v∗(AND(ϕ,ψ)) = v∗(ϕ) ∧ v∗(ψ), and
d. v∗(OR(ϕ,ψ)) = v∗(ϕ) ∨ v∗(ψ).

v∗ is called an interpretation of SL.

We note without argument that for each v, v∗ is a function, one
which extends v. That is, Dom(v) ⊆ Dom(v∗) and for all ϕ ∈ Dom(v),
v∗(ϕ) = v(ϕ). Further, each function from SL into {T, F} which satis-
fies conditions (b)–(d) extends some valuation v, that is, it is an inter-
pretation of SL.

The informal idea behind this semantics is that the atomic formulas
represent independent claims we can make about the world. If we are
in a model in which P5 is true we have no predictability of the truth of
any other atomic formula. P7 for example might be true or it might be
false. That is, there are models v in which v(P5) = T and v(P7) = T
and other models v′ in which v′(P5) = T and v′(P7) = F . However
once we are given a model v—so we know the truth value of each atomic
formula, then the truth values of the syntactically complex formulas are
uniquely determined by the stipulations in (b)–(d).

We emphasize that our definition of interpretation is fully composi-
tional. The interpretation (truth value) of a complex formula is uniquely
determined by the interpretations (truth values) of the formulas it is
built from.

A seemingly obvious property of SL is that the truth of a formula
depends only on the truth of the atomic formulas which occur in it.
Formally we have:

Theorem 7.3 (The Coincidence Lemma). For all ϕ ∈ SL and all
models v and u, if v(Pn) = u(Pn) for all atomic formulas occurring in
ϕ then v∗(ϕ) = u∗(ϕ).

Proof. By induction on formula complexity. The main idea is: we let
K be the set of formulas in SL for which the theorem holds. Then
we show that K contains all the atomic formulas and is closed under
the functions AND, OR, and NEG. Then by Theorem 7.1c, SL ⊆ K,
proving the theorem.

More explicitly now, set

K = {ϕ ∈ SL | for all models u, v if u(P ) = v(P )

for all P ∈ AF(ϕ) then u∗(ϕ) = v∗(ϕ)}.
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Step 1: All atomic formulas are in K. Let Pm be an arbitrary atomic
formula. Then AF(Pm) = {Pm}, so if u, v are models that assign the
same value to the elements of AF(Pm) then, trivially, they assign the
same value to Pm.

Step 2: Show that K is closed under NEG. Let ϕ ∈ K, show that
NEG(ϕ) ∈ K. Let u, v be arbitrary models, assume they assign the
same values to Pn in AF(NEG(ϕ)). We must show that

u(NEG(ϕ)) = v(NEG(ϕ)).

But AF(NEG(ϕ)) = AF(ϕ). Hence, by the induction hypothesis,
u(ϕ) = v(ϕ). Therefore

u(NEG(ϕ)) = ¬u(ϕ) = ¬v(ϕ) = v(NEG(ϕ)).

Step 3: Show that K is closed under AND. Let ϕ,ψ ∈ K. Show that
AND(ϕ,ψ) ∈ K. Now AF(AND(ϕ,ψ)) = AF(ϕ) ∪ AF(ψ). So if u and
v agree on all the Pn in AF(AND(ϕ,ψ)) then they agree on the Pn
in AF(ϕ and on the Pn in AF(ψ). Thus by the induction hypothesis
u(ϕ) = v(ϕ) and u(ψ) = v(ψ). So

u(AND(ϕ,ψ)) = u(ϕ) ∧ u(ψ) = v(ϕ) ∧ v(ψ) = v(AND(ϕ,ψ)).

Step 4: Show analogously to Step 3 that K is closed under OR. Thus,
since K contains all the atomic formulas and is closed under NEG,
AND, and OR, we infer that SL ⊆ K, proving the theorem.

We turn now to the definition of entailment and related notions on
SL.

Definition 7.9.

a. For ϕ,ψ ∈ SL, ϕ |= ψ (read: ϕ entails ψ) iff for all models v for
SL, if v∗(ϕ) = T then v∗(ψ) = T .
ϕ |= ψ is often read “ϕ logically implies ψ”.

b. For all K ⊆ SL, all ϕ ∈ SL, K |= ϕ iff for all models v,
if v∗(τ) = T for all τ ∈ K then v∗(ϕ) = T .

Note that Definition 7.9a is just the special case of Definition 7.9b
where K is the unit set {ϕ}. We normally write ϕ |= ψ rather than
{ϕ} |= ψ.

Definition 7.10. For ϕ ∈ SL, ϕ is logically true (valid, a tautology)
iff for all models v, v∗(ϕ) = T . To say that ϕ is logically true we write
|= ϕ.

Theorem 7.4. For ϕ ∈ SL, ϕ is logically true iff ∅ |= ϕ.

The significance of Theorem 7.4 is that logical truth (validity) is not
a special case of entailment.
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Definition 7.11. For ϕ,ψ ∈ SL, ϕ is logically equivalent to ψ, noted
ϕ ≡ ψ, iff for all models v, v∗(ϕ) = v∗(ψ).

Theorem 7.5. For ϕ,ψ ∈ SL,

a. ϕ ≡ ψ iff ϕ |= ψ and ψ |= ϕ,

b. ϕ ≡ ψ iff |= (ϕ↔ ψ),

c. ϕ |= ψ iff |= (ϕ→ ψ).

From Theorem 7.5c we carefully distinguish |= from→. A conditional
formula (ϕ → ψ) may be true in some interpretations and false in
others. But ϕ |= ψ is simply true or false. For example the formula
(P1 → P3) is true in a model v in which v(P1) = F or v(P1) =
v(P3) = T . But it is false in models v′ in which v′(P1) = T and
v′(P3) = F . In contrast P1 |= P3 is simply false, since it is not the case
that P3 is interpreted as T in every model in which P1 is interpreted
as T . The models v′ just mentioned are examples.

Note that to prove a formula of the form (ϕ → ψ) in mathematical
discourse it suffices to consider the case when ϕ is true and then prove
that ψ is true. If ϕ is false then (ϕ→ ψ) is true no matter what truth
value ψ has.

Equivalence Relations. In Definition 7.11 we defined a semantic
relation, logical equivalence, noted ≡, on the formulas of Sentential
Logic. This relation is representative of a class of widely used rela-
tions in mathematical discourse called equivalence relations. Roughly,
an equivalence relation R defined on a set A relates objects x and y in
A if they are identical in some respect or another. In the limit they may
be identical in every respect, that is, they are the exact same object.
Indeed, absolute equality = is an equivalence relation. But the utility
of equivalence relations lies in the fact that we can ignore certain differ-
ences between objects, as we did with ≡ above. If we are just interested
in studying the entailments (logical consequences) that a formula may
have then there is no need to distinguish between (not P & not Q) on
the one hand and not(P or Q) on the other, since they have the same
entailments as they are logically equivalent (always have the same truth
value). Formally we define a relation to be an equivalence relation as
follows.

Definition 7.12. A binary relation R on a set A is an equivalence
relation iff:

a. R is reflexive (for all x ∈ A, xRx),

b. R is symmetric (for all x, y ∈ A, xRy ⇒ yRx), and

c. R is transitive (for all x, y, z ∈ A, (xRy & yRz) ⇒ xRz).



Semantics I: Compositionality and Sentential Logic / 185

Exercise 7.3.

a. State explicitly the three conditions that must be met for ≡ de-
fined above to be an equivalence relation.

b. We define the equi-cardinality relation ≈ on P(N) by: A ≈ B iff
there is a bijection from A to B (that is, A and B have the same
cardinality). State explicitly the three things you must show to
prove that ≈ is an equivalence relation. For each of these three
say what justifies its truth.

c. Consider the relation ∼= defined on the set of simple trees with
nodes drawn from N. Is ∼= an equivalence relation? If so, say why
it is reflexive, symmetric, and transitive.

d. Which property of equivalence relations makes them distinct from
partial order relations (such as ≤ in arithmetic, or ⊆ on sets, or
dominates on nodes of a tree)?

Given an equivalence relation R on a set A, we may group equivalent
objects together and, often, just study the behavior of these equivalence
classes.

Definition 7.13. Given an equivalence relation R and an object x ∈ A,
we set [x]R = {b ∈ A | aRb}. [x]R is called the equivalence class of x
modulo R.

When R is clear from context we simply write [x]. [x] is a subset of
A but it is never ∅. Why not?

Theorem 7.6. For all x, y ∈ A, [x] = [y] iff xRy.

Proof. (=⇒) Let [x] = [y]. We must show that xRy. Since x ∈ [x]
because xRx and [x] = [y] we have that x ∈ [y]. So by the definition
of [y] it follows that yRx. Thus, because R is symmetric we conclude
that xRy
(⇐=) Suppose xRy. We must show that [x] = [y]. Let z be arbitrary in
[x]. Then xRz, so zRx, whence by the transitivity of R we have that
zRy. Since R is symmetric it follows that yRz, and so z ∈ [y]. Since z
was arbitrary, [x] ⊆ [y]. By analogous reasoning, [y] ⊆ [x], so equality
holds.

Corollary 7.7. For R an equivalence relation on A, {[x] | x ∈ A} is
a partition of A.

A partition of a set A is a collection of non-empty subsets of A
such that each element x in A is in exactly one of the subsets. So any
two of the subsets are disjoint. The corollary follows immediately from
Theorem 7.6 given that [x] is never empty.
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Returning to Sentential Logic again, observe first that the entailment
relation |= is reflexive since any formula entails itself. This relation is
also transitive, but it is not antisymmetric, since for any formula ϕ,
ϕ |= not not ϕ and conversely, but ϕ and not not ϕ are not the same
formula. But consider now what happens when we take the correspond-
ing relation on the equivalence classes of formulas.

Definition 7.14. For all formulas ϕ,ψ in Sentential Logic, [ϕ] ≤ [ψ]
iff ϕ |= ψ.

We purport here to define the relation ≤ on the set of equivalence
classes of formulas (under the logical equivalence relation) in terms of
the relation |= on the formulas themselves. We must be careful in such
cases. Suppose for example we could find some ϕ′ ∈ [ϕ] such that ϕ′

failed to entail some ψ even though ϕ did entail ψ. Then we would
be claiming that [ϕ] ≤ [ψ] and [ϕ] 6≤ [ψ], which is to say that the
≤ relation would not be well-defined. Fortunately this cannot happen,
since ϕ |= ψ means that every valuation that makes ϕ true also makes
ψ true. And the valuations that make ϕ true are exactly those that
make ϕ′ true since they are logically equivalent. So in defining the ≤
relation as we did, we see that whether is holds or not does not depend
on the choice of representative we pick from [ϕ] (or from [ψ]).

Observe now that the ≤ relation is a partial order; in particular
it is antisymmetric since if [ϕ] ≤ [ψ] then ϕ |= ψ. And if [ψ] ≤ [ϕ]
then ψ |= ϕ, so ϕ and ψ are logically equivalent (if one could be true
under some valuation in which the other was false the one would fail
to entail the other). So once we have traded in the entailment relation
on formulas for the ≤ relations on the equivalence classes of formulas
we are then working with a familiar ordering relation. More about this
order can be found in Chapter 8.

Decidability. Sentential Logic has the pleasing property that there
is a general mechanical procedure (an algorithm) for deciding whether
an arbitrary formula ϕ is logically true or not. The procedure is called
a Decision Procedure and SL is said to be decidable. Similarly there is
a procedure for deciding whether arbitrary formulas ϕ, ψ are logically
equivalent, or whether one entails the other. The procedures all use
truth tables, illustrated below.

Consider the formula ((P2 & P5) or (not P2 & notP5)). To test
whether it is logically true we must evaluate its truth under all in-
terpretations. But by the Coincidence Lemma we need only consider a
model v in so far as it assigns truth values to P2 and P5, the atomic for-
mulas occurring in it. Any two interpretations which assign the same
values to P2 and to P5 must assign the same value to the formula
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((P2 & P5) or (not P2 & not P5)). Now there are just two ways we
can assign truth values to P2, and for each of those there are two ways
to assign truth values to P5. So there are a total of 4 combinations of
truth values that P2 and P5 can take jointly. So let us list all cases,
writing under each atomic formula the value we assign it and then com-
puting the truth value of the entire formula by writing the truth value
of a derived formula under the connective (&, or, not) used to build it.
Here is what this procedure yields in this case:

(15) P2 P5 ((P2 & P5) or (notP2 & notP5))
T T T T F F F
T F F F F F T
F T F F T F F
F F T F T T T

The first line in this truth table says that if P2 and P5 are both true
then the entire formula is a disjunction of a true formula with a false
one, and thus is true. The second line says that if P2 is interpreted as
true and P5 as false then the entire formula is a disjunction of a false
formula with a false one and thus is false. Lines 3 and 4 are computed
similarly. Thus (15) is not logically true as it is not true under all
assignments of truth values to the atomic formulas occurring in it. To
show that it is not logically true it suffices to exhibit line 2 or line 3 in
the truth table.

Generalizing, since any formula in SL is built from just finitely many
atomic formulas (Theorem 7.5) we can decide the validity of any such
formula by constructing a truth table.

Similarly to show that two formulas are not logically equivalent it
suffices to illustrate one line of their truth table in which they have
different values. If they have the same value for all lines then they are
logically equivalent. And finally to show that some ϕ entails some ψ
you must show that for each line of the truth table for ϕ which makes
it true, ψ is also true in that case. To falsify the entailment claim it
suffices to find one assignment of truth values to the atomic formulas
of ϕ which make ϕ true but ψ false.

Exercise 7.4. Establish the claims below by exhibiting an assignment
of truth values to the atomic formulas in the left hand formula which
make it true and the right hand formula false. We write 2 for does not
entail.

a. (notP4 or P7) 2 (notP7 or P4)

b. ((P4 or P7) & (P8 or P7)) 2 (P4orP8)

c. ((P1 & P2) or P3) 2 (P1 & (P2 or P3))
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Exercise 7.5. For each pair of formulas below show that they are
logically equivalent if they are and exhibit a line of their truth table at
which they differ if they are not.

a. i. ((P & Q) or (notP & notQ)) ii. (P ↔ Q)
b. i. (P → Q) ii. (notQ→ notP )
c. i. (P & Q) ii. (Q & P )
d. i. (P → Q) ii. ((P & Q) ↔ P )
e. i. not notP ii. P
f. i. ((P & Q) or P ) ii. P
g. i. (P & (Q or R)) ii. ((P & Q) or (P & R))

7.2.3 Some reflections on the syntax and semantics of SL

Syntax. We first consider an easily established point which (1) il-
lustrates how to prove claims about SL, and (2) may counteract a
confusion students occasionally make.

Theorem 7.8. For all ϕ ∈ SL, AF(ϕ) is finite.

(So SL itself is an infinite set, but each element of it is built from just
a finite number of atomic formulas).

Proof. Set K =df {ϕ ∈ SL | AF(ϕ) is finite}.
(1) We show first that AF ⊆ K. That is, each atomic formula Pn is

in K. This is so since AF(Pn) = {Pn} which has just one element
and so is finite.

(2) a. K is closed under NEG.
Suppose ϕ ∈ K. We must show that NEG(ϕ) ∈ K. But
AF(NEG(ϕ)) = AF(ϕ) and thus is finite since ϕ ∈ K so
AF(ϕ) is finite.

b. K is closed under AND and OR.
Let ϕ,ψ ∈ K. Show that AND(ϕ,ψ) ∈ K. AF(AND(ϕ,ψ)) =
AF(ϕ) ∪AF(ψ), which is finite since the union of two finite
sets is finite (if the first has exactly k elements and the sec-
ond exactly m then the union has at most k +m and so is
finite). That AF(OR(ϕ,ψ)) is finite is shown similarly.

So by Theorem 7.1 SL ⊆ K. And since K ⊆ SL then K = SL, that is,
each formula in SL contains just finitely many atomic formulas.

The syntactic role of parentheses: Polish notation. Let ϕ, ψ
and χ be formulas in SL. Then (16a,b) are different formulas, whose
derivations may be represented by the trees in (17a,b).

(16) a. ((ϕ & ψ) or χ) b. (ϕ & (ψ or χ))
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(17) a. FM

FM

ϕ & ψ

or χ

b. FM

ϕ & FM

ψ or χ

The structures in (17a,b) together with our definition of interpreta-
tion make it clear that formulas of these two forms are not logically
equivalent. For example in any model in which ϕ is interpreted as F
and χ as T (17a) will be True as it is a disjunction of a true formula
with something; in contrast (17b) will be False, as it is a conjunction
of a false formula with something.

Now the constituency (derivational history) represented by (16a,b)
is coded by the use of parentheses in (15a,b). And (finite) ordered
labeled trees satisfying Exclusivity can always be represented this way
(subscripting parentheses with labels when necessary). It is natural
to wonder if we could simplify the linear representation by eliminating
parentheses. The short answer is No. If we omitted all parentheses from
(15a,b) then the resulting expressions would be identical and thus would
be semantically ambiguous—possibly True, possibly False depending
on how we thought the expression was built (and a model). However, a
parenthesis-free notation is available if we write the boolean connectives
(not, and, or,...) always on the left of the formulas they combine with
(called Polish notation; reverse Polish puts all the connectives after the
formulas they combine with). The notation we used is infix notation,
as the binary connectives occur between their arguments. Here is what
the syntax of Polish SL would look like, given less formally than in our
original syntax for SL. We use A for and, O for or, and N for not and
otherwise assume the abbreviations we gave for the infix notation.

(18) SLPol is the least set such that (a) and (b) below hold:

a. AF = {P1, P2, . . .} ⊆ SLPol.
b. If ϕ,ψ ∈ SLPol then Aϕψ, Oϕψ and Nϕ ∈ SLPol.

Then (16a,b) translate from our infix notation to (19a,b) respectively
in Polish:

(19) a. ((ϕ & ψ) or χ) =trans OAϕψχ
b. (ϕ & (ψ or χ)) =trans AϕOψχ

Exercise 7.6. Draw the derivation trees for each of the Polish formulas
in (19).

Exercise 7.7. Translate each of the formulas below from infix SL into
SLPol.
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a. (ϕ→ ψ) b. ((notϕ & not ψ) or (ϕ & ψ))
c. ((ϕ & notψ) or (notϕ & ψ)) d. (notϕ↔ notψ)

Exercise 7.8. Translate the formulas below from SLPol into infix no-
tation.
a. NAϕψ b. ANϕψ
c. AAAϕψχτ d. OAOϕψχτ
e. OϕAψOχτ f. AϕOψAχτ

Exercise 7.9. Compare the derivation trees for (c) in Exercise 7.8
above with that for your translation into infix notation. Is there any
difference between the trees in terms of degree of center embedding as
opposed to left or right branching?

We should emphasize here that SLPol is syntactically unambiguous.
That is, the analogue of Theorem 7.2 given earlier holds when we set
AND(ϕ,ψ) = Aϕψ, NEG(ϕ) = Nϕ, etc. So our recursive definition of
interpretation in a model carries over as before.

Naively it seems natural to consider that it is the use of match-
ing parentheses in infix notation that accounts for the non-ambiguity
of its expressions. Matching parentheses conveniently identify the con-
stituents we interpret in building an interpretation of an entire ex-
pression. And one of the (partial) automated checks of syntactic well-
formedness is a parity check that rejects a string of symbols if the
number of left and right parentheses is different. (They must be the
same in any formula of SL since whenever a structure building rule
(function) puts in a left parenthesis it also puts in a right one, and
conversely.

Exercise 7.10. Show that the set Polish SL sentences is context-free
but not regular.

Informed now about parenthesis-free notation fixing the boolean con-
nectives formula initially, we can prove that a syntax like our infix one
but which only introduces left parentheses also leads to unambiguous
expressions. Here the AND function would be: AND(ϕ,ψ) = (ϕ & ψ,
and OR(ϕ,ψ) = (ϕ or ψ. These expressions look odd, and to our knowl-
edge no one has ever proposed a syntax for SL just like this, but it is
easy to do so. In fact, suppose we modified these AND and OR func-
tions so that they introduce their first argument with different shaped
parentheses—say round ones for AND and square brackets for OR,
thus:

(20) a. AND(ϕ,ψ) = (ϕψ b. OR(ϕ,ψ) = [ϕψ

Clearly this grammar is just a notational variant of Polish notation
where the ( plays the role of A and [ the role of O.
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Semantics Here we note some standard results concerning semantic
properties of SL. In some cases explicit definitions and proofs would
recapitulate a significant amount of mathematical logic. It is not our
intent to do anything like that. Rather, what the reader should take
from section is that given an explicit syntax and interpretation for SL
we can in fact make interesting, non-obvious, linguistic claims about
SL.

Theorem 7.9 (Decidability). SL is decidable.

We have already noted that there is an algorithm (mechanical pro-
cess) which will tell us for any ϕ ∈ SL that it is true in all models if it
is and that it isn’t if it isn’t. The algorithm essentially says that given
any ϕ write down its truth table and check that each line is T . In a
similar way we can mechanically check whether ϕ |= ψ or not (We just
check whether (notϕ or ψ) is true in all models).

This decidability result should not however go to our heads. To be
sure, given any ϕ it contains only finitely many, say n, atomic formulas
so we write them all down, compute all possible combinations of truth
values and see if ϕ is true in each (or that ϕ is false in one of them). But
a moment’s reflection tells us that given n atomic formulas, since each
one is two valued (either T or F ) the number of “possible combinations”
above is 2n. So the number of lines in the truth table quickly gets too
large to realistically compute and the problem is said to be intractable.
For example, for n = 100 the number of lines in the truth table, 2100,
is a 31 digit number, much greater than the number of microseconds
since the Big Bang; see Harel (1987).

Theorem 7.10 (Compactness). For S ⊆ SL and ϕ ∈ SL, S |= ϕ iff
there is a finite subset K of S such that K |= ϕ.

Compactness tells us that in SL the truth of a claim ϕ cannot depend
on infinitely many premises. If ϕ follows from some infinite set then
there is a finite subset from which it follows.

Theorem 7.11 (Interpolation). For ϕ,ψ non-trivial (neither is true
in all models or false in all models), If ϕ |= ψ then there is a τ ∈ SL
such that ϕ |= τ and τ |= ψ and AF(τ) ⊆ AF(ϕ) ∩ AF(ψ).

So if a formula non-trivially entails another that fact just depends on
the interpretations of the atomic formulas they have in common (See
Craig (1957), van Dalen (2004) pg. 48).

We write S ⊢ ϕ to say that there is a proof of ϕ from premises in
S. Crucial here is that the notion proof is purely syntactic. A proof of
ϕ from premises S is a finite sequence of formulas ending in ϕ, each
of which is drawn from S and marked as a premise or is derived by
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syntactic rule from earlier formulas in the sequence.
There are just finitely many rules: Here are some candidates: Con-

junction Elimination: If (ψ & χ) is a line in a proof then we can add ψ
to the end; also we can add χ to the end.Modus Ponens : if (ψ → χ) and
ψ are both lines in the proof then we can add χ to the proof. See Mates
(1972) and Enderton (1972) for presentations of proof rules. There is an
algorithm which tells us for any (finite) sequence of formulas whether
it is a proof or not.

Theorem 7.12 (Soundness). For all S ⊆ SL, all ϕ ∈ SL, if S ⊢ ϕ
then S |= ϕ.

Theorem 7.13 (Completeness). For all S ⊆ SL, all ϕ ∈ SL, if S |= ϕ
then S ⊢ ϕ.

The completeness property of SL tells us that in SL we can syntac-
tically characterize the entailment relation. Whenever S |= ϕ there is
a proof from S to ϕ. Moreover the proof meets the soundness condi-
tion that whenever we syntactically derive some ψ from some premises
then those premises really entail ψ. Thus in SL we can syntactically
characterize the entailment relation.

It is of interest to wonder whether natural languages have the four
properties we have adduced in this section. In a later chapter we review
these properties for a much richer logic, First Order Predicate Logic.

We now take our leave from Sentential Logic and consider the se-
mantic interpretation of a small fragment of English, equipped now
conceptually with what we expect a semantic interpretation to be.

7.3 Interpreting a Fragment of English

Interpreting predicates and their arguments is more interesting and
more challenging than merely interpreting boolean compounds of Ss.
It does however build on the same type of recursive formulations.

Informally first, a model M consists in part of a set of objects (often
called entities). This set is noted EM and called the domain or universe
of the model M. In addition a model must tell us which properties each
object has and which relations it bears to the other objects. So a model
M for a language like L(Eng) must tell us what object Kim is, what
object Sasha is, etc. It must tell us which objects are smiling, which
crying, etc. and finally it must tell us which objects are criticizing which
others, which objects are praising which others, etc. Thus,

Definition 7.15. A model M for a language L is a pair (EM, [[·]]M),
where EM is a non-empty set called the domain (or universe) of M
and [[·]]M is a function assigning a denotation to each expression of L.
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The function [[·]]M is defined recursively: denotations are assigned to
lexical items with some freedom (as in SL in which the atomic formulas
are interpreted freely), and then denotations are assigned composition-
ally to derived expressions as a function of the denotations assigned to
their constituents. Thus a definition of [[·]]M comes in two parts: (1)
specifying its values on the lexical items, and (2) specifying its value
recursively on derived expressions (which is what is meant by compo-
sitionality). We treat these in turn.

7.3.1 Interpreting lexical items

Interpreting NPs and P1s. Given a domain EM, we stipulate that
NPs, such as (Kim,NP), (Dana,NP), etc. denote elements of EM. That
is, [[(s,NP )]]M ∈ EM. And we say that denM(NP) = EM, meaning
that the set in which expressions of category NP take their denotations
in M is EM. For a language like L(Eng) it is quite arbitrary what
element of EM a particular NP denotes. Different models, even ones
with the same domain, can make different choices here.

In general for M a model and C a category of expression in the
language L we are providing models for we write denM(C) for the set
in which expressions of category C are interpreted in M. denM(C)
is called the denotation set for C in M. Thus denM(NP) = EM and
from what we have said earlier, denM(S) = {T, F}. S is exceptional
in that denM(S) does not vary from model to model, it is always
{T, F} 2. However for M and N different models EM and EN may be
different sets. The only general requirement we place on the domain of
a model is that it be non-empty (and that requirement is imposed just
to streamline certain statements, it could perfectly well be dispensed
with). And now, recalling that we write [A→ B] for the set of functions
from A into B, we stipulate that:

(21) denM(NP\S) is [denM(NP) → denM(S)], that is,
[EM → {T, F}].

This is a natural way to represent properties of objects in EM. They
are functions which look at each object x and say Yes or No, according
as x has the property or not. So [[(smiled,NP\S)]]M ∈ [EM → {T, F}].
And now we can state the compositional interpretation of a simple S
consisting of an NP and a P1. They are combined by the rule of FA
to form an S, a truth value denoting expression. The truth value it

2Actually it would be more in keeping with the model theoretic approach to
simply require (see Chapter 8) that denM(S) be any two element boolean lattice
(they are all isomorphic). The actual objects in the lattice could vary. T would
always just be the maximal element of the lattice and F the least element. But we
follow tradition here and fix denM(S) = {T, F}, all M.
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denotes is the one obtained by applying the P1 denotation in M to the
NP denotation in M. Thus we require:

(22) [[FA((Kim,NP), (laughed,NP\S))]]M
= [[(laughed,NP\S)]]M([[(Kim,NP)]]M).

Here we see explicitly that the interpretation of

FA((Kim,NP), (smiled,NP\S)),
which is just (Kim smiled, S), is given in terms of the interpretation
of its two immediate constituents, (smiled,NP\S) and (Kim,NP). Not-
ing denotations in upper case for the moment, we can represent the
derivation of (Kim smiled, S) by the upper tree below, and its semantic
interpretation by the lower tree (with its root at the bottom).

(23) (Kim smiled, S)
QQQQppp

(Kim,NP) (smiled,NP\S)

[[·]] [[·]]

kim
PPP smile

kkkk

smile(kim)

And the interpretative pattern here is fully general.

(24) In all models M,
denM(B\A) = denM(A/B) = [denM(B) → denM(A)].

Thus a slash category expression is interpreted as a function whose do-
main is the denotation set of the denominator category—the one under
the slash—and whose codomain is the denotation set associated with
the numerator category. In traditional terms our two semantic primi-
tives are truth and reference. The sets in which expressions denote are
either EM, reference, or {T, F}, truth, or built from them recursively
by forming sets of functions.

(25) For all vocabulary strings s, t, all categories A,B and all models
M,

a. [[FA((s,B), (t, B\A))]]M = [[(t, B\A)]]M([[(s,B)]]M).
b. [[FA((s,B), (t, A/B))]]M = [[(t, A/B)]]M([[(s,B)]]M).

For example consider two models, M and N , satisfying the following
conditions:

(26) a. EM = {a, b, c} and EN = {b, d, e, f},
b. [[(Kim,NP)]]M = a, [[(Sasha,NP)]]M = b,

[[(Kim,NP)]]N = b, [[(Sasha,NP)]]N = d.
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c. x [[(smiled,NP\S)]]M(x)
a T
b F
c F

x [[(smiled,NP\S)]]N (x)
b F
d T
e F
f T

Thus in M, Kim smiled is true, but in N it is false. Formally,

(27) [[FA((Kim,NP), (smiled,NP\S))]]M
= [[(smiled,NP\S)]]M([[(Kim,NP)]]M)
= [[(smiled,NP\S)]]M(a)
= T

(28) [[FA((Kim,NP), (smiled,NP\S))]]N
= [[(smiled,NP\S)]]N ([[(Kim,NP)]]N )
= [[(smiled,NP\S)]]N (b)
= F

Interpreting P2s The condition in (24) tells us that the denotation
set for P2 = (NP\S)/NP in a model M is the set of functions with
domain EM and codomain the denotation set for P1s, namely [EM →
{T, F}]. For example let M be a model with universe {a, b, c}. Then
[[(praise, P2)]]M could be that function praise given by:

(29) x praise(a)(x) praise(b)(x) praise(c)(x)
a F F F
b T T T
c F T F

In this model b praised everyone, including himself, a didn’t praise
anyone, and c praised only b but not a or himself.

Exercise 7.11.

a. Exhibit a three element model satisfying:
No one praised himself and no one praised everyone but everyone
was praised by someone.

b. Exhibit a model with a three element universe simultaneously
satisfying (i) (ii) and (iii):

i. Someone smiled and everyone who smiled laughed.
ii. Not everyone laughed.
iii. Exactly two objects were criticized and they were criticized

by different people.

A common alternative notation. Many texts treat P1 denotations
as subsets of the universe E (we omit the subscript M when not per-
tinent). So on that approach we say that John walks is true in M iff
the object John denotes in M is an element of the set walks denotes
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in M. That approach is equivalent to the one given here. Each sub-
set K of E corresponds to a function CHK from E into {T, F} which
maps to T just the elements of K. CHK is called the characteristic
function of K. So for anything that can be said about K on the set
approach we can formulate a comparable statement about CHK on the
function approach. For example to say that some object b ∈ K we just
say CHK(b) = T . Conversely, the functions g from E into {T, F} cor-
respond one to one to the subsets of E. To each such g we associate its
truth set Tg, namely {x ∈ E | g(x) = T}. So any statement about g can
be translated into a statement about its truth set on the set approach3.

Similarly the set oriented approach interprets a P2 as a set of or-
dered pairs of entities in E. But consider how we presented the func-
tion praise in (29). Essentially we interpreted John praised Mary by
(praise(mary))(john), in which praise(mary) is a P1 function (map-
ping objects to truth values). The more traditional approach would in-
terpret praise as a set of ordered pairs and John praised Mary would
be True iff 〈john,mary〉 ∈ praise. Obviously enough any statement
given in either of these formats can be transformed into one in the
other. We prefer our function oriented approach because it provides a
denotation for praised Mary, which linguists agree is a constituent of
John praised Mary. The ordered pair approach treats the pair consist-
ing of the subject and the object as denoting a pair of entities, even
though they do not form a constituent.

Lexical constraints on interpretations. In natural languages it
happens often that lexical items are not interpreted freely in their de-
notation set: the interpretation of one lexical item may constrain that
of another. If one is built from another, e.g. slowly from slow, we expect
by Compositionality that the interpretation of the derived expression is
not independent of that of the one from which it is derived. But many
morpho-syntactically independent lexical items also exhibit interpreta-
tive dependencies. For example:

(30) Antonyms:

a. If Kim is awake then Kim is not asleep.
b. If Kim is male then Kim is not female.
c. If the door is open it is not closed.

Thus acceptable interpretations of lexical items for English cannot
freely interpret awake and asleep, male and female, etc. Treating them
as P1s for simplicity here we must require of interpretations in a model

3In the next chapter we see that [E → {T, F}] and P (E) are boolean lattices
which are isomorphic, implying that they make the same sentences true.
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that meaning postulates like those in (31) hold:

(31) For all x ∈ EM,

a. if [[alive]]M(x) = T then [[dead]]M(x) = F , and
b. if [[male]]M(x) = T then [[female]]M(x) = F , and
c. if [[open]]M(x) = T then [[closed]]M(x) = F .

The study of these interpretative dependencies is part of Lexical
Semantics. It covers much more than simple antonyms. Consider for
example that kill and dead are not interpretatively independent: If x
killed y then y is dead. In our formalism we require:

(32) For all models M, if [[kill]]M(y)(x) then [[dead]]M(y) = T .

Finally, while often we have considerable freedom in deciding what
element of its denotation set a given lexical item denotes sometimes the
denotation is fixed, meaning we have no freedom at all. This is often
the case for Determiner denotations. But at the lower level of P1 and P2
denotations we have a few candidates. For example we might require
that:

(33) For all models M, all x ∈ E, [[exist]]M(x) = T .

Similarly among the P2s we find that is is not freely interpreted. For
example, usually a P2 does not require that its two NP arguments
denote the same entity. While it is quite possible for someone to praise
himself, typically an assertion of John praised Bill invites the inference
that John and Bill are different people, and in any event they are
certainly not required to be the same person. But is combines with
two NPs to form a sentence and John is Bill precisely asserts that John
and Bill are the same individual and doesn’t assert anything further.
So we might reasonably require of interpretations of English that

(34) For all models M, [[is]]M(y)(x) = T iff x = y.

This will yield the correct result for John is Bill. Once we give Det+N
denotations, it also yields without change correct results for John is a
student and John is no student contrary to claims sometimes made in
the literature that is is ambiguous according as it takes proper nouns
like Bill or quantified DPs like a student as second argument. For most
choices of quantified DP however Ss built from is are bizarre (though
interpretable): John is every student implies that there is just one stu-
dent, John. John is exactly two students has to be false, etc.

Lastly here, and curiously, it seems that P3 present no “logical” mem-
bers analogous to exists among the P1s or is (to be) among the P2s. The
presence of an underived verb meaning give is quite general (?univer-
sal) across languages so the category P3 is universally available. Yet no
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language to our knowledge has a P3 blik where Blik(Dana,Kim,Robin)
would be true iff Dana = Kim = Robin. We return now to models of
L(Eng).
Interpreting DPs. We have been treating P0 as full sentences—they
combine with zero NPs to form a sentence. And in general Pn+1s com-
bine with one NP to form a Pn. Semantically P0s denote in {T, F} and
Pn+1s denote functions from E, the domain of the model, into the set
of possible Pn denotations. To say this more explicitly let us write Pn

in boldface for the set of Pn denotations in a model with domain E.
Formally,

(35) P0 = {T, F} and Pn+1 = [E → Pn], all n ≥ 0.

Recall from Chapter 4 that we treated DPs as expressions that com-
bined with Pn+1s to form Pns. So semantically they should denote func-
tions from n+1-place predicate denotations to n-place ones. The com-
plete set of such functions (with domain E understood, |E| > 1 to avoid
degenerate cases) is:

(36) [
⋃

0≤n Pn+1 → ⋃

0≤n Pn].

In fact we don’t need all the functions in this set as denotations for DPs
in L(Eng). We consider those we do need, starting with proper noun
DPs, e.g. (Kim,DP), etc. We first define the notion of an individual
and then exhibit denotations for proper noun DPs.

Definition 7.16. For all models M, all b ∈ EM, Ib, the individual
generated by b, is that function from

⋃

0≤n Pn+1 into
⋃

0≤n Pn given
by: Ib(p) = p(b).

For example, if john (j) and mary (m) are elements of EM then

(37) Ij(Im(praise)) = Ij(praise(m))
= (praise(m))(j).

And we must place the following requirement on interpreting functions
[[·]]M:

(38) For all models M, if (s,NP) and (s,DP) are both in the
Lexicon, then [[(s,DP)]]M = I[[(s,NP)]]M

.

This just guarantees that [[(s,DP)]]M = Ib iff [[(s,NP)]]M = b and thus
that our two ways of entering proper nouns into the language does not
in fact lead to semantic ambiguity.

(39) Let M be arbitrary with [[(smiled,NP\S)]]M = smile and
[[(Dana,NP)]]M = d. Hence by (38), [[(Dana,DP)]]M = Id. Then

a. [[FA((Dana,NP)(smiled,P1))]]M
= [[(smiled,P1))]]M([[(Dana,NP)]]MM)



Semantics I: Compositionality and Sentential Logic / 199

= smile(d), and
b. [[FA((smiled,P1), (Dana,P0/P1)]]M

= [[(Dana,P0/P1)]]M([[(smiled,P1)]]M)
= Id(smile)
= smile(d)

The last step in (b) is from Definition 7.16. Thus when an s of category
NP combines with a P1 we get the same interpretation as when that s
of category DP combines with that P1.

We still must treat the traditionally more difficult case of quantified
DPs like every student, most teachers, etc. but first let us consider the
easier case of modifiers.

Interpreting modifiers. Eng presents two types of modifiers: man-
ner adverbs such as joyfully and tactfully of category P1\P1, and adjec-
tives such as tall and clever, of category N/N.

Interpreting predicate modifiers. By (24) manner adverbs are in-
terpreted by functions from P1 denotations to P1 denotations. These
functions are chosen from the restricting ones (see Keenan and Faltz
(1985)) which guarantees the basic entailment relation illustrated in
(4). To define this notion we observe first that the set of possible P1
denotations in a model M, namely [EM → {T, F}], possesses a natural
partial order, which we note ≤ and define by:

Definition 7.17. For all p, q ∈ [EM → {T, F}], p ≤ q iff for all
b ∈ EM, if p(b) = T then q(b) = T .

