DIRECT COMPOSITIONALITY

Greg Kobele
Universität Leipzig
Winter Semester, 2020

H\&K AND COMPOSITIONALITY

Semantics in Generative Grammar

- Binary branching nodes

■ Unary branching nodes

$$
\llbracket \bullet \bullet]_{i}^{g}=\llbracket \alpha \rrbracket^{g}
$$

- Binding

$$
\llbracket i^{\prime}{ }^{\bullet}{ }^{\bullet} \rrbracket^{g}=\lambda x \cdot \llbracket \alpha \rrbracket^{g[i:=x]}
$$

■ Traces

$$
\llbracket t_{i} \rrbracket^{g}=g(i)
$$

PARTS AND THEIR MEANINGS

Most expressions don't have any meaning

$$
\begin{aligned}
& =\llbracket p r a i s e \rrbracket^{g} \oplus\left(\llbracket \text { every } \rrbracket^{g} \oplus \llbracket b o y \rrbracket^{g}\right)
\end{aligned}
$$

$\llbracket e v e r y \rrbracket^{g} \oplus \llbracket b o y \rrbracket^{g}:(e t) t \quad \llbracket p r a i s e \rrbracket^{g}:$ eet these cannot be combined!
FA $\alpha \beta \rightarrow \alpha \rightarrow \beta$ BA $\alpha \rightarrow \alpha \beta \rightarrow \beta$ $\mathrm{PM} \alpha t \rightarrow \alpha t \rightarrow \alpha t$

Revisiting meaningless Parts

merge

every boy

\Downarrow

What is the contribution of praise every boy to expressions it is part of?
a quantifier part every(boy) ($\lambda x \ldots$ and a property part praise (x)

Let's write instead:
$[\text { every(boy) }]_{x} \vdash$ praise (x)

Notation and Operations

$[\text { every(boy) }]_{x} \vdash$ praise((x)

the general case:

$$
\left[Q_{1}\right]_{x_{1}}, \ldots,\left[Q_{i}\right]_{x_{i}} \vdash M
$$

The entire point

is to ignore what is stored

$$
\frac{M}{\vdash M} \uparrow \quad \frac{\Gamma \vdash M \quad \Delta \vdash N}{\Gamma, \Delta \vdash M N}<*>
$$

Working With Storage

BUILDING PRAISE EVERY BOY

BUILDING PRAISE EVERY BOY

We want to 'insert a trace'

$$
\frac{\vdash M}{[M]_{x} \vdash x} \square
$$

BUILDING PRAISE EVERY BOY

We want to 'insert a trace'

$$
\frac{\vdash M}{[M]_{x} \vdash x} \square
$$

BUILDING PRAISE EVERY BOY

We want to 'insert a trace'

$$
\frac{\vdash M}{[M]_{x} \vdash x} \square
$$

TAKING THINGS OUT OF STORAGE

TAKING THINGS OUT OF STORAGE

$[\text { every(boy) }]_{x} \vdash$ Pass(praise(x))
$[\operatorname{every}(\text { boy })]_{x} \vdash$ seem(Pass(praise($\left.(x)\right)$)

retrieval

$$
\frac{\Gamma,\left[M_{i}\right]_{x_{i}}, \Delta \vdash N}{\Gamma, \Delta \vdash M_{i} \oplus\left(\lambda x_{i} \cdot N\right)}[\oplus]_{i}
$$

TAKING THINGS OUT OF STORAGE

$$
\begin{aligned}
& \text { seem } \uparrow \quad \begin{array}{c}
\frac{\text { Pass }}{\vdash \text { Pass }} \uparrow \quad[\text { every(boy) }]_{x} \vdash \text { praise }(x)
\end{array} \\
& {[\text { every(boy) }]_{x} \vdash \text { Pass(praise(} x \text {)) }} \\
& \left.[\text { every(boy) }]_{x} \vdash \text { seem(Pass(praise }(x)\right) \text {) } \\
& \vdash \text { every(boy) }(\lambda x \text {.seem }(\text { Pass }(\text { praise }(x)))){ }^{[F A]_{1}}
\end{aligned}
$$

retrieval

$$
\frac{\Gamma,\left[M_{i}\right]_{x_{i}}, \Delta \vdash N}{\Gamma, \Delta \vdash M_{i} \oplus\left(\lambda x_{i} \cdot N\right)}[\oplus]_{i}
$$

MANIPULATING STORES

pure

$$
\frac{M}{\vdash M} \uparrow
$$

retrieve

$$
\frac{\Gamma,\left[M_{i}\right]_{x_{i}}, \Delta \vdash N}{\Gamma, \Delta \vdash M_{i} \oplus\left(\lambda x_{i} \cdot N\right)}[\oplus]_{i}
$$

apply

$$
\frac{\Gamma \vdash M \quad \Delta \vdash N}{\Gamma, \Delta \vdash M N}<*>
$$

store

$$
\frac{\vdash M}{[M]_{x} \vdash x} \square
$$

MORE NOTATION

idiom brackets

write (f $a_{1} \ldots a_{i}$)
for $f^{\uparrow}<*>a_{1}<*>\ldots<*>a_{i}$
application
Forward $f \triangleright a:=f a$ Backward $a \triangleleft f:=f a$

