
Direct Compositionality

Greg Kobele
Universität Leipzig

Winter Semester, 2020

Derived structures

Minimalist expressions

Expressions derived by MGs are binary branching trees
with two partial orderings on internal nodes:
linear precedence which sister is pronounced first
projection which sister projects over the other
Traditional way to represent this:

XP

X′

X

1 102

No more X-bar

XP

X′

X

X

X

X

>

<

X

the only real di�erence:

XP

X′

X X

2 102

Spec and Comp

Complements

X′

X

<

!

Specifiers

XP

X′

>

t

3 102

Heads

The head of an expression t is
1. t itself, if it is a leaf

2. the head of t1, if t = <(t1, t2)
3. the head of t2, if t = >(t1, t2)

<

>

!1 !2

!3

4 102

Heads

The head of an expression t is
1. t itself, if it is a leaf
2. the head of t1, if t = <(t1, t2)

3. the head of t2, if t = >(t1, t2)

<

>

!1 !2

!3

4 102

Heads

The head of an expression t is
1. t itself, if it is a leaf
2. the head of t1, if t = <(t1, t2)
3. the head of t2, if t = >(t1, t2)

<

>

!1 !2

!3

4 102

Heads

The head of an expression t is
1. t itself, if it is a leaf
2. the head of t1, if t = <(t1, t2)
3. the head of t2, if t = >(t1, t2)

<

>

!1 !2

!3

4 102

Heads

The head of an expression t is
1. t itself, if it is a leaf
2. the head of t1, if t = <(t1, t2)
3. the head of t2, if t = >(t1, t2)

<

>

!1 !2

!3

4 102

Heads

The head of an expression t is
1. t itself, if it is a leaf
2. the head of t1, if t = <(t1, t2)
3. the head of t2, if t = >(t1, t2)

<

>

!1 !2

!3

4 102

Basic Grammar

Putting things together

derivational (or algebraic) perspective

basic elements lexical items
ways of building complex things from simpler things

grammatical operations

Language of the grammar
is simply the set of things that can be built from basic
elements using the available operations

5 102

Merge

Merge

+ ⇒

•

6 102

Controlling Merge

English

John laughed
∗ laughed John

merge

should be defined on John + laughed
but not on laughed + John

Everyone’s solution:
operations are sensitive to the categories of the basic
elements

John is a DP
laughs is something that combines with a DP to give a S

7 102

Syntactic features

Notation
α is a X α has feature x

α combines with a X
on the left x=
on the right =x

John is a DP
John has feature d
laughed combines with a
DP (on the left) to give an
S
laughed has features d=
and s

Categories are structured

laughed isn’t an S until it has combined with a DP
laughed has first feature d=, and second
feature s

8 102

Lexical items

Feature bundles
A list of features (separated with periods)

d=.s

Lexical items
pairs of

morpho-phonological info (I’m the lexeme laughed)
categorial info (my feature bundle is d=.s)

written laughed : d=.s

9 102

Revisiting derived structures

Leaves
leaves are similarly pairs of strings and feature bundles

<

abc : =x.y=.z <

de : s.q.w= ε : ε

10 102

Merge revisited

On the right

=x.γ x.δ

γ δ

+ ⇒
<

On the left

x=.γ x.δ

δ γ

+ ⇒
>

11 102

Feature checking

Leaves of trees contain sequences of features.
I determine whether an operation can apply

Once an op applies, features are checked
I here: deleted

Ops are ‘trying’ to remove features from trees
I An exp is well-formed (‘complete’) i�

head has only feature in tree
it is x (for some x)

12 102

More Notation

given t, we write tf to denote the result of adding f as
the first feature on the head of t:
I if the head of t is σ : δ, then tf is the tree just like t

except that its head is σ : f .δ
t displays feature f , if the head of t is σ : f .δ
I tf displays feature f

Checking the first feature of tf gives us t

13 102

Merge, again

〈t, t′〉 ∈ dom(merge) i�
I t = t=x1 and t′ = tx2 , or
I t = tx=1 and t′ = tx2

merge(t=x1 , tx2) =

<

t1 t2

merge(tx=1 , tx2) =

>

t2 t1

14 102

English Auxiliaries

Simple Sentences I

We begin with simple intransitive sentences, such as the
below.

1. John died.
2. John will die.
3. John had died.
4. John has been dying.

15 102

Structural Assumptions
We treat these sentences as being divided into a subject
(John), and a predicate (the rest). The predicate is treated
as right branching, with elements to the left projecting over
those to their right.

1. John died.
>

John died

1

2. John will die.
>

John <

will die

1

16 102

Simple Sentences II

A slightly bigger example. . .
3. John has been dying.

>

John <

has <

been dying

1

17 102

A Grammar for this Fragment

We want a grammar to generate these expressions.
To specify a grammar, we need to specify four things:
The features which features we will use in our

grammar
The lexicon which syntactic feature sequences are

assigned to which words
The grammatical operations currently, this will just be

merge, so I will leave it implicit in the
following

The start category what is the category of complete
sentences
I Breaking with tradition, I will call the start

category s – it reminds me of {s}entence,
as well as {s}tart!

Thus, all that is left is to determine the features we will
use, and the lexical items we have18 102

Grammatical Reasoning I
Given an expression like the below, we know that its head
must have category s, and that no other leaves may have
syntactic features.

>

John died

1

What features must John and died have in order to
combine into the structure above of category s?

We can only build the above structure from lexical
items of the following shape:

John : x died : x=.s
What should ‘x’ be? It doesn’t matter! All that matters is
whether two features match, not what they are called.
Let’s take ‘x’ to be ‘d’ (for ‘DP’), as a nod to tradition.

19 102

Grammatical Reasoning I
Given an expression like the below, we know that its head
must have category s, and that no other leaves may have
syntactic features.

>

John died

1

What features must John and died have in order to
combine into the structure above of category s?
We can only build the above structure from lexical
items of the following shape:

John : x died : x=.s

What should ‘x’ be? It doesn’t matter! All that matters is
whether two features match, not what they are called.
Let’s take ‘x’ to be ‘d’ (for ‘DP’), as a nod to tradition.

19 102

Grammatical Reasoning I
Given an expression like the below, we know that its head
must have category s, and that no other leaves may have
syntactic features.

>

John died

1

What features must John and died have in order to
combine into the structure above of category s?
We can only build the above structure from lexical
items of the following shape:

John : x died : x=.s
What should ‘x’ be? It doesn’t matter! All that matters is
whether two features match, not what they are called.
Let’s take ‘x’ to be ‘d’ (for ‘DP’), as a nod to tradition.

19 102

Grammatical Reasoning II
We can perform the same line of reasoning on the
structure on the left below, too.