Theorem 7.14. ≤ as defined above is a reflexive partial order.

Proof. Clearly p ≤ p, since if p(b) = T then, trivially, p(b) = T . Re-
garding transitivity, assume that p ≤ q and q ≤ r. We must show that
p ≤ r. For b arbitrary, suppose p(b) = T . Then q(b) = T since p ≤ q,
and thus, since q ≤ r, r(b) = T , which is what we desired to show.
Regarding antisymmetry suppose p ≤ q and q ≤ p. We must show that
p = q. We know that p and q are functions with the same domain and
codomain, so it suffices to show that they assign each b ∈ EM the same
truth value. For b arbitrary, suppose first that p(b) = T . Then q(b) = T
since p ≤ q. So they have the same value in this case. Suppose now
that p(b) = F . Then q(b) = F , otherwise q(b) = T , whence p(b) = T ,
contrary to assumption, since q ≤ p. This covers all the cases, so p and
q are the same function, that is, p = q.

Definition 7.18. Let (A,≤) be an arbitrary partially ordered set
(poset). That is, A is a set and ≤ is a partial order on A. Then a
function f from A into A is restricting iff for all b ∈ A, f(b) ≤ b.
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Exercise 7.12. Let A be a set. Then (P(A),⊆) is a poset.

a. Let B be a subset of A. Define fB from P(A) to P(A) by setting:
fB(K) = K ∩B. Prove that fB is restricting.

b. Let b ∈ A. Define fb from P(A) to P(A) by: fb(K) = K − {b}.
Prove that fb is restricting.

Returning now to P1 modifiers, we require of interpretations [[·]]M
that

(40) For all models M, for all (s,P1\P1) in LexEng, [[(s,P1\P1)]]M is a

restricting function (from [EM → {T, F}] into [EM → {T, F}]).
Imposing condition (40) on interpretations does guarantee the entail-
ment facts in (4):

(41) Suppose that Kim laughed joyfully. We show that it follows that
Kim laughed. Let M be arbitrary, and for simplicity write k for
(Kim,NP)M. Then:

[[(Kim laughed joyfully, S)]]M = T Assumption
[[(laughed joyfully,P1)]]M([[(Kim,NP)]]M) = T (25)
([[(joyfully,P1\P1)]]M([[(laughed,P1)]]M)(k) = T (25)
([[(laughed,P1)]]M(k) = T (40)
[[(Kim laughed, S)]]M = T (25)

In a richer fragment of English than that of L(Eng) we might include
P1 modifiers that are not restricting, though the examples we are aware
of all seem to introduce other complications which lie well beyond the
scope of this introduction. Still here are a few candidates. Consider
almost and nearly, as they occur in (42).

(42) a. Kim almost failed the exam. b. John nearly fell off his chair.

Clearly these items are not restricting: (42a) does not entail that Kim
failed the exam. Indeed it rather suggests that Kim didn’t fail. Similarly
(42b) does not entail that John fell off his chair. So if we treat almost
and nearly as P1 modifiers they will not denote restricting functions.
Syntactically however these expressions differ somewhat from manner
adverbs—they naturally occur before the predicate, not after (??Kim
laughed almost, ??John fell off his chair nearly) and they seem to as-
sume a much deeper analysis of P1s than we have offered so far. Namely
they introduce a notion of process, whereby an action can be partially
but not totally completed. So Kim almost failed the exam suggests that
Kim took the exam and received a grade that was just good enough to
pass.

Another candidate class of non-restricting P1 modifiers are words
like apparently and possibly, as in (43).
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(43) a. Gore apparently won the election.
b. John possibly ran out of bounds.

Apparently (possibly) winning an election does not entail winning it,
so these “-ly” adverbs are not restricting. But like almost and nearly
they don’t pattern positionally with the manner adverbs.

Interpreting noun modifiers. The category N of nouns is a primi-
tive category, not derived by any of the slash functions, so we stipulate
its denotation set:

(44) For all models M , denM(N) = P(EM), the set of subsets
of EM.

So a noun such as (student,N) will be interpreted as a subset of the
domain of the model. And we already know that any power set is a
poset, partially ordered by the subset relation ⊆. We also know from
(24) that adjectives, of category N/N, are functions mapping P(EM) to
P(EM). Thus it makes sense to ask whether the functions we need to
interpret these adjectives are restricting, and they clearly are. A clever
student is a student, a female lawyer is a lawyer, etc. So, analogous to
(40) we impose the following condition on interpretations in a model:

(45) For all models M, all lexical items (s,N/N), [[(s,N/N)]]M is a
restricting function from P(EM) to P(EM).

This condition on interpretations accounts for facts such as those in
(46) once expressions of the form Det + N are interpreted:

(46) Every clever student is a student is true in all models M; so is
If Kim is a female lawyer then Kim is a lawyer.

Det + N denotations. DPs such as every student and some lawyer
denote functions from

⋃

0≤n Pn+1 into
⋃

0≤n Pn. So in particular they
map P1 denotations, [E → {T, F}], into {T, F}, the set of P0 denota-
tions. Such functions are called generalized quantifiers, GQs. The values
that a DP takes at Pn in general is determined by the values it takes at
P1 denotations. So first we concentrate on those, and then show how the
extend from P1 denotations to the full set of Pn denotations. And since
Dets like every, some, etc. combine with Ns like student to form such
DPs they map each subset of the domain of a model to a generalized
quantifier. As we have noted, it is a common property of Dets that they
are logical constants—they have a fixed interpretation in each model
M. Here is an illustrative example:

(47) For all models M, [[(every,DP/N)]]M is that function every
which maps each subset A of EM to that GQ which maps a
property p to T iff A ⊆ {x ∈ E | p(x) = T}.
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Writing denotations in upper case and omitting the subscript M, this
definition tells us that the interpretation (in M) of (every student laughed, S)
is given by:

(48) (every(student))(laugh),

and according to (47) this is T iff student ⊆ {x ∈ E | laugh(x) = T}.
Thus Every student laughed is true in a model M iff the set of students
in M is a subset of the set of objects that laughed in M, which is pre-
theoretically correct. In this same informal vein we note the denotations
of some other Dets invoked in Chapter 4.

(49) a. some(A)(p) = T iff A ∩ {x ∈ E | p(x) = T} 6= ∅
b. no(A)(p) = T iff A ∩ {x ∈ E | p(x) = T} = ∅
c. (exactly two)(A)(p) = T iff |A∩{x ∈ E | p(x) = T}| = 2
d. (the one)(A)(p) = T iff |A| = 1 and

A ⊆ {x ∈ E | p(x) = T}
e. most(A)(p) = T iff |A ∩ {x ∈ E | p(x) = T}| > |A|/2

We take the indefinite article a in a student to mean the same as some,
in some student.

These definitions enable us to provide interpretations for subject
DPs, ones that combine with a P1 to form a P0, as in Some student
laughed loudly, Most students read the Times, etc. Understanding the
interpretation of Dets and the subject DPs they build is crucial to
understanding their interpretations when they combine with P2s and
P3s, as well as much in the following chapters, so we advise the reader
to work through Exercise 7.13 below immediately in order to build
familiarity with these functions.

Exercise 7.13. (Informal models.) Below we simplify notation of some
NPs and P1s by giving them in upper case. E.g. we just say john = j,
rather than [[(john,NP)]]M = j, etc.

M1: the domain EM1 = {a, b, c, d, e}
student = {a, c, e} adam = a
ahtlete = {a, b} barry = b

x laugh(x) cry(x) faint(x) smile(x)
a T F T T
b T T F T
c F T F T
d F T T F
e T F F T

For each sentence below indicate whether it is T or F in this model. If
it is F say why. Some of the sentences use constructions we have not
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yet explicitly given an interpretation for, but which you should be able
to figure out.

a. Every athlete laughed.

b. Every athlete cried.

c. Every athlete both laughed and cried.

d. Some athlete both laughed and cried.

e. No athlete cried.

f. Exactly two students laughed.

g. Exactly two students fainted.

h. Exactly one athlete laughed.

i. Most students fainted.

j. Every athlete either laughed or cried.

k. Not every athlete either laughed or cried.

l. No student is an athlete.

m. Barry is Adam.

n. Barry fainted.

o. Some student is an athlete.

p. At least one student both laughed and cried.

q. Not every student smiled.

Object DPs. We consider now how we interpret DPs such as every
teacher in (50) when they function as objects of P2s.

(50) Kim praised every teacher.

Every teacher in (50) combines with the P2 praised to form the P1
praised every teacher and so semantically will map the P2 denotation
to a P1 denotation. In the case at hand we know just what function it
is: writing denotations in upper case for simplicity, (every teacher)
maps praise to that property which holds of an entity b iff “b praised
every teacher”. That is, iff for every teacher t, praise(t)(b) = T .

And this function is determined by the generalized quantifier that
every teacher denotes as a subject. Curiously the definition is so simple
it is tricky. Let us write, for each b ∈ E, praiseb for that property
which maps an entity y to the truth value praise(y)(b). So praiseb
is the property of being praised by b. (For those of you familiar with
the lambda notation (Chapter 9), praiseb = λx.praise(x)(b)). Now
we give the value of (every teacher) at praise:

(51) (every teacher)(praise)(b) = (every teacher)(praiseb).
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The right hand side of the = sign in (51) uses (every teacher) as a
function from properties to truth values. Given that function its value
at a P2 denotation like praise is uniquely determined, as in (51). To
see that this definition is the right one, consider the truth conditions
of the right hand side of (51).

(52) (every teacher)(praiseb) = T
iff teacher ⊆ {x | praiseb(x) = T} Def every
iff for each t ∈ teacher,

t ∈ {x | praiseb(x) = T} Def ⊆
iff for each t ∈ teacher,praiseb(t) = T Set Notation
iff for each t ∈ teacher,praise(t)(b) = T Def praiseb

And this last line says just what we want it to say: praised every teacher
denotes that property which is true of an entity b just in case for every
teacher t, b praised t.

The important point about the definitions above is that a map from
P1 denotations to P0 denotations uniquely determines a (narrow scope)
map from P2 denotations to P1 denotations (and more generally from
Pn+1 denotations to Pn denotations).

Definition 7.19.

a. For P a possible P2 denotation (a map from entities to properties)
and b ∈ E, write Pb for that property defined by: Pb(y) = P (y)(b).

b. For F a generalized quantifier (a map from properties to truth
values) we extend F to a function from P2 denotations to prop-
erties as follows: F (P )(b) = F (Pb).

Here P is possible P2 denotation, so F (P ) is a property, the one
whose value at an arbitrary object b is whatever truth value F assigns
to the property Pb. In this way we see that the value of a DP denotation
at P2 denotations is uniquely determined once we have given its values
at the possible P1 denotations. No additional interpretative apparatus
such as Geach Division is needed.

This question has provoked much discussion in the semantics liter-
ature (van Benthem, 1986, Ch. 7), Heim and Kratzer (1998), Keenan
(1989), Montague (1970) so let us show that the form in Definition
7.19 above applies to Pn+1s in general (though we do not use the added
generality here). The denotation P of a Pn+1 maps n entities b1, . . . , bn
in succession to a property. And analogous to Definition 7.19a, for
b = (b1, . . . , bn) an n-tuple of entities in En let us write Pb for that
property which maps an object y to the truth value P (y)(b1), · · · , (bn).

Then DPs have just one denotation—one whose domain is the set of
n + 1-ary predicate denotations and whose values are n-ary predicate
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denotations, as in Keenan (1992) and Keenan and Westerst̊ahl (1996).
For the formal record, given E, we define:

Definition 7.20.
DenE(DP) = {F ∈ [

⋃

n Pn+1 → ⋃

n Pn]
| for all n, all P ∈ Pn+1, all b ∈ En, F (P )(b) = F (Pb)}

Where for b ∈ En, and P ∈ Pn+1, Pb is that element of [E → {T, F}]
given by: Pb(a) = P (a)(b1) · · · (bn).

In this way then a DP such as every student does not have many de-
notations, it just has one, a function with a large domain. Similarly we
can now understand DP as a single category, the category of expression
which combines with Pn+1s to form Pns, all n.

We note though that the interpretation we obtain for object DPs is
the object narrow scope one. To get the object wide scope reading it will
be helpful to use lambda abstraction (Chapter 9), but it is worth noting
that object wide scope readings are often, in practice, not available (see
Beghelli et al. (1997)). Consider (53).

(53) a. Each student answered no question correctly on the exam.
b. Fewer than five students answered every question correctly.

The object wide scope (OWS) reading of (53a) says that no question
has the property that each student answered it correctly. But in fact
speakers do not use (53a) with that meaning. It only has the stronger if
less probable reading that each student missed every question. Similarly
in (53b) the OWS reading says that every question has the property
that fewer than five students answered it correctly. But in fact (53b)
just means that the number of students who got a perfect score was
less than five. The reading of such Ss that our analysis to date does
capture is by far the most natural one. The less natural OWS reading
requires a richer interpretative apparatus (Chapter 9).

Let us work though one example to see that we do represent the
object narrow scope reading (and also just to see how the mechanism
of interpretation works with multiply-quantified Ss). Consider (54) from
L(Eng).
(54) Some student praised every teacher.

This is derived by FA applied to (praised every teacher,P1) and
(some student,P0/P1). By our semantics for some (49a) this is inter-
preted as T iff

(55) student ∩ {x | [[praised every teacher]]M(x) = T} 6= ∅
iff student ∩ {x | (every teacher)(praise)(x) = T} 6= ∅
iff student ∩ {x | (every teacher)(praisex) = T} 6= ∅
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iff student ∩ {x | teacher ⊆ {y | (praisex)(y) = T}} 6= ∅
iff student ∩ {x | teacher ⊆ {y | praise(y)(x) = T}} 6= ∅
iff there is a b ∈ student such that

teacher ⊆ {y | praise(y)(b) = T}.
This last line just says that there is a student who is such that the set
of things he praised includes all the teachers. That is, every teacher has
narrow scope in (54).

A concluding speculation

Treating the sequence of n-place predicates as a single object (the ar-
gument of DPs) is somewhat novel. It is natural to wonder whether
there are other structure building operations which avail themselves of
this generalization. Here are a few prima facie plausible suggestions.

Locative PPs as Pn modifiers (Keenan (1981), Keenan and Faltz
(1985)). Consider the entailment paradigms in (56)–(59) below. In all
cases the source locative from the attic predicates a location of one
or another argument, the subject in (56a), whence the entailment of
(56b). But in (57) it is the object argument and not the subject which
the location is predicated of.

(56) a. John sang / shouted / fell from the attic.
b. |= John was in the attic.

(57) a. John took /removed / withdrew the trunk from the attic.
b. |= The trunk was in the attic.
c. 2 John was in the attic.

These data can be accounted for if we treat from the attic as combining
with either a P1 or a P2 and predicating location of its argument. In
(58) we just treat from the attic as combining with the complex P1
watched Bill (attacked Bill, etc.). So the PP is sensitive to the type of
P2; it can tell the difference between take, remove, etc. on the one hand
and watch, attack, etc. on the other.

(58) a. John watched / attacked / studied Bill from the attic.
b. |= John was in the attic.
c. 2 Bill was in the attic.

And finally, in (59) we can represent the ambiguity according as from
the attic combines with the P2 shoot, grab, etc. thus predicating of
Bill, or it combines with the complex P1 shot Bill, grabbed Bill, etc.
predicating of its subject John.

(59) John shot / grabbed / called Bill from the attic.
(Ambiguous according as John or Bill was in the attic. If it was
Bill then he is understood to have moved or be intended to
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move from the attic).

Passives. A variety of languages present a strict morphological pas-
sive formed by affixing the active form of the verb (see Keenan and
Dryer (2007)). The derived, passive, predicate has one fewer arguments
than active one it is built from. In the most widely cited cases the active
verb is a P2 and the passive one a P1. However languages which have
such passives—Latin, Turkish, Kinyarwanda (and Eastern Bantu quite
generally) also always allow passive morphology on P3s forming P2s. So
if a language can say The door was opened it can also say either Sue
was given the key or The key was given to Sue (and perhaps both).
Less well known is that in some of these languages passive morphology
also applies to P1s creating P0s. Turkish (Perlmutter and Postal, 1983),
Özkaragöz (1986) and Latin are examples. (In Turkish the passive suf-
fix is -ın following laterals, -n after vowel-final stems, and -ıl elsewhere.
Vowels exhibit front-back harmony surfacing as -ül or -ün.)

(60) Turkish:

a. Active P2:

Hasan
Hasan

bavul+u
suitcase+acc

açtı
open+past

‘Hasan opened the suitcase.’

b. Passive P2 ⇒ P1:

Bavul
suitcase

(Hasan
(Hasan

tarafindan)
by)

aç-ıl-tı
open+pass+past

‘The suitcase was opened (by Hasan).’

c. Passive P1 ⇒ P0:

Burada
here

düş-ü l-ür
fall-pass-aorist

‘Here one falls.’

d. Passive twice: P2 ⇒ P0:

Bu
this

oda-da
room-loc

döv-ül-ün-ü r
hit-pass-pass-aorist

‘One is beaten (by one) in this room.’

Causatives It is generally recognized Comrie (1985) that there are
languages with a causative affix that derives P2s from P1s, and often
also applies to P2s to derive P3s. (61) and (62) illustrate these ordinary
cases from Malagasy (Austronesian). It is less common but still attested
that a given causative affix may iterate at least once, deriving a P3 from
a P1. (63) from Tsez (Daghestanian; Comrie (2000)) is illustrative.
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(61) a. Mihomehy
laugh

izy
3nom

ireo
dem+pl

‘They are laughing.’
b. Mampihomehy

make+laugh
azy
3acc

ireo
dem+pl

aho
1s.nom

‘I am making them laugh.’

(62) a. manenjika
chase

ny
the

ankizy
children

Rabe
Rabe

‘Rabe is chasing the children.’
b. mampanenjika

make+chase
an-dRabe
acc-Rabe

ny
the

ankizy
children

aho
1s.nom

‘I am making Rabe chase the children.’

(63) uc̆itel-ā
teacher-erg

uz̆i-q
boy-poss

kidb-eq
girl-poss

kec’
song-abs

q’aλi-r-er-si
sing-caus-caus-past+witnessed

‘The teacher made the boy make the girl sing a song.’

We turn now to a generalized treatment of the boolean connectives
and the surprisingly extensive role played by boolean lattices in natural
language semantics.



8

Semantics II: Coordination,

Negation and Lattices

This chapter provides a unified interpretation for expressions built from
the boolean connectives (both) and, (either) or, neither nor. This task
is challenging since these connectives are properly polymorphic: they
combine with expressions in almost any (content) category to form
further expressions in that category. We provide a semantic basis for
polymorphism and speculate on a deeper explanation for it. We first
review (at the risk of repetition) the extensive variety of categories
which host coordination:

(1) P0 (Sentence) Coordination:

a. Either John came early or Mary stayed late.
b. Neither did John come early nor did Mary stay late.
c. Kim insulted Dana and Dana insulted Kim.

(2) P1 Coordination:

a. Kim bought a puppy and either laughed or cried.
b. He neither laughed nor cried.

(3) P2 Coordination:

a. Kim either praised or criticized each student.
b. Kim neither praised nor criticized each student.

(4) P3 Coordination:

a. Jim either gave or sold Mary his watch.
b. She neither showed nor handed me the jewels.

(5) CP (Complementizer Phrase) Coordination:

a. Kim believes either that there is life on Mars or that there
isn’t (life on Mars).

b. Ted thinks (both) that the election was rigged and that the
state is corrupt.

209
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(6) DP Coordination:

a. Most poets and all musicians daydream often.
b. Either Kim or some student insulted every teacher.
c. Kim interviewed half the male candidates and all the

female ones.
d. Neither every student nor every teacher attended the

meeting.

(7) Det Coordination:

a. Most but not all students read the Times.
b. John interviewed either exactly two or exactly three

candidates.

(8) AdvP (Adverb Phrase) Coordination:

a. John drives rapidly and recklessly.
b. He drives neither rapidly nor recklessly.
c. He works slowly but not carefully.

(9) Preposition Coordination:

a. She lives neither in nor near New York City.
b. The water was flowing over, under and around the car.

(10) PP (Prepositional Phrase) Coordination:

a. He was either at the office or on the train when the
accident occurred.

b. He works with Martha and with Bill but not with Ann.

(11) AP (Adjective Phrase) Coordination:

a. No intelligent or industrious student.
b. An attractive but not very well built house.

Question Do these diverse uses of and (or, neither...nor...) have any-
thing semantic in common? Is there any reason to expect boolean con-
nectives to be polymorphic?

For example, surely the meaning of or when it combines P2s is not
completely different from its meaning when it combines DPs, etc. Our
task in this chapter is to show just what the different usages have
in common, answering both parts of the query and exhibiting a non-
obvious, possibly deep, generalization about natural language.

8.1 Coordination: Syntax

We assume here essentially the Coordination rule of the previous chap-
ter.
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(12) Coord :

(s,Conj)(t, C)(u,C) −→







(both⌢t⌢s⌢u,C) if s = and
(either⌢t⌢s⌢u,C) if s = or
(neither⌢t⌢s⌢u,C) if s = nor,

where C is any of the categories in (1–11), henceforth called
coordinable categories.

Here is a sample derivation of an expression.

(13) P0

uuu
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u

IIIIIIIIIIIIIIIIIIIIIIIIIIII

DP

��
��

��
��

��
��

��
��

��
��





















TTTTTTTTTTTTT

DP

xxx
xxx

HH
HH

HH
H

DP Conj DP/N N P1

both Kim and some student smiled

In general we do not need to mark which rules applied as that infor-
mation is recoverable: the rules (structure building functions) of Eng
have the property that if a rule F maps a tuple of expressions to an
expression u then F is the only rule that maps that tuple to u.

Remarks on syntax.

1. both, either, and neither are not assigned categories on this syn-
tax; they are introduced syncategorematically by the rules.

2. We add (himself,P2\P1) and (herself,P2\P1) to LexEng.

Exercise 8.1. Provide syntactic analysis trees for each of the following.

a. Either Kim or Sasha laughed.

b. Dana criticized both herself and every teacher.

A typological regularity. In examples we often omit both and ei-
ther for simplicity. But a two part expression of coordination is not
uncommon; often we just repeat the conjunction, as in Russian and
French et Jean et Marie “and John and Mary”, ou Jean ou Marie “or
John or Mary”, and ni Jean ni Marie “neither John nor Mary”. This is
the normal order in V-initial and SVO languages. In V-final languages
the order is postpositional: John-and Mary-and, as in (14) from Tamil
(Corbett (1991) pg. 269).
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(14) raaman-um
Raman-and

murukan-um
Murugan-and

va-nt-aaka
come+past+3.pl.rational

‘Raman and Murugan came.’

Exercise 8.2. The subject DP in Mary and Sue or Martha can read
Greek is logically ambiguous. Using both and either, exhibit two DPs
each of which unambiguously represents a different interpretation of
the subject DP. Describe in words a situation in which one of the Ss
they build is true and the other false.

8.2 Coordination: Semantics

Here we provide an answer our initial Question by showing that the sets
in which expressions in coordinable categories denote are ones with a
particular kind of partial order, a (Boolean) lattice order. And the core
generalization we seek is that no matter what the category of expression
coordinated, a conjunction of expressions always denotes the greatest
lower bound of the denotations of its conjuncts, and a disjunction of
expressions denotes the least upper bound of its disjuncts. So and is a
greatest lower bound operator, or a least upper bound operator. We
now define these notions.

Definition 8.1. For (L,≤) a poset (L always assumed non-empty),
then for x ∈ L and K ⊆ L,

a. i. x is a lower bound (lb) for K iff for all y ∈ K, x ≤ y.
ii. x is a greatest lower bound (glb) for K iff x is a lb for K and

for all lb’s y for K, y ≤ x.

b. i. x is an upper bound (ub) for K iff for all y ∈ K, y ≤ x.
ii. x is a least upper bound (lub) for K iff x is an ub for K and

for all ub’s y for K, x ≤ y.

Proposition 8.1. If a subset K of a poset has glb it has just one.

Proof. Let x and x′ be glb’s for K. Then they are both lb’s for K and
x ≤ x′ since x′ is a greatest lower bound. Similarly since x is a glb we
have that x′ ≤ x. So by antisymmetry, x = x′.

Notation If K has a glb it is noted
∧

K, read as “meet K” or the
infimum (inf) of K.

∧{x, y} is usually written (x∧ y), read as “x meet
y”. Note: (x ∧ y) is an element of the poset; trivially (x ∧ y) ≤ x since
(x ∧ y) is a lb for {x, y}.

Exercise 8.3. Prove that if a subset K of a poset has a lub it is unique
(i.e. it has just one).
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Notation If K has a lub it is noted
∨

K and read “join K” or the
supremum (sup) of K.

∨{x, y} is usually written (x ∨ y), read as “x
join y”.

Two important logical abbreviations. Expressions such as “For
all x ∈ A,ϕ”, as in the right hand side of Definition 8.1a-i and b-i, are
short for “For all x, if x ∈ A then ϕ”. Thus every element x of the
poset L above is a lower bound for ∅ since this just requires that for all
y ∈ ∅, x ≤ y. That is, “for all y, if y ∈ ∅ then x ≤ y” is true, since for
each y the antecedent y ∈ ∅ is false, so the if-then claim is (vacuously)
true. In contrast, when we say “for some x ∈ A,ϕ” we are stating a
conjunction not a conditional claim. So a claim of the form “For some
x ∈ ∅, ϕ” means “There is an x ∈ ∅ and ϕ” and this claim is false, no
matter what sentence ϕ is, since the first conjunct, x ∈ ∅, is false.
Definition 8.2. A lattice is a partially ordered set (L,≤) which satis-
fies for all x, y ∈ L, {x, y} has a greatest lower bound and {x, y} has a
least upper bound.

These conditions may be given by saying “for all x, y ∈ L, x ∧ y and
x ∨ y exist”.

Small lattices are often represented by their Hasse (pronounced:
“Hassuh”) diagrams, as (15a–d) below. In such diagrams a point (node,
vertex) x is understood to bear the lattice order ≤ to a point y iff either
x is y or you can move up from x along edges and get to y. (15a) is
called the diamond lattice, (15b) a chain lattice, (15c) the pentagon
lattice, and (15d) is, up to isomorphism, a power set lattice.
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Exercise 8.4. Compute the meets and joins for the lattices as indi-
cated

(15a) i. (b ∧ d) ii. (a ∧ c) iii. b ∧ (c ∧ d) iv.
∨{e, b, c, d}

(15b) i. (4 ∧ 4) ii.
∧{3} iii. 2 ∨∧{5, 3, 4} iv. ((5 ∨ 4) ∨ 3) ∨ 4

(15c) i. b ∧ (d ∨ c) ii. (e ∨ c) ∧ d iii.(d ∨ c ∨ b) ∧ d iv.
∨ ∅

(15d) i. 8 ∧ 6 ∧ 3 ii. (7 ∧ (3 ∨ 2)) ∨ 6 iii. (7 ∧ 3) ∨ (7 ∧ 1) iv.
∧ ∅

v.
∧{7,∨{7, (7 ∧ 2)}} vi.

∨{1, 2, 3, 4, 5, 6, 7, 8}
vii.

∧{1, 2, 3, 4, 5, 6, 7, 8}
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Exercise 8.5. For each Hasse diagram below say whether it is a lattice;
if not, give a reason.
a. 1

�� ==

2 3
�� ==

4 5

b. 1
�� 88

2
JJJJ 3

tttt

4 88 5
��

6

c. 1
�� 88

2 3
tttt

4 88 5
��

6

Exercise 8.6. Is (N,≤) a lattice (where ≤ is the ordinary ≤ in arith-
metic)? If so, what is m ∧ n and m ∨ n, any m,n ∈ N?

8.2.1 Some important examples of lattices.

Proposition 8.2. For A any set, (P(A),⊆) is a lattice.

Proof. Clearly for all X ∈ P(A), X ⊆ X, so ⊆ is reflexive. And for
X,Y, Z ∈ P(A), if X ⊆ Y and Y ⊆ Z then X ⊆ Z, so ⊆ is transitive.
Finally for X,Y ∈ P(A), if X ⊆ Y and Y ⊆ X then X = Y since
neither has a member the other doesn’t. So (P(A),⊆) is a poset. Now,
let X,Y ∈ P(A), we must show (a) and (b):

a. {X,Y } has a glb in P(A). But since X,Y ∈ P(A), X∩Y ∈ P(A).
Clearly X ∩ Y ⊆ X and X ∩ Y ⊆ Y , so X ∩ Y is a lb for {X,Y }.
Now let Z be a lower bound for {X,Y }. Then Z ⊆ X and Z ⊆ Y ,
so any element z ∈ Z is an element of X and an element of Y
and thus an element of X ∩Y . Since z was arbitrary, Z ⊆ X ∩Y ,
which is to say that X ∩Y is the greatest lower bound of {X,Y },
as was to be shown.

b. X ∪ Y is the least upper bound of {X,Y }.
Exercise 8.7. Prove (b) above.

Thus our familiar power sets are posets with additional structure, a
lattice structure. Here for example is the Hasse diagram of P({a, b, c}):
(16) {a, b, c}

rrrrr
LLLLL

{a, b}
LLL

LLL
{a, c}

LLL
LLL

rrr
rrr

{b, c}

sss
sss

{a}
LLL

LLL
LL

{b} {c}

rrr
rrr

rr

∅
An important abstraction step. Earlier we defined intersection
and union standardly in terms of set membership. We have now char-
acterized those notions in a purely order theoretic way: X∩Y = X∧Y ,
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the greatest lower bound of {X,Y } in P(A), and X ∪ Y = X ∨ Y , the
least upper bound of {X,Y }. The whiff of generalization is in the air.

Proposition 8.3. ({T, F},≤) is a lattice, defined by the Hasse diagram
below:

T

F

So we understand here that T ≤ T , F ≤ F and F ≤ T . But T � F .
This two element lattice is often represented as {0, 1}, using 0 for F
and 1 for T . It is called the lattice 2.

We verified earlier that ≤ is a reflexive partial order, the implication
order. But not only is ({T, F},≤) a poset, it is a lattice. For all x, y ∈
{T, F} the greatest lower bound of {x, y} is x ∧ y and its least upper
bound is x ∨ y.
(17) x y x ∧ y x ∨ y

T T T T
T F F T
F T F T
F F F F

Reading the second line of (17) let us verify that F is the glb of {T, F}.
Clearly F is a lower bound, since for all x ∈ {T, F}, F ≤ x. Now
suppose that some z ∈ {T, F} is a lb for {T, F}. Then in particular
z ≤ F , showing that F is greatest of the lower bounds for {T, F}.
Useful remark. For x, y ∈ {T, F}, to show that x ≤ y it suffices to
show that if x = T then y = T , since if x = F then x ≤ y no matter
what y is. So there is only one case to consider. Similarly to show that
a statement of the form “if P then Q” is true it suffices to consider the
case where P is True. Then we must show that Q is true. If P is False
then the statement “if P then Q” is vacuously true. “If P then Q” is
false only when P is True and Q False. The conditional statement “if
P then Q” is often symbolized (P → Q).

A fundamental abstraction. The glb column in (17) gives the stan-
dard truth table for conjunction! A sentence of the form (P and Q) is
interpreted as True iff both P and Q are. In all other cases (P and Q)
is interpreted as False. Similarly the lub table gives the truth table for
disjunction: A disjunction (P or Q) is interpreted as True iff either P is
or Q is (possibly both). Thus, for P and Q sentences and M a model,

(18) a. [[(P and Q)]]M = [[P ]]M ∧ [[Q]]M
b. [[(P or Q)]]M = [[P ]]M ∨ [[Q]]M
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So (18) says that a conjunction of Ss always denotes the glb of the
denotations of its conjuncts; a disjunction of Ss denotes their lub. And
this is the property of and and or that generalizes to other categories
and answers our initial Question:

(19) For P and Q expressions of any coordinable category C, the
equations in (18) hold.

We must of course state what lattices are the denotation sets for the
other categories C. Almost all the other cases are covered by:

Proposition 8.4. If (A,≤A) is a lattice and B a set, ([B → A],≤) is
a lattice, with ≤ defined by: f ≤ g iff for all b ∈ B, f(b) ≤A g(b).
Such lattices are said to be defined pointwise.

Proof. Let us see that ([B → A],≤) is, in fact, a lattice. First we must
show that ≤ as defined is a partial order. Clearly for all f ∈ [B → A],
f ≤ f since for all b ∈ B, f(b) ≤A f(b) because ≤A is reflexive. In a
similar way the transitivity and antisymmetry of ≤ is inherited from
(A,≤A). To show the existence of meets let us define for all functions
f, g ∈ [B → A] a function hf,g from B into A by setting:

hf,g(b) = f(b) ∧ g(b).
We claim that hf,g is the glb of {f, g}. Clearly hf,g ≤ f since for all
b, hf,g(b) = f(b) ∧ g(b) ≤A f(b). Similarly hf,g ≤ g, so hf,g is a lower
bound for {f, g}. To see that it is greatest of the lower bounds, let k
be a lb for {f, g}. So k ≤ f and k ≤ g, so for all b, k(b) ≤A f(b)
and k(b) ≤A g(b), whence k(b) is a lower bound for {f(b), g(b)}, so
k(b) ≤A f(b) ∧ g(b) = hf,g(b). So k ≤ hf,g, whence hf,g is greatest of
the lower bounds for {f, g}. So hf,g = f ∧ g as was to be shown.

Notational simplification. In noting pointwise lattices ([B → A],≤)
we can usually omit the subscript on ≤A since in writing x ≤ y we
know that if x, y ∈ A then x ≤A y is intended.

Exercise 8.8.

a. Prove that ≤ in ([B → A],≤) is transitive.

b. Prove that ≤ in ([B → A],≤) is antisymmetric.

c. Prove that for all f, g ∈ [B → A], {f, g} has a least upper bound.

8.2.2 The use of pointwise lattices in semantics.

Given a model M with domain E (we omit the subscript on E), the
denotation set for expressions of category NP\S = P1 was given as
[E → {T, F}]. But this set is the domain of a pointwise lattice, since
{T, F} is a lattice. And conjunctions of P1s are interpreted by (19) as
the glb of the conjuncts, and disjunctions as the lubs of their disjuncts.
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(20) S

lllllllllllllllllll
XXXXXXXXXXXXXXX

NP\S
ggggggggggggg

SSSSSS

NP NP\S Conj NP\S

Kim either laughed or cried

[[·]] [[·]] [[·]] [[·]]

kim

RRRRRRRRRRRRRRRR laugh
XXXXXXXX ∨ cry

jjjjj

(laugh ∨ cry)
gggggg

(laugh ∨ cry)(kim)

= laugh(kim) ∨ cry(kim)

Thus we have shown that in each model M Kim laughed or cried and
Kim laughed or Kim cried are interpreted as the same truth value.

Note that the semantic computation in (20) only works because Kim
denotes an element of E. Had we used for example every student instead
ofKim then the next to the last line would be (every student)(laugh∨
cry) since P1 denotations lie in the domain of every student, of cate-
gory P0/P1. Every student does not denote an element of E and thus
does not lie in the domain of (laugh ∨ cry) so replacing kim by
every student in the last two lines of (20) is nonsense.

Moreover our semantics from Chapter 7 supports that in general
(every A) does not map (P ∨ Q) to (every A)(P ) ∨ (every A)(Q).
Observe first that this claim accords with our semantic intuitions of
entailment based on ordinary English. Compare:

(21) a. Every student either laughed or cried.
b. Either every student laughed or every student cried.

Imagine a model with 5 students, three laughed but didn’t cry and the
other two cried but didn’t laugh. In such a case (21a) is true: no matter
what student you pick, that student either laughed or cried. But (21b)
is false; it is not true that every student laughed, and it is not true
that every student cried. And to see that our semantics guarantees this
result consider that (21a) is interpreted as in (22) below:

(22) (every(student))(laugh or cry)
= T iff student ⊆ {x ∈ E | (laugh or cry)(x) = T}
= T iff student ⊆ {x ∈ E | laugh(x) ∨ cry(x) = T}
= T iff for each x ∈ student, x laughed or x cried.
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And this last statement can be true in a situation in which just some
of the students laughed and the others cried. But in contrast (21b) is a
disjunction of Ss and is true if and only if one of the disjuncts is true.
The first disjunct says that all the students laughed, the second that
they all cried. As both conditions fail in the scenario given above it is
false in some models in which (21a) is true, hence (21a) does not entail
(21b).

Exercise 8.9. Exhibit an informal model in which sentence (a) below
is true and sentence (b) is false. Say why it is false and conclude that
(a) does not entail (b). Again this follows on our semantics for some
given earlier plus that of conjunctions of P1s given here.

a. Some student laughed and some student cried.

b. Some student both laughed and cried.

The bottommost line in (20) represents directly the denotation of
Either Kim laughed or Kim cried. Thus (23a,b) below are logically
equivalent, where we define:

Definition 8.3. Expressions s and t are logically equivalent iff for each
model M they have the same denotation in M (that is, [[s]]M = [[t]]M).

(23) a. Kim either laughed or cried.
b. Either Kim laughed or Kim cried.

Exercise 8.10. Analogous to (20) exhibit the semantic interpretation
trees for (a) and (b) below, concluding that they too are logically equiv-
alent.

a. Dana both laughed and cried.

b. Dana laughed and Dana cried.

Now, once we have seen that denM(NP\S) is a (pointwise) lattice
we can infer that denM(P2) = denM((NP\S)/NP) is as well, as it is
given as the set [E → [E → {T, F}]], the set of functions from E into
a lattice. (And in general denM(Pn+1) = [E → denM(Pn)] is a lattice
pointwise). In the case of P2s observe the semantic computation in (24),
again crucially using proper NPs not arbitrary DPs.
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(24) Kimpraised or criticized Dana

[[·]] [[·]] [[·]] [[·]] [[·]]

kim

IIIIIIIIIIIIIIIIIIpraise UUUUU ∨ criticize
fffffff dana

ww
ww

ww
ww

ww

(praise ∨ crit)
WWWWWW

(praise ∨ crit)(d)
gggggg

(praise ∨ crit)(d)(k)

= (praise(dana) ∨ criticize(dana))(kim)

= praise(dana)(kim) ∨ criticize(dana)(kim)

The last two lines just multiply out the pointwise definition of join
at the P2 and P1 levels. And as the last line is the interpretation of
(25b) below we see that our semantics shows that (25a,b) are logically
equivalent.

