## Left-Corner Parsing



 $\epsilon := v c$  knows := c = d v

 $\epsilon := v + wh c$  likes := =d =d v

Aca :: d what :: d -wh

Bibi :: d





BP(3)

 $\acute{\mathbf{B}}$  TP(2)  $\top$ 

**ŤP(4)** 



**merge** is the union of the following 3 rules, each with 2 elements on the right, for strings  $s, t \in \Sigma^*$ , for types  $\cdot \in \{:, ::\}$  (lexical and derived, respectively), for feature sequences  $\gamma \in F^*$ ,  $\delta \in F^+$ , and for chains  $\alpha_1, \ldots, \alpha_k, \iota_1, \ldots, \iota_l$   $(0 \le k, l)$ 

(MERGE1) lexical item s selects non-mover t to produce the merged st

$$st: \gamma, \alpha_1, \dots, \alpha_k \leftarrow s := f\gamma \quad t \cdot f, \alpha_1, \dots, \alpha_k$$

(MERGE2) derived item s selects a non-mover t to produce the merged ts

$$ts:\gamma,\alpha_1,\ldots,\alpha_k,\iota_1,\ldots,\iota_l \quad \leftarrow \quad s:=f\gamma,\alpha_1,\ldots,\alpha_k \qquad t\cdot f,\iota_1,\ldots,\iota_l$$

(MERGE3) any item s selects a mover t to produce the merged s with chain t

$$s: \gamma, \alpha_1, \ldots, \alpha_k, t: \delta, \iota_1, \ldots, \iota_l \leftarrow s \cdot = f\gamma, \alpha_1, \ldots, \alpha_k \qquad t \cdot f\delta, \iota_1, \ldots, \iota_l$$

**move** is the union of the following 2 rules, each with 1 element on the right, for  $\delta \in F^+$ , such that none of the chains  $\alpha_1, \ldots, \alpha_{i-1}, \alpha_{i+1}, \ldots, \alpha_k$  has -f as its first feature:

(MOVE1) final move of t, so its -f chain is eliminated on the left

$$ts:\gamma,\alpha_1,\ldots,\alpha_{i-1},\alpha_{i+1},\ldots,\alpha_k \quad \leftarrow \quad s:+f\gamma,\alpha_1,\ldots,\alpha_{i-1},t:-f,\alpha_{i+1},\ldots,\alpha_k$$

(MOVE2) nonfinal move of t, so its chain continues with features  $\delta$ 

$$s:\gamma,\alpha_1,\ldots,\alpha_{i-1},t:\delta,\alpha_{i+1},\ldots,\alpha_k \leftarrow s:+f\gamma,\alpha_1,\ldots,\alpha_{i-1},t:-f\delta,\alpha_{i+1},\ldots,\alpha_k$$



So the parser state is given by

(remaining input, current position, queue),

and we begin with

(input, 0,  $\epsilon$ ).

For any input of length n, we then attempt to apply the LC rules to get

 $(\epsilon, n, 0-n\cdot c),$ 

(0) The SHIFT rule takes an initial (possibly empty) element w with span x-y from the beginning of the remaining input, where the lexicon has  $w :: \gamma$ , and puts x-y:: $\gamma$  onto the queue.

 $\epsilon := v c$  knows := c = d v

 $\epsilon := v + wh c$  likes := d = d v

Aca :: d what :: d -wh

Bibi :: d

1. shift [Aca,knows,what,Bibi,likes]
0-0::=v c

(1) For an MG rule R of the form  $A \leftarrow B C$ with left corner B, if an instance of B is on top of the queue, lc1(R) removes B from the top of the queue and replaces it with an element  $C \Rightarrow A$ . Since any merge rule can have the selector as its left corner, we have the LC rules LC1 (MERGE1), LC1(MERGE2), and LC1(MERGE3).