>

John <

will die

1

<

x=.s.will .die

The structure on the left must be the result of merging
a lexical item John : x with the structure on the right

This righthand structure then must be the result of
merging the following two lexical items.

will : =y.x=.s die : y
As feature names don’t matter, lets call ‘y’ ‘v’, and ‘x’ ‘d’.

John : d will : =v.d=.s die : v

20 102

Grammatical Reasoning II
We can perform the same line of reasoning on the
structure on the left below, too.

>

John <

will die

1

<

x=.s.will .die

The structure on the left must be the result of merging
a lexical item John : x with the structure on the right
This righthand structure then must be the result of
merging the following two lexical items.

will : =y.x=.s die : y

As feature names don’t matter, lets call ‘y’ ‘v’, and ‘x’ ‘d’.
John : d will : =v.d=.s die : v

20 102

Grammatical Reasoning II
We can perform the same line of reasoning on the
structure on the left below, too.

>

John <

will die

1

<

x=.s.will .die

The structure on the left must be the result of merging
a lexical item John : x with the structure on the right
This righthand structure then must be the result of
merging the following two lexical items.

will : =y.x=.s die : y
As feature names don’t matter, lets call ‘y’ ‘v’, and ‘x’ ‘d’.

John : d will : =v.d=.s die : v
20 102

Is this right? – A sanity check
So we have decomposed the tree we assigned to the
sentence John will die into the three lexical items below –
Let’s make sure they allow us to derive this sentence!

John : d will : =v.d=.s die : v

1. merge(will : =v.d=.s, die : v) =

<

d=.s.will .die

2. merge(1, John : d) =

>

.John <

s.will .die21 102

Grammatical Reasoning III

In the same way, from a structure like that below, we
obtain the following lexical items:

>

John <

has <

been dying

1

John : d has : =perf.d=.s
been : =prog.perf dying : prog

22 102

Fragment Analysed

In this way, from the sentences below, we arrive at the
following set of lexical items, which determine a grammar.

John dies \ John died \ John
will die \ John has died \
John had died \ John is dying

John was dying \ John has
been dying \ John had been
dying \ John will be dying \
John will have died \ John
will have been dying

die : v will : =v.d=.s is : =prog.d=.s
died : perf was : =prog.d=.s
dying : prog have : =perf.v be : =prog.v
died : d=.s has : =perf.d=.s been : =prog.perf
dies : d=.s had : =perf.d=.s

23 102

Analysis Criticised

die : v will : =v.d=.s is : =prog.d=.s
died : perf was : =prog.d=.s
dying : prog have : =perf.v be : =prog.v
died : d=.s has : =perf.d=.s been : =prog.perf
dies : d=.s had : =perf.d=.s

These lexical items are highly redundant:
1. all of the be forms select for something in the

progressive
2. all the have forms something in the perfective
3. all and only the tensed forms (died, dies, has, had, . . .)

select an argument
Whenever a new verb is added to the language, we
need to add five new lexical items:

laugh : v laughed : perf
laughing : prog laughed : d=.s
laughs : d=.s24 102

Head Movement

Morphological Decomposition

Let’s begin with lexical items of category perf (died
and been, but also broken,. . .)
Instead of lexical items, think of them as having been
built from the perfective su�x -en as well as a verb
(die) or auxiliary (be)

perf.died =⇒

<

perf.-en .die

=prog.perf.been =⇒

<

perf.-en <

.be prog
25 102

Morphological Composition

If we syntactically decompose died into a root verb die and
an a�x -en, how do we end up pronouncing it as one word?

Post-syntactic morphology

Distributed Morphology
Mirror theory
Head movement

These theories presuppose that certain syntactic
configurations can give rise to morphological
composition
(at least) head - complement

26 102

MW Formation during Merge

Only from a complement

-a� : =>x.γ w : x.δ

w-a� : γ ε : δ

+ ⇒

<

Must specify how w-a� is pronounced

need a real theory of morphology
here just a list

27 102

Syntactic Decomposition

Now we can assign features to our a�xes:

perf.died =⇒

<

perf.-en .die
die : x =>x.perf.-en

die-en 7→ died

28 102

Syntactic Decomposition

Now we can assign features to our a�xes:

=prog.perf.been =⇒

<

perf.-en <

.be prog
be : =prog.x
=>x.perf.-en

be-en 7→ been

28 102

More Decomposition

has : =>perf.d=.s
have : =perf.x
-s : =>x.d=.s
have-s 7→ has

had : =>perf.d=.s
have : =perf.x
-ed : =>x.d=.s
have-ed 7→ had

is : =>prog.d=.s
be : =prog.y
-s : =>y.d=.s

be-s 7→ is

was : =>prog.d=.s
be : =prog.y

-ed : =>y.d=.s
be-ed 7→ was29 102

More Redundancy

Note though that now we have two versions each of the
present and past tense morphemes:

-s : =>x.d=.s -ed : =>x.d=.s
-s : =>y.d=.s -ed : =>y.d=.s

There are three options:
1. collapse x and y into a third category (perhaps v)

-s : =>v.d=.s -ed : =>v.d=.s
2. allow an isa-relationship to obtain between x and y

-s : =>y.d=.s -ed : =>y.d=.s
ε : =>x.y

3. allow an isa-relationship to obtain between x and y
-s : =>x.d=.s -ed : =>x.d=.s

ε : =>y.x

30 102

Distributional arguments

Note that whenever have and be occur together, have
always precedes be:
I John has been dying
I ∗John is having died
I John will have been dying
I ∗John will be having died

and that, whenever be occurs incorporated into -s or
-ed, have is not present:
I John is dying
I ∗John is having died
I John was dying
I ∗John was having died

These facts argue against the first option (treating have
and be as having the same category)

31 102

More Redundancy again

We have the same di�culty with the perfective -en!
-en : =>v.perf -en : =>y.perf

There are again three options:
1. collapse v and y together:

-en : =>v.perf
2. allow an isa-relationship to obtain between v and y:

-en : =>v.perf
ε : =>v.y

3. allow an isa-relationship to obtain between v and y:
-en : =>y.perf

ε : =>y.v

32 102

More distributional arguments

Note that whenever be and die occur together, be
always precedes die:
I John has been dying
I ∗John has died be
I John will have been dying
I ∗John will have died be

and that, whenever die occurs incorporated into -en, be
is not present:
I John has died

The first option again is seen to be incorrect
Note that if we assume that v isa y, and that y isa x,
then we predict that die can incorporate into -s and
-ed!
I John dies
I John died

33 102

Head movement in the auxiliary system
Following similar reasoning, we arrive at the lexicon below:

will : =x.d=.s have : =perf.x be : =prog.y die : v
-s : =>x.d=.s -en : =>y.perf -ing : =>v.prog
-ed : =>x.d=.s ε : =>y.x ε : =>v.y

