Left-Corner Parsing



Aca knows what Bibi1 likes:c C vP
€::=V C Aca knows what Bibi1 likes:v e dP '
1 L T 1 T T~
knows what Bibi1 likes:=d v Aca::d Aca v cP
knows::=c =d v  what Bib1 likes:c knows dP(0) c’
3 L \ 3 T
Bibi1 likes:+wh c,what:-wh what c vP
o 4 | T
€::=V +wh C Bibi likes:v,what:-wh e dP \'At
5 T 5 | N\
likes:=d v,what:-wh B6ibi::d Bébi T dP(0)
/\
likes::=d=dv  what::d -wh likes

7 4 7




knows :: =c =d v

€ =V C
€::=V+whc likes :: =d=d v
Aca: d what :: d -wh
Bib1:: d cP
Aca knows what Bibi1 likes:c C vP
€::=V C Aca knows what Bibi1 likes:v e dP '
knows what Bibi1 likes:=d v Aca::d Aca v cP
2 2 | N
knows::=c =d v  what Bib1 likes:c knows dP(0) c’
3 3 | N
Bibi likes:+wh c,what:-wh what c vP
o 4 | T
€::=V +wh C Bibi likes:v,what:-wh e dP vV’
5 5 | 7\
likes:=d v,what:-wh B6ibi::d Bébi T dP(0)
likes::=d=dv  what::d -wh likes
7 4 7




lab a‘b T1:T
ab T :+l T,|_L a b:-1
T:+r+1T,L ab:-l,Lab:-r

=T+r+lT L ab:T-Lab:r S T
| TP(4) T’
b:+1 T -l,a b:-r, L a:-1 T~ T T
T TP(2) T BP(3) T’
b::=B +1 T -1 ab:B -r, L a:-1 N "\ T T~ N
| TP(O) T’ T BP(3) AP(1) B’ T TP®@4)
b:4+r B -r, L a:-l,a:-r AN N ya N
1 TAP(1) b TP(O) A B TP(2) T

b::=T +4+r B -r 1 a:T -la:-r | a

| a A TP(O) b
a:+1 T -lLa:-r, L:-1 |
a

/\
ai:=A+1T -1 a:A -r,1:-1

|
a+r A -r,L:-r-l

/\
a.;:=T +r A -r 12T -r-1



lab a‘b T1:T
ab [:+l T,|_L a b:-1
T:+r+1T,L ab:-l,Lab:-r

=T+r+lT Lab:T-lLab:r - T
| TP(4) T
b:+1 T -l,a b:-r, L a:-1 T~
T TP(2) T BP(3) T
b:=B+IT-1 ab:B-r,L a:-l N AN T T~
| TPO) T T BP@3) AP(1) B’ T TP®@4)
b:4+r B -r, L a:-l,a:-r AN N AN
1 TAP(1) b TPO) A BTP(2) T
b::=T+rB -r 1 a:T-la:-r | SN
| a A TP(0) b
a:+1 T -lLa:-r, L:-1 |
/\ a
ai:=A+1T -1 a:A -r,‘J_:-l
a+r A -r,L:-r-l
/\
a;:=T+r A -r 12T -r-1
1 T -r-] T u=T4+r+T
a:;=A+1T -l a:=14r A -r

b::=B+IT -l b::=T+rB-r



merge 1s the union of the following 3 rules, each with 2 elements on the right,
for strings s,t € X%, for types - € {:,::} (lexical and derived, respectively),
for feature sequences v € F'*, § € F'*, and for chains o, ...,ok, t1,...,4 (0 < k, 1)

(MERGE) lexical item s selects non-mover ¢ to produce the merged st
st:vy,a1,...,0 < S:=fry t- f,oq,...,0k

(MERGE2) derived item s selects a non-mover ¢ to produce the merged ts
tS: 9, Q1,..., 0k, b1,...,0] < S:=fv,01,...,0 t- fot1,...,0

(MERGE3) any item s selects a mover ¢ to produce the merged s with chain ¢
S:Y, 01y .,0k,t:0,L1,...,0p < S-=fv,a1,...,0 t-fo,t1,...,4

move 1s the union of the following 2 rules, each with 1 element on the right,
for § € F'", such that none of the chains a1, ..., ®—1,®i+1,..., 0 has - f as its first feature:

(MOVEL) final move of ¢, so its - f chain is eliminated on the left
tS:'770517”'7ai—17ai+17°"7ak — s:+f”y,oz1,...,oz7;_1,t:-f,ozz-+1,...,ozk

(MOVE2) nonfinal move of ¢, so its chain continues with features o
SN, 01yeen, Oi—1,t:0,0j41,...,0 < S:+fv,01,...,04-1,t:-f0,i11,...,0QL




N A e
b AN




So the parser state 1s given by
(remaining input, current position, queue),
and we begin with
(1nput, O, €).

For any 1nput of length n, we then attempt to apply
the LC rules to get

(e, n, 0-n-c),



(0) The SHIFT rule takes an initial (possibly

empty) element w with span x-y from the begin-
ning of the remaining input, where the lexicon has

w :: 7, and puts x-y::7y onto the queue.



€::=VC knows :: =c =d v

€ :: =V +wWh likes :: =d=d v
Aca:: d what :: d -wh
Bib1:: d

1. shift [Aca,knows,what,Bibi, likes]
0-0::=v cC



(1) For an MG rule R of the form A «+ B C
with left corner B, i1f an instance of 5 1s on top of

the queue, Ic1(R) removes B from the top of the
queue and replaces it with an element C' = A.
Since any merge rule can have the selector as its
left corner, we have the LC rules LC1(MERGE]),
LC1(MERGE?2), and LC1(MERGE3).



€::=VC knows :: =c =d v

€ :: =V +wWh likes :: =d=d v
Aca:: d what :: d -wh
Bib1:: d

1. shift [Aca,knows,what,Bibi, likes]
0-0::=v cC

2. lcl (mergel) [Aca,knows,what,Bibi,likes]
(0-— . v M => 0-_:c M)



€::=VC knows :: =c =d v

€ :: =V +wWh likes :: =d=d v
Aca:: d what :: d -wh
Bib1i:: d

shift [Aca,knows,what,Bibi, likes]
0-0::=v cC
lcl (mergel) [Aca,knows,what,Bibi,likes]

(0— . v M > 0-_:c M)
shift [knows,what,Bibi, likes]
O-1::d

> 00— :c M)

(0— . v M



(1) For an MG rule R of the form A «<— B C
with left corner B, if an instance of B 1s on top of
the queue, Ic1(R) removes B from the top of the
queue and replaces it with an element C' = A.
Since any merge rule can have the selector as its
left corner, we have the LC rules LC1(MERGE]),
LC1(MERGE2), and LC1(MERGE3).

(2) For an MG rule R of the form A « B ('’
with completed left comer C and C0 = (C'6,
Ic2(R) replaces C on top of the queue by (B =
A)f. For this case, where the second argument on
the right side 1s the left corner, we have the LC
rules LC2(MERGE?2) and LC2(MERGE3).



¢(R) If LC rule R creates a constituent B, and

the queue has B’ = A, where B = B'0, then
c(R) removes B’ = A puts A6 onto the queue.

cl(R) If LC rule R creates B = A and we al-
ready have C' = B’ on the queue, where Bl =
B'0, then c1(R) removes C = B’ and puts (C =
A)0 onto the queue.

c2(R) If LC rule R creates C = B and we al-
ready have B’ = A on the queue, where Bl =
B'0, c2(R) removes B’ = A and puts (C' = A)#
onto the queue.

c¢3(R) If LC rule R creates a constituent C = B
and we already have B’ = A and D = C' on the
queue, where B = B’6 and C0 = C’6 c3(R)
removes B’ = A and D = C' and puts (D =
A)0O onto the queue.

