PF-deletion, LF-copying, and Proforms

Greg Kobele

Ellipsis SoSe22
27.May

An empirical generalization

- Voice mismatches in VPE are good
- Voice mismatches in Sluicing are not

Explanations

Hardt Two mechanisms

- VPE is semantic identity
- Sluicing is (maybe) something else

Merchant One mechanism; syntactic identity

A different generalization

If this 'timing' perspective is right, we should expect that

- mismatches are a 'root(-like) phenomenon'
- mismatches impossible if embedded in elided structure

Revisiting Mismatches in VPE

And indeed:

- *I know who you believe could have released this information, but I don't know by whom Bill does.
- *This information seems to have been released, although Gorbachev doesn't.

This is bad!

There are good reasons to say that ellipsis is not sensitive to syntax!

- all sorts of structural mismatches
- vehicle change
- island amelioration
- code-switching

Resolution

Everyone is right

- Ellipsis must be sensitive to syntactic structure
- Ellipsis must not be sensitive to syntactic structure

Resolution

Everyone is right

- Ellipsis must be sensitive to syntactic structure ${ }_{1}$
- Ellipsis must not be sensitive to syntactic structure ${ }_{2}$

Different notions of structure

Overview

A slogan:
take LF-copying but copy meanings instead
Making sense of nonsense:
shift perspective from LF to Derivation

1. Derivations
2. Derivational Ellipsis

Goal:
A computationally tractable but linguistically sophisticated theory of structure sensitive ellipsis

Derivations are recipes

- lexical items are ingredients
- merge and move instead of bake, broil, whip, ...

Derivations are structured

Order is important

- Some things must happen before other things
- Sometimes, it doesn't matter
- merge the det and the noun
- before you merge the verb
- Cream sugar and butter
- before you add flour

Representing derivations

Representing derivations

1. select every
2. select boy
3. MERGE 1 and 2
[DP every [NP boy]]
4. select laugh
5. MERGE 4 and 3
[VP laugh [DP ever boy]]
6. select will
[IP will [VP laugh [DP every boy]]]
7. MOVE every boy
[IP[DP every boy][// will [vP laugh $t]]$]

Representing derivations

1. select every
2. select boy
3. MERGE 1 and 2
[DP every [NP boy]]
4. select laugh
5. MERGE 4 and 3
[VP laugh [DP every boy]]
6. select will

Representing derivations

1. select every
2. select boy
3. MERGE 1 and 2
[DP every [NP boy]]
4. select laugh
5. MERGE 4 and 3 [VP laugh [DP ever boy]]
6. select will
7. MERGE 6 and 5 [IP will [VP laugh [DP every boy]]]
8. Move every boy $[/ \not \subset[D P$ every boy $][/$, will $[v P$ laugh $t]]]$

Representing derivations

1. select every
2. select boy
3. MERGE 1 and 2
[DP every [nP boy]]
4. select laugh
5. merge 4 and 3 [VP laugh [DP every boy]]
laugh MERGE

[IP will [VP laugh [DP every boy]]]
6. MOVE every boy
[IP[DP every boy][/, will [vP laugh $t]]]$

Representing derivations

1. select every
2. select boy
3. MERGE 1 and 2
[DP every [nP boy]]
4. select laugh
5. MERGE 4 and 3
[$V P$ laugh [DP every boy]]

[IP will [VP laugh [DP every boy]]]
6. MOVE every boy
[IP[DP every boy][/, will [vp laugh $t]]]$

Representing derivations

1. select every
2. select boy
3. MERGE 1 and 2
[DP every [nP boy]]
4. select laugh
5. MERGE 4 and 3
[$V P$ laugh [DP every boy]]
6. select will
7. MERGE 6 and 5
[IP will [VP laugh [DP every boy]]]
8. MOVE every boy
[IP[DP every boy][/, will [vP laugh $t]]]$

Representing derivations

1. select every
2. select boy
3. MERGE 1 and 2
[DP every [nP boy]]
4. select laugh
5. MERGE 4 and 3
[$V P$ laugh [DP every boy]]
6. select will
7. MERGE 6 and 5

[IP will [VP laugh [DP every boy]]]
8. MOVE every boy
$[I P[D P$ every boy $][/ \prime$ will [$v P$ laugh $t]]]$

Representing derivations

1. select every
2. select boy
3. MERGE 1 and 2
[DP every [nP boy]]
4. select laugh
5. MERGE 4 and 3
[$V P$ laugh [DP every boy]]
6. select will
7. MERGE 6 and 5

[IP will [VP laugh [DP every boy]]]
8. MOVE every boy
$\left[I P[D P\right.$ every boy $]\left[I^{\prime}\right.$ will [$V P$ laugh $\left.\left.\left.t\right]\right]\right]$

Structure in Minimalism

- occurrences of every boy are "non-distinct"

Structure in Minimalism

- occurrences of every boy are "non-distinct"

1. enforced by coindexation of some sort

- feature duplication
- violates (spirit of) inclusiveness
- where do indices come from?