S

will, {-s, -ed} X

have Perf

-en Y

be Prog

-ing V

V

1

To add a new verb, we add just a single lexical item:
laugh : v

34 102

Decompositional Methodology

Whenever we have a lexical item

uv : αβ

We can split it up into two:

u : α.x -v : =>x.β

Proliferation of functional projections
is simply one of the natural moves in this architecture

35 102

Raising to Subject

Basic Alternation

Verbs like seem allow for the following alternation:
1. It will seem that John laughed
2. John will seem to have laughed

New lexical items:

it : d to : =x.i
that : =s.c

seem : =i.v
seem’ : =c.v

Observations:
1. it as main clause subject requires finite

that-complement
2. DP as main clause subject forbids finite

that-complement

Problem
how to transmit information from one point to another

36 102

Analytical Possibilities

1. Syntactic feature percolation
seem’ : =c.v′ will2 : =x′.d′=.s it : d′

seem : =i.v will : =x.d=.s John : d

2. Semantic type
seem’ : tt will’ : tt it : tt

seem : (et)et will : (et)et John : e

3. Ninja technique (Kage Bunshin no Jutsu):
Main clause subject is in two places at once. Must
satisfy properties of both positions to be well-formed.

37 102

Analytical Possibilities

1. Syntactic feature percolation
seem’ : =c.v′ will2 : =x′.d′=.s it : d′

seem : =i.v will : =x.d=.s John : d
2. Semantic type

seem’ : tt will’ : tt it : tt

seem : (et)et will : (et)et John : e

3. Ninja technique (Kage Bunshin no Jutsu):
Main clause subject is in two places at once. Must
satisfy properties of both positions to be well-formed.

37 102

Analytical Possibilities

1. Syntactic feature percolation
seem’ : =c.v′ will2 : =x′.d′=.s it : d′

seem : =i.v will : =x.d=.s John : d
2. Semantic type

seem’ : tt will’ : tt it : tt

seem : (et)et will : (et)et John : e

3. Ninja technique (Kage Bunshin no Jutsu):
Main clause subject is in two places at once. Must
satisfy properties of both positions to be well-formed.

37 102

Raising

[[John will laugh]] = will(laugh(john))

Surface will : =x.d=.s laugh : v
Deep will : =x.s laugh : d=.v

Not quite right:

Ninja will : =x.d=.s laugh : d=.v

38 102

Raising

[[John will laugh]] = will(laugh(john))

Surface will : =x.d=.s laugh : v
Deep will : =x.s laugh : d=.v

Not quite right:

Ninja will : =x.d=.s laugh : d=.v

38 102

Deep vs Surface Positions

a DP should have two positions

1. where it is base generated (via merge)
2. where it appears on the surface

it must be syntactically active after merge

merge deletes the d feature
so it must have another feature

we don’t currently have a way of checking
features after something is merged
so we need another operation

39 102

Move (MDS)

blue is a maximal projection
blue is (literally) in two places at once

⇒

•

40 102

Move (traces)

t
stands for ε :

a trace is just a silent leaf with no features

t

⇒

>

41 102

Move (features)

Want to control when move can apply

+y move something to me
-y move me somewhere

+y.γ

-y.δ

γδ t

⇒

>

42 102

Deep vs Surface Positions (II)

a DP should have two positions

1. where it is base generated (via merge)
2. where it appears on the surface (via move)

it must be syntactically active after merge

merge deletes the d feature
so it must have another feature, -k

A DP feature bundle: d.-k
d how to be well-formed in the base position
-k how to be well-formed in the surface position

43 102

Raising (II)

[[John will laugh]] = will(laugh(john))

Surface will : =x.d=.s laugh : v
Deep will : =x.s laugh : d=.v

Here we go:

Ninja will : =x.+k.s laugh : d=.v

44 102

Raising (II)

[[John will laugh]] = will(laugh(john))

Surface will : =x.d=.s laugh : v
Deep will : =x.s laugh : d=.v

Here we go:

Ninja will : =x.+k.s laugh : d=.v

44 102

Updating the lexicon

The d= feature on the lexical items will, -s, and -ed
were originally intended to introduce the predicate’s
argument in its surface position. Now the argument is
already present, but not in its surface position.
We thus assign the tense lexical items the type:

=x.+k.s

This indicates that a lexical item like will provides a
surface position (for something with a -k feature, like a
DP)
Crucially, to doesn’t provide such a surface position:

to : =x.i

45 102

Short Raising to Subject

Surface subjects in simple intransitive sentences raise to
this position from within the vP:

<

+k.s.will <

.laugh-ε-ε <

.ε >

-k.John .ε

46 102

Short Raising to Subject

Surface subjects in simple intransitive sentences raise to
this position from within the vP:

>

.John <

s.will <

.laugh-ε-ε <

.ε >

t .ε

46 102

Long Raising to Subject

The same is true of surface subjects of seem:
<

+k.s.seem-ε-ε-s <

.ε <

.ε <

.ε <

.to <

.laugh-ε-ε <

.ε >

-k.John .ε

47 102

Long Raising to Subject
The same is true of surface subjects of seem:

>

.John <

s.seem-ε-ε-s <

.ε <

.ε <

.ε <

.to <

.laugh-ε-ε <

.ε >

t .ε

47 102

Really Long Raising to Subject

Note that we can add as many seem to’s as we want; only
after we add a tense item do we trigger raising of the
embedded DP:

<

x.seem-ε-ε <

.ε <

.ε <

.to x

48 102

Really Long Raising to Subject
Note that we can add as many seem to’s as we want; only
after we add a tense item do we trigger raising of the
embedded DP:

<

x.seem-ε-ε <

.ε <

.ε <

.to <

.seem-ε-ε <

.ε <

.ε <

.to <

.laugh-ε-ε <

.ε >

-k.John .ε48 102

Alternations

How do we deal with the alternation:
1. It seems that John laughed
2. John seems to have laughed

it appears as the subject of tensed clauses without
semantic subjects
I it seems . . .
I it rains

From the perspective of the analysis,
it appears whenever we have a +k feature with nothing to
check it

49 102

The category of it

From the perspective of the analysis,
it appears whenever we have a +k feature with nothing to
check it

Therefore:
it needs to have a feature bundle ending in -k

because it doesn’t have the same distribution as a regular
DP, we don’t give it the same category:

it : expl.-k

50 102

Getting it to appear

it : expl.-k

We can treat it as a vP adjunct

ε : =>v.expl=.v

a vP is something which can optionally select an expl
>

-k.it <

v.v-ε v

51 102

Getting it to appear

it : expl.-k

We can treat it as a vP adjunct

ε : =>v.expl=.v

a vP is something which can optionally select an expl
>

-k.it <

v.seem-ε <

.ε c

51 102

Superraising

We currently generate the following sentence type:
Johni is believed that it seems to ti laugh.

In other words, nothing enforces the last resort character
of it.