(25) a. Kim either praised or criticized Dana.
b. Either Kim praised Dana or Kim criticized Dana.

We see then that the denotation set for a slash category A/B or B\A
assumes pointwise the lattice structure of denMA , the set in which
the functions take their values.

(26) Functional Projection (FP): For all categories A,B,
denM(A/B) = denM(B\A) = [denM(B) → denM(A)],
assumes the structure of denM(A) pointwise.

Functional Projection covers many more cases than just the n-place
predicates. A basic case is P0/P1, that is, S/(NP\S) in unabbreviated
form. Now denM(P0) is a lattice so we take denM(P0/P1) to be the
pointwise lattice built from it. This guarantees logical equivalences like
the (a,b) pairs below (which shows that Boolean compounds of DPs
“distribute” over Pns):

(27) a. Every student and some teacher laughed joyfully.
b. Every student laughed joyfully and some teacher laughed

joyfully.
(28) a. Either John or some teacher took your car.

b. Either John took your car or some teacher took your car.

Similarly the pointwise definitions mapping P2 denotations to P1
denotations predict, correctly, the following equivalences:

(29) a. John interviewed every bystander and a couple of
storeowners.
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b. John interviewed every bystander and interviewed a couple
of storeowners.

(30) a. He wrote a novel or a play.
b. He wrote a novel or wrote a play.

In fact for essentially all slash categories, conjunctions and disjunctions
behave pointwise. So without detailed justification we note the following
equivalences.

(31) Det: most but not all students ≡ most students but not all
students

(32) (P1\P1): He spoke softly and quickly. ≡ He spoke softly and
spoke quickly.

(33) P: He lives in or near NY City. ≡ He lives in NY City or near
NY City.

8.2.3 Revisiting the Coordination Generalization

We pursued our semantic analysis of coordinate expressions by inter-
preting a conjunction of expressions as the glb of the denotations of its
conjuncts, and a disjunction as the lub of the denotation of its disjuncts.
This has led us naturally towards a system in which at least certain
types of expressions, boolean compounds, are directly interpreted, as
we have illustrated above. Thus we independently derive and interpret
(23a) and (23b) and then prove that they are logically equivalent, al-
ways denoting the same truth value.

But early work in generative grammar suggested a more syntactic
approach to these equivalences. The idea was that there is only one and
(or, nor), the S or “propositional” level one. It just combines with Ss to
form Ss. Apparent coordinations of non-Ss are treated as Ss, “syntacti-
cally reduced” and and, or, and nor are still interpreted propositionally.
So the P1 coordination in (23a) would be derived by some Conjunction
Reduction rules from the S (23b) and it would receive the same inter-
pretation as (23b).

This syntactic approach to the initial Question thus states that what
the different uses of a boolean connective have in common is that they
all denote the meaning they have when they conjoin Ss. Initially this so-
lution seems semantically appealing, since (23a) and (23b) are logically
equivalent. So the reduction rules seem to satisfy Compositionality: the
interpretation of the derived expression (23a) is a function (the identity
function) of the one it is derived from, (23b).

But as we have seen in (21) and Exercise 8.9, this equivalence fails for
most DP subjects. The relevant pairs in (34) for example are certainly
not logically equivalent:
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(34) a. Some student both laughed and cried.
a’. Some student laughed and some student cried.
b. Most of the students both laughed and cried.
b’. Most of the students laughed and most of the students

cried.

If just one student laughed and just one, a different one, cried, (34b)
is true and (34a) is false. Similarly replacing some student everywhere
by no student, exactly four students, more than four students, ... and
infinitely many other DPs yields sentence pairs that are not logically
equivalent, though a few cases do work: every student, and both Mary
and Sue preserve logical equivalence in (34) (but not if and is replaced
by or).

Thus Ss derived by Conjunction Reduction are not regularly related
semantically to their sources: sometimes the pairs are logically equiva-
lent, sometimes one entails the other but not conversely, and sometimes
they are logically independent (neither entails the other). In addition
the precise formulation of the Reduction rules has not been worked
out and it seems quite complicated. Note that a sentence may contain
many Boolean compounds:

(35) Neither did most of the teachers write a novel or two poems or
review at least one book and four plays in or near NY City nor
did most of the grad students (write a novel or two poems or
review at least one book and four plays in or near NY City)
over the vacation.

Exercise 8.11. From our Coord rule above it follows that for every
n > 0 there is a DP in English with more than n constituents of cate-
gory DP. Prove this by induction on n and conclude that English has
infinitely many Boolean compounds of DPs.

For all these reasons then we recommend directly deriving and in-
terpreting Boolean compounds rather than deriving all from sentential
sources where the Boolean connectives would be interpreted.

8.3 Negation and Additional Properties of Natural
Language Lattices

The lattices we use as denotation sets have three further proper-
ties: they are bounded, distributive, and complemented. not and nei-
ther...nor... are interpreted by complements, which presupposes bound-
edness and distributivity.

Definition 8.4. A lattice (L,≤) is bounded iff it has a least element
and a greatest element. x ∈ L is least iff for all y ∈ L, x ≤ y; x is
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greatest iff for all y ∈ L, y ≤ x.

Fact Let (L,≤) be a bounded lattice. Then it has just one least element
noted 0 read the zero (bottom), and just one greatest element, noted 1
read the unit (or top). (If x and x′ are both least then x ≤ x′ and
x′ ≤ x so by antisymmetry x = x′. If (L,≤) is bounded then 1 =

∨

L
and 0 =

∧

L. Every finite lattice is bounded, since if L is finite with n
elements say a1, . . . , an then

∧

L = (a1 ∧ a2 ∧ · · · ∧ an) and similarly
∨

L = (a1∨a2∨· · ·∨an). Most of the lattices exhibited so far are finite
and thus bounded. But many non-finite lattices are bounded.

Theorem 8.5.

a. (P(A),⊆) is bounded with A greatest and ∅ least, no matter how
large A is.

b. If (L,≤) is bounded then the pointwise lattice [E → L] is bounded.
The 0 function maps each x ∈ E to 0L, the zero of L, and the
unit function maps each x ∈ E to 1L.

Proposition 8.6. In any lattice (L,≤), x ∨ 0 = x.

Proof. Since x ≤ x and 0 ≤ x we have that x is an ub for {x, 0}. And
for z an ub for {x, 0}, x ≤ z, so x is least of the ub’s, as was to be
shown.

Exercise 8.12. Show in analogy to the fact above that in any lattice,
x ∧ 1 = x.

Definition 8.5. A lattice (L,≤) is distributive iff for all x, y, z ∈ L,
(a) and (b) hold:

a. x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z), and
b. x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z).
One proves in any lattice that (a) and (b) are equivalent in the

sense that if either holds the other does. Moreover the right hand side
of (a) stands in the ≤ relation to its left hand side in any lattice. So to
prove that a lattice is distributive it suffices to show that x∧ (y ∨ z) ≤
(x ∧ y) ∨ (x ∧ z), all x, y, z ∈ L. Dually, the left hand side of (b) is ≤
the right hand side in any lattice, so to prove a lattice distributive it
suffices to show that (x ∨ y) ∧ (x ∨ z) ≤ x ∨ (y ∧ z).
Theorem 8.7.

a. The {T, F} lattice is distributive.

b. All power set lattices are distributive.

c. If (L,≤) is distributive then so is the pointwise lattice [E → L].
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An example of a non-distributive lattice consider (15c), the pentagon
lattice. There b ∧ (d ∨ c) = b ∧ a = b 6= (b ∧ d) ∨ (b ∧ c) = d ∨ e = d , so
distributivity fails.

Exercise 8.13. Show that the diamond lattice, (15a) fails to be dis-
tributive.

Definition 8.6. A lattice (L,≤) is complemented iff (L,≤) is bounded
and for every x ∈ L there is a y ∈ L such that (x∧y) = 0 and (x∨y) = 1.

Notation To say that complements are unique in a lattice (L,≤) is
to say that for every x ∈ L there is exactly one y ∈ L satisfying the
complement axioms (x ∧ y) = 0 and (x ∨ y) = 1. In such a case this
unique y is noted ¬x, read as “complement x”.

Theorem 8.8. If a complemented lattice is distributive then comple-
ments are unique.

Proof. Suppose that (x∧y) = 0 and (x∨y) = 1, and also that (x∧z) = 0
and (x ∨ z) = 1.
Show: y = z.

1. y = y ∧ 1 = y ∧ (x ∨ z) = (y ∧ x) ∨ (y ∧ z) = 0 ∨ (y ∧ z) = y ∧ z,
whence y ≤ z.

2. z = z ∧ 1 = z ∧ (x ∨ y) = (z ∧ x) ∨ (z ∧ y) = 0 ∨ (z ∧ y) = z ∧ y,
whence z ≤ y, so by antisymmetry y = z.

Note that the third equality in each line uses distributivity. And
since each x has at least one complement (y as above) we now know
each x has exactly one, which we may denote ¬x. Here is a simple proof
of the double complements law using uniqueness of complements:

Theorem 8.9. For all x in a boolean lattice, x = ¬(¬x).
Proof. By commutativity and axiom we have: ¬x∧x = 0 and ¬x∨x = 1,
Hence by uniqueness of complements, x = ¬(¬x).
Exercise 8.14. A lattice may be complemented but not uniquely com-
plemented (and so not distributive by Theorem 8.8). For example the
pentagon lattice (15c) is complemented but the element c has two com-
plements. One is b, since b∧ c = 0 (the zero element is e) and b∨ c = 1,
the unit element a. What is the other complement of c?

Definition 8.7. A boolean lattice is a lattice that is distributive and
complemented.
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All denM(C) for C coordinable are boolean with negation denoting
the complement operation, just as and and or denote the meet and
join functions. The denotation for neither...nor... is sometimes noted
↓, defined by x ↓ y =df (¬x∧¬y) = ¬(x∨ y). So neither John nor Bill
denotes the complement of the denotation of either John or Bill. We
now assume Eng enriched with a Negation rule:

(36) Negation: (not,NEG) + (s, C) → (not s, C)

Fact

1. In the {T, F} lattice, T is the top or unit element, F is the bottom
or zero element, and provably ¬T = F and ¬F = T .

2. In any power set lattice P(A), for each X ⊆ A, ¬X is provably
A−X, the set of elements in A that are not in X.

3. In a pointwise boolean lattice [E → L], ¬F provably maps each
x ∈ E to ¬(F (x)). For example interpreting not as the comple-
ment operator in the pointwise [P1 → P0] lattice we have:

(37) not every student laughed

[[·]] [[·]] [[·]] [[·]]
¬

QQQQQQQQQQQQQQQ every student
eeeeeeeee laugh

lllllllllllllllllllllllllll

every(student)

¬(every(student))

(¬(every(student)))(laugh)

= ¬((every(student))(laugh))
“Not every student laughed.”

Remark In each lattice L above, the complement operation is not
simply added to L, rather, the partial order provably is a bounded
distributive lattice with the property that for each x there is a unique
y such that x ∧ y = 0 and x ∨ y = 1. Then we define ¬x to be that
unique y. For example in the {T, F} lattice with the implication order,
F is provably least and T greatest, and T ∧ F = F , the zero, and
T ∨ F = T , the unit, so we infer that F is the complement of T , that
is, F = ¬T .

Interpreting negation as complement generally yields reasonable re-
sults in terms of judgment of entailment and logical equivalence. And
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it answers the query analogous to the one we raised for and and or.
Namely, the uses of negation with expressions in different categories do
have something in common: they always denote the boolean comple-
ment of the denotation of the expression they negate. But they appear
to combine with somewhat fewer categories and and and or and to
exhibit more category internal restriction.

The most easily negated expressions across languages are P1s (de-
spite a tradition that calls it “sentential” negation). In English the
expression of this negation is fully natural, but complicated. It requires
the presence of an auxiliary verb, an appropriately tensed form of do,
as in (38b).

(38) a. Just two skaters fell.
b. Just two skaters didn’t fall.
c. It is not the case that just two skaters fell.

Note that (38c) is not at all logically equivalent to (38b). In a situation
with exactly four skaters, just two of whom fell both (38a) and (38b)
are true, and (38c) is false, so (38b) does not entail (38c). And in a
situation with six skaters, exactly three of whom fell, (38c) is true and
(38b) false, so (38c) fails to entail (38b). The point of this observation is
that the information contained in the subject of the P1 is not in general
understood to be under the scope of P1 negation.

Equally many DPs negate easily, as in (39), but also many don’t, as
in (40).

(39) a. Not a creature was stirring, not even a mouse.
b. Not more than a couple of students will answer that

question correctly.
c. Not one student in ten knows the answer to that.
d. Not every student came to the party.

(40) a. ∗Not John came to the party.
b. ∗Not the students I met signed my petition.
c. ∗Not each student came to the party.

On the other hand sometimes apparently unnegatable DPs can be
forced to negate in coordinate contexts, as in So Sue and not Jill will
represent us at the meeting.

Finally we note that it is usually quite difficult to interpret nega-
tion as taking a mere P2 (or P3) in its scope. John didn’t criticize every
teacher does not mean that John stands in the not-criticize relation
to every teacher, which would mean that every teacher has the prop-
erty that John didn’t criticize him. Rather the sentence most naturally
means simply that John lacks the property expressed by criticized every
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teacher.

8.4 Properties versus Sets: Lattice Isomorphisms

We have already said (Chapter 3) what it means for two relational
structures, in particular two (boolean) lattices, to be isomorphic: you
must be able to match the elements of the their domains one for one
in such a way that elements stand in the order relation in one if and
only if their images stand in the order relation in the other. Now for
the lattices we have considered there is one interesting and possibly not
obvious, instance of an isomorphism that is used often in the literature,
often without explicit mention. Namely, a power set lattice (P(A),⊆)
is isomorphic to the corresponding pointwise “property” lattice ([A→
{T, F}],≤). To show this we exhibit an isomorphism. Let K be any
subset of A and define hK from A into {T, F} by

(41) hK(a) = T iff a ∈ K.

Now we claim that the function h mapping each subset K of A to hK
is an isomorphism. Here is an informal proof using the Hasse diagrams
of the lattices. First the power set lattice, repeating (16).

(42) {a, b, c}
rrrrr

LLLLL

{a, b}
LLL

LLL
{a, c}

LLL
LLL

rrr
rrr

{b, c}

sss
sss

{a}
LLL

LLL
LL

{b} {c}

rrr
rrr

rr

∅
And now consider the Hasse diagram for the hK :

(43) h{a,b,c}

sss
ss KKK

KK

h{a,b}

KKKKK
h{a,c}

KKKKK
sssss

h{b,c}

sssss

h{a}

LLLLLL
h{b} h{c}

ssssss

h∅

Now it is clear that the map h sending each K in (42) to hK in (43)
is a bijection. But two queries still arise. First, how do we know that
all the maps from A into 2 (we often write 2 for {T, F} recall) are
exhibited in (43)? The answer is easy: for any g from A into 2 let T [g]
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be {a ∈ A | g(a) = T}, the set of elements of A that g is true of. Then
clearly hT [g] is g, since hT [g] is true of exactly the elements of T [g],
so hT [g] and g are true of exactly the same objects. And second, how
do we know that we have correctly represented the ≤ relation in (43)?
Well, we see that in moving up along lines from some hK to some hK′

it must be so that K ⊆ K ′, whence the set of things hK maps to T is a
subset of those that hK′ maps to T ; that is, for all a ∈ A, if hK(a) = T
then hK′(a) = T , and this suffices to show that hK ≤ hK′ , completing
the proof.

Now, given that a power set lattice and its pointwise counterpart are
isomorphic, why should we care? One practical reason is that authors
differ with regard to how they represent properties of objects. Often we
find it natural to think of a property of objects X as a function that
looks at each element of X and says True (or False). So we treat the set
of properties of objects X as [X → {T, F}]. And in such a case when
b is an object and p a property we write p(b) to say that the object b
has property p. But other times we just treat a property of elements of
X as the set of objects which have it. So here the set of properties is
P(X), and we write b ∈ p to say that b has property p.

But from what we have just seen, P (X) and [X → {T, F}] are
isomorphic, and we write P (X) ≈ [X → {T, F}]. That means that the
order theoretic claims we can make truly of one are exactly the ones we
can make about the other. Whenever one says b ∈ p the other says p(b)
and conversely. In fact within a given text an author may shift back and
forth between notations, acknowledging that there is no logical point
in distinguishing between isomorphic structures.

We close with two further properties which the boolean lattices we
use have but which are not present in all boolean lattices.

Definition 8.8. A lattice (L,≤) is complete iff every subset has a glb
and a lub, that is,

∧

K and
∨

K exist for all K ⊆ L.

Fact All finite lattices are complete. If K = {k1, . . . , kn} ⊆ L then
∧

K = k1 ∧ · · · ∧ kn and
∨

K = k1 ∨ · · · ∨ kn.
∧

L is the zero element
of L and

∨

L is the unit.

Definition 8.9.

a. An element α of a lattice is an atom iff α 6= 0 and for all x, if
x ≤ α then x = 0 or x = α

b. A lattice (B,≤) is atomic iff for all y 6= 0 there is an atom α ≤ y.
Write ATOM(B) for the set of atoms of B.
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In a power set boolean lattice the unit sets are the atoms.

Theorem 8.10. A boolean lattice (B,≤) is complete and atomic iff it
is isomorphic P(ATOM(B)).

The map sending each y to {α ∈ ATOM(B) | α ≤ y} is the desired

isomorphism. Thus |B| = |P(ATOM(B))| = 2|ATOM(B)|.

Theorem 8.11. All finite boolean lattices are complete and atomic. So
each finite boolean lattice is isomorphic to the power set of its atoms,
and so isomorphic to a power set.

There are complete atomic distributive lattices that are not boolean,
as they are not complemented. Here is one that arises in certain seman-
tic studies.

(44) Let A be a non-empty set and EQ(A) the set of equivalence
relations on A. So R ∈ EQ(A) iff R ⊆ A×A and R is reflexive,
symmetric and transitive. Define a binary relation, called refines,
on EQ(A) by setting R ≤ S iff for all x, y ∈ A, xRy ⇒ xSy. So
whenever s is R-equivalent to y then it is also S-equivalent to y.

The above definition implies that every S-equivalence class is a union
of R-equivalence classes. Furthermore, the definition of ≤ basically says
that R ⊆ S, so we know then that ≤ is reflexive, antisymmetric and
transitive.

Fact 〈EQ(A),≤〉 is a poset.

Further, since each equivalence relation over A is reflexive we have
that IDA = {〈x, x〉 | x ∈ A} is a subset of every R in EQ(A). And since
IDA is itself an equivalence relation (antisymmetry and transitivity are
vacuously satisfied) we have that IDA is least. That is, the 0 of EQ(A)
is IDA. Similarly A×A is the unit 1 of EQ(A) since it is an equivalence
relation on A and all (equivalence) relations on A are subsets of A×A.
So EQ(A) is a bounded poset. What is slightly less obvious is that
EQ(A) is a lattice. Glbs are actually intuitive since:

Theorem 8.12.

a. For all R,S ∈ EQ(A) we have that R∩S is an equivalence relation
in EQ(A). Generalizing,

b. For I an index set, if Ri ∈ EQ(A) for each i ∈ I, then
⋂

iRi is
an equivalence relation (so

⋂

iRi ∈ EQ(A)).

Proof. We prove the general case by showing that
⋂

iRi is reflexive,
symmetric, and transitive.
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Reflexivity. Let x ∈ A be arbitrary. Then for each I, 〈x, x〉 ∈ Ri so
it is in their intersection, thus

⋂

iRi is reflexive.

Symmetry. Let 〈x, y〉 ∈ ⋂

iRi. So 〈x, y〉 is in each Ri. Since each Ri

is symmetric, 〈y, x〉 is in each Ri, so it is in
⋂

iRi showing that
⋂

iRi

is symmetric.

Transitivity. Similarly if 〈x, y〉 and 〈y, z〉 are both in
⋂

iRi then they
are both in each Ri so 〈x, z〉 is in each Ri since each Ri transitive. Thus
〈x, z〉 ∈ ⋂

iRi, showing that the latter is transitive. Thus
⋂

iRi is an
equivalence relation. We already know it is glb for {R | i ∈ I}.

The trickier part is to show that any collection of equivalence rela-
tions on A has a least upper bound. That lub would be the union of
the collection if that union were an equivalence relation, but often isn’t.
For example, let x, y, z be distinct element of A. Then,

(45) a. R = IDA ∪ {〈x, y〉, 〈y, x〉} is an equivalence relation over A.
b. S = IDA ∪ {〈y, z〉, 〈z, y〉} is an equivalence relation over A.
c. R ∪ S is not an equivalence relation as it contains 〈x, y〉

and 〈y, z〉 but not 〈x, z〉 so it fails transitivity.

But in fact any collection of equivalence relations over A has a lub
in EQ(A), but that relation is larger than the union of the Ri in the
collection. Here is a standard way to build it.

Definition 8.10. Given an index set I with Ri ∈ EQ(A) for each i ∈ I,
let K be the following set:

⋂

{S ∈ EQ(A) | for all i ∈ I,Ri ⊆ S}.
Clearly K is an equivalence relation over A by the proof of Theorem

8.12. It is obviously the least equivalence relation that includes each Ri

(meaning, as usual, that it is a subset of each equivalence relation over
A which includes each Ri; this is so because the intersection of a bunch
of sets is always a subset of any set in over which the intersection was
taken. So K is the least upper bound for {Ri | i ∈ I}. Thus (EQ(A),≤)
is a complete bounded lattice.

(EQ(A),≤) is not however a boolean lattice, as in general its ele-
ments lack complements. For example, for A with at least three distinct
elements x, y, z the relation R in 45 lacks a complement in EQ(A). If
Some R∗ were its complement then its intersection with R must be
IDA, so R

∗ must lack 〈x, y〉 and 〈y, x〉. If it lacks any other pair then
its union with R will not be A×A. So it must then have the pairs 〈x, z〉
and 〈z, y〉, whence by transitivity it has 〈x, y〉, a contradiction.

Thus we have shown that (EQ(A),≤) is a complete lattice which in
general is not boolean. In fact more can be said:
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Exercise 8.15.

a. Show that (EQ(A),≤) is atomic and exhibit an atom.

b. Show that (EQ(A),≤) is distributive.

8.5 Theorems on Boolean Lattices

We conclude this chapter with some basic regularities that hold in all
boolean lattices. For those that are named, the names are in common
use and should be learned.

Theorem 8.13. For (B,≤) a boolean lattice and any x, y, z in B,

a. x ∧ y = y ∧ x, and x ∨ y = y ∨ x. (Commutativity)

b. x ∧ (y ∧ z) = (x ∧ y) ∧ z, and (Associativity)
x ∨ (y ∨ z) = (x ∨ y).

c. x ∧ x = x, and x ∨ x = x. (Idempotency)

d. ¬¬x = x. (Double Complements)

e. ¬(x ∧ y) = ¬x ∨ ¬y, and (DeMorgan’s Laws)
¬(x ∨ y) = ¬x ∧ ¬y.

f. x ∧ (x ∨ y) = x, and x ∨ (x ∧ y) = x. (Absorption)

g. x ≤ y iff (x ∧ y) = x, and x ≤ y iff (x ∨ y) = y.

h. x ≤ y iff x ∧ ¬y = 0, and x ≤ y iff ¬x ∨ y = 1.

i. x ∧ y ≤ x ≤ x ∨ y.
j. x ≤ y iff ¬y ≤ ¬x.
k. x ≤ y → (x ∧ z) ≤ (y ∧ z), and x ≤ y → (x ∨ z) ≤ (y ∨ z).

Exercise 8.16. Let (A,R) be a relational structure. Define a binary
relation R−1 on A by setting xR−1y iff yRx. R−1 is called the converse
of R. We often use symbols like ≤, �, ⊆ for partial orders, and ≥, �,
⊇ for their converses.

a. Prove that when (A,R) is a poset then (A,R−1) is a poset.
(A,R−1) is called the dual of (A,R).

b. Same as (a) above with ‘lattice’ replacing ‘poset’.

c. Given a boolean lattice (A,R) prove that the complement func-
tion from A to A is an isomorphism from (A,R) to its dual
(A,R−1).

8.6 A Concluding Note on Point of View

We have presented lattices in an order theoretic way: x ∧ y and x ∨ y
are defined as greatest lower bounds and least upper bounds. Another
widely used approach, perhaps the most widely used, is one in which a
lattice is given as a triple (L,∧,∨), with ∧ (meet) and ∨ (join) binary
functions on L satisfying commutativity, associativity, and absorption.
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Then we define ≤ by: x ≤ y iff x ∧ y = x. Sets with functions defined
on them are algebras, so on this view a lattice is an algebra of a certain
sort, and a boolean lattice is called a boolean algebra, named after
George Boole (1854) who first constructed them. The two approaches,
the relational one and the functional one, are interdefinable and serve
to illustrate different ways of accomplishing the same goal. Recall,

If you can’t say something two ways you can’t say it.

Boole’s speculation. Boolean algebra has developed explosively
since Boole initiated it. But Boole’s original work still merits read-
ing, especially for its motivation. Boole was not interested in inventing
a type of algebra per se, rather he was trying to formulate with mathe-
matical precision and rigor the thought steps he took in clear reasoning,
hence his title The Laws of Thought. This was a marvelously ambitious
enterprise, and while we may reasonably think there is more to thought
than the kinds of reasoning that can be carried out with in boolean
algebra, might not Boole’s intuitions give us a deeper account of the
polymorphism of and, or, and not? Their meanings indeed are not tied
to any particular type of denotation truth value, property, relation,
restricting modifiers, generalized quantifiers, ... and this suggests that
the boolean operators express properties of mind, more the way we
think about things, how we conceptualize them, than properties of
things themselves. This suggestion is to be sure speculative.

But there is one additional linguistic observation that is nicely com-
patible with it. Namely, if the Boolean connectives have a meaning
independent of the categories of expression they combine with, as we
have supported here, then it is perhaps not surprising that they have
some capacity to create meaningful constituents for which there is little
or no independent syntactic support. We have already noted cases like
(46a,b):

(46) a. ∗So not Jill will represent us at the meeting.
b. So Sue and not Jill will represent us at the meeting.

Similarly in (47a) the right branching constituency of the subject DP
is natural, but a left branching constituency can be forced by coordi-
nation.

(47) a. [Most [female [doctors]]] support healthcare reform.
b. [[Most female] and [almost all male]](doctors) support

healthcare reform.

Right node raising cases like (48a,b) and Gapping as in (49a,b) are
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further instances:

(48) a. [John [bought a turkey]] and [Bill [cooked it]].
b. [[John bought] and [Bill cooked]] the turkey.

(49) a. John [[handed Bill] a snake].
b. John [handed [Bill a snake] and [Fred a scorpion]].

Steedman and Baldridge (2007) provide derivations of various “non-
constituent coordinations” within the framework of Combinatory Cat-
egorial Grammar. Here we offer no such derivational mechanisms, we
simply notice that however such coordination and negation is derived,
it is the Boolean connectives that induce or allow it.

8.7 Further Reading

See Payne (1985) and Horn (1989) for typological discussion of nega-
tion; see Keenan and Faltz (1985) for extensive discussion of boolean
structure in natural language semantics. And see Winter (2001) for an
analysis of the interaction of Boolean structure with plurals and col-
lectives, as well as issues concerning wide scope phenomena (which we
consider in Chapter 9).
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Semantics III: Logic and Variable

Binding Operators

Generalized quantifiers and boolean lattices are powerful conceptual
tools for representing aspects of natural language semantics. We pur-
sue them more extensively in Chapters 10 and 11. Here we address
two independent semantically significant topics that are enlighteningly
treated within standard logic and its extensions. These concern scope
ambiguities and “binding” phenomena. The tool we use from standard
logic is variable binding operators (VBO’s).

This chapter is presented in three parts: Section 9.1 contains the
syntax and semantics of standard first order logic (FOL), together with
basic examples of its utility in “translating” expressions from ordinary
English. Section 9.2 steps back and summarizes a variety of general
linguistic properties of FOL. The idea is to give the reader a feel for
the “linguistic” character of work in logic, as well as to present several
of the major results logicians have achieved. This section is intended
for reference and is not presupposed by the subsequent sections and
chapters of this book. Finally, Section 9.3 Presents the syntax and
semantics of the lambda operator, an enormously useful conceptual
tool in the representation of semantic properties of natural language.

9.1 Translation Semantics

It is only recently1 that the direct interpretation of natural language
expressions has become feasible. More traditionally the semantic anal-
ysis of natural language proceeded by translation into logic, usually
some variant of FOL. Such an approach is helpful because FOL is well
understood, so translating English say into a first order language has

1The direct interpretation tradition can be said to have begun with Montague
(1974).

233
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the merit of representing something we are trying to understand in
terms of something we already understand.

9.1.1 Semantic phenomena motivating the use of variable
binding operators

Scope ambiguities

Scope ambiguities have already been seen in simple examples like (1),
which can be understood on the object narrow scope (ONS) reading in
(1a), a reading our direct interpretation analysis already captures, and
on the object wide scope (OWS) reading in (1b), which our analysis to
date does not capture.

(1) Some student praised every teacher.

a. ONS: There is at least one student who praised every
teacher.

b. OWS: For every teacher there is a student who praised him
(possibly different teachers were praised by different
students).

So on the OWS reading the students may vary with the teachers. But
on the ONS reading a student is chosen independently of the teachers
and it is asserted that that student stands in the praise relation to
each teacher. (It is not ruled out that there is more than one student
with this property). It is easy to image a situation in which (1) is
true understood on the OWS reading but false on the ONS reading.
Imagine a situation with just two students, John and Mary, and just
two teachers. John praises one of the teachers and no one else, and Mary
praises the other teacher and no one else. Then for each teacher there
is a student who praised him, so (1b), the OWS reading of (1), is true.
But no one student praised each teacher, so (1a), the ONS reading, is
false.

In mathematical discourse scope ambiguities would be intolerable,
whence the utility of variable binding notation there. Compare the
strikingly different meanings of the two scope readings of (2) for exam-
ple, into which we introduce an informal use of variables.

(2) Some number is greater than every number.

a. ONS: There is a number x such that for every number y,
x > y.

b. OWS: for every number y there is a number x such that
x > y.

In elementary arithmetic (2b) is true: given y, choose x to be y + 1.
But (2a) is false, a number greater than every number would be greater



Semantics III: Logic and Variable Binding Operators / 235

than itself, an impossibility.
Our concern in this chapter is with scope ambiguities involving pairs

of DPs as illustrated here. But scope ambiguities arise for other expres-
sion types as well. For example (3) is ambiguous according to the scope
of negation:

(3) John didn’t leave because the children were crying.

a. John stayed, because the children were crying.
b. John left, but not because the children were crying.

On the reading in (3a) the subordinate clause, because the children were
crying, is not in the scope of the negation. Rather that clause modifies
didn’t leave and the sentence means roughly Because the children were
crying John didn’t leave. In (3b) the subordinate clause modifies leave
and the entire modified predicate is negated, so the subordinate clause
in particular is in the scope of didn’t. (3b) doesn’t deny that John left,
it only denies that the children crying was the reason for his leaving.

Binding

There is an ambiguity in (4), not entirely dissimilar to the scope am-
biguity in (2):

(4) Each of the children loves his mother.

On one reading his is understood as bound to each of the children and
(4) would be true in a situation with several children as long as each one
loves his own mother—Johnny loves his mother, Amy loves her mother,
etc. So on this reading the mothers may vary with the children.

But (4) has a second reading, less apparent than the first when,
as here, no context is provided. On this reading his mother refers to
some woman whose existence has been previously established in the
discourse. Imagine that we have been discussing Billy, whose mother
is the local kindergarten teacher beloved by all the children. Then an
assertion of (4) might be used to assert that each child in the discourse
loves Billy’s mother. So on this reading context provides a denotation
for his (mother), and the choice of mothers does not vary with the
choice of children.

Compare the use of his in (4) with that of its in the more mathe-
matical (5).

(5) Every number is less than or equal to its square.

a. For every number x, x is less than or equal to x squared.
b. For every number x, x is less than or equal to y squared.

Out of context the natural reading of (5) is (5a), in which the pronoun
its is bound to every number. On this reading (5) implies that 3 is less
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than or equal to 3 squared (usually written 3 ≤ 32), 13 ≤ 132, and in
general, for each number n, n ≤ n2.

Notice that the portion of (5a) following the quantifier phrase for
every number x, uses the same variable x twice. This is what tells us
that we compare 3 with 32, 13 with 132, etc. The two occurrences of
x are said to both be bound by the quantifier phrase for every number
x. In contrast, in (5b) we have used different variables in the portion
following the quantifier phrase. Here the first occurrence, x, is bound
by the quantifier phrase since its variable matches x. But the second
variable y is not bound by the quantifier phrase. This reading of (5)
is comparable to the non-bound reading of his mother in (4), where
context identifies a referent for the phrase and it does not vary with
the choice of child. In (5) y denotes some number fixed in context, but
(5) itself provides no context to help us figure out the denotation of y.

This completes our illustration of the phenomena we are to represent.
We turn now to an informal presentation of first order logic.

9.1.2 First Order Logic

First Order Logic (FOL) defines a class of languages, called first or-
der languages, and states how expressions in each of these languages
is semantically interpreted. So FOL is a kind of universal grammar.
Different first order languages differ by their choices of lexical items,
specifically their n-place predicate symbols and n-place function sym-
bols (individual constants are 0-place function symbols). For example,
in the language of Set Theory we would take a single two place pred-
icate symbol, ∈ , as primitive (and then of course state many axioms
that use the predicate); in the language of Elementary Arithmetic we
might have two two place function symbols, + and ·, as primitive; in
Euclidean geometry we would have a two place predicate symbol ‖ read
as is parallel to and a three place predicate symbol B read as is between.
In linguistic parlance these are the parameters of the language, and are
called non-logical constants. Once given, all first order languages form
complex expressions in the same ways (below).

Syntax:

Terms are expressions which, when interpreted, denote elements in the
domain EM of a model M (defined shortly). Syntactically unan-
alyzable terms are either individual variables : x, y, z, x1, y1, . . . ,
of which there are always denumerably many (= natural num-
ber many), or individual constants such as ‘0’, ‘1’, etc., of which
there are usually just a few, sometimes none. Then complex terms
are built recursively by combining function symbols, such as ‘+’
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in the language of arithmetic, with an appropriate number of
terms to form a complex term. We usually write two place func-
tion symbols between their arguments, writing (0 + 1) in pref-
erence to +(0, 1). Since we use infix notation some parenthe-
ses are needed to rule out pernicious ambiguities. For example,
2 · (3+ 4) = 14 6= (2 · 3)+ 4 = 10 so if we eliminated all parenthe-
ses we would have ambiguously denoting expressions (as we saw
earlier in discussing the placement of boolean connectives).

Formulas are the sort of expression which we think of as True or False
under an interpretation, and they come in three syntactic types:
Atomic Formulas, Boolean Compounds, and Quantified Formulas.

Atomic Formulas are built by combining an n-place predicate sym-
bol P with n terms, t1, . . . , tn, the result being noted P (t1, . . . , tn),
which is called an atomic formula (even when the terms them-
selves are syntactically complex). Often when P is a two place
predicate symbol we write (t1 P t2) rather than P (t1, t2). So usu-
ally we write (0 ≤ 1) rather than ≤ (0, 1), so once again paren-
theses are necessary. Note that the standard syntax for first order
languages treats P2s as combining directly with pairs of expres-
sions to form a P0 (formula) rather than combining with just one
to form a P1, which in turn combines with one term to form a
P0. In the pair notation the “subject” argument is written first.
So using English expressions, Kim praised Amy would be rep-
resented as praise(Kim, Amy), whereas we have been writing
((praise Amy) Kim), with praise Amy a constituent of category
P1.

Boolean Compounds of formulas are formulas. Here we write ‘&’
for ‘and’, ‘or’ for ‘or’, − for ‘not’, → for ‘if...then...’ and ↔ for
‘if and only if’. Different authors use different variants of this
notation. So if P and Q are formulas so are (P &Q), (P or Q),
−P , (P → Q) and (P ↔ Q). First order languages don’t allow
direct boolean compounds of P1s (or Pns for any n > 0), though
expressive power would not be changed if we added this in.

Quantified Formulas are ones formed by concatenating a quantifier
symbol followed by a variable, followed by a formula. There are
two quantifier symbols: ∀, the universal quantifier symbol, read
as “for all”, and the existential quantifier symbol ∃, read as “for
some”, or “there exists”. For example, in the language of ele-
mentary arithmetic ∀x(x < x + 1) is a universally quantified
formula read as “For all numbers x, x is less than x plus one”.
And ∃x(Prime(x)&Even(x)) is an existentially quantified for-
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mula read as “There is a number x such that x is prime and x is
even”. Note that there is nothing in the formulas themselves that
tells us what we are using the quantifiers to quantify over (the
natural numbers). It was the stipulation that these Ss were drawn
from the language of elementary arithmetic that guarantees this
in this case, since that language is just used to speak about the
natural numbers.

Semantics (informal): Individual constants denote elements of the
domain of a model. A derived term F (t1, . . . , tn) denotes the value of
the function denoted by F at the n-tuple of objects denoted by the n
terms (t1, . . . , tn). An atomic formula P (t1, . . . , tn) is true in a model
M iff the n-tuple of objects denoted by the n-ary sequence (t1, . . . , tn)
terms stands in the relation denoted by P . An equivalent approach
treats ‘P ’ as denoting a function mapping n-tuples of objects from the
domain E into {T, F}. The symbol ‘=’, a logical constant, denotes the
identity relation, {〈b, b〉 | b ∈ E}.

Boolean compounds of formulas are interpreted as expected: A con-
junction of formulas (P &Q) is interpreted as T iff each conjunct is T ,
a disjunction is interpreted as T iff at least one disjunct is T . A condi-
tional (P → Q) is interpreted as T iff P is interpreted as F or both P
and Q are interpreted as T . (P ↔ Q) is interpreted as T iff P and Q
are interpreted as the same truth value (both T or both F ).