2. 'MOVE as re-MERGE'

Structure in Minimalism

- occurrences of every boy are "non-distinct"

2. 'move as re-merge'

Derivations of Derived Structures

Derivations of Derived Structures

Antisymmetry
Order not meaningful

Derivations of Derived Structures

We have been writing derivation trees all along

- No-tampering
- Extension
- Numerations

A perspective shift

We've been looking at the right structures
... in the wrong way
If you don't like the structure you have
... you must build it differently

Syntactic structure is no more than the trace of the algorithm which delivers the interpretation
(Steedman, 2000)

The Determinacy of Movement

Attract Closest

Minimal Link

Shortest Move

SMC

can only be 1 thing moving for a particular reason at any time

The Determinacy of Movement

Attract Closest

Minimal Link

Shortest Move

SMC

can only be 1 thing moving for a particular reason at any time

The Determinacy of Movement

$\operatorname{MERGE}(\alpha, \beta)=\{\alpha, \beta\}$
$\operatorname{Move}(\alpha)=\operatorname{Merge}(\alpha, \alpha)=\{\alpha\}$
$\{\{$ will, $\{$ laugh, $\{$ every, boy $\}\}\}\}$

Three analytical ideas

Ellipsis as a proform

> John will kiss Mary, but Bill won't e

Ellipsis as deletion
John will kiss Mary, but Bill won't kiss Mary

Ellipsis as copying
John will kiss Mary, but Bill won't e ξ
John will kiss Mary, but Bill won't kiss Mary

Popular arguments for syntax in ellipsis sites

- You can 'extract' out of an ellipsis site, but not out of an overt pronoun (Hankamer \& Sag)
- I know which book John bought, but not which ones Bill did.
- Case matching effects (Ross)
- Preposition stranding effects (Chung et al., Merchant)
- allow p-stranding \leftrightarrow allow 'p-stranding' in ellipsis
- can never p-strand something with implicit correlate
- Voice mismatches across ellipsis types (Merchant)
- VPE allows for voice mismatches
- Sluicing does not

A unified theory of ellipsis

A proform theory...

- derived from a copying theory
- derived from a deletion theory

Features:

- high vs low contrast for voice mismatches
- ban on stranding in sprouting
- preposition stranding generalization

Everyone knows that. . .

constituents don't cut it
Mary was kissed, and Susan was e too.

Everyone knows that. . .

constituents don't cut it
Mary was kissed, and Susan was e too.

Everyone knows that. . .

constituents don't cut it Mary was kissed, and Susan was e too.

What are antecedents?

The shape of antecedents

- constituents
- (unary) contexts

What are antecedents?

The shape of antecedents

- constituents: pick one node
- (unary) contexts

What are antecedents?

The shape of antecedents

- constituents
- (unary) contexts

What are antecedents?

The shape of antecedents

- constituents
- (unary) contexts: pick two nodes

From Grammar to Parser

The Strong Competence Hypothesis (Bresnan \& Kaplan)
Direct correspondance between rules of grammar and operations performed by human sentence processor

Top-Down Parsing

Predictive
"Anticipatory processes in sentence processing"

Connected
"Interaction with context during human sentence processing"
New predictions derived by
prediction is non-terminal: inverting rules of grammar
prediction is terminal: listening to see if right

From Delete to LF-copy

Adding deletion
grammar: Delete something

- if identical to something else
parser: Guess what was deleted
- Hint: something you've seen

From Delete to LF-copy

Adding deletion
grammar: Delete something

- if identical to something else
parser: Copy something
- Hint: something you've seen

(Parts of) Derivations

- Parts of derivations contain two sorts of information:
internal their internal structure
- How do I do what I do?
external categorical (= distributional) information
- what do I make?
- what do I need?

Eliminating internal structure

Direct interpretation

Eliminating internal structure

Direct interpretation

As far as the parser is concerned, there is no syntactic structure in the ellipsis site.

From Parser to Grammar

The Strong Competence Hypothesis
Direct correspondance between rules of grammar and operations performed by human sentence processor

As far as the parser is concerned, there is no syntactic structure in the ellipsis site.

From Parser to Grammar

The Strong Competence Hypothesis
Direct correspondance between rules of grammar and operations performed by human sentence processor

As far as the parser is concerned, there is no syntactic structure in the ellipsis site.