52 102

Superraising Derivation

Johni is believed that it seems to ti laugh.
Right before moving it, we have:

<

+k.s.seem-ε-ε-ε-s <

.ε <

.ε >

-k.it <

.ε <

.ε <

.to <

.laugh-ε-ε <

.ε >

-k.John .ε

53 102

Toward Blocking Superraising
<

+k.s.seem-ε-ε-ε-s <

.ε <

.ε >

-k.it <

.ε <

.ε <

.to <

.laugh-ε-ε <

.ε >

-k.John .ε

Some options:

1. should always move the lower candidate
2. should never have to make a choice
3. treat it di�erently

54 102

Toward Blocking Superraising
<

+k.s.seem-ε-ε-ε-s <

.ε <

.ε >

-k.it <

.ε <

.ε <

.to <

.laugh-ε-ε <

.ε >

-k.John .ε

Some options:

1. should always move the lower candidate
2. should never have to make a choice
3. treat it di�erently

54 102

Give up

Don’t make a choice
whoever you don’t choose will move farther than if you
had chosen them (shortest move flavor)
it’s easy (no need to calculate or compare)
it works (pretty well)
it is formally awesome (MCS)

SMC
move is only defined if there is exactly one maximal
projection with the relevant first feature

55 102

Constraints on movement

Attract Closest more generally, make deterministic
Specifier Island can’t extract from specifiers

SMC more generally, at most k movees

Results
with SpI-mv recursively enumerable (K. & Michaelis)

with Nothing / Attract Closest not semilinear
at least 2-ExpSpace Hard, maybe undecidable
(Salvati)

with SMC MCFL (Michaelis)
with SpI-mrg & SMC mb-MCFL (Michaelis)

Claim
This really matters!

56 102

Constraints on movement

Attract Closest more generally, make deterministic
Specifier Island can’t extract from specifiers

SMC more generally, at most k movees

Results
with SpI-mv recursively enumerable (K. & Michaelis)
with Nothing / Attract Closest not semilinear

at least 2-ExpSpace Hard, maybe undecidable
(Salvati)

with SMC MCFL (Michaelis)
with SpI-mrg & SMC mb-MCFL (Michaelis)

Claim
This really matters!

56 102

Constraints on movement

Attract Closest more generally, make deterministic
Specifier Island can’t extract from specifiers

SMC more generally, at most k movees

Results
with SpI-mv recursively enumerable (K. & Michaelis)
with Nothing / Attract Closest not semilinear

at least 2-ExpSpace Hard, maybe undecidable
(Salvati)

with SMC MCFL (Michaelis)

with SpI-mrg & SMC mb-MCFL (Michaelis)

Claim
This really matters!

56 102

Constraints on movement

Attract Closest more generally, make deterministic
Specifier Island can’t extract from specifiers

SMC more generally, at most k movees

Results
with SpI-mv recursively enumerable (K. & Michaelis)
with Nothing / Attract Closest not semilinear

at least 2-ExpSpace Hard, maybe undecidable
(Salvati)

with SMC MCFL (Michaelis)
with SpI-mrg & SMC mb-MCFL (Michaelis)

Claim
This really matters!

56 102

SMC at work

this expression is generated by our analysis
it has two subtrees displaying -k
can never become a complete expression

>

-k.it <

v.laugh-ε >

-k.John .ε

57 102

SMC at work

this expression is generated by our analysis
it has two subtrees displaying -k
can never become a complete expression

>

-k.it <

v.seem-ε <

.ε <

.to <

.laugh-ε-ε <

.ε >

-k.John .ε

57 102

More work

Even crazier things are now in the closure of our
lexicon under the generating functions.
They are all blocked by the SMC from ever becoming
complete expressions.

>

-k.it <

v.seem-ε <

.ε <

.to <

.laugh-ε-ε-ε <

.ε >

-k.it <

.ε >

-k.John .ε

58 102

More work

Even crazier things are now in the closure of our
lexicon under the generating functions.
They are all blocked by the SMC from ever becoming
complete expressions.

>

-k.it <

v.laugh-ε-ε-ε >

-k.it <

.ε >

-k.it <

.ε >

-k.John .ε

58 102

Deriving it

We assign the it-sentence the following structure:
<

v.seem <

.that >

.John <

.will <

.laugh-ε-ε <

.ε >

t .ε

59 102

Deriving it
We assign the it-sentence the following structure:

>

-k.it <

v.seem-ε <

.ε <

.that >

.John <

.will <

.laugh-ε-ε <

.ε >

t .ε

59 102

Deriving it
We assign the it-sentence the following structure:

<

x.seem-ε-ε-ε <

.ε >

-k.it <

.ε <

.ε <

.that >

.John <

.will <

.laugh-ε-ε <

.ε >

t .ε
59 102

Deriving it
We assign the it-sentence the following structure:

<

+k.s.seem-ε-ε-ε-s <

.ε <

.ε >

-k.it <

.ε <

.ε <

.that >

.John <

.will <

.laugh-ε-ε <

.ε >

t .ε

59 102

Deriving it
We assign the it-sentence the following structure:

>

.it <

s.seem-ε-ε-ε-s <

.ε <

.ε >

t <

.ε <

.ε <

.that >

.John <

.will <

.laugh-ε-ε <

.ε >

t .ε59 102

Explaining the alternation

Observations
1. it as main clause subject requires finite

that-complement
2. DP as main clause subject forbids finite

that-complement

Problem
how to transmit information from one point to another

Solution
Main clause subject is in two places at once. Must satisfy
properties of both positions to be well-formed.

How exactly is this supposed to work?
finite that complement means no -k item inside, so no
DP for the main clause
infinite to complement means -k item available, so this
moves to main clause

60 102

Seeming redundancy

We still have two lexical entries for seem:
seem’ : =c.v seem : =i.v

However, there is no point to the distinction between i
and c in our grammar. We unify these categories
throughout our lexicon:

will : =x.+k.s have : =perf.x be : =prog.y
-s : =>x.+k.s -en : =>y.perf -ing : =>v.prog
-ed : =>x.+k.s ε : =>y.x ε : =>v.y
that : =s.c to : =x.c it : expl.-k
laugh : =d.v John : d.-k seem : =c.v

61 102

Whither the Weather

Verbs like rain, or snow can be represented as the below,
allowing for it-insertion:

rain : v

We can then derive the following sentences:
1. It is raining.
2. It seems to be raining.
3. It seems that it is raining.