For quantified formulas, ∀xϕ is interpreted as T iff ϕ is interpreted
as T no matter what object in the domain we let x denote. ∃xϕ is
interpreted as T iff there is an object b in the domain of the model
such that ϕ is interpreted as T when we set x to denote that b. To say
this in a formally rigorous way we will need a mechanism which lets
the denotations of variables vary holding constant the denotations of
the other lexical items (the predicate and function symbols).

For example, in the first order language of Elementary Arithmetic
the formula ∀x(x ≤ x2) is true in the model whose domain is N. No
matter what n ∈ N we choose, x ≤ x2 is true when x is set to denote
n. Similarly ∃x(x = x2) is true since letting x denote 1 the formula
x = x2 is true. That formula is also true when x is set to denote 0, but
it is false when x denotes any n > 1.

Crucially in a first order language L we may have symbols denoting
functions or relations (on the domain of the model), but we cannot
use quantifiers with variables ranging over such functions or relations.
Thus (6a) is a first order sentence. It says that the function ‘h’ denotes
is one to one. But (6b), which says that there is a one to one function
is not a first order sentence.
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(6) a. ∀x∀y(h(x) = h(y) → x = y)
b. ∃h∀x∀y(h(x) = h(y) → x = y)

Similarly (7a), which says that R is a symmetric relation, is first order,
but (7b), which defines symmetry, is not:

(7) a. ∀x∀y(xRy ↔ yRx)
b. ∀R(R is symmetric ↔ ∀x∀y(xRy ↔ yRx))

9.1.3 Representing English in First Order Logic

Representing English in FOL takes practice (and is not always possible,
as we see below). The major artificiality is that DPs such as every
student, some student, etc. do not occur as arguments of predicates.
Consider the natural first order translations of the English Ss below:

(8) a. John criticized every student.
b. ∀x(student(x) → criticize(john, x))
c. For every object x, if x is a student then John criticized x.

(8b) is a standard first order rendition of (8a), though we would often
abbreviate john simply as ‘j’. A literal read-out of (8b) is (8c), which
makes it clear that we are quantifying over all objects in the domain, not
just the students. Moreover no constituent of (8b) or (8c) corresponds
to every student in (8a). Compare (8a) with (9a) below:

(9) a. John criticized some student.
b. ∃x(student(x)&criticize(john, x))
c. There is an object x such that x is a student and John

criticized x.

Again, (9b), as made clear in (9c), quantifies over the entire domain
of objects, not just the students. And the constituent some student
in (9a) does not correspond to any constituent in (9b). Note too that
both (8b) and (9b) introduce VBO’s, ∀x and ∃x respectively, and in
each case two occurrences of a variable in the following formula are
bound, even though nothing in (8a) or (9a) indicates that binding is
required (they contain no pronouns or DP gaps for example). Equally
both (8b) and (9b) introduce a boolean operator, → in the case of (8b)
and & in the case of (9b). The difference in boolean operator correlates
with the difference in the choice of quantifier, ∀ vs. ∃. But that there
are such differences at all is surprising. After all (8a) and (9a) appear
to be syntactically isomorphic, differing just by a choice of lexical item,
every vs. some.

These “unnaturalness” facts highlight that translations of English
into FOL are not syntactically driven. The criterion of good translation
is whether it gets the entailment properties right. Compare (8a) and



240 / Mathematical Structures in Language

(9a) with (10a) below, also apparently isomorphic to the first two.

(10) a. John criticized no student.
b. −∃x(student(x)&criticize(john, x))
b’. ∀x(student(x) → criticize(john, x))
c. It is not the case that for some object x, x is a student and

John criticized x.
c’. For all objects x, if x is a student then it is not the case

that John criticized x.

Here both (10b) and (10b’) are reasonable translations of (10a) as they
have the same, correct, truth conditions, hence the same entailments.
And in general as the English sentences increase even slightly in com-
plexity we find that the syntactic complexity of the FOL translations of-
ten skyrockets. Here are a few illustrative examples (shortening ‘john’
to ‘j’).

(11) a. John criticized two students.
b. ∃x∃y(student(x)& student(y) &

−(x = y)&criticize(j, x)&criticize(j, y))

So while (11a) appears syntactically isomorphic to (10a), its FOL trans-
lation uses two VBO’s and five conjunctions. Further (11b) is true in
any model in which John criticized at least two students, in particular
ones in which he criticized a dozen students. To force an upper bound
on the number criticized English can use little words like only, exactly,
and just which effect only a modest increase in syntactic complexity.
But consider (12a) and a reasonable FOL translation, (12b), which we
may literally read as (12c).

(12) a. John criticized exactly one student.
b. ∃x(student(x)&criticize(j, x)

& ∀y((student(y)&criticize(j, y)) → y = x))
c. John criticized a student, and every student who John

criticized is that one.

Exercise 9.1. Provide reasonable FOL translations for each of the
following:

a. John criticized three students.

b. John criticized just two students.

c. John criticized a student and a teacher.

d. Every student criticized John.

e. Not every student criticized every student.

Now let us turn to some of the cases that motivate our interest in
VBO’s. Consider first the representation of each of the readings of (13)
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(13) Some student praised every teacher.

a. ONS: There is at least one student who praised every
teacher.

a’. ∃x(student(x)& ∀y(teacher(y) → praise(x, y)))
b. OWS: For every teacher there is a student who praised him.
b’. ∀y(teacher(y) → ∃x(student(x)&praised(x, y))

We have observed that (13b’) does not entail (13a’). Here is an in-
formal model which shows this: Let teacher = {Mary, Sue}, and let
student = {Manny,Moe, Jack}. Lastly, let Manny praise Mary, and
both Moe and Jack praise Sue and no one else praises anyone else.
Then for every teacher y we can find a student x such that x praised
y. In fact in Sue’s case we can find two such x. However there is no
student x in this model who stands in the praise relation to both Mary
and Sue, hence (13a’) is false in this model. A rather more typical case
for Ss with scope ambiguities is that neither scope reading entails the
other.

Exercise 9.2. Exhibit FOL translations of the two scope readings for
the S displayed below. Then exhibit an informal model on which the
ONS is true and the OWS false, showing that ONS9 OWS. Then
exhibit another model in which the OWS reading is true and the ONS
one false, showing that OWS 9 ONS.

Two students criticized two teachers.

Notice that coordinate P1s in English must be translated into first
order Ls with coordination at the S = P0 level.

(14) a. Some student both laughed and cried.
∃z(student(z)& laugh(z)&cry(z))

b. Some student laughed and some student cried.
∃z(student(z)& laugh(z))& ∃x(student(x)&cry(x))

Clearly (14a) entails (14b) since if x is a student who both laughed and
cried then x laughed, whence some student laughed, and also x cried,
whence some student cried, so (14b) is the conjunction of two true Ss
and thus is true. But (14b) does not entail (14a). If John and Bill are
the only students, John laughed but didn’t cry and Bill cried but didn’t
laugh then (14b) is true and (14a) false.

Exercise 9.3. Exhibit FOL translations of (a) and (b). Say why (b)
entails (a) and exhibit an informal model which shows that (a) does
not entail (b).

a. Each student either laughed or cried.

b. Either each student laughed or each student cried.
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Exercise 9.4. Exhibit the two scope readings in FOL translation of No
student likes every teacher. (In practice speakers do not normally use
this S intending the OWS reading. See Szabolcsi (1997) for discussion
of the availability of various scope readings).

We now consider some cases of binding and non-binding. Such exam-
ples can be tricky. Compare first the two readings of (15). We assume
here that ‘s mother is a one place function mapping each individual x
to x’s mother.

(15) Every child loves his mother.

a. ∀x(child(x) → love(x, x’s mother))
b. ∀x(child(x) → love(x, y’s mother))

An occurrence of a variable x in a formula ϕ is said to be bound if
it occurs in a constituent of ϕ of the form Qxψ, where Q = ∀ or ∃
(or any other VBO). Otherwise that occurrence of x is free in ϕ. All
occurrences of x in (15a) and (15b) are bound. But the occurrence of y
in (15b) is free. Also we note a technical usage here. In logical parlance
sentences are the special case of formulas with no free occurrences of
variables.

A similar binding vs free pattern is seen in (16a) and (16b) below.
Typically argument occurrences of reflexive pronouns (himself, herself,
etc.) in English correspond to bound occurrences of variables in their
FOL translations.

(16) a. Some student criticized himself.
∃u(student(u)&criticize(u, u))

b. Some student criticized him.
∃u(student(u)&criticize(u, x))

In contrast pronouns like him, her, etc. correspond to free or to bound
variables depending on the syntactic context in which they occur. They
must be free when their antecedents would be “too close”, as in (16b).
But when their antecedents are farther away they can be free or bound.
So (17a) and (17b) are acceptable FOL translations of (17).

(17) Every teacher likes every student who likes him

a. ∀x(teacher(x) → ∀y((student(y)& like(y, x)) →
like(x, y)))

b. ∀x(teacher(x) → ∀y((student(y)& like(y, z)) →
like(x, y)))

We note that FOL does not provide a means of directly treating
individual constants as VBO’s. So its simplest translation of Ss like
(18a) is as in (18b), though (18c) has the same truth conditions.
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(18) a. John criticized himself.
b. criticize(j, j)
c. ∃x(criticize(x, x)& j = x)

(18b) is awkward since English does not really like repeated proper
nouns as arguments of P2s. John criticized John is felt to be awkward.
Speakers tend to say that the two occurrences of John refer to different
individuals (exactly what we don’t represent in (18b)!). Similarly (19a)
is not quite adequately translated as (19b), since a free occurrence of
x can denote any object in the domain. It might “accidentally” denote
John. But English speakers tend to feel that in (19a) the two arguments
of admire must be different in reference, not simply not necessarily the
same.

(19) a. John admires him.
b. admire(j, x)

Interestingly however repeated occurrences of quantified DPs is not
judged awkward: some student criticized some student, just one student
praised just one student, etc. are natural. Observe of course a stark
meaning difference, as indicated in the different FOL translations:

(20) a. Every student criticized every student.
a’. ∀x(student(x) → (∀y(student(y) → criticize(x, y)))
b. Every student criticized himself.
b’. ∀x(student(x) → criticize(x, x))

Exercise 9.5. Exhibit an informal model in which (20b’) above is true
and (20a’) false, showing that on the translations given, (20b) does not
entail (20a). Note that (20a’) does entail (20b’).

Exercise 9.6. For each S below provide at least one FOL translation.
In some, perhaps many, your translations will be syntactically quite
different than the original English S.

a. No one likes everyone who likes himself.

b. John criticized some student other than himself.

c. Every student criticized every student but himself.

d. John criticized every student who did not criticize him.

e. Every teacher either praised or criticized John.

f. At least two students criticized each other.

g. John is a teacher who admires himself.

h. The only person who John criticized was Mary.

i. Every student admires only himself.

j. Only Lucifer admires only himself.
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Exercise 9.7. Provide a FOL translation for the S below and argue
that it is logically false (= false in every model).

There is a barber who shaves just those barbers who do not shave
themselves.

First Order vs Second or Higher Order Logics

The distinguishing feature of first order logic (and languages) is that
we can only quantify over the domain of a model. Second order logic
quantifies over subsets of the domain and more generally over functions
and relations on the domain, third order logic quantifies over sets of
subsets of the domain, etc. Recall for example the sentences we used
to define partial orders:

(21) For all binary relations R (over a given domain E)

a. R is reflexive iff ∀x(xRx)
b. R is antisymmetric iff ∀x∀y(xRy → yRx)
c. R is transitive iff ∀x∀y∀z((xRy& yRz) → xRz)

21 is a second order sentence since it quantifies over relations over the
domain. A monadic second order sentence is one that just quantifies
over subsets of the domain.

9.1.4 Interpreting First Order Expressions

We indicated informally how the three types of first order formulas are
interpreted. Now we are going to be more explicit about that, as there
is one crucial interpretative mechanism we have quietly glossed over.
The core idea is that the interpretation of an expression is relativized
to “contexts”, which we can think of as functions which interpret the
free variables in the expression. That is, just as the interpretation of
an English sentence such as She is clever depends on what the context
tells us that she refers to, similarly the interpretation of a formula like
3 ≤ x depends on what the context tells us that x denotes. “contexts”
are technically called assignments (of values to the variables). For the
moment we are only using individual variables, ones that range over
the domain of a model, so an assignment is simply a function from the
set VAR = {x1, x2, . . .} of variables into E, the domain of the model.
We assume an arbitrary first order language L is given.

Definition 9.1. For all sets E, AE is [VAR → E], the set of functions
from the variables into E.

And for M a model with domain E, we design the interpreting
function [[·]]M so that expressions denote functions from the set AE of
assignments into the appropriate denotation set. An expression with no
free variables will denote a constant function, that is, its interpretation
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does not vary with the context (assignment). For example a lexical P1
like laugh has no free variables and so will denote a constant function
from AE into [E → {T, F}]. On our old way of interpreting laugh it
simply denoted an element of [E → {T, F}], so making it a function
which associates a fixed element of [E → {T, F}] with all the contexts
is not really very different. The important difference shows up with
expressions that have free occurrences of variables.

A formula like x laughed will denote, not a truth value, but a func-
tion from contexts (assignments) to truth values. And its truth value
may vary with the assignment (context). For example if α is an assign-
ment that maps x to John and β is one that maps x to Jane then the
denotation of x laughed might map α to T (if John laughed) and β
to F (if Jane didn’t laugh). In this way the interpretation of “open”
expressions—ones with free variables—may vary with the context ac-
cording to what the free variables denote.

And the crucial place where these assignments come into play is with
the interpretation of quantified formulas. To give the main idea we first
define:

Definition 9.2. For all assignments α and β, all variables x, β is an
x-variant of α iff β(y) = α(y) for all variables y 6= x. So β may assign
a different value to x than α does (though it doesn’t have to) but it
assigns the same value as α does to all the other variables. For b in the
domain of the model M, we write αx→b for that x-variant of α which
maps x to b. Formally

αx→b(y) =df

{

α(y) if y 6= x
b if y = x.

Note that for each variable x, the binary relation is an x-variant of
is an equivalence relation on AE . (Reflexivity and symmetry are trivial.
For transitivity let x be an arbitrary variable and suppose that α is an
x-variant of β and β an x-variant of γ. We must show that α is an x-
variant of γ. Let y be a variable other than x. Then α(y) = β(y) by the
first assumption, and β(y) = γ(y) by the second. So by the transitivity
of =, α(y) = γ(y) showing that α is an x-variant of γ). Now we give
the truth conditions for quantified formulas as follows:

Definition 9.3. For all models M with domain EM, and all assign-
ments α,

a. [[∀xϕ]]M(α) = T iff for all b ∈ EM, [[ϕ]]M(αx→b) = T , and

b. [[∃xϕ]]M(α) = T iff for some b ∈ EM, [[ϕ]]M(αx→b) = T .

Thus ϕ universally quantified maps a context α to T iff ϕ maps to
T every context that differs from α at most by what it assigns to the
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variable x. Similarly ϕ existentially quantified is true in a context α
iff ϕ is true of some assignment that differs from α at most in what it
assigns to x. In both cases the interpretation of the quantified formula
is done compositionally: [[Qxϕ]]M is defined in terms of [[ϕ]]M, all Q = ∀
or ∃.

For later reference we give a comprehensive formal definition of
model and entailment for first order languages.

Definition 9.4. For L an arbitrary first order language a model M is
a pair (E, [[·]]M), where E is a non-empty set, the domain of M, and
[[·]]M is a function mapping each expression of L to a function from the
assignments over E satisfying:

a. Lexical conditions:

i. For P an n-place predicate symbol, [[P ]]M is a constant func-
tion from AE into [En → {T, F}].

ii. For c an individual constant [[c]]M is a constant function
from AE into E.

iii. For F an n > 0 place function symbol, [[F ]]M is a constant
function from AE into [En → E].

b. Term conditions:

i. For x a variable [[x]]M maps each assignment α to α(x) (So
in a context α a variable denotes what the context says it
denotes)

ii. For F an n-place function symbol and t1, . . . , tn terms,
[[F (t1, . . . , tn)]]M maps each assignment α to
[[F ]]M(α)([[t1]]M(α), . . . , [[tn]]M(α)).
(That is, [[F (t1, . . . , tn)]]M maps each assignment α to the
object that the function F is interpreted as in α maps the
n-tuple of objects that the n terms are interpreted as in α.)

c. Atomic formula conditions:

i. For P an n-place predicate symbol and t1, . . . , tn terms,
[[P (t1, . . . , tn)]]M maps each assignment α to
[[P ]]M(α)([[t1]]M(α), . . . , [[tn]]M(α)).

d. Boolean conditions:
Boolean compounds are interpreted pointwise on the assignments

i. [[ϕ&ψ]]M(α) = [[ϕ]]M(α) ∧ [[ψ]]M(α).
ii. [[ϕ or ψ]]M(α) = [[ϕ]]M(α) ∨ [[ψ]]M(α).
iii. [[−ϕ]]M(α) = ¬[[ϕ]]M(α).
iv. [[ϕ→ ψ]]M(α) = ¬[[ϕ]]M(α) ∨ [[ψ]]M(α).
v. [[ϕ↔ ψ]]M(α) = T iff [[ϕ]]M(α) = [[ψ]]M(α).

e. Quantifier conditions:
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Quantified formulas are interpreted as in Definition 9.3 above. An
equivalent statement is:

i. [[∀xϕ]]M(α) =
∧{[[ϕ]]M(αx→b) | b ∈ E}

(Recall, for K a non-empty subset of {T, F}, ∧K = T iff
K = {T}.)

ii. [[∃xϕ]]M(α) =
∨{[[ϕ]]M(αx→b) | b ∈ E}

(Recall, for K ⊆ {T, F}, ∨K = T iff T ∈ K.)

So the universal quantifier, like and, is a glb operator, and the existen-
tial quantifier, like or, is a lub operator. Given a context, ∀xϕ denotes
the greatest lower bound of the set of truth values denoted by ϕ when
we let x denote successively the elements of E. (If all those values are
T then the set is {T} and its glb is T . But if one of those values is
F then the set is {F} or {F, T} and in each case its glb is F ). In a
similar way existential quantification is a least upper bound operator.
∃xϕ denotes the least upper bound of the set of truth values denoted
by ϕ when we let x denote successively the elements of E. If one those
values is T then the set is {T} or {T, F} and in each case its lub is T .
If none of its values is T then the set is {F} and its lub is F .

Notational variants. Texts often write [[ϕ]]αM or [[ϕ]]M,α instead of
[[ϕ]]M(α) and read it as “the interpretation of ϕ in the model M at
the assignment α”. We will stay with our function-argument notation
but the reader should realize that anything that can be said with one
notation can be said with the other.

Now to define truth in a model and entailment it simplifies matters
to use the Coincidence Lemma below, which guarantees that we can
ignore assignments when dealing with expressions that have no free
variables. We first define what we mean by a free variable in ϕ: FV will
be a function mapping each expression ϕ to the set of variables which
occur free in ϕ:

Definition 9.5.

a. FV(c) = ∅ if c is an individual constant,

b. FV(x) = {x} if x is a variable,

c. FV(H(t1, . . . , tn)) = FV(t1) ∪ · · · ∪ FV(tn) if H is an n-place
function or predicate symbol and t1, . . . , tn are terms,

d. FV(−ϕ) = FV (ϕ),

e. FV(ϕ cψ) = FV(ϕ) ∪ FV(ψ) for c = &, or,→, or ↔, and

f. FV(∀xϕ) = FV(∃xϕ) = FV(ϕ)− {x} for x any variable.

Theorem 9.1 (The Coincidence Lemma). For ϕ a first order formula,
M a model and α and β assignments, if α(x) = β(x) for all variables
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x ∈ FV(ϕ), then [[ϕ]]M(α) = [[ϕ]]M(β).

Corollary 9.2. If ϕ has no free variables (FV(ϕ) = ∅) then for all
assignments α, β, [[ϕ]]M(α) = [[ϕ]]M(β).

Definition 9.6. For ϕ a formula, M = (E, [[·]]M) a model and α an
assignment,

a. ϕ is True in M at α iff [[ϕ]]M(α) = T . In such a case we also
write M |=α ϕ and say that M satisfies ϕ at α.

b. If ϕ is a sentence (no free variables recall), ϕ is True in M, noted
simply [[ϕ]]M = T , iff for some α, [[ϕ]]M(α) = T . In such a case we
write simply M |= ϕ and say that M satisfies ϕ. (If a sentence ϕ
is True at some α it is True at all, by the Coincidence Lemma).
ϕ is said to be satisfiable iff there a model M such that M |= ϕ
and ϕ is logically true iff for all models M, M |= ϕ.

c. A set K of sentences entails (|=) a sentence ψ iff for all M,
∧{[[ϕ]]M | ϕ ∈ K} ≤ [[ψ]]M. (This just says that ψ is true in
all models in which the ϕ in K are simultaneously True). We say
that a sentence ϕ entails a sentence ψ iff {ϕ} |= ψ. And sentences
ϕ and ψ are logically equivalent, noted ϕ ≡ ψ, iff each entails the
other.

9.1.5 Remarks

Notational simplification. Generalizing our convention in Defini-
tion 9.6b above, we write simply [[ϕ]]M instead of [[ϕ]]M(α) when ϕ of
any category is closed, that is, has no free variables and thus denotes
a constant function on the assignments. And when ϕ is syntactically
simple we often omit the double brackets, writing simply ϕM instead
of [[ϕ]]M. For example if even is a one place predicate symbol in a
language (say, the language of elementary arithmetic) we would write
evenM instead of [[even]]M.

Some simple logical equivalences. Here are some useful logical
equivalences involving the quantifiers and negation:

(22) a. ∀xϕ ≡ −∃x− ϕ
b. ∃xϕ ≡ −∀x− ϕ
c. −∀xϕ ≡ ∃x− ϕ
d. −∃xϕ ≡ ∀x− ϕ

The universal and existential quantifiers are duals of each other, just
as and and or are (and just as � (necessity) and ♦ (possibility) are in
modal logic). The interpretations of and, all, � are meet operations,
and those for or, some, and ♦ are join operations.
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The rules which prefix a quantifier to a formula ϕ do not require
that the variable they use occur in ϕ (much less occur free). In lin-
guistic parlance first order languages allow vacuous quantification. It is
sometimes held that natural languages disallow it. In any event, (23a,b)
are well formed formulas in the language of first order arithmetic:

(23) a. ∀x(0 < 1)
b. ∃x(0 > 1)

Moreover such formulas pose no interpretative problem, not even a
special case. If x has no free occurrences in ϕ then

[[∀xϕ]]M = [[∃xϕ]]M = [[ϕ]]M.

This follows from our truth definition for quantified formulas (and uses
the Coincidence Lemma). Still Ss such as (23a,b) seem useless, so why
don’t we restrict the syntax of FOL to require that Qx can only com-
bine with a ϕ in which x occurs free? The answer is that such a re-
striction would force us to make many unenlightening restrictions on
meta-theorems. For example it is a meta-theorem that universal quan-
tification distributes over conjunction:

∀x(ϕ&ψ) ≡ (∀xϕ& ∀xψ).
Now if x was not free in ϕ but was in ψ it would occur free in (ϕ&ψ).
So the formula on the left of ≡ is well formed, but the one on the right
is not, since ∀xϕ is not a formula. So the natural distributivity meta-
theorem doesn’t hold in the more restrictive syntax, and the reason
does not seem enlightening.

Alphabetic variants. Every first order formula has infinitely many
alphabetic variants, all logically equivalent to it. For example (24a,b,c)
differ just by choice of bound variable, they are alphabetic variants and
logically equivalent. Definition 9.7 is the explicit definition.

(24) a. ∀x(Px→ Qx)
b. ∀y(Py → Qy)
c. ∀z(Pz → Qz)

Definition 9.7. For L a first order language with V its basic vocab-
ulary and VAR its set of individual variables, let π be a permutation
of VAR (so π is a bijection from VAR onto VAR). Extend π to V
by putting π(d) = d, all d ∈ V . Extend π to all sequences of symbols
s = 〈s1, . . . , sn〉 over V ∪Var by setting π(s) = 〈π(s1), . . . , π(sn)〉. Then
we define a formula ψ to be an alphabetic variant of a formula ϕ iff for
some such π, ψ = π(ϕ).
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Exercise 9.8. Show that the is an alphabetic variant of relation on
expressions is an equivalence relation.

One shows by induction on formula and term complexity that any
two alphabetic variants are logically equivalent. Here is the induction
principle on formulas that would be used:

Definition 9.8. Let L be the set of expressions of some first order
language. Then if K ⊆ L∗ satisfying conditions (a)–(c) below then all
formulas of L are in K:

a. All atomic formulas are in K.

b. K is closed under the formation of boolean compounds. That is,
if ϕ,ψ ∈ K then −ϕ, (ϕ&ψ), (ϕ or ψ), (ϕ→ ψ) and (ϕ↔ ψ) are
all in K.

c. K is closed under universal and existential quantification. That
is, if ϕ ∈ K then for all variables x, ∀xϕ and ∃xϕ ∈ K.

Thus to prove that all formulas have some property P let K be the
set of formulas with P and show that all atomic formulas are in K
and that K is closed under the formation of boolean compounds and
quantification.

We turn in a moment to one extension to the class of VBO’s—the
lambda operator—which makes the logic a more natural vehicle for
representing natural language. But let us note some general linguistic
properties of FOL. Little that we do later in this book presupposes this
material, but FOL is well studied and has many appealing linguistic
properties, to the point where it is not foolish to think of mathemat-
ical logic as a mode of linguistic analysis—but the languages studied
are mathematical ones (the language of Set Theory, Euclidean Geome-
try, Elementary Arithmetic for example) and increasingly programming
languages in computer science.

9.2 Some General Linguistic Properties of First Order
Logic (FOL)

Three of the four general properties of SL (Sentential Logic) we pre-
sented in Chapter 7 generalize to FOL, though the generalizations in-
volve significant enrichments in some cases.

Proposition 9.3. Both SL and any first order language are compact:
whenever a set K of sentences entails a sentence ϕ then some finite
subset of K entails ϕ.

Both SL and all first order languages satisfy interpolation, though
its statement must be enriched to take into account the richer syntax
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of FOL (which includes the logical constant =) and its proof is signifi-
cantly more complex (see Boolos and Jeffrey (1980) Ch. 23 and Monk
(1976) Ch. 22):

Proposition 9.4 (Craig’s Interpolation Lemma). For L a first order
language and ϕ,ψ sentences of L, if ϕ |= ψ then there is a sentence τ
of L such that

a. ϕ |= τ and τ |= ψ and

b. all non-logical constants occurring in τ occur in both ϕ and ψ.

As in SL the Craig Lemma is a kind of relevancy condition on entail-
ment. It says that whether some ψ is (non-trivially) entailed by some
ϕ depends just on what they have in common.

Soundness and Completeness generalize to the FOL case. Since
we have a greater diversity of syntactic structures in FOL (predicates
and arguments, quantifiers) we must extend the (syntactically defined)
deduction system with more derivational rules. For example, if we have
a line in a proof of the form ∀x(Px) and t is a term in our language,
then we must be able to infer P (t). But logicians have formulated (in
several ways) the deduction system(s) we need, yielding the following
elegant theorem, where S ⊢ ϕ says that there is a proof of ϕ from
premises in S:

(25) S |= ϕ iff S ⊢ ϕ
So again the semantic relation, entailment, is syntactically character-
ized by ⊢ relation. The left to right direction of (25) is completeness :
if ϕ follows from S then there is a proof of ϕ from premises in S. The
right to left direction is soundness—whenever we can derive ϕ from a
set of premises S then indeed S really does entail ϕ. Also (25) enables
us to give a linguistically useful equivalent statement of compactness.
Namely,

(26) For any set K of sentences in a first order language L, K has a
model iff every finite subset of K has a model.

(A set of sentences has a model M iff every ϕ ∈ K is true in M (that
is [[ϕ]]M = T )). To prove (26) from compactness as we defined it, note
that the left to right direction above is trivial: if some M makes every
sentence in K true then for any finite subset K ′ of K, every sentence
in K ′ is true in M. Going the other way, suppose that every finite
subset of K has a model. And leading to a contradiction assume that
K itself does not have a model. Then (vacuously) K |= ∃x(x 6= x), the
latter sentence having no models, so by completeness K ⊢ ∃x(x 6= x),
and since proofs are finite sequences of formulas only finitely many of
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the sentences in K were used in the proof. Let K ′ be such a set. So
K ′ ⊢ ∃x(x 6= x) whence by soundness K ′ |= ∃x(x 6= x). But that means
that K ′ has no model since any model of it would also have to be a
model of ∃x(x 6= x). And this contradicts our assumption that every
finite subset of K has a model. Thus compactness entails the displayed
sentence above (and in fact is equivalent to it, but we only need the
entailment case later).

Definability (Is English first order?). Here we are concerned with
whether the semantic analysis of English (or any other natural lan-
guage) can be given in the first order apparatus we spelled out above.
Coming at this question cold a “Yes” answer would seem discouraging.
Thorough grammars of natural languages run to several hundreds of
pages, and they don’t even pretend to enumerate just the expressions
competent speakers accept, nor, despite semantic insights, do they pro-
vide a systematic semantic interpretation of the sort we gave for FOL
above in just a few pages. Is it really plausible that we only need a
page and a half of semantic interpretation to represent what it takes us
hundreds of pages to spell out in the syntax? Nonetheless at a certain
point in the history of generative grammar linguists tended to assume
that something close to a first order semantics for a natural language
would suffice (See Chomsky and Lasnik (1977) for such an assumption,
albeit one that played no important role in their conclusions in that
article). Then several scholars debated whether certain (sometimes sub-
tle) aspects of English were or were not first order definable (Barwise
(1979), Hintika (1974), Gabbay and Moravcsik (1974), Guenthner and
Hoepelmann (1974), Fauconnier (1975), Boolos (1981)). Below we offer
a non-subtle argument that English is not first order: we exhibit a class
of naturally expressible quantifiers which provably cannot be defined
in FOL.

But first, idle curiosity aside, “Why should we care whether English
semantics can be expressed in first order?”. One reason is that FOL
has many very nice properties, of which we have begun to cite a few.
So if the syntax and semantic interpretation of English (or any other
natural language) can be given in first order that means that English
and presumably natural languages in general have these nice properties.
Perhaps more important scientifically, FOL is well studied and well
understood. So if we succeed in formulating English semantics in first
order we will have succeeded in representing something we are trying
to understand in terms of something we already understand. To some
extent,

Knowledge is translation from the unknown to the known.
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Thirdly, as we have noted above, many mathematical theories have
or admit of first order axiomatizations (meaning that the axioms of
the theory are first order sentences). Set theory is a crucial case in
point, as it is often held that most of mathematics can be coded in
set theory. Now regardless of the precise status of this latter claim, it
is clear that we can express a lot in first order formulas, so it would
be interest to learn whether the semantic analysis of natural languages
forces us beyond that or not. To support such claims, we must first be
clear about what it means to be first order definable. Let us give some
examples, both pro and con.

(27) a. There exist at least n things can be said in first order (for
each n ∈ N), but

b. There exist just finitely many things is not sayable in first
order, nor is There are infinitely many things.

Here is how we say There are at least 3 things. Let ϕ be defined by

ϕ = ∃x∃y∃z(x 6= y&x 6= z& y 6= z).

ϕ is clearly a first order sentence and for all models M, [[ϕ]]M = T iff
|EM| ≥ 3. A common way of putting this would be,

(28) for all models M, M |= ϕ iff 3 ≤ |EM|.
So the models that satisfy ϕ are just those whose domains have at
least three elements. And in general for any n ∈ N , we can say There
are at least n things in a comparable way: we begin with n existential
quantifiers using distinct variables and form the conjunction of all the
non-equals sentences using all distinct pairs of these variables. So all
we need is the logical predicate =.

Now consider (27b). Negative claims like (27b) are harder to estab-
lish than positive ones like (27a) since we have to show that no first
order formula ϕ is true in a model iff its domain is finite. Intuitively
the sentence we need would have the meaning of an infinite disjunc-
tion: There is at least one thing or there are at least two things or ... at
least three things, etc. But first order languages do not have infinitely
long sentences, so this is not a possibility. To prove that there is no
first order sentence with the property we want we use the compactness
property of FOL noted above (and which may have seemed unduly
“mathematical” on first pass).

Proof. Let Φ = {ϕn | n ∈ N}, where ϕn is the sentence There exist
at least n things. Let ψ be the sentence There exist just finitely many
things. Then any finite subset K of Φ ∪ {ψ} has a model. Just choose
EM to be {1, 2, . . . , n} where n is the largest number such that ϕn ∈ K.
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The model is finite so ψ is true (whether it is in K or not) and each ϕm

in K is true in M. Thus every finite subset of Φ∪ {ψ} has a model, so
by compactness (if our language is first order) the entire set Φ∪{ψ} has
a model M. But it doesn’t since if ψ holds M is finite, of cardinality
m say, so ϕm+1 is false in M so M is not a model for Φ ∪ {ψ}. So a
language which can say There are just finitely many things is not first
order.

As an easy corollary we infer that There are infinitely many things
is also not a first order statement, otherwise its negation, There aren’t
infinitely many things, would be a first order statement that meant
There are just finitely many things. And from these observations it is
a small step to show that the quantifiers in (29) are not first order
definable:

(29) a. Just finitely many sentences have fewer than ten words.
b. Infinitely many sentences have more than ten words.
c. All but finitely many sentences have more than ten words.

Let us say explicitly what it means for an English-type quantifier
(including the mathematical ones above) to be first order definable.
In the simplest cases in English quantifiers such as all, some, no, most,
several, not all, most but not all, nearly forty and infinitely many others
(Chapter 11) are Determiners which combine with a common noun such
as poet to form a DP, which combines in the basic case with a P1 to
form a P0, as in All (most, no, some) poets daydream.

Definition 9.9. For D a functional which associates with each domain
E a function DE from P(E) into [P(E) → {T, F}], D is first order iff
there is a sentence ϕ in a first order language whose only non-logical
constants are two one place predicate symbols P ,Q such that for all
models M for L,

M |= ϕ iff DEM
PMQM = T.2

For example to see that exactly one is first order, definable set

ϕ = ∃x((Px&Qx)& ∀y((Py&Qy) → y = x)).

And taking exactly one to map sets A,B to T iff |A∩B| = 1 we can
prove that (exactly one)EPMQM = T iff [[ϕ]]M = T , showing that
ϕ defines this quantifier.

If the only English quantifiers that lay beyond the first order bound-
ary used technical notions like (in)finite we might not, as linguists,

2PM here is the set of b ∈ E that [[P ]]M maps to T (under any assignment).
Analogously for QM.
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regard the boundary as very constraining. So we note a few additional
cases, the first showing that first order definability may be subtle in
appearance (unlike the unsubtle appearance of words like finite, etc.).

First, quantifying over natural numbers is usually not first order
definable and some statements that do that do not do it in an obvious
way. Adapting informally an example from Kolaitis (2006) to whom we
refer the reader for a precise statement and proof, let us consider the
set T [r, b] of trees with r the root and b a leaf node distinct from r. Let
ϕn be the statement There is no path of length n or less from r to b.
Set Φ = {ϕn | n ∈ N} and let ψ say For all distinct nodes x, y there
is a path from x to y or a path from y to x. (Recall that a path was
defined to be a finite sequence of distinct nodes satisfying certain (first
order) conditions). Let K be any finite subset of Φ ∪ {ψ}. Clearly K
has a model: just choose the tree to be a chain with n distinct nodes
between r and b. The path from r to b has length n + 1 and that is
the only path from r to b so there is no path of length n from r to
b. Further ψ obviously holds in every chain. By compactness Φ ∪ {ψ}
should have a finite model. But it doesn’t, as Φ ∪ {ψ} |= ϕn for every
n > 0. (Kolaitis shows a stronger result—connectivity is not first order
definable even over finite models).

Our last examples are again drawn from natural language proper.
The first concerns proportionality quantifiers like most in the sense
of more than half. Such quantifiers include fractional and percentage
expressions such as a third of, seventy per cent of, as well as a variety
of constructions whose meaning is proportional but are not constructed
with of as partitives are: seven out of ten (sailors smoke Players), not
one student in ten (knows the answer to that question). Now Barwise
and Cooper (1981) provide a summary argument that more than half is
not first order definable (even limiting ourselves to finite domains). The
techniques introduced in Westerst̊ahl (1989)) can also be used. And in
general when D is properly proportional (D is not a boolean function
of 100% (= all) and 0% (= no), and the truth of D(A)(B) depends on
the proportion of As that are Bs) D is not first order definable. Without
reconstructing the “back and forth” methods used in the proof, we may
help convince the reader of the non-first-orderizability of most and its
kin by observing that we could explicitly enumerate the cases of Most
As are Bs if there were just finitely many As and we knew how many.
For example, for |A| = 5, Most As are Bs is true iff at least three of
the five As are Bs. And at least 3 of the 5, and more generally at least
n of the m, for n,m ∈ N, are first order definable. So intuitively most
could be expressed by a disjunction of the form: at least two of the three
or at least three of the four or at least three of the five,... but, as with
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finite, we cannot form an infinite disjunction in first order. So we see
that proportionality quantifiers pose problems comparable to those of
more mathematical predicates.

Moreover the proportionality cases also serve to show that cardinal
comparisons are not definable in first order. Such comparatives are
illustrated in (30). Note that they combine with two Nouns and a P1 and
so denote functions mapping three subsets of the domain into {T, F}.
(30) a. More students than teachers came to the party.

b. John interviewed exactly as many men as women.
c. More than twice as many men as women get drafted.

If more...than... were first order definable then we could define most by
saying Most As are Bs iff More As that are Bs than As that are not Bs
exist. But since most in this sense is not first order definable neither is
more...than... or the infinitely many other cardinal comparatives.

Decidability however does not fully carry over from SL to FOL.
There is no algorithm that tells us for an arbitrary first order sentence
ϕ that it is true in all models if it is, and that it isn’t, if it isn’t (Church
(1936), Turing (1936)). On reflection this is not surprising. Many quite
non-trivial mathematical theories, such as Set Theory, Group Theory,
and Elementary Arithmetic, have or can be given axioms in first order.
And many proofs from these axioms seem non-obvious, ingenious, or
complicated. So it would be surprising to learn that we could program
a computer to look at any first order formula we wrote down and tell
us that it is true if it is and that it is false if it isn’t.