From Parser to Grammar

The Strong Competence Hypothesis
Direct correspondance between rules of grammar and operations performed by human sentence processor

> (Typed) ellipsis sites
> $\llbracket \mathbb{e}_{\mathrm{DP} \rightarrow \mathrm{VP} \rrbracket} \rrbracket=\lambda x, c \cdot \operatorname{sel}_{E}(c)(x)$

Mary

Ellipsis and Pronouns

- A parser should maintain a database γ of possible elliptical antecedents
- When an ellipsis site is encountered, an antecedent must be selected from this database ($\operatorname{sel}_{E}(\gamma)$)
- A parser should maintain a database γ of possible pronominal antecedents
- When a pronoun is encountered, an antecedent must be selected from this database ($\operatorname{sel}_{P}(\gamma)$)

Deep and Surface Anaphora
surface sel $_{E}$ cares about external syntax deep sel $_{P}$ only cares about semantic type

An example

\mathbf{e} is a grammatical operation
Intuition: 'have already constructed something of this sort, instead of doing it again, will just go back and grab it'

An example

Connections

The very idea
exact same idea appears in

- dynamic syntax
- categorial grammar
(Kempson)
(Barker)

The essence of the idea

- derivations are descriptions of computations
- instead of repeating the same computation,
- compute once, and share the result

Programming language theory memoization
Theory of algorithms dynamic programming

Some arguments for syntax in ellipsis sites

- You can 'extract' out of an ellipsis site, but not out of an overt pronoun (Hankamer \& Sag)
- I know which book John bought, but not which ones Bill did.
- Case matching effects (Ross)
- Preposition stranding effects (Chung et al., Merchant)
- allow p-stranding \leftrightarrow allow 'p-stranding' in ellipsis
- can never p -strand something with implicit correlate
- Voice mismatches across ellipsis types (Merchant)
- VPE allows for (root) voice mismatches
- Sluicing does not
- Code-switching ellipsis generalization (Merchant)

Some arguments for syntax in ellipsis sites

- You can 'extract' out of an ellipsis site, but not out of an overt pronoun (Hankamer \& Sag)
- Case matching effects (Ross)
- Preposition stranding effects (Chung et al., Merchant)
- Voice mismatches across ellipsis types (Merchant)
- Code-switching ellipsis generalization (Merchant)

Only require sensitivity to external structure

Plan

- Voice mismatches across ellipsis types
- Code-switching ellipsis generalization

How this works (for VPE)

Begin with small VPE

A-P: Max fired Harry, although it was Tom who should have been.
(Fiengo \& May)
P-A: This information could have been released by Gorbachev, but he chose not to.
(Hardt)
Move on to big VPE
... where mismatches don't work

VPE: Active-Passive (Max fires Harry, while Tom laughs)

Mary teased John, and Susan was too

VPE: Active-Passive (Max fires Harry, while Tom laughs)

Mary teased John, and Susan was too

VPE: Active-Passive (Max fires Harry, while Tom laughs)

Mary teased John, and Susan was too

Susan

VPE: Passive-Active (Gorbachev likes secrecy)

John was teased, but Susan didn't

VPE: Passive-Active (Gorbachev likes secrecy)

John was teased, but Susan didn't

Antecedent

VPE: Passive-Active (Gorbachev likes secrecy)

John was teased, but Susan didn't

Antecedent

VPE: No mismatch in big VPE; Pass-Act

*This information seems to have been released, although Gorbachev doesn't seem to have released it.

Antecedent

VPE
MOVE
|
MERGE
$\mathrm{T}_{\mathrm{pst}}$

Gorbachov

VPE: No mismatch in big VPE; Pass-Act

*This information seems to have been released, although Gorbachev doesn't seem to have released it.

Antecedent

VPE
MOVE
|
MERGE
$\mathrm{T}_{\mathrm{pst}}$

Gorbachov

VPE: No mismatch in big VPE; Pass-Act

*This information seems to have been released, although Gorbachev doesn't seem to have released it.

VPE

Code switching in Ellipsis

Gonzáles-Vilbazo \& Ramos

1. Juan amenazó a alguen, aber ich weiss nicht, wem Juan gedroht hat
2. Juan amenazó a alguen, aber ich weiss nicht, wen Juan amenazó
3. \star Juan amenazó a alguen, aber ich weiss nicht, wem
4. Juan amenazó a alguen, aber ich weiss nicht, wen

Code switching ellipsis generalization
All apparently cross-language ellipses involve code switching at the ellipsis site (into the language of the antecedent) (Merchant, 15)

Merchakidou data

Doing hunger

Q Pinás?
A Yes, I do.
$A^{\prime} \star Y e s, I$ do pináo.
$A^{\prime \prime} \star$ Yes, I do pin.
hunger.2s.PRES
hunger.1s.PRES
hunger

Merchant's analysis

- Generative semantics-style analysis allows for right antecedents
- ill-formed examples grammatical but ineffable