62 102

Raising to Object and Pas-
sivization

Raising to Object

Raising to object, as in:
1. Bill expects John to laugh.
2. Bill expects that John will laugh.

can be accommodated by assigning expect the types below:

expect : =c.+k.d=.v
expect : =c.d=.v

63 102

Deriving raised objects

<

+k.d=.v.expect <

.to <

.laugh-ε-ε <

.ε >

-k.John .ε

64 102

Deriving raised objects

>

.John <

d=.v.expect <

.to <

.laugh-ε-ε <

.ε >

t .ε

64 102

Deriving raised objects

>

-k.Bill >

.John <

v.expect <

.to <

.laugh-ε-ε <

.ε >

t .ε

64 102

Deriving raised objects

<

x.expect-ε-ε <

.ε >

-k.Bill >

.John <

.ε <

.to <

.laugh-ε-ε <

.ε >

t .ε

64 102

Passive

Using the idea that DPs have distinct deep and surface
positions lets us use our current technology to account
for passivization:

1. Bill expects John to laugh.
2. John is expected to laugh.
3. Bill expects that Mary will laugh.
4. It is expected that Mary will laugh.

In the first case, the +k of the surface position of the
object and the d= of the deep position of the subject
are suppressed:

expect : =c.+k.d=.v expected : =c.pass
be : =pass.v

65 102

Passive compression
We again see regularities lurking beneath the surface:

expected : =c.pass expect : =c.V, -en : =>V.pass
expect : =c.+k.d=.v expect : =c.V, ε : =>V.+k.d=.v

Remember: Decompositional Methodology
Whenever we have a lexical item

uv : αβ

We can split it up into two:

u : α.x -v : =>x.β

u-v 7→ uv
66 102

Passive structures

<

V.expect <

.to <

.laugh-ε-ε <

.ε >

-k.John .ε

67 102

Passive structures

<

pass.expect-en <

.ε <

.to <

.laugh-ε-ε <

.ε >

-k.John .ε

67 102

Passive structures

<

v.be <

.expect-en <

.ε <

.to <

.laugh-ε-ε <

.ε >

-k.John .ε

67 102

Passive structures

<

+k.s.be-ε-ε-s <

.ε <

.ε <

.expect-en <

.ε <

.to <

.laugh-ε-ε <

.ε >

-k.John .ε

67 102

Passive structures
>

.John <

s.be-ε-ε-s <

.ε <

.ε <

.expect-en <

.ε <

.to <

.laugh-ε-ε <

.ε >

t .ε

67 102

Happy conspiricies

With these lexical entries, we already derive both passive
forms:

1. John is expected to laugh
2. It is expected that John will laugh

68 102

It passive

<

V.expect <

.that >

.John <

.will <

.laugh-ε-ε <

.ε >

t .ε

69 102

It passive

<

v.be <

.expect-en <

.ε <

.that >

.John <

.will <

.laugh-ε-ε <

.ε >

t .ε

69 102

It passive
>

-k.it <

v.be-ε <

.ε <

.expect-en <

.ε <

.that >

.John <

.will <

.laugh-ε-ε <

.ε >

t .ε69 102

It passive

<

+k.s.be-ε-ε-ε-s <

.ε <

.ε >

-k.it <

.ε <

.ε <

.expect-en <

.ε <

.that >

.John <

.will <

.laugh-ε-ε <

.ε >

t .ε

69 102

It passive

>

.it <

s.be-ε-ε-ε-s <

.ε <

.ε >

t <

.ε <

.ε <

.expect-en <

.ε <

.that >

.John <

.will <

.laugh-ε-ε <

.ε >

t .ε

69 102

It passive
>

.it <

s.be-ε-ε-ε-s <

.ε <

.ε >

t <

.ε <

.ε <

.expect-en <

.ε <

.that >

.John <

.will <

.laugh-ε-ε <

.ε >

t .ε

69 102

Expecting compression
What can we say about the two lexical entries for
expect?

1. expect : =c.V
2. expect : =c.d=.v

The latter we can decompose into

expect : =c.V ε : =>V.d=.v

The element on the right looks similar to our ‘active
voice head’:
ε : =>V.+k.d=.v
We decompose once more, disentangling case
assignment and external argument selection:

expect : =c.V ε : =>V.+k.agrO ε : =>agrO.d=.v
ε : =>V.agrO

70 102

Taking stock

Our lexicon looks as follows:

will : =x.+k.s have : =perf.x be : =prog.y
-s : =>x.+k.s -en : =>y.perf -ing : =>v.prog
-ed : =>x.+k.s ε : =>y.x ε : =>v.y
that : =s.c to : =x.c it : expl.-k
ε : =>agrO.d=.v ε : =>V.+k.agrO ε : =>V.agrO
-en : =>V.pass be : =pass.v
laugh : d=.v rain : v John : d.-k
seem : =c.v expect : =c.V

71 102

Transitivity

A simple transitive verb looks as follows: praise : =d.V
<

V.praise -k.John

72 102

Transitivity

A simple transitive verb looks as follows: praise : =d.V
<

+k.agrO.praise-ε <

.ε -k.John

72 102

Transitivity

A simple transitive verb looks as follows: praise : =d.V
>

.John <

agrO.praise-ε <

.ε t

72 102

Transitivity

A simple transitive verb looks as follows: praise : =d.V
<

d=.v.praise-ε-ε >

.John <

.ε <

.ε t

72 102

Which AgrO?

The SMC ensures that, in the active voice, agrO must check
the object’s case

<

V.praise -k.John

73 102

Which AgrO?

The SMC ensures that, in the active voice, agrO must check
the object’s case

<

agrO.praise-ε <

.ε -k.John

73 102

Which AgrO?

The SMC ensures that, in the active voice, agrO must check
the object’s case

<

d=.v.praise-ε-ε <

.ε <

.ε -k.John

73 102

Which AgrO?

The SMC ensures that, in the active voice, agrO must check
the object’s case

>

-k.Bill <

v.praise-ε-ε <

.ε <

.ε -k.John

73 102

Obligatory Raising to Object
Some raising to object verbs do not allow for
that-complements

1. Bill caused John to laugh.
2. ∗Bill caused that John laughed.

In order to describe verbs like these, we need to
reimplement a distinction between finite and non-finite
complements (c and i)

cause : =i.V to : =x.i
However, in order to continue to be able to describe
the distribution of seem with a single lexical item, we
want to say that there is a relation between i and c;
namely, that i isa c:

ε : =>i.c

74 102

Obligatory Raising to Object
Some raising to object verbs do not allow for
that-complements

1. Bill caused John to laugh.

2. ∗Bill caused that John laughed.
In order to describe verbs like these, we need to
reimplement a distinction between finite and non-finite
complements (c and i)

cause : =i.V to : =x.i
However, in order to continue to be able to describe
the distribution of seem with a single lexical item, we
want to say that there is a relation between i and c;
namely, that i isa c:

ε : =>i.c

74 102

Obligatory Raising to Object
Some raising to object verbs do not allow for
that-complements