On the other hand, while validity is not decidable in FOL, it
does have a weaker property—that of being semi-decidable (Ender-
ton (1985)), also called in this case recursively enumerable. By the
completeness of FOL we know that if a first order ϕ is valid then there
is a proof of ϕ (from no premises). A proof is a finite sequence of
formulas and whether a finite sequence of formulas is a proof or not
is decidable. Thus there is a mechanical procedure which tells us that
an arbitrary ϕ is valid if it is, but no procedure which tells us that
ϕ is not valid if it isn’t. We note that if a set, say the set of valid
formulas in some first order language, is recursively enumerable and its
set theoretic complement is also then the set itself is decidable (also
called recursive).

In fact, not only is validity (truth in all models) undecidable in FOL,
so is satisfiability: there is no algorithm that will say of an arbitrary
first order sentence whether it has a model or not.

There are however some special cases, of some linguistic interest, in
which decidability is restored. Here are two:
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(31) a. FOL with at most two variables is decidable (Mortimer
(1975), Grädel et al. (1997)). Decidability is lost when we
allow even three variables (Kahr et al. (1962)).

b. Monadic First Order Logic is decidable (Boolos and Jeffrey
(1980) Ch. 25) but FOL with even one n > 1 place
predicate is not decidable (Boolos and Jeffrey
(1980) Ch. 22).

Concerning (31a), some axioms for familiar theories crucially use for-
mulas in three variables. The statement of distributivity in the defining
conditions for boolean lattices is one such. Recall, that a lattice (L,≤)
is distributive iff

(32) a. ∀x, y, z(x ∧ (y ∨ z)) = ((x ∧ y) ∨ (x ∧ z)), and
b. ∀x, y, z(x ∨ (y ∧ z)) = ((x ∨ y) ∧ (x ∨ z)).

Similarly the claim that an order relation is transitive, (21c) or that a
binary function (like ∩, ∧) is associative ((A ∩ B) ∩ C) = (A ∩ (B ∩
C)) uses three variables in an essential way. And impressionistically
when verifying that a given mathematical structure satisfies various
conditions–say that some given partial order relation meets the con-
ditions for being a boolean lattice—it is the conditions using three
variables which are the hardest to verify. (31a) is a logical correlate of
this impression.

Concerning (31b), a language L is monadic first order if all its pred-
icates are at most unary (so it has no n-place predicate symbols for
n > 1). For such an L there is an algorithm which tells us for any
sentence ϕ in L whether it is valid or not. Decidability here hinges
on the fact that Monadic FOL has the finite model property : If ϕ is
false in some model then it is false in a model with a finite domain,
where an upper bound on the size of the domain can be computed as
a function of the syntactic structure of ϕ—2k · r will do, k the number
of unary predicates in ϕ and r the number of variables (Boolos and
Jeffrey (1980)). So to verify ϕ we “merely” check the finite number of
models of that size or less. If ϕ is not false in any of them then it is
valid (logically true). Otherwise it is not.

This apparently technical fact is of some linguistic interest. One
might have thought that the reason it is harder to evaluate whether a
formula is valid in FOL compared to SL is due to the quantifiers, which
allow us to make claims about arbitrarily many objects, in particular
about infinitely many. And doubtless this is where some of the com-
plexity of FOL comes from. But not all of it. Monadic FOL has the full
range of quantifiers and variables as in full FOL and validity is decid-
able. But adding a single two place predicate symbol to Monadic FOL
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results in a loss of decidability (Boolos and Jeffrey (1980) Chs. 22, 25).
So we see that having two (and greater) place predicates in our lan-

guage significantly increases logical complexity. And in the syntactic
and semantic analysis of natural language many of the phenomena we
study are only, or primarily, significant when transitive (and ditransi-
tive) verbs are considered. For example, the basic concern of Binding
Theory is mostly of interest when we are binding co-arguments of a
given predicate. If English had only one place predicates reflexive pro-
nouns would probably not exist. ∗Himself walks is ungrammatical, it
seems, as is ∗Himself criticized Dana, but Dana criticized himself is
fine, as are Dana sent himself flowers and He often treats himself to
a fine cognac after dinner. Equally morphological causatives (Turkish,
Malagasy, Tsez) primarily make P2s from P1s (and also often P3s from
P2s):

(33) Malagasy; Austronesian:

a. mihomehy
laugh

izy
3nom

‘He is laughing.’
b. mampihomehy

cause+laugh
azy
3acc

izy
3nom

‘He is making him laugh.’

Similarly Passive primarily derives P1s from P2s and P2s from P3s. In
some languages (German, Turkish, Latin) it may in addition derive P0s
from P1s. (34) and (35) exhibit P1 and P2 derivations by Passive in
Kinyarwanda (Bantu).

(34) a. umugore
woman

[P2 a-ra-andik-a]

she-pres-write-asp

ibaruwa
letter

‘The woman is writing a letter.’
b. Ibaruwa

letter
[P1 i-ra-andik-w-a]

it-pres-write-Pass-asp

(n’umugore)
(by’woman)

‘The letter is being written (by the woman).’

(35) a. umugabu
man

[P3 y-a-haa-ye]

he-past-give-asp

umugore
woman

igitabo
book

‘The man gave the woman the book.’
b. umugore

woman
[P2 y-a-haa-w-e]

she-past-give-Pass-asp

igitabo
book

(n-umugabo)
(by man)

‘The woman was given the book (by the man).’
c. igitabo

book
[P2 cy-a-haa-w-e]

it-past-give-Pass-asp

umugore
woman

(n’umugabo)
(by man)
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‘The book was given to the woman by the man.’

And lastly, case marking and verb agreement paradigms, while serv-
ing a variety of functions, are most prominent with P2s and P3s, where
understanding requires that speakers be able to identify which DPs
bind which arguments of the predicate. There is no issue if the predi-
cate is monadic—one DP, one argument to bind. But with P2s if what
we hear in some language is praise Mary Sue we need a way to decide
if it means Sue praised Mary (per the word order conventions in Fi-
jian and Tzotzil (Mayan)) or it means Mary praised Sue (per the word
order conventions in Berber and Maasai). In languages with extensive
case marking, such as Latin, Warlpiri (Australia) and even Japanese,
word order may be fairly free preverbally, and it is the case marking
conventions we rely on to associate DPs with semantic arguments of
the predicates.

The non-utility of limiting ourselves to finite models. Wemight
have expected that we could simplify the task of semantic evaluation
and restore decidability by limiting ourselves to finite models (ones
whose domains are finite). Surely part of the undecidability results
depends on the fact that to evaluate the truth of a quantified sentence
we may have to search through an infinite domain. But it turns out
that restricting ourselves to finite domains doesn’t help:

Theorem 9.5 (Trakhtenbrot (1950)). Neither validity nor satisfiability
are decidable in FOL even if we restrict attention just to models with
finite domains.

In fact matters get worse. Trakhtenbrot’s theorem tells us that there
isn’t even a proof procedure for the set of formulas true in all finite
models. So the set of first order formulas true in all finite models
is not even recursively enumerable. See Lassaigne and de Rougement
(1993) pp. 177-180 for an exposition.

We end this section by discussing a characterization of FOL which
shows that we can not significantly increase its expressive power with-
out losing some of its “nice” properties, such as compactness or com-
pleteness and Löwenheim-Skolem (below).

Theorem 9.6 (Löwenheim-Skolem). For K a set of first order sen-
tences, if K has an infinite model then K has models in every cardi-
nality greater than or equal to |K|.

Loosely this theorem says that first order formulas can’t discrimi-
nate among different infinite cardinals. (Recall that |N| < |P(N)| <
|P(P(N))| < · · · ). This is not surprising given that we can’t even de-
fine infinite in first order. Our interest in the theorem is partly the role
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it plays in the Lindström theorems (see Flum (1975)) but also its util-
ity in showing directly that some quite natural English constructions
imply cardinal comparison and thus are not first order. The following,
surprising, observation is due to Boolos (1981):

Theorem 9.7. For A,B one place predicates, the sentence “For every
A there is a B” is not expressible in first order logic.

An illustrative example from Boolos is For every philosopher that
has studied Spinoza thoroughly, there is one that hasn’t even read the
Ethics. A catchy example (which Boolos credits to E. Fisher) is For
every drop of rain that falls a flower grows. Boolos points out that For
every A there is a B is not correctly represented by the first order
formula ∀x(Ax→ ∃yBy) which just says (on reflection) that if there is
an A then there is a B. It is logically equivalent to (∃xAx → ∃yBy).
Moreover we understand the association that For every A there is a B
enforces between the As and the Bs to be one to one. Different drops of
rain correspond to different flowers (though there may be some flowers
unrelated to any drop of rain). Thus in effect For every A there is a
B says that there is a one to one map from the set of As into the set
of Bs, that is, |A| ≤ |B|. And the direct proof of Theorem 9.7 is as
follows.

Proof. Let ϕ(n) be There are at least n Bs (which we have already
seen how to represent in first order). Suppose, leading to a contradic-
tion, that ψ(A,B) is a first order sentence expressing that |A| ≤ |B|,
−ψ(A,B) says that |A| > |B|. Set K = {ϕ(n) | n ∈ N} ∪ {−ψ(A,B)}.
Clearly any finite subset K ′ of K has a model: for n the largest number
such that ϕ(n) is in K ′ choose B to be the n-membered set {1, 2, . . . , n}
and choose A = {1, 2, . . . , n, n + 1}, so |A| > |B|. So by compactness
K itself has a model. But |K| = |N| so by Löwenheim-Skolem K has
a model with just |N| elements. And |B| = |N| since B is the set of
natural numbers. So A is a subset of a set of cardinality |N| and so
cannot have cardinality greater than |N| = |B|, a contradiction.

In fact the same technique here can be used to show that propor-
tional most (in the sense of “more than half” is not first order. We note
first that

(36) most(A)(B) = T iff |A∩B| > |A−B|, iff ¬(|A−B| ≤ |A∩B|).
Now we go through Boolos’ proof working with ψ(A − B,A ∩ B)

instead of ψ(A,B). Specifically, let ϕ(n) be the first order formula ex-
pressing There are at least n As that are not Bs. For n = 3 for example
ϕ(n) = ∃x∃y∃z(x 6= y&x 6= z& y 6= z
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&Ax&Ay&Az&¬Bx&¬By&¬Bz).
Then set K = {ϕ(n) | n ∈ N} ∪ {¬ψ(A,B)} where ψ(A,B) says Most
As are Bs and is assumed expressible in FOL (leading to a contra-
diction). To see that each finite subset of K has a model choose n
maximal such that ϕ(n) ∈ K and set A = {1, 2, . . . , 2n + 1} and set
B = {n + 1, . . . , 2n + 1}. Then B lacks the first n elements of A so
|{A−B}| = n. A ∩B contains just the remaining n+ 1 elements of A
so |A∩B| = n+1 > |A−B|. So Most As are Bs is true in this model.
By compactness then K itself has a model. And since K is clearly denu-
merable K has a model of cardinality |N| by Löwenheim-Skolem. But
K entails that for every n there are at least n elements of A − B, so
that set has cardinality |N|. But A ∩ B is a subset of the domain of
cardinality |N| and so cannot have cardinality greater than |N| contra-
dicting that |A∩B| > |A−B|. Thus Most As are Bs is not expressible
in first order after all.

This ends our excursus into the linguistic properties of FOL. Let
us return now to the use of variable binding operators in representing
English.

9.3 Extending the Class of VBO’s: the Lambda
Operator

The merits of FOL as a translation target for English have been am-
ply attested in the literature. Its ability to represent binding and scope
ambiguities has proven enlightening. But as a language in which to
represent the meaning system of a natural language we want better,
preserving its merits of course. On the one hand it seems unenlighten-
ing to destroy basic constituents of English structure. If phrases like
every student, some student, etc. have no logical meaning why does
English use them? If we needed to tear apart English DPs to inter-
pret Ss containing them why don’t we speak in a language closer to
FOL to begin with? And second, we know that the expressive power
of FOL is limited. It cannot express proportionality quantifiers or car-
dinality comparison. I have more seashells than you do is not a first
order sentence.

So we return to L(Eng), enriching it with the lambda operator λ
yielding a language in which we can handle binding and scope am-
biguities but retain the presence of DP constituents like all/most/no
students which are directly semantically interpreted. We first enrich
the syntax of our language, and then say how the new expressions are
interpreted. Individual variables x, y, z, . . . are added in the category
NP.
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(37) λ abstraction (restricted)

syntax: If d is an expression of category C and x an individual
variable then λx.d is an expression of category NP\C. We
also often write λx(d) for λx.d.3

semantics: [[λx.ϕ]]M maps each assignment α to a function with
domain EM whose value at each b ∈ EM is [[ϕ]]M(αx→b).

So λx is a function creator: whatever type of object ϕ denotes, λx.ϕ
denotes a function mapping entities to those objects (when λx.ϕ has
no free variables—defined as before, but with the clause FV(λx.ϕ) =
FV(ϕ)− {x} added). Later we remove the restriction that the lambda
variable range just over the domain of the model. Thus, informally, in
the language of arithmetic λx.(x > 5) denotes a function mapping a
number n to T if n > 5 and to F otherwise. λx.(x criticize x)) maps
John to T iff “x criticized x” is true when x is set to denote John.
So it is true iff John criticized himself. Thus lambda allows us to bind
variables without introducing any universal or existential commitment.
Here are examples representing binding in L(Eng) with the lambda
operator.

(38) a. Every worker criticized himself.
a’. (every worker)λx.(x criticize x)
b. Most students respect themselves.
b’. (most student)λx.(x respect x)

In (38a’) x criticize x has category P0, so λx.x criticize x has cat-
egory NP\S = P1. every worker has category P0/P1 so it combines
with it to yield (38a’) of category P0. And as λx.x criticize x de-
notes the property of criticizing oneself (e.g. it holds of John iff John
criticized himself) our previous semantics tells us that (38a’) is true
iff worker ⊆ {b ∈ E | criticize(b)(b) = T}, that is, each worker is
an object that criticized himself. Note too that (38a) and (38b) have
the same syntactic form (except for plural marking in (38b)), and their
logical representations are syntactically isomorphic as well. This iso-
morphism is maintained by the Ss resulting from replacing every in
(38a) by other Dets, such as some, no, most, etc. So quantified DPs

3A slightly more accurate way of syntactically integrating the lambda notation
into L(Eng) is:

syntax: If d is an expression of category C and x a variable of category NP
then λx.d is an expression of category NP\C if C = S and of category C/NP
otherwise.

In practice lambda expressions are primarily used in contexts where semantic inter-
pretation is the issue so expressions are typically just written in function-argument
order, as we will usually do.
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are directly interpreted, not destroyed as in standard FOL translation
semantics.

This approach also has the advantage that we can represent cases
in which antecedents of anaphors, such as every worker in (38a) and
most students in (38b), are not representable at all in first order, as is
the case with most students.

Quantification and variable binding
are independent operations.

Shortly we turn to some more complicated cases of binding and
then of scope ambiguities, indicating the very significant utility of the
lambda operator. But let’s pause for a moment to wonder whether we
have not lost something in eliminating the classical universal and exis-
tential quantifiers in favor of GQs. We have clearly gained something,
the ability to represent binding by DPs like most students. But the
classical semantics for universal and existential quantifiers made their
boolean nature (glb, lub) apparent, whereas our set theoretic interpre-
tations, repeated in (39), are not so directly boolean.

(39) a. every(A)(p) = T iff A ⊆ {b ∈ E | p(b) = T}
b. some(A)(p) = T iff A ∩ {b ∈ E | p(b) = T} 6= ∅

However these definitions have simpler equivalent formulations which
are directly boolean (Keenan and Faltz (1985)) and indeed prove to be
more useful than those above in certain contexts:

(40) a. every(A) =
∧{Ib | b ∈ A}

b. some(A) =
∨{Ib | b ∈ A}

Recall that Ibs are individuals—denotations of proper nouns, like John,
and are defined by:

(41) For all properties p ∈ [E → {T, F}], all b ∈ E, Ib(p) =df p(b).

So in a given model, every(A) in (40a) would denote the same function
as John and Mary and Sue... where the proper names run through the
individuals in A. And the definition in (40a) yields the same result
when applied to a property p as our earlier set theoretic definition:

(42) every(A)(p)
= (

∧{Ib | b ∈ A})(p) Def every in (40a)
=

∧{Ib(p) | b ∈ A} Pointwise meets
=

∧{p(b) | b ∈ A} Def individual
= T iff for every b ∈ A, p(b) = T Def glb in { T,F }
= T iff A ⊆ {b ∈ E | p(b) = T} Set Theory

The last line above is exactly the truth conditions for every(A)(p) on
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our earlier definition in (39a). And in a similar way (40b) shows that
some A denotes the same as John or Mary or Sue... where the proper
names run through the individuals with property A. Thus existential
DPs behave denotationally like arbitrary disjunctions.

Exercise 9.9. Fill in the lines below proving that our two definitions
of some are equivalent.
some(A)(p) = (

∨{Ib | b ∈ A})(p)
=
...
= T iff A ∩ {b ∈ E | p(b) = T} 6= ∅

We turn now to some (slightly) more complicated cases of binding.
Observe that (43a) is ambiguous according as Bill is a threat to himself,
(43b), or John is a threat to Bill, (43c).

(43) a. John protected Bill from himself.
b. λy.(john protected y from y)(bill)
c. λy.(y protected bill from y)(john)

Exercise 9.10. On the informal pattern of (43) use lambda binding
to represent the binding in each of the Ss below.

a. Some doctor protected himself from himself.
b. Some doctor didn’t protect himself from himself.
c. Some woman protected every patient from himself.
d. John protected himself from himself and so did Bill.

Exercise 9.11. Using lambda represent the two readings of the S
displayed below. On one his is bound to every child and on the other
it isn’t bound at all.

Every child loves his mother.

We note that lambda can be used to bind long distance (across clause
boundaries) as well:

(44) a. Each student thinks that every teacher likes him.
b. (each stdnt)(λx.(x thinks every teacher likes x))

We turn now to the use of lambda in representing scope ambiguities,
as in (45a). Recall that our mode of direct interpretation (Chapter 7)
with DPs interpreted in the position in which they occur in natural
English captured the ONS (Object Narrow Scope) reading directly. But
we didn’t provide a way to represent the OWS (Object Wide Scope)
reading. Now we can.

(45) a. Some student praised every teacher.
b. OWS: (every teacher)(λx.(some student praised x))
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9.3.1 Generalizing the use of the lambda operator

Our examples so far have just combined λx with P0s (formulas) to
form a P1. But we find instances of binding and scope ambiguities in
expressions of other categories. For example, let us add nominals like
friend of, colleague of, etc. to L(Eng) as expressions that combine with
a DP on the right to form an N, as in (46a).

(46) a. [some[friend-of[every senator]]]
b. (every senator)(λx.some friend of x)

In (46a) friend of every senator denotes a property, one that
someone has iff he is a friend of every senator. And as usual with ex-
istentially quantified expressions, (46a) denotes the least upper bound
of the individuals with that property.

But the wide scope reading of every senator in (46b) might be read
as for every senator, some friend of his. It denotes the greatest lower
bound of some friend of x1, some friend of x2, . . . where the xi run
through the individuals with the senator property. The interesting fact
here is that the ambiguity seems local to the DP, rather than being an
essential S-level ambiguity.

More widely used in linguistic description are cases where lambda
binds a variable of type other than the type of individuals. This allows
for more complicated lambda expressions than we have used so far, so
it will be useful to introduce a widely used type notation which helps
us check both the well formedness of lambda expressions and their
semantic interpretation. Type will be a set whose elements are used to
index expressions in such as way as to identify the set in which they
denote (in a given model). Here first is a standard, minimal, set of
types.

Definition 9.10. Type is the least set satisfying:

a. e ∈ Type and t ∈ Type, and

b. if a, b are both in Type then (a, b) ∈ Type.

An expression of Type t will denote in the set {T, F} of truth values,
noted denE(t) = {T, F}. An expression of Type e will denote in the do-
main E of a model, so denE(e) = E. So the primitive Types correspond
to the semantic primitives of the language. And in general an expres-
sion of Type (a, b) will denote a function from the denotations of Type
a to those of Type b. That is, denE(a, b) = [denE(a) → denE(b)]. For
example, an expression of Type (e, t) is just a property, a map from
E into {T, F}. Common nouns like doctor and P1s like laugh have this
Type in our treatment (which has not represented tense which usu-
ally shows up on P1s but not on Ns). An expression of Type (e, (e, t))
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denotes a binary relation, one of Type ((e, t), t) the Type of subject
DPs, such as he and she, and ((e, (e, t)), (e, t)) the Type of object DPs,
such as him, her, himself, and herself. Here is a “Type tree” for the
P0 Kim praised Sasha from L(Eng) assuming Kim and Sasha are NPs
(not DPs) here.

(47) t
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||
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||
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(e, t)
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e (e, (e, t)) e

Kim praised Sasha

Note that assigning a type to DPs treated polymorphically as we
have done appears problematic, with our minimal set Type, since as
subjects DPs map P1s to P0s and should have type ((e, t), t) like he and
she, but as grammatical objects they map P2s to P1s and should thus
have type ((e, (e, t)), (e, t)), like him and himself. So we shall extend the
(standard) type notation above by adding (pn+1, pn), where we think
of pn+1 and pn as variables ranging over the types for Pn+1s and Pns
respectively. We take its denotation set in a model M to be the maps
from the union of Pn+1s into the union of the Pns given in Definition
7.20 in Chapter 7.

(48) t
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(e, (e, t)) ((e, (e, t)), (e, t))
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((e, t), ((e, t), t)) (e, t) ((e, t), ((e, (e, t)), (e, t))) (e, t)

every stdnt praise every stdnt

So here the two occurrences of every and the two of every student have
different types, reflecting in fact their different interpretations.

Exercise 9.12.

a. What type would you assign to manner adverbs (slowly, gleefully,
etc.) given that they combine with P1s to form P1s?

b. Exhibit a plausible type tree for Ruth talks rapidly.

c. Exhibit a type tree for the P0 every student criticized himself.

d. Assume you can only coordinate expressions of like category.
Make a sensible guess at a type tree for John criticized both him-
self and the teacher.
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e. How might we assign types to Prepositions (to, for, from, with,...)
so that they combine with DPs to form predicate modifiers such
as with every teacher in Kim spoke with every teacher. Using your
type assignment exhibit a type tree for the (i), (ii) and (iii) below,
and then say why we have no type for (iv).

i. Kim spoke with every teacher.
ii. Kim spoke with him.
iii. Kim talks to himself.
iv. ∗Kim talks to he.

We have so far used the lambda operator to bind variables of type
e in expressions of type t. Here is a simple illustrative type tree using
the lambda operator in this way:

(49) t
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John λx x criticized x

In (49) λx combined with an expression x criticized x of type t to
form an expression of type (e,t). We now generalize the use of lambda
so that it can bind variables of any type σ in expressions of any type τ ,
forming expressions of type (σ, τ).

Exercise 9.13. Consider the use of the lambda operator in the P0
below. What is the type of the expression it combines with and what
type does it build?

[Mary[Dana[λx[protected x from x]]]]

The more general use of the lambda operator allows variables of all
types. To know what type is intended we either say it explicitly in the
text or we subscript the variable with its type. Thus the property of
criticizing oneself which we represented above as λx(x criticized x)
would now be represented as λxe(x criticized x). It has type (e,t). In
general if x is a variable of type σ and d an expression of type τ then
λx.d has type (σ,τ). For the formal record,

Definition 9.11 (Lambda Extraction (unrestricted)).

a. Syntax: For x a variable of type σ and d an expression of type τ
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λx.d is of type (σ, τ).

b. Semantics: For each model M, each assignment α and each
b ∈ denE(σ), [[λx.d]]M(α)(b) = [[d]]M(αx→b).

The definition in 9.11 assumes that we have denumerably many vari-
ables of all types and that an assignment α maps each variable of each
type to the denotation set associated with that type.

Now English presents a variety of expressions in which we bind ex-
pressions of type other than e, so the more general use of lambda is
enlightening. Consider for example the use of the “pro-verb” so do in
(50a). We might represent this binding as in (50b)

(50) a. John laughed and so did Bill.
b. λq(e,t)(john q and bill q)(laugh)

To verify that (50b) is of type t and thus a truth value denoting ex-
pression, here is its type tree:

(51) t
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λq(e,t) (john q and bill q) (laugh)

As lambda expressions become more complicated sketching their
type tree is a useful way to verify that our expressions are well formed
and have the type we want them to. For example in the next exer-
cise some of the sisters to lambda expressions are themselves lambda
expressions.

Exercise 9.14. Exhibit lambda representations for each of the follow-
ing. Give two representations in cases where the expression is marked
as ambiguous:

a. John didn’t laugh and neither did Bill.

b. John criticized himself and so did Bill.

c. No philosopher thinks he’s clever and Bill doesn’t either.
(not ambiguous with he bound to no philosopher)

d. John thinks he’s clever and so does Bill.
(Two readings, with he bound in both)

e. The woman that every Englishman likes best is his mother.
(with his bound to every Englishman)
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Simplifying lambda expressions

The increasing complexity of lambda expressions can be lessened by
various reduction operations. Here are three widely used techniques.

First, it is often useful to “rename variables”, that is, to replace a
lambda expression with an alphabetic variant. This is sometimes re-
ferred to as α-conversion, and is occasionally necessary when applying
other reduction mechanisms discussed below.

Second, if we syntactically combine a lambda expression λx.ϕ with
an expression b of the same type as the variable x introduced by λ and
usually written after the lambda expression (λx.ϕ)(b), our semantics
tells us that, with one restriction (Trap 2 below), this expression is
logically equivalent to the one we get by replacing all free occurrences
of x in ϕ with b, noted ϕ[x\b]. For example:

(52) (λx.Mary protected x from x’s father)(b)
≡ (Mary protected x from x’s father)[x\b]
= Mary protected b from b’s father.

This process of substitution is called β-conversion (or β-contraction)
here noted ⇒.

Exercise 9.15. For each expression below give the step by step result
of applying β-conversion. The first case is done to illustrate the step by
step process. The last two examples involve vacuous binding.

a. (λx.(λy.[[love x]y])(j))(m)
⇒ (λy.[[love m]y])(j)
⇒ [[love m]j]
(“john loves mary”)

b. (λy.(λx.[[love x]y])(j))(m) ⇒
c. (λx.[sleep (j)])(m) ⇒
d. (λx.(λx.[[love x]x])(j))(m) ⇒
In general if x is not among the free variables of ϕ then λx.ϕ(b) ⇒ ϕ.
In reasoning with complex expressions using many lambdas the use

of β-conversion may be helpful in reducing their level of variable binding
complexity (but not always). But in using β-conversion there are two
traps you must be aware of:

Trap 1. β-conversion can not apply when the variable and the replac-
ing expression have different types. For example in (53a) we cannot
replace the x’s, of type e, with some student, taken here for illustra-
tive purposes to be of type ((e,t),t). If we do substitute we obtain (53b)
which does not have the same meaning as (53a), and we intend of course
that β-conversion preserve meaning..
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(53) a. (some student)λxe(x laughed and x cried)
b. ∗(some student laughed and some student cried)

Trap 2. The expression we replace the variable with must not itself
contain free variables that would, after the substitution, occur in the
scope of a VBO already present in the host expression. For example,
using variables p of type t, (54a) β-converts to (54b), but we cannot ap-
ply β-conversion to (55a), as the variable x in ‘dance(x)’ would become
bound by a quantifier already present in the host expression.

(54) a. (λpt(∃x(sang(x)& p)))(danced(y))
b. ⇒ ∃x(sang(x)&danced(y))

(55) a. (λpt(∃x(sang(x)& p)))(danced(x))
b. ; ∃x(sang(x)&danced(x))

Some authors (see Hindley and Seldin (1986)) allow conversion in
cases like (54) building in that we trade in the host expression for an
alphabetic variant with a totally new variable thereby avoiding the
unintentional binding problem. We can always do this since we have
infinitely many variables and each formula only uses finitely many. For
example if we trade in the host expression (λpt(∃x(sang(x)& p))) in
(54a) for (λpt(∃z(sang(z)& p))) then we can correctly derive the β-
reduced form ∃z(sang(z)&danced(x)).

Exercise 9.16. Represent each of the expressions using lambda bind-
ing and then present the result of applying β-conversion. I illustrate
with the first example.

a. John said he would pass the exam, and pass the exam he did
(Topicalization)
λx.((x say x pass the exam) ,&(λp(e,t)(p(x))(pass the exam))(j)
⇒ j say j pass the exam and (λp(e,t)(p(j))(pass the exam)
⇒ j say j pass the exam and j pass the exam

b. John said he would punish himself and punish himself he did
c. Bill I really like but Fred I don’t
d. What John is is proud of himself (Pseudocleft)
e. John bought and Bill cooked the turkey (RNR)
f. John interviewed the President and Bill the Vice President (Gap-

ping)

Exercise 9.17. Which of the following expressions can be β-converted?
In each case if your answer is “yes” exhibit the result of β-conversion. If
your answer is “no”, say why conversion does not apply. Then perform
a change of variables so that conversion does apply and exhibit the
result. Assume w, x, y, and z are all variables of type e, love is of type
(e,(e,t)).
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a. (λx.(λy.[[love x]y])(z))(w)
b. (λx.(λy.[[love x]y])(x))(y)
c. (λx.(λy.[[love x]y])(y))(x)

Exercise 9.18.

a. Draw the type tree for (i) below. It’s root node should be (e,t).
Then apply β-conversion and draw the type tree for the result.
It’s root node should also be (e,t).

i. λF(e,t)(λxe(Fx))(G(e, (e, t))(ye))
ii. ⇒

b. Can we apply β-conversion to iii. below? If we do what result do
we get? That result does have the right type, (e,t), but does not
denote the same function as the expression in ii.

iii. λF(e,t)(λxe(Fx))(G(e, (e, t))(xe))

A last reduction process, at times quite useful, is:

λxa.F(a,b)x⇒ F(a,b).

This reduction is reasonable since the value of the function denoted by
λxa.F(a,b)x at an argument d is the same as that denoted by F at d,
whence λxa.F(a,b)x and F are the same function.

λ Definitions of Quantifiers

We have been treating Dets, such as every, some, no, and most as
having type ((e,t),((e,t),t)). (We just need to define them in this type,
as we have already said how the interpretation is extended to maps
from n + 1-ary relations to n-ary ones, n > 0). And for Dets which
are first order definable we can find a first order formula such that by
lambda abstracting twice over property denoting variables will indeed
yield an expression of type ((e,t),((e,t),t)). For example we might define
every of this type by:

(56) every =df λp(e,t)(λq(e,t)(∀xe(p(x) → q(x)))

Using the definition in (56) the type tree for (57a) can be given as
in (57b):

(57) a. every student laughed.
b. t
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λp(e,t) λq(e,t) ∀x(p(x) → q(x)) student laugh
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Exercise 9.19. On the pattern in (56) define:

a. some
b. no
c. exactly one

We illustrate this way of representing quantifiers as the student may
encounter it in the literature, but we will not use it in what follows
since our set theoretical definitions are both notationally much simpler
and, crucially, more general. For example they treat proportionality
quantifiers such as most comparably to all, some, and no despite not
being first order definable.

9.3.2 Concluding reflection on scope and compositionality

The lambda operator gives us a means of representing the object wide
scope (OWS) reading of sentences like (58a), again using upper case
for denotations in a model.

(58) a. Every student knows some teacher.
b. ONS reading:

(every(student))(some(teacher)(know))
c. OWS reading:

(some(teacher))λx.((every(student))(know(x)))

Naively the ONS reading in (58b) is natural in that it just interprets
constituents of the expression is interprets. In particular some teacher
is assigned a meaning, and so is knows some teacher. But in (58c) in
order to get some teacher interpreted with scope over every student
we have destroyed the P1 constituent knows some teacher by lambda
abstracting over the object of know and forming an (e,t) type expres-
sion, namely λx.((every(student))(know(x))). This is unnatural as
we trade in the expression we are interpreting (58a) for a different one,
one with different c-command relations. In effect, we are interpreting
every student knows as a property, one that holds of an entity b just in
case (every(student))(know(b)) = T . And to do this we have intro-
duced the expression λ and two occurrences of the variable x, none of
which have an obvious exponent in English.

Are we free to lambda abstract freely when interpreting English ex-
pressions? With no constraints this would make expressions with many
DPs massively ambiguous. A sentence like Some dean thought every
student gave each teacher two apples would be 24 ways ambiguous ac-
cording to which of the four DPs had widest scope, then which of the
three remaining had next widest scope, etc. In general an expression
with n quantified DPs would be n! ways ambiguous if all scope inter-
pretations are possible. But while scope ambiguities do exist, as in the
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examples we have cited earlier, it does seem that in English Ss of the
form Subject+Verb+Object, there is an interpretative asymmetry: the
ONS reading is essentially always available and the object OWS read-
ing only available in limited cases. For example competent speakers
of English do not assert (59a,b) intending the OWS reading roughly
paraphrased in (59a’,b’).

(59) a. No student answered every question correctly.
a’. ∗OWS: Every question has the property that no student

answered it correctly.
b. Each student answered no question correctly.
b’. ∗OWS: No question has the property that each student

answered it correctly

Just how best to characterize object wide scope readings is, at time of
writing, still an actively researched question. One additional possibility
we offer for consideration here is function composition. Recall that when
F and G are functions with the range of G included in the domain of
F then F ◦ G is that function with domain G and codomain that of
F , given by: (F ◦ G)(b) = F (G(b)). We can think of the composition
operator, ◦, as a storage operator. It holds first F , then also G in store
until it gets an argument to which one may apply yielding a value that
the other can apply to. Compare the interpretations (in upper case) of
(60) and (63):

(60) most male doctors = (most(male(doctor))

The phrase most male not a constituent of (60) and is not inter-
preted. Generally complex constituents C are interpreted by Function
Application—one of Cs immediate constituents denotes a function tak-
ing the denotations of the other(s) as argument(s) and the interpreta-
tion of C is the value of that function at those arguments. Summarizing,
let us adopt this as a principle:

(61) Interpretive Principle 1 (IP1): Branching constituents, and
only branching constituents, are interpreted by Function
Application.

Now let us consider a second tier interpretative mechanism, one that
can only apply (and then not always) when IP1 cannot:

(62) Interpretative Principle 2 (IP2): Adjacent expressions
which are not sisters may be interpreted by function
composition when their domains and ranges allow it 4.

4Refinement of IP2 is needed for the (seemingly) rare cases where adjacent non-
sisters denote functions that may compose in either order but with different mean-
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Note that IP2 provides a second way of interpreting (60) since most
and male are adjacent but are not sisters, and most and male may
compose as (most ◦ male). Abbreviating (e,t) by p, male has type
(p,p) it maps properties (doctor) to properties (male(doctor)).
mosthas type (p,(p,t)), so most ◦male has type (p,(p,t)) and

(63) (most ◦male)(doctor) = most(male(doctor)).

So interpreting most male doctors this way has the same value as in
(60), so it buys us nothing. But consider the more enlightening case in
(64).

(64) a. Most male and all female doctors (objected to that).
b. ((most ◦male) ∧ (all ◦ female))(doctor)

= (most ◦male)(doctor) ∧ (all ◦ female)(doctor)
Pointwise ∧

= most(male(doctor)) ∧ (all(female))(doctor) Def ◦
In (64a) most and male are adjacent and do not form a constituent and
since the range of maleis the same as the domain of most, properties
in both cases, we may compose them in the order given. Similarly for
all and female. And since most ◦ male and all ◦ female lie in the
same boolean type, (p,(p,t)), we can take their greatest lower bound
(the first line in (64b), which provably behaves pointwise, justifying the
second line in (64b). So IP2 allows us to interpret the non-constituent
coordination in (64a) without recourse to lambda abstraction or syntac-
tic distortion. (Probably most linguists would think of deriving (64a)
syntactically from most male doctors and all female doctors by some
process of Right Node Raising (RNR) and, the claim would go, it is
this “underlying” expression which is compositionally interpreted. The

ings. One such case are certain adjectives, such as small and expensive. Both are
restricting: a small house is a house, as is an expensive house. Treating house as
of type (e,t), we may treat adjectives as of type ((e,t),(e,t)). That means in princi-
ple that they can semantically compose. Often only one order is natural: a Russian

medical text is a fine doubly modified expression, whereas ∗? a medical Russian text

is not. But small and expensive Keenan and Faltz (1985) are reasonably natural in
either order, and the different composition orders yield different results:

a. a small [expensive house] is small relative to expensive houses
b. an expensive [small house] is costly relative to small houses

It might be in some state of affairs that the smallest of the expensive houses were
large compared to houses in general, so none was a small house, not even an expen-
sive small house. So

(small ◦ expensive)(house) 6= (expensive ◦ small)(house).

In this case the choice between these two interpretations is the one in which the
initial function in the composition is the one denoted by the leftmost adjective in
the expression.
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distinct audible one in (64a) inherits that interpretation. This approach
does depend on an undefined syntactic operation (RNR). This defini-
tion is quite non-trivial; for example, it cannot derive (65a) from (65b)
preserving meaning.

(65) a. most male and all female doctors at some Midwestern
university

b. most male doctors at some Midwestern university and all
female doctors at some Midwestern university

The composition approach involves fewer complications (lambda ab-
straction, RNR) and just interprets what is said. It thus yields a more
direct account of why we speak the way we do rather than just us-
ing the underlying sources for expressions like (64a) and (65a). This
approach to natural language interpretation enforces a kind of truth-
in-advertising:

What you say is what you mean.

Cooper (1982) refers to this guideline as Wholewheat syntax (unen-
riched with inaudibilia).

Exercise 9.20. Illustrate how to interpret Bill I like without lambda
abstraction, just function composition and function application.