Deriving the Spanish data

Gonzáles-Vilbazo \& Ramos

1. Juan amenazó a alguen, aber ich weiss nicht, wem Juan gedroht hat
2. Juan amenazó a alguen, aber ich weiss nicht, wen Juan amenazó
3. \star Juan amenazó a alguen, aber ich weiss nicht, wem
4. Juan amenazó a alguen, aber ich weiss nicht, wen

Constraints on the analysis

1. wen Juan amenazó is derivable
2. then Juan amenazó is a piece of derivation of type $\mathrm{DP}[+\mathrm{ACC}] \rightarrow \mathrm{TP}$
3. this occurs in the antecedents of 3 and 4
4. crucially, nothing of type DP[+DAT] \rightarrow TP occurs

Deriving the Greek data

Ariadne is starving

$$
\begin{array}{lr}
\text { Q Pinás? } & \text { hunger.2s.PRES } \\
\text { A Yes, I do. } & \\
A^{\prime} \star \text { Yes, I do pináo. } & \text { hunger.1s.PRES } \\
A^{\prime \prime} \star \text { Yes, I do pin. } & \text { hunger }
\end{array}
$$

Merchant's analysis reformulated

Deriving Merchant's generalization

Code switching ellipsis generalization All apparently cross-language ellipses involve code switching at the ellipsis site (into the language of the antecedent) (Merchant, 15)

You reuse the results of the derivation of the antecedent

- its categorial properties are the ones that matter, not those of some translation
- its meaning is the one that is reused, not that of some translation

A reformulation
All cross-language ellipses have the categorial properties and meaning of their antecedent

Claims

Derivations structure expressions
We have been using derivational structure all along
Syntax only cares about shape, not pictures

- Ellipsis must be sensitive to external syntactic structure
- Ellipsis must not be sensitive to internal syntactic structure

Ellipsis wants a semantic antecedent delimited by its syntactic shape

The end.

Sluicing: Passive-Active

*John was teased, but I don't know who teased him

Sluicing: Passive-Active

*John was teased, but I don't know who teased him

Sluice

Sluicing: Passive-Active

*John was teased, but I don't know who teased him

Sluicing: Passive with by-phrase

John was teased by someone, but I don't know who

Antecedent

Sluice
MOVE
|
MERGE
C_{Q}
e
who

Sluicing: Passive with by-phrase

John was teased by someone, but I don't know who

Antecedent

Sluice
MOVE
|
MERGE
C_{Q}
$\mathrm{e}_{\mathrm{DP} \rightarrow \mathrm{TP}}$
|
who
someone

Sluicing: Passive with by-phrase

John was teased by someone, but I don't know who

Antecedent

Sluice

Sluicing: Active-Passive

Someone teased John, but I don't know by whom

Antecedent

Sluice
MOVE

MERGE
C_{Q}

Sluicing: Active-Passive

Someone teased John, but I don't know by whom

Antecedent

Sluice
MOVE
1
MERGE
C_{Q}

Sluicing: Active-Passive

Someone teased John, but I don't know by whom

VPE: Passive with by-phrase

John was teased by someone, but Susan didn't

Antecedent

$\mathrm{V}_{\text {pass }}$

Sluice

VPE: Passive with by-phrase

John was teased by someone, but Susan didn't

Antecedent

$\mathrm{V}_{\text {pass }}$

Sluice

VPE: Passive with by-phrase

John was teased by someone, but Susan didn't

Antecedent

$\mathrm{v}_{\text {pass }}$

MERGE
tease John by

Sluice

$\mathrm{T}_{\mathrm{pst}}$ MERGE

someone

Sprouting and preposition stranding

John was teased, but I don't know by whom

Sluice

Sprouting and preposition stranding

John was teased, but I don't know by whom

Sluice
MOVE

Sprouting and preposition stranding

John was teased, but I don't know by whom

Sprouting and preposition stranding

John was teased, but I don't know who

Sluice

Sprouting and preposition stranding

John was teased, but I don't know who

Sluice

Sluicing and preposition stranding

John was teased by someone, but I don't know who

Antecedent

Sluice
MOVE
|
MERGE
C_{Q}
e
who

Sluicing and preposition stranding

John was teased by someone, but I don't know who

Antecedent

Sluice
MOVE
।
MERGE
C_{Q}
$\mathrm{e}_{\mathrm{DP} \rightarrow \mathrm{TP}}$
|
who
someone

Sluicing and preposition stranding

John was teased by someone, but I don't know who

Antecedent

Sluice

Sluicing and preposition stranding

John was teased by someone, but I don't know by whom

Antecedent

Sluice
MOVE
।
MERGE
C_{Q}

Sluicing and preposition stranding

John was teased by someone, but I don't know by whom