1. Bill caused John to laugh.
2. ∗Bill caused that John laughed.

In order to describe verbs like these, we need to
reimplement a distinction between finite and non-finite
complements (c and i)

cause : =i.V to : =x.i
However, in order to continue to be able to describe
the distribution of seem with a single lexical item, we
want to say that there is a relation between i and c;
namely, that i isa c:

ε : =>i.c

74 102

Obligatory Raising to Object
Some raising to object verbs do not allow for
that-complements

1. Bill caused John to laugh.
2. ∗Bill caused that John laughed.

In order to describe verbs like these, we need to
reimplement a distinction between finite and non-finite
complements (c and i)

cause : =i.V to : =x.i

However, in order to continue to be able to describe
the distribution of seem with a single lexical item, we
want to say that there is a relation between i and c;
namely, that i isa c:

ε : =>i.c

74 102

Obligatory Raising to Object
Some raising to object verbs do not allow for
that-complements

1. Bill caused John to laugh.
2. ∗Bill caused that John laughed.

In order to describe verbs like these, we need to
reimplement a distinction between finite and non-finite
complements (c and i)

cause : =i.V to : =x.i
However, in order to continue to be able to describe
the distribution of seem with a single lexical item, we
want to say that there is a relation between i and c;
namely, that i isa c:

ε : =>i.c

74 102

Obligatorily Passive
Some verbs only appear in the passive:

1. It is rumored that John laughed.
2. John is rumored to have laughed.
3. ∗Bill rumors that John laughed.
4. ∗Bill rumors John to have laughed.

we can assign such verbs the following type:
rumored : =c.pass

alternatively, we can stipulate that the problem lies
with the morphological component

rumored-AgrO 7→ ⊥
or simply view this as a matter of frequency

P(-en : =>V.pass|rumor : =c.V) ≈ 1

75 102

Obligatorily Passive
Some verbs only appear in the passive:

1. It is rumored that John laughed.

2. John is rumored to have laughed.
3. ∗Bill rumors that John laughed.
4. ∗Bill rumors John to have laughed.

we can assign such verbs the following type:
rumored : =c.pass

alternatively, we can stipulate that the problem lies
with the morphological component

rumored-AgrO 7→ ⊥
or simply view this as a matter of frequency

P(-en : =>V.pass|rumor : =c.V) ≈ 1

75 102

Obligatorily Passive
Some verbs only appear in the passive:

1. It is rumored that John laughed.
2. John is rumored to have laughed.

3. ∗Bill rumors that John laughed.
4. ∗Bill rumors John to have laughed.

we can assign such verbs the following type:
rumored : =c.pass

alternatively, we can stipulate that the problem lies
with the morphological component

rumored-AgrO 7→ ⊥
or simply view this as a matter of frequency

P(-en : =>V.pass|rumor : =c.V) ≈ 1

75 102

Obligatorily Passive
Some verbs only appear in the passive:

1. It is rumored that John laughed.
2. John is rumored to have laughed.
3. ∗Bill rumors that John laughed.

4. ∗Bill rumors John to have laughed.
we can assign such verbs the following type:

rumored : =c.pass

alternatively, we can stipulate that the problem lies
with the morphological component

rumored-AgrO 7→ ⊥
or simply view this as a matter of frequency

P(-en : =>V.pass|rumor : =c.V) ≈ 1

75 102

Obligatorily Passive
Some verbs only appear in the passive:

1. It is rumored that John laughed.
2. John is rumored to have laughed.
3. ∗Bill rumors that John laughed.
4. ∗Bill rumors John to have laughed.

we can assign such verbs the following type:
rumored : =c.pass

alternatively, we can stipulate that the problem lies
with the morphological component

rumored-AgrO 7→ ⊥
or simply view this as a matter of frequency

P(-en : =>V.pass|rumor : =c.V) ≈ 1

75 102

Obligatorily Passive
Some verbs only appear in the passive:

1. It is rumored that John laughed.
2. John is rumored to have laughed.
3. ∗Bill rumors that John laughed.
4. ∗Bill rumors John to have laughed.

we can assign such verbs the following type:
rumored : =c.pass

alternatively, we can stipulate that the problem lies
with the morphological component

rumored-AgrO 7→ ⊥
or simply view this as a matter of frequency

P(-en : =>V.pass|rumor : =c.V) ≈ 1

75 102

Obligatorily Passive
Some verbs only appear in the passive:

1. It is rumored that John laughed.
2. John is rumored to have laughed.
3. ∗Bill rumors that John laughed.
4. ∗Bill rumors John to have laughed.

we can assign such verbs the following type:
rumored : =c.pass

alternatively, we can stipulate that the problem lies
with the morphological component

rumored-AgrO 7→ ⊥

or simply view this as a matter of frequency
P(-en : =>V.pass|rumor : =c.V) ≈ 1

75 102

Obligatorily Passive
Some verbs only appear in the passive:

1. It is rumored that John laughed.
2. John is rumored to have laughed.
3. ∗Bill rumors that John laughed.
4. ∗Bill rumors John to have laughed.

we can assign such verbs the following type:
rumored : =c.pass

alternatively, we can stipulate that the problem lies
with the morphological component

rumored-AgrO 7→ ⊥
or simply view this as a matter of frequency

P(-en : =>V.pass|rumor : =c.V) ≈ 1

75 102

What is not under the sun
What this analysis doesn’t really allow to be stated
elegantly:

a sentential complement taking verb which

1. is passivizable
2. takes only a that-complement in the active
3. but takes either a that-complement or a

to-complement in the passive
Like think?

1. Bill thinks that John is laughing
2. ∗Bill thinks John to be laughing.
3. It is thought that John is laughing.
4. John is thought to be laughing.

But:

I think me to be, 1mil Google hits
I it would hurt even my delicacy, little as you may think

me to possess

76 102

What is not under the sun
What this analysis doesn’t really allow to be stated
elegantly:

a sentential complement taking verb which
1. is passivizable

2. takes only a that-complement in the active
3. but takes either a that-complement or a

to-complement in the passive
Like think?

1. Bill thinks that John is laughing
2. ∗Bill thinks John to be laughing.
3. It is thought that John is laughing.
4. John is thought to be laughing.

But:

I think me to be, 1mil Google hits
I it would hurt even my delicacy, little as you may think

me to possess

76 102

What is not under the sun
What this analysis doesn’t really allow to be stated
elegantly:

a sentential complement taking verb which
1. is passivizable
2. takes only a that-complement in the active

3. but takes either a that-complement or a
to-complement in the passive

Like think?

1. Bill thinks that John is laughing
2. ∗Bill thinks John to be laughing.
3. It is thought that John is laughing.
4. John is thought to be laughing.

But:

I think me to be, 1mil Google hits
I it would hurt even my delicacy, little as you may think

me to possess

76 102

What is not under the sun
What this analysis doesn’t really allow to be stated
elegantly:

a sentential complement taking verb which
1. is passivizable
2. takes only a that-complement in the active
3. but takes either a that-complement or a

to-complement in the passive

Like think?