Returning now to object wide scope readings, we see that we can
insightfully use function composition here as well. Taking every editor
to be of the lowest type it can have, ((e,t),t) and read to be of type
(e,(e,t)) we see (66a,b) that every(student) composes with know to
yield a function of type (e,t), given below:

(66) a. [every student] [knows [some teacher]]
b. t

ttt
t

>>
>>

>>
>>

>>
>>

>

(e, t)

◦
JJJ

jjjjjj

((e, t), t) (e, t) ((e, t), t)

every(student) know some(teacher)

In (66a) every student asymmetrically c-commands some teacher. But
in the type tree (66b) for its semantic interpretation, we have inter-
preted the adjacent expressions every student and know by function
composition (they do not form a constituent and are not sisters).
So in the type tree, some(teacher) asymmetrically c-commands
every(student). So interpreting adjacent expressions by function
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composition allows a syntactically c-commanded DP to take semantic
scope over a c-commanding one. Further some(teacher) is a sister to
the property (every(student))◦know and by Function Application
maps it to a truth value. Consider now just what property is denoted
by ((every(student)) ◦ know. Its value at an entity b is given by:

(67) ((every(student)) ◦ know))(b)
= (every(student))(know(b)) Def ◦
= (λx.((every(student))(know(x)))(b) β-conversion

In other words, the composition of every(student) with know is the
same function as that obtained by lambda abstraction in

λx.((every(student))(know(x))).

Thus in this case we obtain the same semantic result but without using
the lambda operator or bound variables. Once again Occam’s Razor
cuts our way. To summarize the differences in the two approaches:

(68) a. The lambda abstraction approach gets the object wide
scope reading of Ss like (58a) by assigning the English
expression two different syntactic representations, each one
compositionally interpreted (just by Function Application).

b. The function composition approach does not change the
logical syntax of the expression—it only interprets what we
see, but it is non-compositional in allowing
non-constituents to be interpreted (just by function
composition).

Exercise 9.21. Provide a type tree just using function composition
and function application for

(69) John bought and Bill cooked the turkey.

To conclude, we are not claiming that function composition is the
best way to represent scope ambiguities. We are only illustrating the
use of a mathematical tool which seems enlightening in some cases.
Its range of uses is a matter of further empirical investigation. Here
is a last suggestive case different in character from the syntactically
oriented ones above.

Several languages (German, French, Spanish, Italian, Greek, He-
brew) admit phonological words which are naturally interpreted as the
composition of a Preposition denotation with a definite article (the)
denotation. (70) from German illustrates the, roughly, optional con-
traction of an ‘on’ + dem (the: neuter sg.) to am:
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(70) Ich
I

habe
have

mich
me

{
{

an
on

dem
the:dat

/
/

am
on+the

}
}

Regal
bookshelf

verletzt
hurt

‘I hurt myself on the bookshelf.’

German admits of about ten such combined forms. Ones like am above
can perhaps be treated as optional “contractions”, the interpreted form
just being the uncontracted an+dem. So to interpret the S with am
we would modify its syntax, replacing am with an dem. However, we
could directly interpret am by listing it as a lexical item and specifying
its semantic interpretation as an ◦ dem. The latter approach seems
more strongly motivated when the “contraction” is obligatory, as is the
case with such forms in French and Hebrew. Thus in French á + le
‘to the:m.sg’ is obligatorily realized as au (/o/). And ‘from the:m.sg’ is
obligatorily du rather than de+le. In contrast no short form is available
with the feminine sg. article la, as we see in (71a).

(71) a. Je
I

rentre
return

á
to

la
the:fem.sg

maison
house

á
at

midi
noon

‘I return home at noon.’
b. Le

The:masc.sg
bureau
office

est
is

fermé
closed

le
the

soir
evening

‘The office is closed in the evening.’
c. Je

I
vais
go

au
to+the:m.sg

(∗á
(∗to

le)
the:m.sg)

bureau
office

á
at

huit
eight

heures
hours

le
the

matin
morning

‘I go to the office at 8 o’clock in the morning.’

Here it would seem a simple matter to enter au and du in the French
lexicon with the meanings a◦le and de◦le. In a similar way in Hebrew
‘to the’ is obligatorily la, whose meaning is l@ ◦ha, the composition of
the denotation of the goal locative l@ with that of the definite article
ha. Similarly ‘at + the’ is obligatorily ba = b@ ◦ha. (72a,b,c) illustrate
the goal locative case.

(72) a. ha-more
the-teacher

moxer
sells

sfarim
books

l@-studentim
to+students

‘The teacher sells books to students.’
b. ha-studentim

the-students
lo
not

baim
come

mukdam
early

‘The students don’t come early.’
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c. ha-more
the-teacher

moxer
sells

sfarim
books

la-studentim
to+the-students

‘The teacher sells books to the students.’

To conclude, we note that the linguistic literature concerning scope
ambiguities, binding and compositional interpretation is massive, well
beyond the scope of a text such as this. For a sample of approaches we
refer the reader to Heim and Kratzer (1998), Szabolcsi (1997), Barker
and Jacobson (2007), Moortgat (1996), and Steedman and Baldridge
(2007).
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Semantics IV: DPs, Monotonicity

and Semantic Generalizations

In this chapter we focus on semantically based generalizations con-
cerning English DPs. An important, even tantalizing, role is played by
monotonicity properties.

10.1 Negative Polarity Items

We begin with a classical observation in generative grammar which
concerns the distribution of negative polarity items (npi ’s) like ever
and any. Klima (1964) observed that npi’s do not occur freely but
require negative contexts, such as n’t or not, as in:

(1) a. John hasn’t ever been to Pinsk.
b. ∗John has ever been to Pinsk.

(2) a. John didn’t see any birds on the walk.
b. ∗John saw any birds on the walk.

However, certain DPs in subject position also license npi’s:

(3) a. No student here has ever been to Moscow.
b. ∗Some student here has ever been to Moscow.

(4) a. Neither John nor Mary know any Russian.
b. ∗Either John or Mary know any Russian.

(5) a. Neither student answered any question correctly.
b. ∗Either student answered any question correctly.

(6) a. None of John’s students has ever been to Moscow.
b. ∗One of John’s students has ever been to Moscow.

The a-expressions are grammatical, the b-ones are not. But the pairs
just differ with respect to their initial DPs, not the presence vs. absence
of n’t or not.

279
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Two linguistic problems:

1. Define the class of DPs which license npi’s, as above, and

2. State what, if anything, the licensing DPs have in common with
n’t/not.

A syntactic attempt (see for example Linebarger (1987)) to solve both
problems would be to say that just as n’t is a reduced form of not,
so neither...nor... is a reduced form of [not (either...or...)], none is a
reduction of not one, and no of not a. The presence of n in the reduced
forms is explained as a remnant of the original not1. So on this view the
licensing DPs above “really” contain a not, and that is what they have
in common with n’t. Note in support of this claim that DPs overtly
built from not do license npi’s:

(7) a. Not a single student here has ever been to Moscow.
b. Not more than five students here have ever been to

Moscow.

But this solution seems insufficiently general (Ladusaw (1983)): The
initial DPs in the a-Ss below license npi’s; those in the b-Ss do not.
But neither contains an n-word.

(8) a. Fewer than five students here have ever been to Moscow.
b. ∗More than five students here have ever been to Moscow.

(9) a. At most four students here have ever been to Moscow.
b. ∗At least four students here have ever been to Moscow.

(10) a. Less than half the students here have ever been to Moscow.
b. ∗More than half the students here have ever been to

Moscow.

(11) a. At most 10% of the players here will ever get an athletic
scholarship.

b. ∗At least 10% of the players here will ever get an athletic
scholarship.

Ladusaw supports a more comprehensive, semantic, answer: the li-
censing DPs are just the downward entailing ones, as defined informally
below. First, the definition of upward entailing.

Definition 10.1. Let X be a DP. X is upward entailing iff the follow-
ing argument type is valid (meaning the premises entail the conclusion):

Premise 1: All P s are Qs

Premise 2: X is a P

1In fact this n- derives historically from Anglo-Saxon ne (ultimately Proto-Indo
European ne). The initial n in not is this same n.
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Conclusion: X is a Q

For example, Proper Names are upward entailing: if all P s areQs and
Mary is a P we can infer that Mary is a Q. For example, if all students
are vegetarians and Mary is a student then Mary is a vegetarian. (This
is just an Aristotelian syllogism).

Note that if X is a plural DP then the appropriate form of Premise
2 above is “X are P s”, and the appropriate form of the conclusion is
“X are Qs”. For example, at least two doctors is upward entailing since
if all P s are Qs and at least two doctors are P s then those two doctors
are Qs, so we can infer that at least two doctors are Qs.

(12) Some upward entailing DPs:

a. he, she, John, Mary
b. DPs of the form [Det + N], where Det = some, more than

ten, at least ten, most, at least/more than half the,
infinitely many, all, every, several, at least/more than two
out of three, at least/more than 10% of (the), at
least/more than a third of (the), the ten, the ten or more,
John’s, John’s ten (or more), both,

c. Partitive DPs like [Det of John’s students], where Det is as
in (b) above.

And here are two ways of building syntactically complex upward en-
tailing DPs:

Facts:

1. If X and Y are upward entailing then so are (X and Y ) and
(X or Y ). But (not X) and (neither X nor Y ) are not upward
entailing (when X and Y are non-trivial2).

2. If X is upward entailing then so are possessive DPs of the form
[X’s N].

From Fact 1 either John or some official is upward entailing since
John is, and, by (12b), some official is. Fact 2 implies that every
player’s agent is upward entailing, since every player is by (12b). And
this is correct: if all P s are Qs and every player’s agent is a P then
every player’s agent is a Q.

We now turn to downward entailing DPs.

2There are just two DP denotations which are both increasing and decreasing: 0,
which maps all sets to F , and 1, which maps all sets to T . These are expressible by
fewer than zero students and either all students or else not all students respectively.
One computes ¬0 = 1¬1 = 0, so the complements of these trivial denotations are
themselves trivial and thus both increasing and decreasing.
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Definition 10.2. Let X be a DP. X is downward entailing iff the
following argument is valid:

Premise 1: All P s are Qs

Premise 2: X is a Q

Conclusion: X is a P

For example, no student is downward entailing, since if all P s are Qs
and no student is a Q then no student is a P . For example, if all poets
are vegetarians and no athlete is a vegetarian then indeed no athlete is
a poet. The following Venn diagram is helpful here. It correctly reflects
the set inclusion of Premise 1, and the fact that the student set does
not intersect Q shows that no student is a Q. The inference that no
student is a P is obvious, since if the student set intersected P it would
have to intersect Q, and it doesn’t.

P

Q

STUDENT

E

(13) Some downward entailing DPs:

a. Ones of the form [Det + N], where Det = no, neither,
less/fewer than five, at most five, less than/at most half
the, less than 10% of the/john’s, less than one ...in ten,

b. Partitive DPs, like [Det of John’s students], where Det is as
in (a) above.

And here are some ways of building complex downward entailing DPs:

Facts:

3. If X and Y are upward entailing then neither X nor Y is down-
ward entailing.

4. If X is upward entailing then not X is downward entailing.

5. If X and Y are downward entailing then so are (X and Y ) and
(X or Y ).
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6. If X is downward entailing then so are possessive DPs of the form
[X’s N].

From Fact 3 we infer that neither John nor Mary is downward en-
tailing since both John and Mary are upward entailing. And it is: if all
P s are Qs and neither John nor Mary is a Q then clearly neither can be
a P . Fact 4 implies, correctly, that DPs like not more than ten boys and
not more than half the women are downward entailing. Fact 5 tells us
that no student and not more than two teachers is downward entailing.
And finally the more interesting Fact 6 tells us that no child’s doctor is
downward entailing since no child is. And this is correct: if all P s are
Qs and no child’s doctor is a Q then, clearly, no child’s doctor can be
a P . Specifically, if all poets are vegetarians and no child’s doctor is a
vegetarian then, indeed, no child’s doctor is a poet.

Exercise 10.1. Show that Fact 6 entails that no actor’s agent’s doctor
is downward entailing.

And now we can offer an answer to the first linguistic question above:

(14) The subject DPs that license npi’s are just the downward
entailing ones.

10.2 Monotonicity

(15) is a substantive semantic generalization. But it does not answer
the second question: what do downward entailing DPs have in common
with n’t/not?

To provide an answer to this question we shall generalize the no-
tions of upward and downward entailing so that they apply to cate-
gories of expressions other than DP. To this end recall that a poset
is a pair (A,≤) with A a non-empty set and ≤ a reflexive, antisym-
metric and transitive binary relation on A. We saw that ({T, F},≤)
is a poset, where ≤ is the implication order (for all X,Y ∈ {T, F},
X ≤ Y iff if X = T then Y = T ). And the set of possible P1 denota-
tions, [E → {T, F}] is a poset pointwise.

Now DPs denote Generalized Quantifiers (GQs), that is, functions
from [E → {T, F}] into {T, F}. So GQs are functions from a poset to
a poset. And we generalize:

Definition 10.3. Let (A,≤) and (B,≤) be posets. Let F be a function
from A into B. Then

a. F is increasing iff for all x, y ∈ A, if x ≤ y then F (x) ≤ F (y).
Increasing functions are also called isotone and are said to respect
the order.



284 / Mathematical Structures in Language

b. F is decreasing iff for all x, y ∈ A, if x ≤ y then F (y) ≤ F (x).
Decreasing functions are also called antitone, and are said to re-
verse the order.

c. F is monotone iff F is increasing or F is decreasing.

Increasing functions are often, redundantly, calledmonotone increas-
ing ; decreasing ones monotone decreasing. (And occasionally monotone
by itself is used just to mean monotone increasing).

Now the DPs we called upward entailing above are just those that
denote increasing functions from [E → {T, F}] into {T, F}. Compare
the two formulations:

(15) The DP some student is upward entailing:

Premise 1: All P s are Qs
Premise 2: Some student is a P
Conclusion: Some student is a Q

(16) The GQ some student is increasing:

if p ≤ q then if (some student)(p) = T
then (some student)(q) = T .

(Recall that for p, q P1 denotations, p ≤ q iff for all b ∈ E, if p(b) = T
then q(b) = T ).

Clearly (15) and (16) say the same thing. “All P s are Qs” just says
that the denotation p of P is ≤ the denotation q of Q. And semantically
the second line says that (some student)(p) = T . To conclude that
(some student)(q) = T just says then that some student is increas-
ing. (15) and (16) just differ in that the former talks about expressions
and the latter talks about their denotations. Similarly downward en-
tailing DPs are just those that denote decreasing functions.

Exercise 10.2. Analogous to (15) and (16) above, show that the claim
that no student is downward entailing is the same claim as that its
denotation is decreasing.

We could now reformulate (14) to say that the DPs which license
npi’s are just the decreasing ones. But let us generalize a little further:

(17) The Ladusaw-Fauconnier Generalization (LFG)
Negative polarity items only occur within the arguments of
decreasing expressions.

The LFG enables us to see what decreasing DPs have in common
with negation: they both denote decreasing functions. Consider n’t/not
as a P1 level function. Semantically it maps a property p to ¬p, that
property which maps b to T iff p maps b to F . This function is a map
from a poset [E → {T, F}] to a poset [E → {T, F}] and is easily seen
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to be decreasing:

Proposition 10.1. For p, q ∈ [E → {T, F}], if p ≤ q then ¬q ≤ ¬p.
Proof. Assume the antecedent and let (¬q)(b) = T . We must show that
(¬p)(b) = T . But since (¬q)(b) = T we infer that q(b) = F , whence
p(b) = F since p ≤ (if p(b) = T then q(b) = T , a contradiction). And
since p(b) = F then (¬p)(b) = T , as was to be shown.

Recall that in any boolean lattice x ≤ y iff ¬y ≤ ¬x, so this proposi-
tion is just a special case of a general boolean regularity. And the claim
that negation is decreasing does not depend on taking it to be a P1 level
operator as long as it denotes the boolean complement function in the
appropriate denotation set. For example, taking not to be a sentence
level operator (as in classical logic, but not with much motivation in
English) it would denote the truth functional ¬ which maps T to F
and F to T . That ¬ is clearly decreasing.

Exercise 10.3.

a. Prove: For all X,Y ∈ {T, F } if X ≤ Y then ¬Y ≤ ¬X.

b. Prove: For an arbitrary boolean lattice B that for all x, y ∈ B,
if x ≤ y then ¬y ≤ ¬x.

Observe, (12b,c) and (13a,b), that for DPs of the form Det + N,
the monotonicity of the DP is decided by the Det. But there are many
monotone DPs that are not of the form Det+N. Names are increasing
for example, neither John nor Mary is decreasing, and (where gram-
matical) negations of monotone DPs are monotone.

Exercise 10.4. In each case below say informally why the claim is
true.

a.1 more than two students is increasing.

a.2 fewer than two students is decreasing.

b.1 every student but John is not increasing.

b.2 every student but John is not decreasing.

c.1 either John or some student is increasing.

c.2 neither John nor any student is decreasing.

d. most but not all students is neither increasing nor decreasing.

e. exactly three students is neither increasing nor decreasing.

f. between five and ten students is neither increasing nor decreasing.

g. several students but no teachers is neither increasing nor decreas-
ing.
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One observes that a conjunction or disjunction of an increasing DP
with a decreasing one results in a non-monotonic DP (except where the
result is trivial).

Proper Nouns. Proper nouns such as (Kim, P0/P1) were interpreted
in Chapter 4 as the sort of Generalized Quantifier (GQ) called individ-
uals. We repeat that definition here.

Definition 10.4. Given a domain E, for all b ∈ E we define the GQ the
individual generated by b (Ib) as: for all p ∈ [E → {T, F}], Ib(p) = p(b).
A generalized quantifier D is an individual iff for some b ∈ E,D = Ib.

Proper noun DPs, such as (Dana, P0/P1), not only satisfy the upward
entailing paradigm in (15), their denotations, the individuals Ib, are
clearly increasing. For suppose that p ≤ q and show that Ib(p) = T
implies that Ib(q) = T . But from the definition of Ib, if Ib(p) = T then
p(b) = T , whence q(b) = T , since p ≤ q, so Ib(q) = T .

Exercise 10.5. Let IE be the set of individuals over E. That is,

IE = {Ib | b ∈ E}.
Define a bijection from IE to E and conclude that |IE | = |E| (even if
E is infinite).

Below we note some unexpected properties of (boolean compounds)
of proper noun denotations so the reader should verify that he or she
understands how to compute interpretations of boolean compounds in-
volving proper nouns. Here is one illustration:

(18) John and some student laughed

Ij

AA
AA

AA
AA

A some st
hhhhhhhhh laugh

rrrrrrrrrrrrrrrrrrrrr

some(st)
ggggggg

Ij ∧ some(st)
WWWWW

(Ij ∧ some(st))(laugh)

= Ij(laugh) ∧ some(st)(laugh)

Exercise 10.6. Exhibit, as in (18), interpretation trees for each of the
following:

a. Either Mary or Sue laughed.
b. Neither John nor Mary cried.
c. Kim interviewed Sasha but not Adrian.

Exercise 10.7. Given E = {j, b, d} we display the 8 properties over
E, classifying them by the sets of objects they map to T . We exhibit
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the individuals Ij and Ib. You are to complete the table. Using the
completed table say why (Ij ∧ Ib) is not an individual.

p Ij(p) Ib(p) Id(p) (Ij ∧ Ib)(p) (Ij ∨ Id)(p) (Ij ∧ ¬Id)(p)
{j, b, d} T T
{j, b} T T
{j, d} T F
{b, d} F T
{j} T F
{b} F T
{d} F F
∅ F F

Observe that for E = {j, b, d} there are just three individuals but 23 = 8
properties functions from E into {T, F}. This is an instance of the
first Counting Fact below. But first we observe that individuals, in
distinction to other possible DP denotations, commute with the boolean
functions. First, informally, we acknowledge the judgments in (19) of
logical equivalence on English:

(19) a. Boris doesn’t smoke. ≡ It is not the case that Boris smokes.
b. Kim either laughed or cried. ≡ Either Kim laughed or Kim

cried.
c. Sue both jogs and writes poetry. ≡ Sue jogs and Sue writes

poetry.
d. Bob neither slept nor worked. ≡ Neither did Bob sleep nor

did Bob work.

We have seen such judgments in earlier chapters, and we have also seen
that various non-individual denoting DPs fail one or another of the
paradigms above. For example, we lose logical equivalence if we replace
Sue everywhere in (19c) by some student ; we lose equivalence in (19b)
replacing Kim with every student. A case we haven’t looked at yet is
negation, in (19a).

Exercise 10.8. Exhibit an informal model in which (a) and (b) below
have different truth values:

a. More than two students didn’t pass the exam.

b. It is not the case that more than two students passed the exam.

Once we think of proper names as DP functions mapping the set of
functions [E → {T, F}] into {T, F} the apparently trivial pattern in
(19) becomes more interesting. Observe:

Theorem 10.2. Individuals commute with all the boolean operations.
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Proof. Given a domain E, let b arbitrary in E. Then, for all properties
p, q ∈ [E → {T, F}],

a. Ib(¬q) = (¬q)(b) Def Ib
= ¬(q(b)) Pointwise ¬
= ¬(Ib(q)) Def Ib

b. Ib(p ∨ q) = (p ∨ q)(b) Def Ib
= p(b) ∨ q(b) Pointwise ∨ in [E → {T, F}]
= Ib(p) ∨ Ib(q) Def Ib

Exercise 10.9.

a. On the pattern in part (b) above prove that individuals commute
with ∧.

b. Define the boolean function ↓ meaning neither...nor..., in terms
of ∧ and ¬.

c. State what it means for individuals to commute with neither...nor...
then prove that they do.

Definition 10.5. For A = (A,≤) and B = (B,≤) boolean lattices, a
function h from A into B is a homomorphism from A to B iff h respects
meets, joins, and complements, where

a. h respects ∧ iff for all x, y ∈ A, h(x ∧ y) = h(x) ∧ h(y).
When we write x∧ y above we are referring to the greatest lower
bound of {x, y} in A, since x, y are elements of A. And on the
right, since h(x) and h(y) are elements of B, h(x) ∧ h(y) is the
glb of f{h(x), h(y)} in B. A longer winded but sometimes helpful
way of saying that h respects ∧ is: if z is the glb of {x, y} in A
then h(z)f is the glb of {h(x), h(y)} in B.

b. h respects ∨ iff for all x, y ∈ A, h(x ∨ y) = h(x) ∨ h(y).
c. h respects ¬ iff for all x ∈ A, h(¬x) = ¬(h(x)).

Terminology. A one to one (injective) homomorphism from A into B
is called an embedding (also a monomorphism). A surjective (onto) ho-
momorphism is called an epimorphism and a bijective homomorphism
is called an isomorphism.

Exercise 10.10. For A = (A,≤) and B = (B,≤) boolean lattices and
h a map from A to B,

a. Prove that if h respects ∧ and ¬ then h respects ∨.
b. Prove the dual of (a): if h respects ∨ and ¬ then h respects ∨.
c. Prove: if h is a homomorphism then

i. for all x, y ∈ A, x ≤ y ⇒ h(x) ≤ h(y).
(We often write ⇒ for if...then...)



Semantics IV: DPs, Monotonicity and Semantic Generalizations / 289

ii. h(0A) = 0B and h(1A) = 1B .

Exercise 10.11. We define the binary neither...nor... function ↓ in
any boolean lattice by x ↓ y =df ¬x ∧ ¬y.

Your task: For A = (A,≤) and B = (B,≤) boolean lattices, h a
map from A into B,

a. Say what it means for h to respect ↓.
b. Prove: if h is a homomorphism then h respects ↓.
c. Prove: if h respects ↓ then h is a homomorphism (for this you

must state x ↓ y in terms of ¬ and either ∧ or ∨).
We see then that the individuals among the GQs are homomor-

phisms. Does the converse hold? That is, are all homomorphisms from
P1 denotations into P0 denotations individuals? Surprisingly perhaps,
and with one technical nuance, the answer is yes. First the nuance:

Definition 10.6. For A and B complete boolean lattices (so in each
case every subset has a glb and every subset has a lub). Then a homo-
morphism h from A to B is said to be complete iff it respects all glbs
and lubs. That is,

a. for all subsets K of A, h(
∧

K) =
∧{h(k) | k ∈ K}, and

b. for all subsets K of A, h(
∨

K) =
∨{h(k) | k ∈ K}. 3

In fact each of conditions (a) and (b) implies the other, so to show
that a homomorphism h is complete it suffices to show just one of them.

Theorem 10.3. Let B = (B,≤) be a boolean lattice. Then if every
subset of B has a glb then every subset has a lub.

Proof. Assume every subset of B has a glb. Then for K an arbitrary
subset of B show that the lub of K is the glb of UB(K), the set of
upper bounds for K. Dually, if all subsets have a lub, show that for any
K, the glb of K is the lub of the set of lower bounds for K. We write
this out more carefully in the Appendix to this chapter.

Exercise 10.12. State and prove the dual to Theorem 10.3.

Theorem 10.4. A function h is a complete homomorphism

h : [E → {T, F}] → {T, F}
iff ∃b ∈ E such that h = Ib.

3The usual definition is slightly more general. It does not require the algebras to
be complete and just says that whenever a subset K of A has a glb then {h(x) | x ∈
K} has a glb in B and h(

∧
K) =

∧
{h(x)|x ∈ B}.
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A proof of Theorem 10.4 is given in the Appendix.
Theorem 10.4 would allow us to define denotations for proper nouns

of category P0/P1 without mentioning E. They would just be the com-
plete homomorphisms from denE(P1) into denE(P0).

Counting Facts.

1. |[A→ {T, F}]| = |P(A)| = 2|A|

2. |[A→ B]| = |B||A|

Since we are going to be comparing the sizes of sets let us see why the
first Counting Fact is true (A assumed finite, the case of interest). We
have already shown, Chapter 8, that |[A → {T, F}]| = |P(A)|. This is
so since each function g from A into {T, F} determines a unique subset
Tg of A, namely the set of elements in A which g maps to T . Different g
correspond to different Tg, and each subsetK of A is a Tg for some g. So
the map sending each g to Tg is a bijection, so |[A→ {T, F}]| = |P(A)|.

To see the idea behind the claim that |P(A)| = 2|A| we give an
induction argument. When |A| = 0, and so A = ∅, P(A) = {∅} and so
has cardinality 1 = 20. Assume now that when |A| = n, |P(A)| = 2n.
Then let us add one new element b to A forming a set A ∪ {b} of
cardinality n+1. This set has double the number of subsets of A since
each old subset K of A is a subset of A ∪ {b}, and in addition for each
old subset K we now have one new subset, K ∪ {b}. So the number of
subsets of A ∪ {b} is 2 · 2n = 2n+1. Thus for all n ∈ N if |A| = n then
|P(A)| = 2n, as was to be shown.

Observe that the number of individuals over a domain E of cardi-
nality n is a vanishingly small number of GQE , the set of generalized
quantifiers over E. Since the individuals over E correspond one for one
with the elements of E, we have that |E| = |{Ib | b ∈ E}|. By Counting
Fact 1 the number of properties of elements of E, |[E → {T, F}]| is
2|E|. And thus by Counting Fact 1 again the number of generalized

quantifiers over E is |[[E → {T, F}] → {T, F}]| = 22
|E|

Thus in a model with just four entities, there are 4 individuals,
24 = 16 properties and 216 = 65, 536 GQs. Keenan and Stavi (1986)
show that over a finite universe all GQs are actually denotable by En-
glish DPs. That is, for each GQ we can construct an (admittedly cum-
bersome) English DP which could denote that GQ. But the number
of these GQs denotable by proper nouns is insignificant, just 4 out of
65,536 in the example above.

Counting Fact 2 is very useful and covers the first one as a special
case. We are often interested in imposing linguistically motivated con-
ditions on the elements of some [A → B] and want to evaluate how
many of the functions in that set are ruled out by the conditions. Now,
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we see that Fact 2 holds when |A| = 1, since then there is one function
for each element β of B (the one that maps the unique α in A to β).
Suppose now the fact holds for all A of cardinality n, and we show it
holds for any A with |A| = n + 1. So A is some X ∪ {a} for |X| = n
and a /∈ X. By our assumption there are |B|n functions from X into B.
And each of those functions corresponds to |B| many new ones from A
into B, according to the |B| many ways each such f can take its value
on the new α . Thus there are |B| · |B|n = |B|n+1 = |B||A| functions
from A into B, which is what we desired to show.

10.3 Semantic Generalizations

We turn now to some semantic generalizations we can make about
English using our interpretative mechanisms as developed so far.

Generalization 1. Lexical DPs are always monotonic; almost always
increasing, in fact almost always individual denoting.

Here is a snapshot of the lexical DPs of English: they include one pro-
ductive subclass, the Proper Nouns: John, Mary, ..., Siddartha, Chou
en Lai, .... By “productive” we mean that new members may be added
to the class without changing the language significantly. Lexical DPs
also include listable sprinklings of (i) personal pronouns: he/him,.. and
their plurals they/them; (ii) demonstratives: this/that and these/those;
and more marginally (iii) possessive pronouns:mine/his/hers .../theirs ;
and (iv) indefinite pronouns everyone, everybody; someone/body ; and
no one, nobody, though these latter appear syntactically complex. We
might also include some DP uses of Dets, as A good time was had by
all, Some like it hot, and Many are called but few are chosen, though
we are inclined to interpret them as having an understood N people to
account for their +human interpretation (a requirement not imposed
by the Dets themselves).

Clearly the unequivocal cases of lexical DPs are increasing, mostly
proper nouns. The only candidates for non-increasing lexical DPs are
few and the “n” words (no one, nobody) and they are decreasing.

Query: Is there any reason why the simplest DPs should denote in-
dividuals? Is there any sense in which individuals are more basic that
other DP denotations?

We make two suggestions towards an answer to the Query. First,
there are many functions that a novel DP could denote—some 65,536
of them in a world of just 4 objects. But the denotations of syntacti-
cally complex DPs can be figured out in terms of the denotations of
their parts. So the real learning problem for expressions concerns lexical
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ones, which have no parts and must be learned by brute force. Clearly
learning is greatly simplified if the language learner can assume that
lexical DPs denote individuals. In our model with 65,536 generalized
quantifiers, only four (!) of them are individuals.

Second, the individuals do have a very special algebraic status among
the GQs. Namely, every GQ can be expressed as a boolean function
(ones defined in terms of meet, join and complement) of individuals! In
other words, there is a sense in which all GQs are decomposable into
individuals and the boolean operations. Moreover the boolean connec-
tives are, as we have seen, polymorphic: for almost all categories C they
combine expressions of category C to form further expressions in that
category. So the denotation set of most C is a set with a boolean struc-
ture. This suggests that the boolean operations are not ones specific
to one or another semantic category (one or another denM(C)) but
rather represent, as Boole (1854) thought, properties of mind—ways
we think about things rather than properties of things themselves.

This consideration is speculative. But the claim that all GQs are
constructable by applying boolean operations to individuals is not. It
is a purely mathematical claim whose proof we sketch here. In fact we
have already seen, Exercise 10.7, that boolean functions of individuals
may yield GQs that are not themselves individuals. All that is at issue
is how many of these non-individuals are expressible in this way, and in
fact all are. (To improve readability, slightly, we write 1 for T (“True”)
and 0 for F (“False”), as is standard).

Leading up to the proof, consider, for p a property,
∧{Ib | p(b) = 1}.

This GQ maps a property q to 1 iff every individual which is true of p
is true of q, that is, iff p ≤ q. (So this GQ is, in effect, “Every(p)”.)

Now we want to build a boolean function of individuals which is,
in effect, “No non-p”. Taking the meet of that GQ with “Every(p)”
will yield a GQ that holds just of p. Now “some non-p” is just
∨{Ib | (¬p)(b) = 1}, so “no non-p” is the complement of that, namely
¬∨{Ib | (¬p)(b) = 1}, which is the same as

∧{¬Ib | (¬p)(b) = 1}. (See
Appendix). It holds of a property q iff for every b such that (¬p)(b) = 1,
(¬Ib(q)) = 1, that is, Ib(¬q) = 1, so (¬q)(b) = 1. Thus it holds of q iff
for every b, if (¬p)(b) = 1 then (¬q)(b) = 1, that is, iff ¬p ≤ ¬q, which
is equivalent to q ≤ p. Combining these two results we have:

(20) (
∧{Ib | p(b) = 1} ∧∧{¬Ib | (¬p)(b) = 1})(q) = T
iff

∧

({Ib | p(b) = 1})(q) = 1 and
∧

({¬Ib | (¬p)(b) = 1})(q) = 1
iff p ≤ q and q ≤ p
iff p = q.

For convenience call this GQ Fp. It is that GQ which holds just of p
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and it is a boolean function of individuals. And one sees easily that for
any GQ H,

(21) H =
∨{Fp | H(p) = T}.

Proof. Note that by the pointwise behavior of lubs, the join of a bunch
of GQs maps a property q to 1 iff one of the GQs over which the join
was taken maps q to 1. Now let q be an arbitrary property. We show
that the functions on either side of the equation sign in (21) assign
q the same value and are hence the same function. Suppose first that
H(q) = 1. Then Fq is one of the Fp in the set over which the join is
taken on the right, and since Fq maps q to 1 then the join does as well.
So in this case the functions yield the same value. Suppose secondly
that H(q) = 0. Then Fq /∈ {Fp | H(p) = 1}, hence each of the Fp in
that set maps q to 0, so their lub maps q to 0. So in this case as well
H and

∨{Fp | H(p) = 1} take the same value at q. As this covers all
the cases our proof is complete.

Thus any generalized quantifier is expressible as a boolean function of
individuals. Of course (21) is not a definition of H. It is simply a truth
about H, one that shows that an arbitrary GQ is identical to a boolean
function of individuals 4.

Returning to Earth, Generalization 2 is a non-trivial empirical claim
and also simplifies the learning problem for a language:

Generalization 2. Lexical Dets generally form monotonic DPs, al-
most always increasing.

Now many types of DPs are not monotonic:

(22) Some non-monotonic DPs: exactly five men, between five and
ten students, about a hundred students, every/no student but
John, every student but not every teacher, both John and Bill
but neither Sam nor Mary, most of the students but less than
half the teachers, either fewer than five students or else more
than a hundred students, more boys than girls, exactly as many
boys as girls.

Exercise 10.13. For each DP below exhibit an informal model which
shows that it is not monotonic (not increasing and not decreasing)

a. exactly two students

4What we have shown is that the set of individuals over E is a set of complete
generators for GQE . If E is finite it is provably a set of free generators for GQE . And
actually Keenan and Faltz (1985) show more: any complete homomorphism from
the set of individuals into any complete and atomic algebra extends to a complete
homomorphism from GQE into that algebra.
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b. John but not Mary

c. between five and ten students

d. every student but John

Thus the kinds of GQs denotable by the DPs in (20) are not available
as denotations for DPs built from lexical Dets. So Generalization 2 is
a strong semantic claim about natural language.

To support Generalization 2 observe that of the lexical Dets in (12)
and (13), most clearly build increasing DPs: each, every, all, some,
my, the, this, these, several, a, both, many, most. But no, neither and
few build decreasing DPs. And opinions are less clear regarding bare
numerals like two. In cases like Are there two free seats in the front
row? we interpret two free seats as at least two..., which is increasing.
In contexts like Two students stopped by while you were out the speaker
seems to be using two students to designate two people he could identify,
and as far as he himself (but not the addressee) is concerned he could
refer to them as they or those two students. So this usage also seems
increasing. Note that this usage is not paraphrasable by Exactly two
students stopped by while you were out.

But in answer to How many students came to the lecture?—Two, the
sense is “exactly two students”, which is non-monotonic. We suggest
here that the “exactly” part of this interpretation is due to the question,
which in effect means “Identify the number of students that came to
the lecture” rather than “Give me a lower bound on that number”. So
we favor Generalization 2 without the qualification “generally”. Bare
numerals are understood as increasing, and additional information pro-
vided by context can impose an upper bound on the number, forcing
an “exactly”, and thus a non-monotonic, interpretation.

But even if we take as basic the “exactly” interpretation of bare
numerals it remains true that the GQs denotable by DPs of the form
[Det +N], with Det lexical, are a proper subset of the set of denotable
GQs. Reason: GQs denotable by DPs of the form exactly n A’s are
expressible as a conjunction of an increasing DP and a decreasing one:
Exactly n A’s denotes the same as At least n A’s and not more than
n A’s, and Thysse (1983) has shown that the functions denotable by
such DPs are just the convex 5 ones.

Definition 10.7. A GQ F is convex iff for all properties p, q, r,
if p ≤ q ≤ r and F (p) = F (r) = T then F (q) = T .

So monotonic DPs are special cases of convex ones. But many DPs
are not convex. Typical examples are disjunctions of increasing with

5Thysse calls them continuous, but we prefer convex.
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decreasing DPs (either fewer than six students or else more than ten
students) or disjunctions of properly convex ones (either exactly two
dogs or exactly four cats). Also DPs like more male than female stu-
dents are not convex. Thus in analogy with the distinction between
lexical vs complex DPs we also see that there are functions denotable
by complex Dets which are not denotable by lexical ones, examples be-
ing the functions denotable by more male than female and either fewer
than ten or else more than a hundred.

The LFG: a case study in generalization The LFG, (17), is given
with a pleasing level of generality. It makes sense to seek npi licensers in
most categories, since, as it turns out, expressions in most categories are
interpreted as maps from posets to posets. For example certain Prepo-
sitions license npi’s, (23), and some Dets do within their N argument,
(24).

(23) a. ∗He did it with any help.
b. He did it without any help.

(24) a. ∗Some student who has ever been to Pinsk really wants to
return.

b. No student who has ever been to Pinsk really wants to
return.

c. Every student who has ever been to Pinsk really wants to
return.

But we do not pursue the empirical generalization here. Rather we
are interested in the mathematical basis of the generalization itself.
We sought, and found, a property that DP denotations shared with
negation (whether S level or P1 level). Note that their denotation sets
share no elements. Negation denotes a map from a set to itself, and
DPs denote maps from P1 denotations to P0 denotations. The common
property was not some fixed element that they shared (such as deriving
from Anglo-Saxon ne) but was the more abstract property of “being
an order reversing (decreasing) function”. The specific orders that n’t
and at most two students reverse are quite different.

10.4 Historical Background

Our treatment of negative polarity items draws on Ladusaw (1983),
which in turn benefited from Fauconnier (1975). See also Zwarts (1981).
Klima (1964) is the pioneering study of npi’s. For more recent work see
Nam (1994), Zwarts (1996), and Chierchia (2004). Our work on the
boolean structure of natural language owes much to Keenan (1981)
and Keenan and Faltz (1985). Montague (1974) was the first to treat
DPs (our terminology) as generalized quantifiers (a term not used by
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him).
Recent overviews of work in generalized quantifier theory are Keenan

(1996) and Keenan and Westerst̊ahl (1996), Westerst̊ahl (1985), Peters
and Westerst̊ahl (2006) and Keenan (2008). Useful collections of articles
in this area are van der Does and van Eijck (1996), Kanazawa and Piñón
(1994), Gärdenfors (1987), and van Benthem and ter Meulen (1985).