 $\epsilon := v c$  knows := =c =d v

 $\epsilon := v + wh c$  likes := =d =d v

Aca :: d what :: d -wh

Bibi :: d

- 1. shift [Aca, knows, what, Bibi, likes]
  0-0::=v c
- 2. lc1(merge1) [Aca,knows,what,Bibi,likes]
   (0-\_.v \_M => 0-\_:c \_M)

```
\epsilon :: = v c knows :: = c = d v

\epsilon :: = v + wh c likes :: = d = d v

Aca :: d what :: d - wh

Bibi :: d
```

 $(0-.v_M => 0-.c_M)$ 

- (1) For an MG rule R of the form  $A \leftarrow B$  C with left corner B, if an instance of B is on top of the queue, lc1(R) removes B from the top of the queue and replaces it with an element  $C \Rightarrow A$ . Since any merge rule can have the selector as its left corner, we have the LC rules LC1(MERGE1), LC1(MERGE2), and LC1(MERGE3).
  - (2) For an MG rule R of the form  $A \leftarrow B C'$  with completed left corner C and  $C\theta = C'\theta$ , lc2(R) replaces C on top of the queue by  $(B \Rightarrow A)\theta$ . For this case, where the second argument on the right side is the left corner, we have the LC rules LC2(MERGE2) and LC2(MERGE3).

- $c(\mathbf{R})$  If LC rule R creates a constituent B, and the queue has  $B' \Rightarrow A$ , where  $B\theta = B'\theta$ , then  $c(\mathbf{R})$  removes  $B' \Rightarrow A$  puts  $A\theta$  onto the queue.
- c1(R) If LC rule R creates  $B \Rightarrow A$  and we already have  $C \Rightarrow B'$  on the queue, where  $B\theta = B'\theta$ , then c1(R) removes  $C \Rightarrow B'$  and puts  $(C \Rightarrow A)\theta$  onto the queue.
- **c2(R)** If LC rule R creates  $C \Rightarrow B$  and we already have  $B' \Rightarrow A$  on the queue, where  $B\theta = B'\theta$ , c2(R) removes  $B' \Rightarrow A$  and puts  $(C \Rightarrow A)\theta$  onto the queue.
- c3(R) If LC rule R creates a constituent  $C \Rightarrow B$  and we already have  $B' \Rightarrow A$  and  $D \Rightarrow C'$  on the queue, where  $B\theta = B'\theta$  and  $C\theta = C'\theta$  c3(R) removes  $B' \Rightarrow A$  and  $D \Rightarrow C'$  and puts  $(D \Rightarrow A)\theta$  onto the queue.



```
\epsilon := v c knows :: =c =d v

\epsilon := v + wh c likes :: =d =d v

Aca :: d what :: d -wh

Bibi :: d
```