1. Bill thinks that John is laughing
2. ∗Bill thinks John to be laughing.
3. It is thought that John is laughing.
4. John is thought to be laughing.

But:

I think me to be, 1mil Google hits
I it would hurt even my delicacy, little as you may think

me to possess

76 102

What is not under the sun
What this analysis doesn’t really allow to be stated
elegantly:

a sentential complement taking verb which
1. is passivizable
2. takes only a that-complement in the active
3. but takes either a that-complement or a

to-complement in the passive
Like think?

1. Bill thinks that John is laughing
2. ∗Bill thinks John to be laughing.
3. It is thought that John is laughing.
4. John is thought to be laughing.

But:

I think me to be, 1mil Google hits
I it would hurt even my delicacy, little as you may think

me to possess

76 102

What is not under the sun
What this analysis doesn’t really allow to be stated
elegantly:

a sentential complement taking verb which
1. is passivizable
2. takes only a that-complement in the active
3. but takes either a that-complement or a

to-complement in the passive
Like think?

1. Bill thinks that John is laughing

2. ∗Bill thinks John to be laughing.
3. It is thought that John is laughing.
4. John is thought to be laughing.

But:

I think me to be, 1mil Google hits
I it would hurt even my delicacy, little as you may think

me to possess

76 102

What is not under the sun
What this analysis doesn’t really allow to be stated
elegantly:

a sentential complement taking verb which
1. is passivizable
2. takes only a that-complement in the active
3. but takes either a that-complement or a

to-complement in the passive
Like think?

1. Bill thinks that John is laughing
2. ∗Bill thinks John to be laughing.

3. It is thought that John is laughing.
4. John is thought to be laughing.

But:

I think me to be, 1mil Google hits
I it would hurt even my delicacy, little as you may think

me to possess

76 102

What is not under the sun
What this analysis doesn’t really allow to be stated
elegantly:

a sentential complement taking verb which
1. is passivizable
2. takes only a that-complement in the active
3. but takes either a that-complement or a

to-complement in the passive
Like think?

1. Bill thinks that John is laughing
2. ∗Bill thinks John to be laughing.
3. It is thought that John is laughing.

4. John is thought to be laughing.
But:

I think me to be, 1mil Google hits
I it would hurt even my delicacy, little as you may think

me to possess

76 102

What is not under the sun
What this analysis doesn’t really allow to be stated
elegantly:

a sentential complement taking verb which
1. is passivizable
2. takes only a that-complement in the active
3. but takes either a that-complement or a

to-complement in the passive
Like think?

1. Bill thinks that John is laughing
2. ∗Bill thinks John to be laughing.
3. It is thought that John is laughing.
4. John is thought to be laughing.

But:

I think me to be, 1mil Google hits
I it would hurt even my delicacy, little as you may think

me to possess

76 102

What is not under the sun
What this analysis doesn’t really allow to be stated
elegantly:

a sentential complement taking verb which
1. is passivizable
2. takes only a that-complement in the active
3. but takes either a that-complement or a

to-complement in the passive
Like think?

1. Bill thinks that John is laughing
2. ∗Bill thinks John to be laughing.
3. It is thought that John is laughing.
4. John is thought to be laughing.

But:

I think me to be, 1mil Google hits
I it would hurt even my delicacy, little as you may think

me to possess

76 102

What is not under the sun
What this analysis doesn’t really allow to be stated
elegantly:

a sentential complement taking verb which
1. is passivizable
2. takes only a that-complement in the active
3. but takes either a that-complement or a

to-complement in the passive
Like think?

1. Bill thinks that John is laughing
2. ∗Bill thinks John to be laughing.
3. It is thought that John is laughing.
4. John is thought to be laughing.

But:
I think me to be, 1mil Google hits

I it would hurt even my delicacy, little as you may think
me to possess

76 102

What is not under the sun
What this analysis doesn’t really allow to be stated
elegantly:

a sentential complement taking verb which
1. is passivizable
2. takes only a that-complement in the active
3. but takes either a that-complement or a

to-complement in the passive
Like think?

1. Bill thinks that John is laughing
2. ∗Bill thinks John to be laughing.
3. It is thought that John is laughing.
4. John is thought to be laughing.

But:
I think me to be, 1mil Google hits
I it would hurt even my delicacy, little as you may think

me to possess
76 102

Full disclosure

Here is an alternation that I’m not sure how to deal with:
1. I made him laugh
2. He was made to laugh
3. ∗ I made that he laughed
4. active :: make : =v.V
5. passive :: make : =i.pass

77 102

Derivations

The big picture

Syntax
Glues together form and meaning

SYNT AX

MEANING

Λ

FORM

Π

78 102

This is not syntactocentric

The point is to specify
form-meaning pairs

FORM×MEANING

MEANING

π2

FORM

π1

79 102

T-model

SS

PF LF

DS

MEANING
Λ

FORM
Π

80 102

Minimalism (I)

Trees

Derivation

MEANING
Λ

FORM
Π

81 102

Minimalism (reifying derivations)

Trees

Derivation

MEANING
Λ

FORM
Π

82 102

Defining (the set of) derivations

The set of possible derivations over a lexicon Lex is the set
of terms over { merge, move } ∪ Lex

1. if ` is a lexical item, then
` is a derivation (of itself)

2. if t1, t2 are possible
derivations, then so is
their merger

3. if t is a possible
derivation, its move is too

`

merge

t1 t1

move

t

83 102

From derivations to derivata

Trees

Derivation

MEANING
Λ

FORM
Π

how do we go from Derivation to Tree?
by doing what the derivation describes

84 102

Well-formedness

Not every derivation is well-formed

move

move

John : d.-k

How to determine whether a derivation is
well-formed?
aka is there structure in well-formedness

85 102

Real-life linguistics

Borer’s exoskeletalism
syntax applies willy-nilly
interface maps filter bad stu� out

Cool idea, but. . .
what’s really at issue?

Relevant question
How hard is it to delimit bad derivations from good?

86 102

Checking derivations

we will see what information we need to determine
well-formedness of a possible derivation tree

Three cases
1. lexical item
2. merge
3. move

we imagine checking by
walking up the tree

87 102

Checking lexical items

if we have a derivation tree of the form ` (i.e. a leaf)

we need to know what ` is
so we can check if it is in the lexicon

this requires just a finite amount of built-in information, as
the lexicon is finite
(just a look-up table)

88 102

Checking merge

Given that t1 and t2 are well-formed, is d = merge(t1, t2)?
1. we need to know the first feature of each head

so that we can check
I whether they are the right kind (x=/=x and y)
I whether they match

2. we need to continue to remember
the next feature of the head of t1
I in case d is the argument to a later merge

In general,
we need to remember the features of the head

89 102

Checking move
Given that t is well-formed, is d = move(t)?