Appendix

Theorem 10.3. Let B = (B,≤) be a boolean lattice. Then if every
subset of B has a glb then every subset has a lub.

Proof. Let K ⊆ B be arbitrary. Define the set UB(K) of upper bounds
of K as follows.

UB(K) = {b ∈ B | b is an upper bound for K}.
So for b ∈ UB(K), for every k ∈ K, k ≤ b. By the definition of glb then
k ≤ ∧

UB(K). UB(K) has a glb by by assumption that all subsets of B
do. Therefore

∧

UB(K) is an upper bound for K. Now let b be an upper
bound for K. So b ∈ UB(K). Trivially

∧

UB(K) ≤ b, so
∧

UB(K) is
the least of the upper bounds for K, that is,

∧

UB(K) =
∨

K.

Theorem 10.4. The complete homomorphisms from [E → {T, F}]
into {T, F} are exactly the individuals {Ib | b ∈ E}.
Proof.
(⇐=) We have already seen that each Ib is a homomorphism. To show
that such an h is complete we have: for any indexed family of P1 deno-
tations {pj | j ∈ J} ⊆ [E → {T, F}],
Ib(

∨

j∈J pj) = (
∨

j∈J pj)(b) Def Ib
=

∨

j∈J(pj(b)) Pointwise meets in [E → {T, F}]
=

∨

j∈J(Ib(pj)) Def Ib

(=⇒) Now let h be a complete homomorphism. We show that for some
b ∈ E, h = Ib. Let pb be that element of [E → {T, F}] that maps b to T
and all other b′ ∈ E to F . h must map one of these pb to T . If it maps
all to F then it maps their lub to F . But

∨

b∈E pb is the unit element
since it maps all b ∈ E to T and as a hum, h must map the unit to
the unit, which is T , a contradiction. So for some b, h(pb) = T . And
for q a map from E into {T, F}, pb ≤ q iff q(b) = T . So h maps to T
all the q that Ib maps to T . And if q(b) = F then h(q) = F , otherwise
h(pb ∧ q) = h(0) = T . Thus h = Ib since it holds of a q iff q(b) = T .
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The Infinite DeMorgan Laws. The proofs of (20) used an infini-
tary form of the DeMorgan laws. We prove these below, but first some
lemmas.

Lemma 10.5. For all boolean lattices B, all x, y ∈ B,

x = x ∧ 1 = x ∧ (y ∨ ¬y) = (x ∧ y) ∨ (x ∧ ¬y).
Lemma 10.6 (The Finite De Morgan Laws).

1. ¬(x ∨ y) = ¬x ∧ ¬y, and
2. ¬(x ∧ y) = ¬x ∨ ¬y.

Proof. We show (1) ¬(x ∨ y) = ¬x ∧ ¬y.
a. (x ∨ y) ∧ (¬x ∧ ¬y) = (x ∧ (¬x ∧ ¬y)) ∨ (y ∧ (¬x ∧ ¬y))

= 0 ∨ 0

= 0.

b. (x ∨ y) ∨ (¬x ∧ ¬y) = x ∨ (y ∨ (¬x ∧ ¬y))
= x ∨ ((y ∨ ¬x) ∧ (y ∨ ¬y))
= x ∨ ((y ∨ ¬x) ∧ 1)

= x ∨ ¬x ∨ y
= 1 ∨ y
= 1.

Thus by Uniqueness of complements (Theorem 8.8),

(¬x ∧ ¬y) = ¬(x ∨ y).
We leave the dual lemma ¬(x∨y) = (¬x∨¬y) as an exercise for the

reader.
Note the following definition of a dual.

Definition 10.8. If ϕ is a statement in the language of boolean lattices
then dual(ϕ) is the statement that results from simultaneously replac-
ing all ‘∧’ signs with ‘∨’ and all ‘∨’ with ‘∧’, replacing all occurrences
of ‘0’ with ‘1’ and ‘1’ with ‘0’, and all occurrences of ‘≤’ with ‘≥’ and
all ‘≥’ with ‘≤’.

Meta-Theorem: Duality. For ϕ a statement in the language of
boolean lattices, ϕ ≡ dual(ϕ).

The reason that Duality holds is that the dual of every axiom of
boolean lattices is an axiom (though we didn’t take 1 6= 0 as an axiom,
but it obviously is logically equivalent to 0 6= 1). So whenever we have
a proof of some ψ from the axioms then replacing each line in the proof
by its dual is a proof of dual(ψ).
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Lemma 10.7. For all x, y in a boolean lattice B, x ≤ y iff ¬y ≤ ¬x.
Proof.
x ≤ y iff (x ∧ y) = x From def of glb

iff ¬(x ∧ y) = ¬x Uniqueness of complements
iff (¬x ∨ ¬y) = ¬x De Morgan Laws
iff ¬y ≤ ¬x From def of lub

Lemma 10.8 ((Weak) Infinite Distributivity). In any complete boolean
lattice,

x ∧
∨

j∈J

yj =
∨

j∈J

(x ∧ yj).

Proof. To enhance readability write when convenient y for
∨

j∈J yj .
(⇐=) For each j, yj ≤ y, so x ∧ yj ≤ x ∧ y, so x ∧ y is an ub for

{x ∧ yj | j ∈ J} thus
∨

j∈J

(x ∧ yj) ≤ x ∧ y = x ∧
∨

j∈J

yj .

(=⇒) We show that x∧ y ≤ every upper bound for {x∧ yj | j ∈ J}.
Let u be such an ub. Then for each j, yj = (x∧yj)∨(¬x∧yj) ≤ u∨¬x.
This is because (x∧ yj) ≤ u and (¬x∧ yj) ≤ ¬x. Thus u∨¬x is an ub
for {yj | j ∈ J} so y ≤ u∨¬x, whence x∧y ≤ x∧ (u∨¬x) = x∧u ≤ u.
Since u was an arbitrary ub for {x ∧ yj | j ∈ J} we have that

x ∧ y ≤
∨

j∈J

(x ∧ yj),

proving equality.

There are stronger forms of distributivity but they do not hold in
all complete boolean lattices.

Theorem 10.9 (The Infinitary DeMorgan Laws.).

1. ¬∨

k∈K k =
∧

k∈K ¬k.
2. ¬∧

k∈K k =
∨

k∈K ¬k.
Proof.

1. (=⇒)For each k ∈ K, k ≤ ∨

k∈K k, so ¬∨

k∈K k ≤ ¬k, so
¬∨

k∈K k is a lb for {¬k | k ∈ K}, so

¬
∨

k∈K

k ≤
∧

k∈K

¬k.

(⇐=) Write d for
∧

k∈K ¬k. We are to show that d ≤ ¬∨

k∈K k.
Observe that for each k ∈ K, k ∧ d = 0, since k ∧ d ≤ k ∧¬k = 0.
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Thus (using the general boolean fact that x ≤ y iff x ∧ ¬y = 0)
k ≤ ¬d. Since k was arbitrary in K,

∨

k∈K k ≤ ¬d, whence

d =
∧

k∈K

¬k ≤ ¬
∨

k∈K

k,

as was to be shown.

2. The proof of the dual statement is left to the reader.





11

Semantics V: Classifying

Quantifiers

In this chapter we present several semantically defined subclasses of
declarative count Determiners in English and establish a variety of em-
pirical and mathematical generalizations about them. Some of these
concern the semantic characterization of syntactic phenomena, others
are purely semantic. At various points we note properties they share
with interrogative quantifiers (1b), mass quantifiers (1c) and adverbial
quantifiers (1d), classes that are less well understood than the Dets
(1a) we focus on.

(1) a. All / Most / No poets daydream.
b. How many / Which / Whose children are laughing?
c. There was (too) much / (not) enough salt in the soup.
d. I always / usually / often / rarely / never work on

weekends.

Useful sources of information about the expression of quantification in
diverse languages are Bach et al. (1995), Gil (1993), and Matthewson
(2008).

A notational preliminary. Following the lead of most work in Gen-
eralized Quantifier Theory we treat P1s simply as subsets of a domain
E rather than functions from E into {T, F}. Up to isomorphism they
are the same thing, recall. And more generally n-ary relations on E are
treated as subsets of En . Further we refer to DPs (Mary,Most poets,...)
as denoting functions of type (1), called generalized quantifiers, rather
than using ((e, t), t) which gets cumbersome when quantifiers of higher
type are studied (as here). A quantifier of type (1) is a function from
subsets of E1 into {T, F}. Dets like all, most, etc. are of type (1,1),
mapping subsets of E to functions of type (1). Quantifiers of type (2)
map binary relations—subsets of E2—into {T, F}. And quantifiers of

301
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type ((1,1),1) map pairs of subsets of E to functions of type (1). This
type notation derives from Lindström (1966). The interpretation of (2a)
below is now given as (2b):

(2) a. Most poets daydream.
b. (most(poet))(daydream).

Here both poet and daydream are subsets of the domain. (We see
shortly though that the role of the noun property, poet, in the in-
terpretation (2a) is quite different from that of the predicate property
daydream). poet in these cases is sometimes called the restriction (of
the quantifier). Using this set notation1 here are some further defini-
tions of English quantifiers of type (1,1). We have already seen most of
them. Read the first line in (3) as “some A’s are B’s iff the intersection
of the set of A’s with the set of B’s is not empty”. The other lines are
read analogously.

(3) a. some(A)(B) = T iff A ∩B 6= ∅
b. no(A)(B) = T iff A ∩B = ∅
c. (exactly two)(A)(B) = T iff |A ∩B| = 2
d. (all but one)(A)(B) = T iff |A−B| = 1
e. most(A)(B) = T iff |A ∩B| > |A|/2
f. (the n)(A)(B) = T iff |A| = n and A ⊆ B

We turn now to the semantic classification of English Dets. We offer
a field guide to English Dets in an appendix to this chapter. Those Dets
serve to indicate the syntactic and semantic diversity of the expressions
of interest here.

1The “set” approach we take does force us to ignore the value judgment Dets
such as too many, not enough, surprisingly few, etc. in the Appendix. Such Dets are
inherently intensional and so cannot be treated a functions whose domain is simply
the sets of objects with given properties.

For example in a model in which it happens that the doctors and the lawyers are
the same individuals Ss (a) and (b) below can still have different truth values:

a. Not enough doctors attended the meeting.
b. Not enough lawyers attended the meeting.

Imagine for example that we a discussing a meeting of the American Medical Asso-
ciation. 500 doctors are required for a quorum, but only one lawyer is required, to
take the minutes. And suppose that just 400 doctor-lawyers shows up. (a) is true
and (b) is false. Note that if not enough is replaced we by every (making the nouns
singular) the resulting Ss must have the same truth value. This says that every

is extensional, meaning that it can be treated as a function whose arguments are
the extensions of the property denoting expressions, that is, the sets of individuals
which have the property.
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11.1 Quantifier Types

The most widely studied quantifiers in English are those of type (1,1).
We distinguish four subcases, illustrated in (4a,b,c,d), according to
what we need to know to evaluate the truth of the sentences they
build:

(4) a. Some students read the Times.
b. All students read the Times.
c. Most American teenagers read the Times.
d. The four students read the Times.

To determine the truth of (4a) it suffices to have at hand the intersection
of the set of students with the set of people who read the Times. If that
set is empty (4a) is false, otherwise it is true. To establish the truth of
(4a) we need know nothing about students who didn’t read the Times,
nor anything about people who read the Times who are not students.
But knowing which students read the Times does not decide the truth
of (4b). For that we must know about the set of students who don’t
read the Times. If that set is non-empty then (4b) is false, otherwise it
is true. And to evaluate the truth of (4c) we must know both about the
students who read the Times and also about the students who don’t, to
verify that the former outnumber the latter. Lastly, (4d) requires that
we know the cardinality of the restrictor student and that the set of
students who don’t read the Times is empty. Note that merely knowing
the cardinality of the set of students who read the Times does not
suffice. These observations determine the intersective (or generalized
existential), co-intersective (or generalized universal), proportional and
definite classes of Dets respectively.

11.1.1 Intersective Dets

Definition 11.1. Intersective (or generalized existential) Dets are ones
whose denotations D satisfy:

D(A)(B) = D(X)(Y ) whenever A ∩B = X ∩ Y.
This invariance condition is a way of saying that the value D assigns

to A,B just depends on A ∩ B. This value is unchanged (invariant)
under replacement of A by X and B by Y provided X has the same
intersection with Y as A does with B. It is easy to see that some is
intersective. Given A ∩ B = X ∩ Y then either both intersections are
empty and some(A)(B) = some(X)(Y ) = F , or both are non-empty
and some(A)(B) = some(X)(Y ) = T .

But Definition 11.1 is more general than meets the eye since it does
not make any commitment as to precisely what type of value D as-
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signs to a pair A,B. Mostly here we think of it as a truth value, but
on richer semantic theories in which Ss denote propositions, functions
from possible worlds to truth values, D(A)(B) would denote a propo-
sition. And for some of our examples below we see that D(A)(B) is
whatever it is that questions denote. A Venn diagram might be helpful
in understanding Definition (11.1).

A ∩BA B

E

So to say that a Det is intersective is to say that when it looks at a pair
of sets A,B it makes its decision just by considering the area where
they overlap, A∩B. Theorems 11.1a,b are often helpful in establishing
the intersectivity of a Det. (E as always is the understood domain).

Theorem 11.1.

a. D is intersective iff for all sets A,B DAB = D(A ∩B)(E).
We may read “D(A ∩B)(E)” as “D As that are Bs exist”.

b. D is intersective iff for all A,B DAB = D(E)(A ∩B).
We may read “D(E)(A∩B)” as “D individuals are both As and
Bs”.

Proof.

a. (=⇒) Given D intersective the right hand side of the “iff” above
holds since (A ∩B) ∩ E = A ∩B, since A ∩B is a subset of E.
(⇐=) Going the other way, assume the right hand side and sup-
pose that A∩B = X ∩Y . But then D(A)(B) = D(A∩B)(E) by
the assumption, which equals D(X ∩Y )(E) since A∩B = X ∩Y ,
and equals D(X)(Y ) again by the assumption, so D is intersec-
tive.

Exercise 11.1. Prove Theorem 11.1b.

The Dets in (5) are intersective since the (x,x′) pairs are logically
equivalent.
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(5) a. Some students are vegetarians.
a′. Some students who are vegetarians exist.
b. Exactly ten boys are on the team.
b′. Exactly ten individuals are boys on the team.
c. How many athletes smoke?
c′. How many individuals are athletes who smoke?
d. Which students sleep in class?
d′. Which individuals are students who sleep in class?

Intersective Dets are the most widely distributed of the English Dets.
Here are some examples, in which we include the interrogative Dets
Which? and How many?, though most intersective Dets are declarative.

(6) Some intersective Dets: some, a/an, no, several, more than six,
at least six, exactly six, fewer than six, at most six, between six
and ten, just finitely many, infinitely many, about a hundred, a
couple of dozen, practically no, nearly twenty, approximately
twenty, not more than ten, at least two and not more than ten,
either fewer than five or else more than twenty, that many, How
many?, Which?, more male than female, just as many male as
female, no...but John

The intersective Dets present some interesting semantic subcate-
gories, but first let us see that there are many Dets that are not inter-
sective. Every for example is not:

(7) Let A = {2, 3}, B = {1, 2, 3, 4} and let A′ = {1, 2, 3} and
B′ = {2, 3, 4}. Then clearly A ∩B = {2, 3} = A′ ∩B′. But since
A ⊆ B we have that every(A)(B) = T . But A′ * B′ so
every(A′)(B′) 6= T . Thus every is not intersective.

Exercise 11.2. For each Det below exhibit an informal model as in
(7) which shows that it is not intersective.

a. all but two b. most c. the two

The productivity of the intersectivity class of Dets prompts us to
wonder just how many of the possible Det denotations—maps from
P(E) into [P(E) → {T, F}]—are intersective. That is, just how strong
is the intersectivity condition? The answer is somewhat surprising. Here
are two observations leading up the relevant result.

First, recall that the set of possible Det denotations is a boolean
lattice with the operations given pointwise. This predicts, correctly,
the following logical equivalences:

(8) (Some but not all) cats are black.
≡ (Some cats but (not all) cats) are black.
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≡ (Some cats but (not (all cats))) are black.
≡ Some cats are black but (not (all cats)) are black.
≡ Some cats are black but not (all cats are black).

And it turns out that the set of intersective functions in this class
is closed under these boolean operations. That is, if D and D′ are
intersective, so are (D ∧ D′), (D ∨ D′), and ¬D. So at least two and
not more than ten is intersective since at least two and more than ten
are. Generalizing, the set INTE of intersective functions over E is a
boolean lattice. This result appears a little “abstract” but in fact it is
easy to prove (though for reasons of space in this chapter we will not
be concerned to prove such results). Let us see for example, as claimed
above, that the join of two intersective functions is itself intersective:

Fact 1. Given E, let D and D′ be intersective Dets. We show that
(D ∨D′) is intersective.

Proof. Let A ∩B = X ∩ Y . We must show that

(D ∨D′)(A)(B) = (D ∨D′)(X)(Y ).

We calculate:

(D ∨D′)(A)(B) = (D(A) ∨D′(A))(B) Pointwise ∨ in Det
= (D(A)(B) ∨D′(A)(B)) Pointwise ∨ in GQE

= (D(X)(Y ) ∨D′(X)(Y )) D,D′ are intersective
= (D(X) ∨D′(X))(Y ) Pointwise ∨ in GQE

= (D ∨D′)(X)(Y ) Pointwise ∨ in Det

The first and last lines establish that (D ∨D′) is intersective.

Exercise 11.3. Using a “pointwise” argument as in Fact 1, show that
INTE is closed under (a) meets, and (b) complements.

Thus we see that INTE is a boolean lattice (a sublattice of the lattice
of Det functions of type (1,1)). And we have the somewhat surprising
result Keenan (1993):

Theorem 11.2. For any domain E, INTE, the set of intersective
functions of type (1,1), is isomorphic to GQE, the set of functions of
type (1). The map sending each intersective D to D(E) is the desired
isomorphism

So, semantically, the isomorphic image of some is some individual,
of less than ten, less than ten individuals, etc. This result is surprising,
as possible Det denotations map P(E) into GQE , and so in general
vastly outnumber GQE . But when we limit ourselves to intersective
Det denotations we see that, up to isomorphism, they are just the
familiar generalized quantifiers. Recalling that isomorphic structures
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are elementarily equivalent, that is, they make the same sentences true,
we can say:

(9) The intersective Dets and the generalized quantifiers over an E
have the same logical expressive power.

So if the only Dets in English were intersective there would be little log-
ical point in distinguishing between them and generalized quantifiers.
But as we have seen, English presents many non-intersective Dets.

Finally, using the Counting Facts of the previous chapter we can
see what portion of the logically possible Det denotations (functions of
type (1,1)) are intersective:

Fact 2. Given |E| = n, the number of logically possible (declarative)
Det denotations is

|[P(E) → [P(E) → {T, F}]]| = 24
n

.

In contrast,
|GQE | = |[P(E) → {T, F}]| = 22

n

.

So in a model with just two individuals, |E| = 2, there are 24 = 16
distinct generalized quantifiers and so by Theorem 11.1 just 24 = 16
intersective functions. But there are 216 = 65, 536 logically possible
(declarative) Det denotations.

Now observe that most of the Dets in (6) satisfy a condition stronger
than intersectivity, they are cardinal : their value depends not on which
objects lie in the intersection of their arguments but merely on how
many objects lie in that intersection.

Definition 11.2. A possible Det denotation D is cardinal iff for all
properties A,B,X, Y

DAB = DXY if |A ∩B| = |X ∩ Y |.
Dets such as some, no, practically no, more than / less than / exactly

ten, between ten and twenty, just finitely many, infinitely many, about
a hundred, How many? are cardinal. some is cardinal. (A definition
equivalent to (3) is some(A)(B) = T iff |A ∩B| > 0). The intersective
Dets include “vague” ones, such as about twenty and practically no,
since, while we may be uncertain concerning precisely how many spar-
rows must be on your clothesline in order for there to be about twenty,
it does seem clear that

(10) If the number of sparrows on my clothesline is the same as the
number of students in my yoga class then About 20 sparrows are
on my clothesline and About 20 students are in my yoga class
must have the same truth value.
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Further, boolean compounds of cardinal Dets are themselves cardinal.
So at least two and not more than ten is cardinal since at least two and
more than ten are. And CARDE , the set of cardinal (declarative) Dets
over E, is a very small subset of INTE .

2

Theorem 11.3. For |E| = n, |CARDE | = 2n+1.

For example given an E with just 3 elements, there are 28 = 256
intersective Dets, but only 24 = 16 cardinal ones. Indeed, almost all
the Dets in (6) are cardinal, so it is reasonable to ask whether English
has any Dets that are intersective but not cardinal. Our best examples
are those in (11), where only (11a) is syntactically simple:

(11) a. Which students attended the lecture?
b. No student but John came to the lecture.
c. More male than female students came to the lecture.

Clearly (11a) asks us to identify the students who attended, not merely
to say how many there were. So if we just know how many students
attended the lecture we do not have enough information to answer
(11a) or to decide the truth of (11b) or (11c). (11b) is not unreasonably
represented by the discontinuous Det no...but John, as in (12):

(12) P0

hhhhhhhhhhhhhhhhh

KKKKKKKKKKKKKKKK

DP

xxx
xx

KKKKKK

Det

YYYYYYYYYYYYYYYYYYYY N P1

no student but John attended the lecture

And we may interpret no...but John as in:

(13) (no...but john)(A)(B) = T iff A ∩B = {John}.
That is, “No A but John is a B” says that the As who are Bs consist
just of John. So the value of this Det at a pair A,B is decided by
its intersection, but it has to see that the intersection is {John}, not
for example {Mary}, and not merely how many objects are in the
intersection. So no...but John is intersective but not cardinal. Similarly
more male than female is not cardinal, since in (11c) its value depends
not simply on how many students came to the lecture, but rather on
how many male students came and how many female students came.

2Assume that E is finite with cardinality n. Then there are n + 1 functions of
the form (exactly k) where 0 ≤ k ≤ n. Each cardinal Det = a join (“disjunction”)
of functions of the form (exactly k), so there are as many of them as there are
subsets of this set of n+1 functions. That is, there are 2n+1 cardinal Det functions.
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We Turn now to some classes of non-intersective Dets.

11.1.2 Co-Intersective Dets

Co-intersective (generalized universal) Dets depend on A − B, the As
that are not Bs, just as intersective Dets depend on A ∩ B. They are
defined formally below, and exemplified in (14).

Definition 11.3. A Det D is co-intersective iff

DAB = DXY whenever A−B = X − Y.

(14) a. all(A)(B) = T iff A−B = ∅
b. all-but-six(A)(B) = T iff |A−B| = 6
c. all-but-finitely-many(A)(B) = T iff A−B is finite
d. every...but-john(A)(B) = T iff A−B = {j}

Note that for any sets A,B A ⊆ B iff A − B = ∅, so the definition of
all above is as previously defined though the definitions are stated dif-
ferently. And we may define the co-cardinal Dets as those D satisfying
DAB = DXY whenever |A−B| = |X − Y |. The Dets in (14a,b,c) are
co-cardinal, that in (14d) is not.

Theorem 11.4. The set CO-INTE and CO-CARDE of co-intersective
and co-cardinal functions over E are both closed under the pointwise
boolean operations and thus form boolean lattices. They have the same
size as INTE and CARDE respectively.

Thus not all and all but two or all but four are co-intersective since
the items negated and disjoined are.

The value of a co-intersective Det at properties A,B is decided by a
single property, A − B. So again the map sending each co-intersective
D to D(E) is an isomorphism from the co-intersective functions to
the set of generalized quantifiers, whence the intersective and the co-
intersective Dets are isomorphic) . But even taken together INTE and
CO-INTE constitute a minuscule proportion of the possible Det de-
notations: e.g. for |E| = 2 just 30 of the 65,536 functions from P(E)
into GQE are either intersective or co-intersective. We note that the
two trivial Dets, 0 and 1, which map all A,B to F and all A,B to T
respectively are the only Det denotations which are both intersective
and co-intersective.

The co-intersective Dets are structurally less diverse than the in-
tersective ones. They are basically just the universal quantifier with
exception phrases, including almost all. Also we seem to find no clear
examples of interrogative Dets which are co-intersective. Our best ex-
ample is All but how many? as in (15a), of dubious grammaticality. It
means the same as the natural (15b) built from the intersective How
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many?.

(15) a. ??All but how many students came to the party?
b. How many students didn’t come to the party?

11.1.3 Proportionality Dets

A third natural class of Dets that take us well outside the generalized
existential and universal ones are the proportionality Dets.

Proportionality Dets decide DAB according to the proportion of As
that are Bs. So, they yield the same value at A,B as they do at X,Y
when the proportion of As that are Bs is the same as the proportion of
X’s that are Y ’s. Some examples first, then the definition, then some
illustrative denotations:

(16) a. Most poets daydream.
b. Seven out of ten sailors smoke Players.
c. Less than half the students here got an A on the exam.
d. At most ten per cent of the students passed the exam.
e. Between a third and two thirds of the students are

vegetarians.
f. All but a tenth of the students are vegetarians.
g. Not one student in ten can answer that question.

Definition 11.4. A Det D is proportional iff

DAB = DXY whenever |A ∩B|/|A| = |X ∩ Y |/|X|.
(17) a. seven-out-of-ten(A)(B) = T iff 10 · |A ∩B| = 7 · |A|

b. at-most-10%(A)(B) = T iff 10 · |A ∩B| ≤ |A|
c. all-but-a-tenth(A)(B) = T iff 10 · |A−B| = |A|
d. not-one...in-ten(A)(B) = T iff 10 · |A ∩B| < |A|

Co-proportional Dets such as all but a tenth are covered by Definition
11.4 since the proportion of As with B is uniquely determined by the
proportion that lack B: All but (at most) a tenth means the same as
(At least) nine out of ten, so (18a,b) are logically equivalent.

(18) a. All but at most a tenth of the students read the Times.
b. At least nine out of ten students don’t read the Times.

Fractional and percentage Dets, ones of the form n out of m, n ≤ m,
and the discontinuous less than/more than/just one...in ten are pro-
portional. They have been little studied. Our best candidates for inter-
rogative proportional Dets are What percentage / proportion of ?

Proportionality Dets are “typically” neither intersective nor co-
intersective, but there are a few exceptions: exactly zero per cent means
no and more than zero per cent means at least one, so both are inter-
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sective; a hundred per cent means all and less than a hundred per cent
means not all, so both are co-intersective. So the proportionality Dets
have a small non-empty intersection with the (co)-intersective Dets.

The three classes of Dets so far discerned are “booleanly natural”
in that boolean compounds of Dets in the class yield Dets in the class.
But the classes are non-exhaustive: there are Dets in English which
fall in none of these classes. The definite Dets defined below (based
on Barwise and Cooper (1981)) in general lie outside the classes so far
discerned. They are also not booleanly natural. Some examples3 first:

(19) a. the-two(A)(B) = T iff |A| = 2 and all(A)(B) = T
b. the-two-or-more(A)(B) = T

iff |A| ≥ 2 and all(A)(B) = T
c. john’s-two(A)(B) = T iff |A which John has| = 2 and

all(A which John has)(B) = T

(Note that A which John has is a subset of A).
Now we define, tediously:

Definition 11.5.

a. A possible Det denotation D is definite iff for all A ⊆ E, either
DAB = F all B, or DA = all(C), some non-empty C ⊆ A.
D is called definite plural if the C in this last condition must
always have at least two elements.

b. A Det d is definite (plural) iff there are models M in which [[d]]M
is non-trivial and for all such M, [[d]]M is definite (plural).

Note that all is not definite. It is non-trivial but it fails the disjunc-
tion “DAB = F all B, or DA = all(C), some non-empty C ⊆ A”.
It fails the first disjunct since for every A, all(A)(A) = T . It fails the
second since for A = ∅ there is no non-empty subset C of A.

In contrast the reader can compute that the five and John’s five are
definite plural.

A syntactic query: Which DPs occur naturally in the post of posi-
tion of partitives of the form: two of ?

3Other Dets such as these and your can be subsumed under our definition of
definite plural, but their deictic character (the interpretative dependency on the
context of utterance) would introduce a very non-trivial dimension to our definition
of interpretation in a model, one that we lack the space, and knowledge, to present
here.

Note that (the two) = (exactly TWO) ∧ all; (the two or more) =
(at least two)∧all. So extensionally these definite Dets are meets of intersective
with co-intersective ones. But they differ in that the two cats presupposes that there
exist two cats rather than merely asserting as, as given in (exactly two) ∧ALL.
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For example, two of the ten students and two of John’s five cats are
natural, whereas ∗two of most students, ∗two of no students certainly
are not. Also this position seems closed under conjunctions and disjunc-
tions but not under negation or neither...nor...: two of John’s poems or
(of) Mary’s plays were accepted ; several of the students and (of) the
teachers attended. But ∗two of not the ten students and ∗two of neither
the ten students nor the ten teachers. The same pattern of acceptabil-
ity obtains replacing two by other plural, count Dets like several, more
than ten, all but ten, a majority of, etc. So we propose to answer the
query above with (20).

(20) The DPs occurring in two of are just those in the closure
under conjunction and disjunction of the DPs of the form
Det + N, with Det definite plural as above.

We defined our frame with two of because some Dets allow a mass
interpretation with a singular terms in the post-of position (but are
understood as count terms with plural DPs. Compare All / Most of
the house was unusable after the flood versus All / Most of the houses
were unusable after the flood. See Higginbotham (1994) and references
cited there for a conceptually pleasing treatment of mass terms.

11.1.4 “Logical” Dets

Dets such as John’s ten, no...but John, and more male than female
lack the “logical” character of classical quantifiers and some might hes-
itate to call them quantifiers. But terminology aside, the challenging
question here is whether we can characterize what is meant by a “log-
ical” character. We can. This character is captured by the idea that
the interpretations of “logical” expressions (not just Dets) remain in-
variant under structure preserving maps of the semantic primitives of
a model. Such maps are the isomorphisms from a structure to itself,
called automorphisms. For example an automorphism of a boolean lat-
tice (B,≤) is a bijection h of B which fixes the ≤ relation: x ≤ y
iff h(x) ≤ h(y)). The primitives of a standard model M are just its
domain EM and the boolean lattice of truth values {T, F}. The only
automorphism of {T, F} is the identity map, as it is the only bijection
on {T, F} which fixes the implication order. The automorphisms of E
are all the permutations (bijections) of E as E is not endowed with
any relations or functions, so any permutation of E preserves “all”
its structure. Thus an automorphism of (E, {T, F}) is in effect just a
permutation of E (we omit the subscript M). Moreover each such au-
tomorphism h lifts to an automorphism of the denotation sets built
from E and {T, F} in a standard way: an automorphism h maps each
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subset K of E to {h(k) | k ∈ K}; it maps an ordered pair (x, y) of
elements of E to (h(x), h(y)), and it maps a binary relation R on E to
{h(x, y) | (x, y) ∈ R}, etc.

An object in any denotation set is called automorphism invariant if
it is mapped to itself by all the automorphisms. These are the objects
you cannot change without changing structure. They are the ones with
a “logical” character. For example the only subsets of E which are
automorphism invariant are E and ∅, the denotations for exist and
not exist. The invariant binary relations are ∅, E ×E, {(x, x) | x ∈ E}
and {(x, y) ∈ E2 | x 6= y}, these latter two being the denotation of is
(or equals) and not equals, respectively. Proceeding in this way (Keenan
and Westerst̊ahl (1996)) we see that

(21) The denotations of Dets such as every, some, no, the two, most,
all but five, two thirds of the, etc. are automorphism invariant,
those of John’ five, every...but John, more male than female may
denote functions which are not automorphism invariant.

We’ll see shortly that automorphism invariance improves our under-
standing of the relation between intersective and cardinal Dets, as well
as that between co-intersective and co-cardinal ones. For later reference
we note:

Theorem 11.5. The set of type (1,1) functions,

[P(E) → [P(E) → {T, F}]],
is a boolean lattice pointwise. The subset of automorphism invariant
(AI) functions is a sublattice of it. That is, the AI functions are closed
under ∧, ∨, and ¬.

11.2 Generalizations Concerning Det denotations

Surveying the Dets considered so far we see that a few, namely the in-
tersective ones, make their truth decision at a pair A,B of sets just by
checking A∩B; a few others just check A−B; yet others, the propor-
tionality Dets, check both A∩B and A−B, and finally the definite Dets
consider both A and A−B, and partitive Dets check A and then other-
wise behave like intersective, universal, or proportional Dets, as in: two
/ all / most of the ten. We can generalize from these observations to
the claim that in English, evaluating the interpretation of Det As are
Bs does not require that we look outside the As. This observation is
formalized in the literature by two independent conditions: Domain In-
dependence and Conservativity, both of which are non-trivial semantic
properties of Det denotations.
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11.2.1 Domain Independence

Domain Independence (DI) is a global condition on Dets, comparing
their denotations in different universes. It was first proposed as a se-
mantic universal of natural language in van Benthem (1984a)4. It is
prominent in Data Base Theory (see Abiteboul et al. (1995) pp. 77)
and rules out putative Det denotations like blik below, which we think
of as associating with each domain E a type (1,1) function blikE on
E:

(22) For all E, blikE(A)(B) = T iff |E −A| = 3.

Were Blik an English Det then Blik cats can fly would be true iff the
number of non-cats was three. And we could change the truth value of
the S merely by adding some non-cats to the domain, which is unnat-
ural. Note though that (22) assumes that with each E, blik associates
a single quantifier. But, anticipating slightly, some Dets, like John’s
two, can have several denotations over a given domain varying with the
individual John denotes and the things he “has”. So we define:

Definition 11.6 (Domain Independence (DI)). A functional D associ-
ating each domain E with a family of functions of type (1,1) is domain
independent iff for all E ⊆ E′, all A,B ⊆ E,

a. each f ∈ DE(A)(B) extends to an f ′ in DE′(A)(B) and
b. each f ′ ∈ DE′(A)(B) is an extension of some f in DE(A)(B).

Recall that to say that f ′ extends f above just says that it takes the
same values at subsets of E as f does. And to say that English Dets are
domain independent just says that they determine domain independent
functionals. blik above fails DI since blik∅∅ = T when E = {a, b, c}
but blik∅∅ = F for E′ = {a, b, c, d}. We note:

Theorem 11.6. For each domain independent Det d and each model M,

a. [[d]]M is cardinal iff [[d]]M is both intersective and automorphism
invariant, and

b. [[d]]M is co-cardinal iff [[d]]M is both co-intersective and automor-
phism invariant.

11.2.2 Conservativity

Conservativity5 (CONS) is a local constraint, limiting the maps from
P(E) into GQE which can be denotations of Dets. Specifically it re-
quires that in evaluating D(A)(B) we ignore the elements of B which
do not lie in A. Formally,

4Van Benthem stated this condition slightly differently; calling it Extension.
5The term conservative dates from Keenan (1981); it was called lives on in

Barwise and Cooper (1981) and intersective in Higginbotham and May (1981).
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Definition 11.7. A function D from PE into [PE → X], X any set, is
conservative iff for all A,B,C ⊆ E,

D(A)(B) = D(A)(C) whenever A ∩B = A ∩ C.
Theorem 11.7. The set of conservative maps from P(E) into GQE

is closed under the pointwise boolean operations.

Theorem 11.8. D from PE to [PE → X] is conservative iff for all
A,B ⊆ E, DAB = D(A)(A ∩B).

Theorem 11.8 is the usual definition of Conservativity. The reader
may use it to verify that the Dets in (23) are conservative by verifying
that (23x,x′) are logically equivalent.

(23) a. All swans are white.
a’. All swans are swans and are white.
b. Most bees buzz.
b’. Most bees are bees that buzz.
c. No dogs purr.
c’. No dogs are dogs that purr.
d. John’s pupils work hard.
d’. John’s pupils are pupils and work hard.
e. Which states have no taxes?
e’. Which states are states with no taxes?
f. Whose two bikes are in the yard?
f’. Whose two bikes are bikes in the yard?
g. Neither John’s nor Bill’s abstracts were accepted.
g’. Neither John’s nor Bill’s abstracts were abstracts that were

accepted.

The equivalences in (23) are felt as trivial because the predicate repeats
information given by the noun. But surprisingly, Conservativity is a
very strong constraint:

Theorem 11.9 (Keenan and Stavi (1986)). The number of logically

possible Det denotations is |[PE → GQE ]|, namely 24
|E|

. The total num-

ber of these functions which are conservative is 23
|E|

.

Thus in a two element domain E there are 216 = 65, 536 maps from
properties to GQs. Just 29 = 512 are conservative! (And only 16 are
(co-)intersective, of which 8 are (co-)cardinal). Functions like the Härtig
quantifier H in (24), are not conservative: choose A and B to be disjoint
singleton sets. Then |A| = |B| but |A| 6= |A ∩B|.
(24) H(A)(B) = T iff |A| = |B|.

Note that DI and CONS are independent: blikE above is CONS but
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not DI; the Härtig quantifier is DI but fails CONS in each E. It seems
then that

(25) Natural Language Dets are both domain independent and
conservative.

Ben-Shalom (2001) and Keenan and Westerst̊ahl (1996) independently
provide different single conditions which capture the combined effect of
domain independence and conservativity.

Thus CONS is a strong condition, ruling out most maps from P(E)
into GQE as possible Det denotations. But it still lets through many
that lie outside the INT and CO-INT classes, e.g. the proportional
Dets and the definite Dets. Are there others? Can we impose a local
constraint stronger than CONS on possible Det denotations? If not, is
there any reason to expect that the denotable Det functions should be
just those admitted by CONS? Concerning stronger constraints Keenan
and Stavi (1986) show that over any finite E any conservative function
from P(E) into GQE can be denoted in the sense that we can construct
an English expression (albeit a cumbersome one) which can be inter-
preted as that function. We also have a (more speculative) answer to
the last question: Namely, consider that in general boolean compounds
of intersective and co-intersective Dets lie in neither class. So the Dets
italicized below are neither intersective nor co-intersective:

(26) a. Some but not all students read the Times.
b. Either all or else not more than two of the students will

pass that exam.
c. Either just two or three or else all but a couple of students

will pass that exam.