- 4. c1(lc2(merge2)) [knows,what,Bibi,likes] (1-\_:=d v \_M => 0-\_:c \_M)

```
knows :: =c =d v
 \epsilon ::= v c
 \epsilon := v + wh c likes := =d =d v
                  what :: d -wh
 Aca :: d
 Bibi :: d
1. shift [Aca, knows, what, Bibi, likes]
    0-0::=v c
lc1(merge1) [Aca, knows, what, Bibi, likes]
    (0 - v M => 0 - c M)
3. shift [knows, what, Bibi, likes]
    0-1:d
    (0-.v M => 0-.c M)
4. c1(lc2(merge2)) [knows, what, Bibi, likes]
    (1-\_:=d v \_M => 0-\_:c \_M)
5. shift [what, Bibi, likes]
    1-2::=c = d v
    (1-\_:=d v \_M => 0-\_:c \_M)
```

```
knows :: =c =d v
 \epsilon ::= v c
\epsilon := v + wh c likes :: =d =d v
                 what :: d -wh
 Aca :: d
 Bibi :: d
1. shift [Aca, knows, what, Bibi, likes]
    0-0::=v c
2. lc1(merge1) [Aca, knows, what, Bibi, likes]
    (0 - v M => 0 - c M)
3. shift [knows, what, Bibi, likes]
    0-1:d
    (0-.v_M => 0-.c_M)
4. c1(lc2(merge2)) [knows, what, Bibi, likes]
    (1-\_:=d v \_M => 0-\_:c \_M)
5. shift [what, Bibi, likes]
    1-2::=c = d v
    (1-\_:=d v \_M => 0-\_:c \_M)
6. c1(lc1(merge1)) [what, Bibi, likes]
    (2-..c _M => 0-..c _M)
```

```
knows :: =c =d v
\epsilon ::= v c
\epsilon := v + wh c likes := d = d v
                   what :: d -wh
Aca :: d
Bibi :: d
1. shift [Aca, knows, what, Bibi, likes]
    0-0::=v c
2. lc1(merge1) [Aca, knows, what, Bibi, likes]
    (0-.v M => 0-.c M)
3. shift [knows, what, Bibi, likes]
    0-1:d
    (0-.v_M => 0-.c_M)
4. c1(lc2(merge2)) [knows, what, Bibi, likes]
    (1-\_:=d v \_M => 0-\_:c \_M)
5. shift [what, Bibi, likes]
    1-2::=c = d v
    (1-\_:=d v \_M => 0-\_:c \_M)
6. c1(lc1(merge1)) [what, Bibi, likes]
    (2-..c _M => 0-..c _M)
7. shift [Bibi, likes]
    2-3::d -wh
    (2-\_.c \_M => 0-\_:c \_M)
```

```
knows :: =c =d v
 \epsilon ::= v c
 \epsilon := v + wh c likes := d = d v
                    what :: d -wh
 Aca :: d
Bibi :: d
7. shift [Bibi, likes]
    2-3::d -wh
    (2-..c _M => 0-..c _M)
8. lc2(merge3) [Bibi, likes]
    (\_-\_.=d \_Fs\_M => \_-\_:\_Fs,2-3:-wh)
    (2-..c M => 0-..c M)
9. shift [Bibi, likes]
    3-3::=v + wh c
    (_--_.=d_Fs => _--:Fs,2-3:-wh)
    (2-...c _M => 0-...c _M)
10. lc1(merge1) [Bibi, likes]
    (3-.v _M => 3-.:+wh c _M)
    (_- .= d Fs => _- : Fs, 2-3:-wh)
    (2-...c.N => 0-...c.N)
11. shift [likes]
    3-4::d
    (3-.v _M => 3-.:+wh c _M)
    (\_-\_.=d \_Fs => \_-\_:\_Fs, 2-3:-wh)
    (2-.c _N => 0-.c _N)
```

(3) Similarly for MG rules  $A \leftarrow B$ , the only possible leftcorner is a constituent B where  $B\theta = B'\theta$ , replacing B' by  $A\theta$ . So we have LC1(MOVE1) and LC1(MOVE2) in this case.

```
knows :: =c = d v
\epsilon ::= v c
\epsilon := v + wh c likes := =d =d v
Aca :: d what :: d -wh
Bibi :: d
11. shift [likes]
    3-4::d
    (3-.v M => 3-.:+wh c M)
    (_--.=d_Fs => _-:_Fs, 2-3:-wh)
    (2-..c N => 0-..c N)
12. c3(lc2(merge2)) [likes]
    (4-..=d=dv=>3-..+whc,2-3:-wh)
    (2-..c M => 0-..c M)
13. c(shift) []
    3-5:+wh c , 2-3:-wh
    (2-..c _M => 0-..c _M)
14. c(lc1(move1)) []
    0-5:c
```