1. the first feature of the head
2. the first features of the moving expressions

so that we know
I whether there is someone that can move
I whether there are too many (SMC)

3. we need to continue to remember
I the next features of the head of t
I the next features of the head of whoever moved

In general,

we need to remember the feature bundle of the head
and the feature bundles of all moving expressions

90 102

Example

given a simple lexicon

will =v.+k.s
laugh d=.v
every =n.d.-k
boy n

move

merge

will merge

laugh merge

every boy

move

merge

will merge

laugh merge

every boy
91 102

Example

given a simple lexicon

will =v.+k.s
laugh d=.v
every =n.d.-k
boy n

move

merge

will merge

laugh merge

every boy

move

merge

=v.+k.s merge

d=.v merge

=n.d.-k n
91 102

Example

given a simple lexicon

will =v.+k.s
laugh d=.v
every =n.d.-k
boy n

move

merge

will merge

laugh merge

every boy

move

merge

=v.+k.s merge

d=.v d.-k

91 102

Example

given a simple lexicon

will =v.+k.s
laugh d=.v
every =n.d.-k
boy n

move

merge

will merge

laugh merge

every boy

move

merge

=v.+k.s v; -k

91 102

Example

given a simple lexicon

will =v.+k.s
laugh d=.v
every =n.d.-k
boy n

move

merge

will merge

laugh merge

every boy

move

+k.s; -k

91 102

Example

given a simple lexicon

will =v.+k.s
laugh d=.v
every =n.d.-k
boy n

move

merge

will merge

laugh merge

every boy

s

91 102

Regularity

It is very easy to check well-formedness

finite state tree automaton
MSO formula
regular tree language

What does this depend on?
finite upper bound on number of unchecked features in any
expression

individual feature bundles only decrease (never grow
larger)
limit to how many movers can appear in a single tree
(SMC)

92 102

Back to Borer

Theorem
If you have a regular tree set D, and a partial regular
interface map f

D ∩ dom(f) is regular
f � D is regular

Borer’s idea: shift work around
we know we can do this
no empirical content
theoretical content:
what is the optimal arrangement of work?

93 102

Feature percolation vs Movement

Feature percolation

seem’ : =c.vc will’ : =xc.dexpl=.s it : dexpl

seem : =i.v will : =x.d=.s John : d

In a derivation of
John seemed to laugh
the featural content of the complement of seem is c; -k
It seemed that John laughed
the featural content of the complement of seem is c

Movement is derivational feature percolation
94 102

Moral
understanding proposals in terms of derivational structure
is informative

Remember
We needn’t reify derivations
We are simply studying the structure implicit in the
derivational process

95 102

Minimalism (Multiple Spell-out)

Derivation

MEANINGFORM

96 102

Minimalism

Derivation

MEANING

Λ

FORM

Π

97 102

Who’s right?

Trees

Derivation

MEANING
Λ

FORM
Π

Derivation

MEANING

Λ

FORM

Π

98 102

Normally, this is a hard question

here it is easy because
derivations are isomorphic to derived structures

this is normally not the case
(because there’s no point to transform something into
itself)

99 102

Promises, promises

Syntax
Glues together form and meaning

SYNT AX

MEANING

Λ

FORM

Π

100 102

Promises, promises

Syntax
Glues together form and meaning

Derivation

MEANING

Λ

FORM

Π

what are Π and Λ?

100 102

Π

interface objects are sequences of strings
(Head; mvr; . . . ; mvr) (Michaelis,98)
@@ @@ only need to keep track of which strings have
reached their final position, not of their internal structure

move

merge

will merge

laugh merge

every boy

move

merge

will merge

laugh merge

every boy

101 102

Π

interface objects are sequences of strings
(Head; mvr; . . . ; mvr) (Michaelis,98)
@@ @@

move

merge

will merge

laugh merge

every boy

move

merge

will merge

laugh merge

every boy

101 102

Π

interface objects are sequences of strings
(Head; mvr; . . . ; mvr) (Michaelis,98)
@@ @@

move

merge

will merge

laugh merge

every boy

move

merge

will merge

laugh every boy

101 102

Π

interface objects are sequences of strings
(Head; mvr; . . . ; mvr) (Michaelis,98)
@@ @@

move

merge

will merge

laugh merge

every boy

move

merge

will

laugh; every boy

101 102

Π

interface objects are sequences of strings
(Head; mvr; . . . ; mvr) (Michaelis,98)
@@ @@

move

merge

will merge

laugh merge

every boy

move

will laugh; every boy

101 102

Π

interface objects are sequences of strings
(Head; mvr; . . . ; mvr) (Michaelis,98)
@@ @@

move

merge

will merge

laugh merge

every boy

every boy will laugh

101 102

Π

interface objects are sequences of strings
(Head; mvr; . . . ; mvr) (Michaelis,98)
@@ @@
Survive minimalism (Stroik, 99)

Nontransformational derivations (Brosziewski, 00)

move

merge

will merge

laugh merge

every boy

every boy will laugh

101 102

Λ

interface objects are sequences of λ -terms
(Head; mvr; . . . ; mvr) (Kobele,12)
but written: mvr, . . . ,mvr ` Head

move

merge

will merge

laugh merge

every boy

move

merge

will merge

laugh merge

every boy

102 / 102

Λ

interface objects are sequences of λ -terms
(Head; mvr; . . . ; mvr) (Kobele,12)
but written: mvr, . . . ,mvr ` Head

move

merge

will merge

laugh merge

every boy

move

merge

will merge

laugh merge

every boy

102 / 102

Λ

interface objects are sequences of λ -terms
(Head; mvr; . . . ; mvr) (Kobele,12)
but written: mvr, . . . ,mvr ` Head

move

merge

will merge

laugh merge

every boy

move

merge

will merge

laugh every(boy)

102 / 102

Λ

interface objects are sequences of λ -terms
(Head; mvr; . . . ; mvr) (Kobele,12)
but written: mvr, . . . ,mvr ` Head

move

merge

will merge

laugh merge

every boy

move

merge

will

every(boy)x ` laugh(x)

102 / 102

Λ

interface objects are sequences of λ -terms
(Head; mvr; . . . ; mvr) (Kobele,12)
but written: mvr, . . . ,mvr ` Head

move

merge

will merge

laugh merge

every boy

move

every(boy)x ` will(laugh(x))

102 / 102

Λ

interface objects are sequences of λ -terms
(Head; mvr; . . . ; mvr) (Kobele,12)
but written: mvr, . . . ,mvr ` Head

move

merge

will merge

laugh merge

every boy

every(boy)(λx.will(laugh(x)))

102 / 102

	Derived structures
	Basic Grammar
	English Auxiliaries
	Head Movement
	Raising to Subject
	Raising to Object and Passivization
	Derivations