N A ﬁ
A A

C0

Cl

C2

AN

C3



€::=VC knows :: =c =d v

€ :: =V +wWh likes :: =d=d v
Aca:: d what :: d -wh
Bib1i:: d

shift [Aca, knows,what,Bibi, li1kes]
0-0::=v cC

lcl (mergel) [Aca,knows,what,Bibi,likes]
(0- . v M => 0-_:c M)

shift [knows,what,Bibi, likes]
0-1::d
(0— . v M => 0-_:c M)

cl(lc2 (merge2)) [knows,what,Bibi,likes]
(l1- :=d v M => 0-_:c M)




€::=VC knows :: =c =d v

€ :: =V +whc likes :: =d=d v
Aca:: d what :: d -wh
Bib1i:: d

shift [Aca, knows,what,Bibi, li1kes]
0-0::=v cC

lcl (mergel) [Aca,knows,what,Bibi, likes]
(0- . v M => 0-_:c M)

shift [knows,what,Bibi,likes]
0-1::d
(0— . v M => 0-_:c M)

cl(lc2 (merge?2)) [knows,what,Bibi,likes]

(l1- :=d v M => 0-_:c M)
shift [what,Bibi,likes]
1-2::=c =d v

(l1- :=d v M => 0-_:c M)



€::=VC knows :: =c =d v

€:: =V +Wh C likes :: =d=d v
Aca: d what :: d -wh
Bib1:: d
1. shift [Aca,knows,what,Bibi, likes]
0-0::=v cC
2. lcl (mergel) [Aca,knows,what,Bibi, likes]
(0— .v M => 0-_:c M)
3. shift [knows,what,Bibi, likes]
O-1::d

(0-— .v M => 0-_:c M)
4. cl(lc2(merge?2)) [knows,what,Bibi,likes]
(l1- :=d v M => 0- _:c M)
5. shift [what,Bibi, likes]
1-2::=c =d v
(l1- :=d v M => 0-_:c M)
6. cl(lcl (mergel)) [what,Bibi,likes]
(2- .c M => 0-_:c M)



€::=VC knows :: =c =d v

€::=v+whc likes :: =d=d v

Aca: d what :: d -wh

Bib1:: d

1. shift [Aca, knows,what,Bibi, likes]
0-0::=v cC

2. lcl (mergel) [Aca,knows,what,Bibi,likes]

(0— _.v M > 0-_:c M)

3. shift [knows,what,Bibi,likes]
O-1::d
(0—- . v M => 0-_:c M)

4. cl(lc2(merge?2)) [knows,what,Bibi,likes]
(l1- :=d v M => 0-_:c M)

5. shift [what,Bibi,likes]
1-2::=c =d v
(l1- :=d v M => 0-_:c M)

6. cl(lcl (mergel)) [what,Bibi,likes]
(2—- .c M = 0— :c _M)

7. shift [Bibi,likes]
2—3::d —wh



€::=VC knows :: =c =d v

€::=v+whc likes :: =d=d v
Aca: d what :: d -wh
Bib1:: d
7. shift [Bibi,likes]
2—3::d —wh
(2—_.c _M > 0-_:c _M)

8. lc2 (merge3) [Bibi,likes]
(- _.=d Fs M => -~ : Fs,2-3:-wh )
(2- .¢c M => 0-_:c M)

9. shift [Bibi, likes]
3-3::=v +wh cC
(- .=d Fs => — : Fs,2-3:-wh )
(2-— .¢c M => 0-_:c M)

10. lcl (mergel) [Bibi,likes]
(3— . v M => 23— :4wh c M)
(- .=d Fs => — : Fs,2-3:-wh )
(2— .c N => 0-_:c _N)

11. shift [likes]
3-4::d
(3— .v M => 23— :+wh ¢ M)
(- .=d _Fs => -~ : Fs,2-3:-wh )
(2-— .c N => 0-_:c _N)




(3) Similarly for MG rules A <+ B, the
only possible leftcorner i1s a constituent 5 where
B0 = B0, replacing B’ by Af. So we have
LC1(MOVE]) and LC1(MOVE2) 1n this case.