But these Dets are conservative since they are boolean compounds of
conservative ones (by Theorem 11.7).

Theorem 11.10 (Keenan (1993)). The set of conservative functions
over E is the boolean closure of the intersective together with the co-
intersective functions.

That is, the set of functions obtained from INT and CO-INT by
forming arbitrary meets, joins and complements is exactly the set of
conservative functions. Recall our earlier remarks that the boolean con-
nectives (and, or, not, neither...nor...) are not semantically tied to
any particular category or denotation set, but rather express ways we
have of conceiving of things—properties, relations, functions, etc.—
regardless of what they are. Thus given that we need intersective and
co-intersective functions as denotations for expressions we expect the
class of CONS functions to be denotable just because we can form
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boolean compounds of expressions denoting (co)intersective functions.
There is a last property related to CONS and which distinguishes

natural language quantifiers from their standard logical counterparts.
Namely some Dets do not make critical use of the noun argument (the
restrictor) to restrict the domain of quantification, but can be para-
phrased by replacing the noun argument by one that denotes the whole
domain, forming a new predicate by some boolean compound of the
original noun and predicate argument. For example, as we saw, Some
As are Bs says the same as Some individuals are both As and Bs, where
in the second S we are quantifying over all elements of the domain, not
just those in A, as in the first S. Indeed it is this conversion that is
learned when we teach beginning logic students to represent Some men
are mortal by “For some x, x is a man and x is mortal”. The variable
x here precisely ranges over the entire universe of objects under con-
sideration. Similarly All men are mortal gets represented as “For all
objects x, if x is a man then x is mortal”.

Dets which admit of the elimination of the noun argument in this
way will be called sortally reducible, and our key observation here is
that English presents many Dets which are not sortally reducible. In
fact the Dets that are sortally reducible are just the intersective and
co-intersective ones. Let us more formally define:

Definition 11.8. D is sortally reducible iff for all A,B ⊆ E,

D(A)(B) = D(E)(. . . A . . . B . . .),

where “(. . . A . . . B . . .)” is a boolean function of A and B.

“Boolean functions” are ones definable solely in terms of the boolean
connectives and, or, not, etc. In the formalism used here this just means
that (. . . A . . . B . . .) is defined in terms of set intersection (∩), union
(∪) and complement (¬). We use A→ B to abbreviate ¬A ∪B.

Theorem 11.11.

a. If D is intersective then D is sortally reducible, by

DAB = D(E)(A ∩B).

This follows from the fact that A ∩ B = E ∩ A ∩ B plus the fact
that D is intersective.

b. If D is co-intersective then D is sortally reducible, by

DAB = D(E)(A→ B).

Note that E − (A→ B) = E ∩ ¬(¬A ∪B) = A ∩ ¬B = A−B).

Theorem 11.12 (Keenan (1993)). For D a function of type (1,1) over
a domain E, D is sortally reducible iff either D is intersective or D is
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co-intersective.

So, in general, proportionality Dets are not sortally reducible, they
make essential use of the noun argument. Let us see that the reductions
in Theorem 11.11 don’t work for most. Theorem 11.11a doesn’t, since
Most students are vegetarians is not logically equivalent toMost entities
are both students and vegetarians : given an E consisting of a hundred
vegetarians only ten of whom are students, the first sentence is true
and the second false. For the inadequacy of the if-then type reduction
we show that (27b) does not entail (27a):

(27) a. Most students are vegans.
b. Most entities are such that if they are students then they

are vegans.

Let |E| = 100 with just 15 students, no vegans. Then (27a) is false:
none of the students are vegans. But (27b) is true: the if-then clause is
satisfied by 85 of the 100 entities.

We have covered a variety of English Dets, all of the type that take
two property denoting expressions as arguments to yield a truth value
(or question meaning). But English arguably presents Dets of other
types.

11.3 k-Place Dets

Following Keenan and Moss (1985) the italic expressions in (28) are
Det2s: they combine with two Ns to form a DP and semantically map
pairs of sets to GQs.

(28) a. More / Fewer students than teachers came to the party.
b. Fewer students than teachers came to the party.
c. Exactly / almost / not as many students as teachers...
d. More than ten times as many students as teachers...
e. How many more students than teachers were arrested?
f. The same number of students as teachers...
g. A larger / smaller number of students than teachers...

(28a) gives the denotation of the Det2 more...than..., with the N argu-
ments in the easy-to-read order. Most of the other denotations in (28)
are defined similarly. Read (29) as “More As than Bs have C iff the
number of As with C exceeds the number of Bs with C”.

(29) (more A than B)(C) = T iff |A ∩ C| > |B ∩ C|.
Exercise 11.4. On the pattern in (29) exhibit the denotations of the
Det2s below:

a. exactly as many... as...
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b. more than twice as many... as...

c. no more... than...

d. the same number of...as...

Expressions such as more students than teachers which we treat as
built from Det2s are not usually treated as DPs in their own right. So
it is worth noting that they share many distributional properties with
standard DPs (Keenan (1987a)):

(30) a. John interviewed more men than women.
b. He sent flowers to more teachers than students.
c. She believes more students than teachers to have signed

the petition.
d. More students than teachers are believed to have signed

the petition.
e. More teachers than deans interviewed more men than

women.
f. Almost all instructors and many more.
g. Ann knows more Danes than Germans but not more Danes

than Swedes.

There is also an interesting semantic fact naturally represented on a
view which treats more...than..., etc. as a Det2 taking an ordered pair
of nouns as arguments. Namely, modifiers of the pair naturally behave
coordinate-wise applying to each property:

(31) More students than teachers at UCLA attended the rally
= More students at UCLA than teachers at UCLA attended the
rally
= (at UCLA)(p, q) = ((at UCLA)(p), (at UCLA)(q))

Generalizing now, we can think of a Detk as combining with a k-
tuple of Ns to form a DP. Semantically it would map k-tuples of sets to
GQs. Does English present Detks for k > 2? Perhaps. It is reasonable
for example to treat every...and... as a k-place Det, all k > 0. (Think
of every as the form it takes when k = 1). (32) interprets every...and...
as a Det3.

(32) a. Every man, woman and child jumped overboard.
b. (every . . .and . . .)(A,B,C)(D) = every(A ∪B ∪ C)(D)

The and in (32a) is not simple coordination, otherwise (32a) would
mean that every object which was simultaneously a man, woman and
child jumped overboard, which is empirically incorrect. The pattern
whereby the value of a Detk built from a Det1 and and maps the n
noun properties to whatever the Det1 maps their union to, is quite
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general:

(33) For D ∈ [PE → GQE ], (D . . .and . . .) maps (PE)
k into GQE , all

k, defined by:

(D . . .and . . .)(A1, . . . , Ak) = D(
⋃

1≤i≤k

Ai).

(34) a. About fifty men and women jumped overboard.
(about fifty...and...)(A,B)(D)
= (about fifty)(A ∪B)(D)

b. The sixty boys and girls laughed at the joke.
(the sixty...and...)(A,B)(D) = (the sixty)(A ∪B)(D)

c. Which boys and girls came to the party?
(which...and...)(A)(B)(D) = which(A ∪B)(D)

The most convincing case that we have Det2s in English comes from
(28) as they do not lend themselves to a syntactic or semantic reduction
to compounds of Dets of lesser arity.

The Det2s in (28) are all cardinal (and thus intersective): the value
of the DP they build at a predicate property B is decided by the car-
dinality of the intersection of B with each noun property. Defining
conservativity, (co-)intersectivity, etc. for k-place Dets involves no real
change from the unary case: a cardinal Detk decides truth by checking
the cardinality of the intersection of the predicate property with each
of the k noun properties. A conservative Detk checks the intersection
of that property with each noun property, etc6.

Comparative quantifiers (Beghelli (1992) Beghelli (1994) Smessaert
(1996)) assume a variety of other forms in English as well. Those in
(35) combine with a single noun property but two predicate properties
to form a S.

(35) a. More students came early than left late.
b. Exactly as many students came early as left late.
c. The same number of students came early as left late.
d. The same students as came early left late.

6The extended definitions would proceed as follows:

Definition 11.9. For all k, all functions D from k-tuples of properties over E into
[PE → X],

a. D is cardinal iff for all k-tuples A,A′ of properties and all properties B,B′,
if |Ai ∩B| = |A′

i
∩B′|, all 1 ≤ i ≤ k, then DAB = DA′B.

b. D is conservative iff for all k-tuples A = 〈A1, . . . , Ak〉 and all properties
B,B′, if Ai ∩B = Ai ∩B′, all 1 ≤ i ≤ k, then DAB = DAB′.

Define intersectivity for Detks by eliminating from (a) the cardinality signs; co-
cardinal and co-intersective for Detks by replacing Ai ∩ B with Ai − B. For some
additional types of Dets see Keenan and Westerst̊ahl (1996)
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Enriching our type notation we treat the Dets in (28) as of type
((1,1),1): they map a pair of noun properties to a function from proper-
ties to truth values. The Dets in (35) then perhaps have type (1,(1,1))),
mapping a triple of properties a truth value. Note that the string more
students in (35a) is not a DP and cannot be replaced by one.

(36) a. ∗All / Most / No students came early than left late.
b. ∗Exactly ten / Most students came early as left late.

The quantifiers of type ((1,1),1) and (1,(1,1)) we have considered are
all cardinal in their type. We do not seem to find any co-cardinal two
place Dets. There are however proportional Dets of type ((1,1),1) as in
(37) and of type (1,(1,1)), as in (38).

(37) a. A greater/smaller percentage of students than (of) teachers
signed the petition.

b. The same proportion of students as of teachers signed the
petition.

(38) a. A greater / smaller percentage of students came early than
left late.

b. The same percentage of students came early as left late.

And the Dets in (39) plausibly have type (1,1,1,1), or perhaps ((1,1),(1,1)).
We only find natural cardinal examples:

(39) a. More students came early than teachers left late.
b. Just as many students came early as teachers left late.

Quantifiers in these high types have not, at time of writing, been sub-
jected to any intensive study. Here we note simply two entailment
paradigms which at least indicate that there is some logical behavior
to study here. The first is due to Zuber (2008).

(40) a. More poets than linguists are vegetarians. (type ((1,1),1)
b. More vegetarians are poets than are linguists.

(type (1,(1,1))

And in general,

(41) more A than A′ are B ↔ more B are A than are A′

(42) a. More poets than painters live in NY
b. ≡ More poets who are not painters than painters who are

not poets live in NY.

Exercise 11.5. Exhibit an informal model in which (a) is true and (b)
is not.

a. The students who arrived early also left late.
b. The same students as arrived early left late.
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11.4 Crossing the Frege Boundary

We have treated GQs as mapping P1 denotations to S (= P0) deno-
tations and we extended them to maps from Pn+1 denotations to Pn
denotations in such a way that their values at n+ 1-ary relations were
determined by their values at the unary relations. This yielded the ob-
ject narrow scope reading of Ss like Some student praised every teacher.
The object wide scope reading was shown to be representable with the
use of the lambda operator:

(every teacher)λx(some student praised x).

A suggestive aspect of our “extensions” approach is that it leads us
to look for new types of DP denotations. Obviously there are many
more maps from binary relations to unary relations over E (|E| > 1)
than there are from unary relations to truth values. Can any of these
new functions be denoted by expressions in English? In fact many can.
Consider himself in (43a), interpreted as in (43b) and everyone but
himself in (44a) interpreted as in (44b):

(43) a. Every poet admires himself.
b. self(R) = {b ∈ E | b ∈ Rb}

(44) a. No worker criticized everyone but himself.
b. (all but self)(R) = {b ∈ E | Rb = E − {b}}

Recall that Rb is {y ∈ E | R(y)(b) = T}, the set of objects y which b
bears the relation R to.

And provably these sorts of referentially dependent functions are not
the extensions of any GQs to binary relations:

Theorem 11.13 (Keenan (1989)). There is no GQ whose restriction
to binary relations is self or all but self (for |E| > 1).

The same holds for other DPs with ordinary pronominal forms bound
to the subject, e.g. his mother in Everyonei loves hisi mother.

Even more challenging are cases like (45) in which the pairs of italic
expressions are felt to stand in some sort of mutual referential depen-
dency relation.

(45) a. Different people like different things.
b. Each student answered a different question (on the exam).
c. John criticized Bill but no one else criticized anyone else.

And in fact (Keenan (1992)), there are no GQs F ,G such that F (G(like))
always has the same truth value as (45a), all binary relations like. But
the pair (different people, different thing) can be treated di-
rectly as a type (2) quantifier, one mapping binary relations to truth
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values. So such dependent pairs determine yet another type of quantifi-
cation in natural language. In the same spirit, Moltmann (1996) notes
inherently type (2) quantifiers like the exception constructions in (46).

(46) a. Every man danced with every woman except John with
Mary.

b. No man danced with any woman except John with Mary.

11.5 A Classic Syntactic Problem

Linguists since Milsark (1977) have puzzled over which DPs occur nat-
urally in Existential There (ET) contexts, as in (47) and (48):

(47) a. There are at most three undergraduate students in my
logic class.

b. Isn’t there at least one student who objects to that?
c. Aren’t there more than five students enrolled in the course?
d. There were more students than teachers arrested at the

demonstration.
e. Just how many students were there at the party?
f. Were there the same number of students as teachers at the

party?
g. There weren’t as many students as teachers at the lecture.

The examples in (47) are all built from cardinal Dets. Of note is that
cardinal Det2s, not traditionally considered in this (or any) context,
build DPs fully acceptable in ET contexts.

Exercise 11.6. On the basis of examples like those in (47)

a. Exhibit four structurally distinct boolean compounds of DPs ac-
ceptable in ET contexts and show that they themselves are also
acceptable in ET contexts.

b. Exhibit some ungrammatical boolean compounds of DPs built
from cardinal Dets. Can you suggest any regularities limiting the
formation of such DPs?

c. Can you find any DPs acceptable in ET contexts whose boolean
compounds are grammatical in general but not acceptable in ET
contexts? If not this argues that ET contexts do not impose any
special restrictions on boolean compounding.

There are many pragmatic issues involved with judgments of accept-
ability of DPs in ET constructions, but a good (but not perfect, see
below) approximation to a proper characterization of the acceptable
DPs here is that they are just those built from intersective Dets (Det1s
or Det2s) and their boolean compounds. So, like the definite plural
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DPs, we characterize a class of DPs in terms of the Dets that build
them. The Dets in (47) are cardinal, those in (48) are intersective but
not cardinal. Those in (49) are not intersective and the resulting Ss are
marginal to bad:

(48) a. Aren’t there as many male as female students in the class?
b. There was no student but John in the building.
c. Just which students were there at the party anyway?
d. There were only two students besides John at the lecture.

(49) a. ∗There are most students in my logic class.
b. ∗Isn’t there the student who objects to that?
c. ??Aren’t there seven out of ten students enrolled in your

course?
d. ∗Isn’t there every student who gave a talk at the

conference?
e. ∗Was there neither student arrested at the demonstration?
f. ??Which of the two students were there at the

demonstration?

See Reuland and ter Meulen (1987) for several articles discussing DPs
in Existential There contexts. Keenan (2003) is a recent proposal which
entails the intersectivity claim above. Peters and Westerst̊ahl (2006)
(pp. 214–238) is a more recent in depth review of the literature and
notes (at least) two problems with the intersectivity thesis above.
Namely, partitives, as in (50) and possessives, as in (51).

(50) I believe that there are at least two of the five supervisors that
favor that bill.

Treating the Det in (50) as at least two of the five it will fail to be
intersective as it is not symmetric: setting

D = (at least two of the five),

we have that D(A)(B) is true if |A| = 5, |B| = 10 and |A ∩ B| ≥ 2.
But then D(B)(A) is false since |B| 6= 5. And seemingly all options of
analysis must enforce an asymmetry between A and B with |A| required
to be 5 and |B| not so required.

(51) a. There is some neighbor’s dog that barks incessantly.
b. ∗There is each neighbor’s dog that barks incessantly.

Possessives are difficult both syntactically and semantically. The most
thorough semantic treatment is in fact that given in Chapter 7 of Peters
and Westerst̊ahl (2006). Possessive Dets may fail to be symmetric hence
they fail to be intersective: it may be true that John’s doctor is a lawyer
but false that John’s lawyer is a doctor. Possibly possessive Dets are
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(sometimes) properly intensional, like too many and not enough noted
in footnote 1. But that won’t explain the judgments in (51a,b) as the
sense of possession is the same in the two cases.

We conclude with a brief look at some tantalizing but less well un-
derstood instances of A(dverbial)-quantification in English, as opposed
to the D(eterminer)-quantification (Partee (1994)) we have been con-
sidering.

11.6 Adverbial Quantification

A(dverbial)-quantification is expressible with independent adverbs or
PPs: Lewis (1975), Heim (1982), de Swart (1996, 1994).

(52) a. John always / usually / often / occasionally / rarely /
never trains in the park.

b. John took his driver’s exam twice / (more than) three
times.

c. Mary brushes her teeth every day / twice a day.

There is a striking semantic correspondence between the adverbial
quantifiers underlined above and the D-Dets presented earlier. Always
corresponds to all, never to no, twice to two, usually to most, occa-
sionally / sometimes to some, and often and rarely to many and few.
Similarly Bittner (1995) lists pairs of A- and D- quantifiers (translating
always, mostly, often, sometimes) in Greenlandic Eskimo formed from
the same root but differing in adverbial vs nominal morphology. And
Evans (1995) lists pairs of semantically similar D- and A-quantifiers in
Mayali (Australia).

In general what we quantify over in the D-cases is given by the Ns
the Det combines with. But in A-quantification there is often no such
clear constituent, and precisely what we are quantifying over is less
clear. One influential approach to A-quantification follows up on the
unselective binding approach in Lewis (1975). Examples that illustrate
A-quantifiers best and which seem empirically most adequate are ones
lacking independent D-quantifiers. (53) is from (Peters andWesterst̊ahl,
2006, pg. 352).

(53) a. Men are usually taller than women.
b. most2({〈x, y〉 | x ∈ man

& y ∈ woman}, {〈x, y〉 | x taller y}) = T
c. iff

|(man×woman) ∩ taller|
|(man×woman)| >

1

2

On this interpretation (53a) is true iff the proportion of (man,woman)
pairs in the taller than relation is more than half the (man,woman)
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pairs. So most2 is of type (2,2), mapping a pair of binary relations
man × woman and taller as arguments to truth values, as it does
in simpler cases like Most colleagues are friends. Its semantics is that
of most given earlier, but now the sets it intersects and compares
cardinalities of are sets of ordered pairs. In general for D any of our
original Det functions, Dk, the k-resumption of D, is that function like
D except that its arguments are k-ary relations. Peters and Westerst̊ahl
(2006) call this lifting operation resumption. It is one way A-quantifiers
are characterized in terms of D-quantifiers. Thus it is immediate how to
interpret the Ss differing from (53a) by replacing usually with always,
sometimes, and never.

Now, to what extent can we represent A-quantification by resump-
tion? We don’t know at time of writing, but one more case that has
been widely treated as unselective binding (resumption) is biclausal
constructions built from when/if clauses and generic or indefinite DPs
(constructed with the indefinite article a/an), as (54). See Kratzer
(1995).

(54) a. (Always) when a linguist buys a book he reads its
bibliography first.

b. all2(R,S), where
R = {〈x, y〉 | x ∈ linguist, y ∈ book, x buy y} and
S = {〈x, y〉 | x read y’s bibliography first})

c. = T iff R ⊆ S

all2 is just all with binary not unary relation arguments. (54c) says
that (54a) is true iff for all linguists x, all books y, if x buys y then x
reads y’s bibliography first, which seems right. Always can be replaced
by Sometimes, Never, and Not always, interpreted by some2, no2, and
¬all2 with the intuitively correct truth conditions. However further
extensions to Ss in which A- and D-quantification interact have not
been successful. A much studied example is the Geach “donkey” sen-
tence (Geach (1962)), as in (39a) with it anaphoric to donkey. Kamp
(1981) and Heim (1982) among others have tried to interpret it with
resumptive quantification as in (55b).

(55) a. Every farmer who owns a donkey beats it.
b. all2({〈x, y〉 | x ∈ farmer, y ∈ donkey & x own y},

{〈x, y〉 | x beat y})
This yields the “strong” interpretation on which every farmer who owns
a donkey beats every donkey he owns. Several linguists either accept
this interpretation or at least feel that it is the closest clear statement
of the truth conditions of (55a). But most choices of initial quantifier
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do not yield correct resumptive interpretations. Kanazawa (1994) notes
that the resumptive reading of

(56) a. At least two farmers who own a donkey beat it.
b. Most farmers who own a donkey beat it.

(56a) would, incorrectly, be true in a model in which there are just two
farmers, one owns one donkey and doesn’t beat it, the other owns two
and beats them both. Rooth (1987) notes the comparable problem for
(56b) in which say all but one of ten farmers owns just one donkey and
beats it, but the last farmer owns 100 donkeys and doesn’t beat any of
them. This problem is now called the proportion problem, a misnomer
since, per Kanazawa, it arises with non-proportional Dets like at least
two as well. Indeed Peters and Westerst̊ahl (2006) attribute to van der
Does and van Eijck (1996) the claim that only all, some and their
complements don’t lead to a proportion problem. In addition Chierchia
(1992) cites cases in which Ss like (57a) get a “weak” or “existential”
reading, not a universal one.

(57) a. Everyone who has a credit card will pay his bill with it.
(Cooper (1979))

b. Everyone who has a dime will put it in the meter.
(Pelletier and Schubert (1989))

Evans (1977), Cooper (1979) and, in a different way, Heim (1990), try
to handle the “dangling” it in donkey Ss with E-type pronouns, in
effect replacing it by a full DP such as the donkey he owns, where he
refers back to farmer. But the results are less than satisfactory when
some farmers own more than one donkey. From our perspective these
proposals do not so much invoke new quantifiers as establish the scope
of familiar quantifiers. Later proposals by Groenendijk and Stokhoff
(1991), Chierchia (1992), Kanazawa (1994) and de Swart (1994) invoke
dynamic logic in which natural language expressions are represented
in a logical language and variables not in the syntactic scope (the c-
command domain) of a vbo can nonetheless be bound by it.

So far we have not considered the domain of the resumptive quan-
tifier in a systematic way. In (53a) the two Ns man and woman are
part of different DP constituents, yet the domain of the quantifier is
the cross product of their denotations. In (54a) it was the subordinate
when clause in which we abstracted twice to form a binary relation
denoting expression. Now returning to our initial example, repeated
as (58a), we don’t find naturally constructable binary relations of the
relevant sorts. Rather, following de Swart (1996), it seems that we are
comparing the “times” (or “occasions”) John trains with the times he
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trains in the park.

(58) a. John always / usually / ... trains in the park.
b. all({t | John trains at t}, {t | John trains in the park at t})

So the Ss in (58a) compare the set of times John trains with the set of
times he trains in the park. always says that the first set is included
in the second; never says they are disjoint; sometimes says they are
not; usually says that the set of times he trains in the park number
more than half of the number of times that he trains, etc. So here A-
quantification is handled as D-quantification over times. This approach
is not unnatural given A-quantifiers which overtly mention times as
sometimes, five times, most of the time, from time to time. Moreover it
enables us to test whether the properties we adduced for D-quantifiers
extend to their corresponding A-ones. And several do, as de Swart
(1996) shows.

The cases in (58) are trivially Conservative. For any A-quantifier Q,

(59) Q(train)(train in the park)
= Q(train)(train ∩ train in the park).

They are also Domain Independent: if more times are added to the
model but the two arguments of an A-Quantifier are unchanged then
the value Q assigns them is unchanged. Further some A-Quantifiers
are intersective: sometimes, never; some are co-intersective: always,
with just two exceptions, (60a); and some properly proportional,
(60b): usually, more than two thirds of the time. (As with
D-quantifiers the notion of proportion is clearest when the arguments
are finite and non-empty).

(60) a. With two exceptions, John has always voted for a
Democrat for President.

b. More than two thirds of the time when John prayed for
rain it rained.

de Swart (1996) also handles some subordinate temporal clauses with
before and after which are not mere place holders for quantificational
domains in the way that when and if clauses may be.

(61) a. Paul always takes a shower just before he goes to bed.
b. Paul never exercises immediately after he has had dinner.

(61a) says that the times just before Paul goes to bed are all among
those when he takes a shower. (61b) says that the times immediately
after he has had dinner are disjoint from the times he exercises. Usu-
ally, always, sometimes and never are interpretable by their corre-
sponding D-Det. Using when as an argument slot definer we see that
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the A-quantifiers above have the monotonicity properties of their D-
counterparts. Like all, always is increasing on its second argument,
decreasing on its first, so the inferences in (62) are valid and npi’s are
licensed in the first argument but not the second, (63).

(62) a. Always when John travels he reads a book.
b. =⇒ Always when John travels he reads something.
c. =⇒ Always when John travels by train he reads a book.

(63) a. Always when anyone travels he reads a book.
b. ∗Always when John travels he reads any book.

Lewis (1975) cautioned against a “times” approach noting that don-
key Ss refer more to a continuing state than an event, and Ss like A
quadratic equation usually has two different solutions lack a time coor-
dinate altogether. This is certainly true, though it leaves unexplained
why it is natural to use the temporal metaphor in discussing mathe-
matical Ss. A logician might say that a set of sentences is semantically
consistent if they can be simultaneously true. Lewis himself notes that
Russell and Whitehead (1910) use always and sometimes in explain-
ing their introduction of the now standard universal and existential
quantifier: (x).ϕx means ϕx always, (∃x).ϕx means ϕx sometimes. It
would not seem problematic to interpret Ss as functions taking “ab-
stract times” as arguments, with truly “timeless” Ss denoting constant
functions, as with vacuous quantification generally. Artstein (2005),
building on Pratt and Francez (2001) treats before and after phrases
(after the meeting, after John left) as temporal generalized quantifiers—
they map properties of time intervals to {T, F}.

11.7 Concluding Remarks

D-quantification over count domains is the best understood type of
quantification in natural language. Our knowledge in this domain has
grown enormously beginning in the 1980s. And we see that it proves
helpful in understanding mass and A-quantification, both areas cur-
rently being researched and in which many empirical and conceptual
issues remain unexplored, even unformulated.

11.8 Historical Background

Quantification has been a major topic of both syntactic and semantic
investigation in natural language for some time. In addition to articles
cited in the body of this chapter, some good collections or overview ar-
ticles are: van Benthem and ter Meulen (1985), van Benthem (1984a),
Reuland and ter Meulen (1987), van der Does and van Eijck (1996),
Gärdenfors (1987), Kanazawa and Piñón (1994). Westerst̊ahl (1989)
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overviews of this work up to 1987; Keenan and Westerst̊ahl (1996) cover
the later work; Keenan (1996) and Keenan (2008) are more linguisti-
cally oriented overviews. Peters and Westerst̊ahl (2006) is the most
comprehensive and in depth work to date. More purely mathematical
work stimulated in part by this activity is: van Benthem (1984b), West-
erst̊ahl (1985), Keenan (1993), Kolaitis and Väänänen (1995), and the
recent collection Krynicki et al. (1995). Szabolcsi (1997) is an excel-
lent source for issues concerning scope, branching, and distributivity in
natural language. Unselective binding and adverbial quantification are
being investigated by several people. See for example Partee (1985) and
de Swart (1994). Verkuyl and van der Does (1996), Lønning (1985),
Winter (1998) discuss plurals and collectives. Doetjes and Honcoop
(1997) and Krifka (1989, 1990) are good sources for work on event quan-
tification. See Groenendijk and Stokhoff (1985) and Gutierrez-Rexach
(1997) for recent work on questions and quantification.

11.9 Appendix: Some types of English Determiners

We present a variety of subclasses of Dets below. The classes are only
informally indicated and are not exclusive some Dets appear in several
classes. The intent here is to give the reader some idea of the syntac-
tic and semantic diversity of English Dets. As the reader will see, we
are generous with what we call a Det, since generalizations that we
make about the entire class will remain valid if some of our Dets are
syntactically reanalyzed in other ways. Had we chosen a too narrow
class initially some of our generalizations might be vitiated simply by
bringing up new Dets not considered.

(64) Det1’s: These are Dets which combine with one (possibly
complex) Noun to form a P0/P1—a generalized quantifier
denoting expression. These include the Dets we have already
considered, like every, some, no, etc. and many others:

Lexical Dets: every, each, all, some, a, no, several, neither,
most, the, both, this, my, these, John’s, ten, few, many, a
few, a dozen,

Cardinal Dets: exactly ten, approximately/more than/fewer
than/at most/only ten, infinitely many, two dozen,
between five and ten, just finitely many, an even/odd/large
number of

Approximative Dets: almost all/no, practically no,
approximately/about/nearly/around fifty, a hundred plus
or minus ten

Definite Dets: the, that, this, these, my, his, John’s, the ten,
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these ten, John’s ten
Exception Dets: all but ten, all but at most ten, every...but

John, no...but Mary
Bounding Dets: exactly ten, between five and ten, most but

not all, exactly half the, just one...in ten, only SOME
(=some but not all; upper case = contrastive stress), just
the LIBERAL, only JOHN’S

Possessive Dets: my, John’s, no student’s, either John’s or
Mary’s, neither John’s nor Mary’s

Comparative Possessives: more of Mary’s than of Ann’s
(articles were cited)

Value Judgment Dets: too many, too few, a few too many,
(not) enough, surprisingly few, ?many, ?few, more ... than
we expected

Proportionality Dets: most, two out of three, (not) one ...in
ten, less than half the (these, John’s), exactly/more
than/about/nearly half the, (more than) a third of the, ten
per cent of the, every second

Partitive Dets: most/two/none/only some of the ten / of
John’s, more of John’s than of Mary’s, not more than two
of the ten

Negated Dets: not every, not all, not a (single), not more
than ten, not more than half, not very many, not quite
enough, not over a hundred, not one of John’s, not even
two per cent of the

Conjoined Dets: at least two but not more than ten, most
but not all, either fewer than ten or else more than a
hundred, both John’s and Mary’s, at least a third and at
most two thirds of the, neither fewer than ten nor more
than a hundred

Adjectively Restricted Dets: John’s biggest, more male
than female, most male and all female, the last...John
visited, the first...to set foot on the Moon, the easiest...to
clean, whatever...are in the cupboard, the same...who came
early

Logical Dets: every, no, most, the two, all but two, exactly
two, most but not all, just two of the ten, not more than
ten, at least two and not more than ten, seven out of ten,
not one...in ten

(65) Det2s: These combine with two Ns to form a DP, as in more
students than teachers (came to the party).
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Cardinal comparatives: more...than..., fewer...than...,
exactly as many...as..., five more...than..., twice as many
...as..., the same number of...as...

Coordinate extensions: every...and..., no...or...., the more
than twenty...and..., some...and...

The three dots above indicate the locus of the N arguments. E.g.
in not one student in ten we treat not one...in ten as a discontinuous
Det. In general we have two reasons for positing discontinuous analyses.
One, often the N+postnominal material, such as student in ten in not
one student in ten, has no reasonable interpretation, and so is not
naturally treated as a constituent (which, by Compositionality, should
be interpreted).

And two, the presence of the postnominal and prenominal material
may fail to be independent. If in not one student in ten we treated stu-
dent in ten as a N which combines with the Det not one, how would we
block ∗the/this/John’s student in ten? So there are sensible reasons for
treating the complex expressions above as Dets, though this proposal is
not without problems of its own (Lappin (1996), Rothstein (1988)) and
very possibly some of our cases will find a non-discontinuous analysis
(see von Fintel (1993), Lappin (1996), Moltmann (1996) on exception
Dets)
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Büchi, Richard J. 1989. Finite Automota, Their Algebras and Grammars.
Springer Verlag.

Bunch, B. 1989. Reality’s Mirror . John Wiley & Sons.

Bybee, J., R. Perkins, and W. Pagliuca. 1994. The Evolution of Grammar .
University of Chicago Press.

Chierchia, Gennaro. 1992. Anaphora and dynamic binding. Linguistics and
Philosophy 15:111–183.

Chierchia, Gennaro. 2004. Scalar implicatures, polarity phenomena and the
syntax/pragmatics interface. In A. Belletti, ed., Structures and Beyond ,
vol. 3, pages 39–104. Oxford University Press.

Chomsky, Noam. 1996. The Minimalist Program. Cambridge, MA: The MIT
Press.

Chomsky, Noam and Howard Lasnik. 1977. Filters and control. Linguistic
Inquiry 8:425–504.

Chomsky, Noam and George A. Miller. 1963. Introduction to the formal
analysis of natural languages. In R. Luce, R. Bush, and E. Galanter, eds.,
The Handbook of Mathematical Psychology , vol. II, chap. 11. Wiley.

Church, Alonzo. 1936. A note on the Entscheidungsproblem. Journal of
Symbolic Logic pages 40–41.

Church, Kenneth W. 1980. On Memory Limitations in Natural Language
Processing . Master’s thesis, MIT.



References / 335

Cole, P. and G. Hermon. 2008. Vp raising in a vos language. Syntax
11(2):144–197.

Comrie, Bernard. 1985. Derivational morphology. In T. Shopen, ed., Lan-
guage Typology and Syntactic Description, vol. 3, pages 309–349. Cam-
bridge, UK: Cambridge University Press.

Comrie, Bernard. 2000. Valency-changing derivations in Tsez. In R. Dixon
and A. Aikhenvald, eds., Changing Valency: Case Studies in Transitivity ,
pages 360–375. Cambridge, UK: Cambridge University Press.

Cooper, Robin. 1979. The interpretation of pronouns. In F. Heny and
H. Schnelle, eds., Syntac and Semantics, vol. 10. Academic Press.

Cooper, Robin. 1982. Binding in wholewheat syntax (unenriched with in-
audibilia). In P. Jacobson and G. Pullum, eds., The Nature of Syntactic
Representation, pages 59–77. Reidel.

Corbett, Greville. 1991. Gender . Cambridge, England: Cambridge University
Press.

Cotton, A., F.1̇990. Chemical Applications of Group Theory . John Wiley &
Sons.

Craig, William. 1957. Three uses of the Herbrand-Gentzen theorem in relat-
ing model theory and proof theory. Journal of Symbolic Logic 22(3):269–
285.

de Roeck et al., Anne. 1982. A myth about centre-embedding. Lingua 58:327–
340.

de Swart, Henriette. 1994. (in)definites and genericity. In Kanazawa and
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Kanazawa, Makoto and Chris Piñón, eds. 1994. Dynamics, Polarity, and
Quantification. Lecture Notes 48. CSLI.

Kandybowicz, J. 2008. The Grammar of Repetition. John Benjamins.

Kayne, R. 1984. Connectedness and Binary Branching . Foris.

Keenan, Edward L. 1979. On surface form and logical form. Studies in
Linguistic Science 8(2).

Keenan, Edward L. 1981. A boolean approach to semantics. In J. G. et al.,
ed., Formal Methods in the Study of Language. Math. Centre, University
of Amsterdam.

Keenan, Edward L. 1987a. Multiply-headed NPs. Linguistic Inquiry
18(3):481–490.

Keenan, Edward L. 1987b. A semantic definition of ‘indefinite NP’. In The
Representation of (In)Definiteness. Cambridge, MA: MIT Press.

Keenan, Edward L. 1989. Semantic case theory. In Semantics and Contextual
Expression, page 3357. Dordrecht: Foris.

Keenan, Edward L. 1992. Beyond the Frege boundary. Linguistics and
Philosophy 15:199–221.

Keenan, Edward L. 1993. Natural language, sortal reducibility and general-
ized quantifiers. Journal of Symbolic Logic 58(1):314–325.



338 / Mathematical Structures in Language

Keenan, Edward L. 1995. Predicate-argument structure in Malagasy. In
C. Burgess, K. Dziwirek, and D. Gerdts, eds., Grammatical Relations:
Theoretical Approaches to Empirical Questions, pages 171–217. Stanford:
CSLA.

Keenan, Edward L. 1996. The semantics of determiners. In S. Lappin, ed.,
The Handbook of Contemporary Semantic Theory . Blackwell.

Keenan, Edward L. 2003. The definiteness effect: sematics or pragmatics?
Natural Language Semantics 11(2):187–216.

Keenan, Edward L. 2007. On the denotations of anaphors. Research on
Language and Computation 5(1):5–17.

Keenan, Edward L. 2008. Quantifiers. In K. V. Heusinger, C. Maienborn,
and P. Portner, eds., The Handbook of Semantics. Mouton de Gruyter,
2nd edn.

Keenan, Edward L. 2009. Voice determines co-argument anaphora in west
austronesian. Proceedings of the XVIth Annual Meetings of the Austrone-
sian Formal Linstuics Association .

Keenan, Edward L. and Matthew S. Dryer. 2007. Passive in the world’s lan-
guages. In T. Shopen, ed., Language Typology and Syntactic Description,
vol. 1, pages 325–362. Cambridge, UK: Cambridge University Pres.

Keenan, Edward L. and Leonard Faltz. 1985. Boolean Semantics for Natural
Language. Reidel.

Keenan, Edward L. and Lawrence S. Moss. 1985. Generalized quantifiers
and the expressive power of natural language. In Generalized quantifiers
in Natural Language. Foris.

Keenan, Edward L. and Edward P. Stabler. 2003. Bare Grammar . Stanford:
CSLI.

Keenan, Edward L. and Jonathan Stavi. 1986. A demantic characterization
of natural language determiners. Linguistics and Philosophy 9:253–326.

Keenan, Edward L. and Dag Westerst̊ahl. 1996. Generalized quantifiers in
linguistics and logic. In Handbook of Language and Logic, page 837893.
Elsevier.

Kimenyi, A. 1980. A Relational Grammar of Kinyarwanda. UC Press.

Klima, Edward. 1964. Negation in English. In The Structure of Language.
Prentice-Hall.

Kobele, G. 2006. Generating Copies: An investigation into Structural Identity
in Language and Grammar . Ph.D. thesis, UCLA.

Kolaitis, Phokion and J. Väänänen. 1995. Generalized quantifiers and pebble
games on finite structures. Annals of Pure and Applied Logic 74:23–75.

Kolaitis, Phokion G. 2006. On the expressive power of logics on finite models.
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