 $\epsilon := v c$  knows := c = d v

 $\epsilon := v + wh c$  likes := =d =d v

Aca :: d what :: d -wh

Bibi :: d

```
1. shift [Aca, knows, what, Bibi, likes]
    0-0::=v c
2. lc1(merge1) [Aca, knows, what, Bibi, likes]
    (0-\_.v \_M => 0-\_:c \_M)
3. shift [knows, what, Bibi, likes]
    0-1::d
    (0-\_.v \_M => 0-\_:c \_M)
4. c1(lc2(merge2)) [knows, what, Bibi, likes]
    (1-\_:=d \ v \_M => 0-\_:c \_M)
5. shift [what, Bibi, likes]
   1-2::=c = d v
    (1-\_:=d \ v \_M => 0-\_:c \_M)
6. c1(lc1(merge1)) [what, Bibi, likes]
    (2-\_.c \_M => 0-\_.c \_M)
7. shift [Bibi, likes]
    2-3::d-wh
    (2-.c _M => 0-.c _M)
8. lc2(merge3) [Bibi, likes]
    (\_-\_.=d \_Fs\_M => \_-\_:\_Fs,2-3:-wh)
    (2-..c _M => 0-..c _M)
9. shift [Bibi, likes]
    3-3::=v + wh c
    (\_-\_.=d \_Fs => \_-\_:\_Fs, 2-3:-wh)
    (2-\_.c \_M => 0-\_.c \_M)
10. lc1(merge1) [Bibi, likes]
    (3-.v _M => 3-.:+wh c _M)
    (_-_.=d_Fs => _-_:_Fs, 2-3:-wh)
    (2-\_.c _N => 0-\_.c _N)
11. shift [likes]
    3-4::d
    (3-.v _M => 3-.:+wh c _M)
    (\_-\_.=d \_Fs => \_-\_:\_Fs, 2-3:-wh)
    (2-..c.N => 0-..c.N)
12. c3(lc2(merge2)) [likes]
    (4-..=d=dv=>3-..+whc,2-3:-wh)
    (2-\_.c \_M => 0-\_:c \_M)
13. c(shift) []
    3-5:+wh c , 2-3:-wh
    (2-\_.c \_M => 0-\_.c \_M)
14. c(lc1(move1)) []
```

0-5:c

- (0) The SHIFT rule takes an initial (possibly empty) element w with span x-y from the beginning of the remaining input, where the lexicon has  $w :: \gamma$ , and puts x-y:: $\gamma$  onto the queue.
- (1) For an MG rule R of the form  $A \leftarrow B$  C with left corner B, if an instance of B is on top of the queue, lc1(R) removes B from the top of the queue and replaces it with an element  $C \Rightarrow A$ . Since any merge rule can have the selector as its left corner, we have the LC rules lc1(MERGE1), lc1(MERGE2), and lc1(MERGE3).
- (2) For an MG rule R of the form  $A \leftarrow B C'$  with completed left corner C and  $C\theta = C'\theta$ , lc2(R) replaces C on top of the queue by  $(B \Rightarrow A)\theta$ . For this case, where the second argument on the right side is the left corner, we have the LC rules LC2(MERGE2) and LC2(MERGE3).

(3) Similarly for MG rules  $A \leftarrow B$ , the only possible leftcorner is a constituent B where  $B\theta = B'\theta$ , replacing B' by  $A\theta$ . So we have LC1(MOVE1) and LC1(MOVE2) in this case.

- $c(\mathbf{R})$  If LC rule R creates a constituent B, and the queue has  $B' \Rightarrow A$ , where  $B\theta = B'\theta$ , then  $c(\mathbf{R})$  removes  $B' \Rightarrow A$  puts  $A\theta$  onto the queue.
- c1(R) If LC rule R creates  $B \Rightarrow A$  and we already have  $C \Rightarrow B'$  on the queue, where  $B\theta = B'\theta$ , then c1(R) removes  $C \Rightarrow B'$  and puts  $(C \Rightarrow A)\theta$  onto the queue.
- **c2(R)** If LC rule R creates  $C \Rightarrow B$  and we already have  $B' \Rightarrow A$  on the queue, where  $B\theta = B'\theta$ , c2(R) removes  $B' \Rightarrow A$  and puts  $(C \Rightarrow A)\theta$  onto the queue.
- **c3(R)** If LC rule R creates a constituent  $C \Rightarrow B$  and we already have  $B' \Rightarrow A$  and  $D \Rightarrow C'$  on the queue, where  $B\theta = B'\theta$  and  $C\theta = C'\theta$  c3(R) removes  $B' \Rightarrow A$  and  $D \Rightarrow C'$  and puts  $(D \Rightarrow A)\theta$  onto the queue.