€::=VC knows :: =c =d v

€. =vV+whc likes :: =d=d v
Aca: d what :: d -wh
Bib1:: d
11. shift [likes]
3-4::d
(3— .v. M => 23— :4wh c M)
(- .=d Fs => - : Fs,2-3:-wh )

(2- .c N => 0-_:c N)
12. c3(1lc2(merge?2)) [likes]
(44— .=d =d v => 3—- :+wh ¢ ,2-3:-wh )
(2- .c M => 0-_:c M)
13. c(shift) []
3-5:4+wh ¢ ,2-3:—-wh
(2- .c M => 0-_:cC
14, c(lcl (movel)) |[]
0-5:c

M)



€::=VC
€. =vV+whc
Aca: d
Bib1i:: d

knows :: =c=d v
likes :: =d=d v
what :: d -wh

10.

11.

12.

13.

14.

shift [Aca,knows,what,Bibi, likes]
0-0::=v c
lcl (mergel) [Aca,knows,what,Bibi,likes]

(0-_.v _ M > 0-_:c _M)
shift [knows,what,Bibi,likes]
0-1::d

(0-_.v M => 0-_:c _M)
cl(lc2(merge2)) [knows,what,Bibi,likes]
(1-_ :=d v M => 0-_:c _M)
shift [what,Bibi, likes]

1-2::=c =d v

(1- :=d v M => 0-_:c _M)
cl(lcl (mergel)) [what,Bibi,likes]
(2—-_.c M => 0-_:c _M)
shift [Bibi, likes]

2—3::d —wh

(2—-_.c _M > 0-_:c _M)

lc2 (merge3) [Bibi,likes]
(- .=d Fs M => - : Fs,2-3:-wh )
(2- _.c M => 0-_:c _M)
shift [Bibi, likes]
3-3::=v +wh cC
(- .=d Fs => - : Fs,2-3:-wh )
(2- _.c M => 0-_:c _M)
lcl (mergel) [Bibi,likes]
> 33— _:4+wh ¢ M)

(3—_.v _M =

(- .=d Fs => - : Fs,2-3:-wh )
(2-—_.c N => 0-_:c _N)

shift [likes]

3-4::d

(3—_ .v M => 3- :+wh c _M)

(- .=d Fs => _ - : Fs,2-3:-wh )
(2-_.c N => 0-_:c _N)
c3(lc2(merge2)) [likes]

(- _.=d =d v => 3—-_:+wh ¢ ,2-3:-wh )
(2—-_.c M => 0-_:c _M)

c(shift) []

3-5:+wh ¢ ,2-3:-wh
(2-—_.c M => 0-_:c
c(lcl (movel)) []
0-5:c

M)



(0) The SHIFT rule takes an initial (possibly (3) Similarly for MG rules A <« B, the

empty) element w with span x-y from the begin- only possible leftcorner is a constituent B where
ning of the remaining input, where the lexicon has B0 = B0, replacing B’ by Af. So we have
w :: 7y, and puts x-y::7y onto the queue. LC1(MOVE]) and LC1(MOVE?2) 1n this case.

(1) For an MG rule R of the form A < B C
with left corner B, if an instance of B is on top of
the queue, Ic1(R) removes B from the top of the
queue and replaces it with an element C' = A.
Since any merge rule can have the selector as its
left corner, we have the LC rules LC1(MERGE1),
LC1(MERGE2), and LC1(MERGE3).

¢(R) If LC rule R creates a constituent B, and
the queue has B’ = A, where B0 = B’0, then
c(R) removes B’ = A puts A6 onto the queue.

cl(R) If LC rule R creates B = A and we al-

ready have C' = B’ on the queue, where Bl =
B'0, then c1(R) removes C = B’ and puts (C' =

(2) For an MG rule R of the form A + B C’ A)Hzc()ln{t)oltfhzgue‘ie‘l{ o B and we
N o / C ruic creailcs = ana we al-

with completed left comer C and C0 = ("6, ready have B/ = A on the queue, where B6 —

Ic2(R) replaces C' on top of the queue by (B = B’, c2(R) removes B’ = A and puts (C = A)f

A)B. For this case, where the second argument on onto the queue.

the right side is the left corner, we have the LC c3(R) If LC rule R creates a constituent C = B

and we already have B’ = A and D = C’ on the
queue, where B = B’0 and C6 = C’6 c3(R)
removes B’ = A and D = C' and puts (D =
A)6 onto the queue.

rules LC2(MERGE?2) and LC2(MERGE3).