UNPACKING THE NOTATION

Recall that

$$
\lambda m, n .(m \triangleright n)
$$

means

$$
\lambda m, n .(\triangleright)^{\uparrow}<*>m<*>n
$$

$$
\frac{\frac{\bar{\triangleright}}{\vdash \triangleright} \uparrow \quad \begin{array}{c}
(m) \\
\Gamma \vdash M
\end{array}<*>}{\frac{\Gamma \vdash M \triangleright}{\Gamma, \Delta \vdash M \triangleright N}} \begin{gathered}
\text { (n) } \\
\frac{\square \vdash N}{}<*>
\end{gathered}
$$

MINIMALIST SEMANTICS

【merge】 $\mapsto \lambda m, n .(m \oplus n)$
 $\llbracket m e r g e \rrbracket \mapsto \lambda m, n .(m \oplus \square n)$

【move】 $\mapsto \lambda m . m$
$\llbracket \mathrm{move} \rrbracket \mapsto \lambda m .[\oplus]^{k} m$

$$
\llbracket \ell \rrbracket=\mathcal{I}(\ell)^{\uparrow}
$$

for $\oplus \in\{\triangleright, \triangleleft\}$

EXAMPLE

> 【MOVE】
> 【MERGE】
> 【will】 【MERGE】
> 【laugh】 【MERGE】
> 【every】 【boy】

EXAMPLE

$$
\begin{aligned}
& \text { 【MOVE】 } \\
& \text { 【MERGE】 } \\
& \mathcal{I}(\text { will })^{\uparrow} \text { 【MERGE】 } \\
& \mathcal{I}(\text { laugh })^{\uparrow} \text { 【MERGE】 } \\
& \mathcal{I}(\text { every })^{\uparrow} \quad \mathcal{I}(\text { boy })^{\uparrow}
\end{aligned}
$$

EXAMPLE

EXAMPLE

$$
\begin{aligned}
& \text { 【MOVE】 } \\
& \text { 【MERGE】 } \\
& \vdash \text { will 【MERGE】 } \\
& \vdash \text { laugh } \quad \lambda m, n .(m \triangleright n \mid) \\
& \vdash \text { every } \quad \vdash \text { boy }
\end{aligned}
$$

EXAMPLE

> 【MOVE】
> 1【MERGE】
> \vdash will 【MERGE】
> \vdash laugh \vdash every boy

EXAMPLE

$\begin{aligned} & \llbracket \mathrm{MOVE} \mathrm{\rrbracket} \\ & \text { I'MERG』 } \\ & \llbracket \mathrm{MERGE}\end{aligned}$

$$
\text { will } \quad \lambda m, n \cdot(|m \triangleright \square n|)
$$

\vdash laugh \vdash every boy

EXAMPLE

【MOVE】
 1
 【MERGE】
 \vdash will ［every boy］${ }_{x} \vdash$ laugh x

EXAMPLE

$$
\begin{aligned}
& \text { 【MOVE】 } \\
& \lambda m, n .(m \triangleright n) \\
& \vdash \text { will } \quad[\text { every boy }]_{x} \vdash \text { laugh } x
\end{aligned}
$$

EXAMPLE

【MOVE】
 [every boy] ${ }_{x} \vdash$ will (laugh x)

EXAMPLE

$$
\begin{gathered}
\lambda m \cdot[\triangleright]_{1} m \\
\left.[\text { every boy }]_{x} \vdash \text { will (laugh } x\right)
\end{gathered}
$$

EXAMPLE

\vdash every boy $(\lambda x$.will (laugh $x)$)

DERIVATIONS

- Explain what derivations are
- Show relation between derivations and more familiar derived structures

Main claim

Syntactic structures are and always have been derivations

Derivations are recipes

- lexical items are ingredients
 - merge and move instead of bake, beat, stir ...

Chocolate Chip Cookies

DERIVATIONS ARE STRUCTURED

Order is important

- Some things must happen before others

■ Sometimes, it doesn't matter

- merge det and noun
- before you merge the verb
- cream sugar and butter
- before you add the flour

Representing derivations

Representing derivations

1. select every
every

Representing derivations

1. select every
2. select boy

Representing derivations

1. select every
2. select boy
3. merge 1 and 2 [dP every [np boy]]

Representing derivations

1. select every
2. select boy
3. merge 1 and 2
[dp every [np boy]]
4. select laugh
laugh MERGE every boy

Representing derivations

1. select every
2. select boy
3. merge 1 and 2 [dP every [np boy]]
4. select laugh
5. merge 4 and 3
[vp laugh [DP every boy]]

Representing derivations

1. select every
2. select boy
3. merge 1 and 2
[DP every [np boy]]
4. select laugh
5. merge 4 and 3
[vp laugh [DP every boy]]
6. select will
will MERGE laugh MERGE every boy

Representing derivations

1. select every
2. select boy
3. merge 1 and 2
[dP every [np boy]]
4. select laugh
5. merge 4 and 3 [vp laugh [DP every boy]]
6. select will
7. merge 6 and 5

[IP will [vp laugh [DP every boy]]]

Representing derivations

1. select every
2. select boy
3. merge 1 and 2
[dp every [np boy]]
4. select laugh
5. merge 4 and 3 [vp laugh [DP every boy]]
6. select will
7. merge 6 and 5

[IP will [vp laugh [DP every boy]]]
8. move every boy

$$
[I P[D P \text { every boy }][/ \prime \text { will }[v p \text { laugh } t]]]
$$

THE STRUCTURE OF DERIVATIONS

\mathbf{x} dominates \mathbf{y} : x was built using y
\mathbf{x} c-commands \mathbf{y} : x 's sister was built using y

Structure in Minimalism

Structure in Minimalism

Structure in Minimalism

Structure in Minimalism

occurrences of every boy are "non-distinct"

- coindexation
- multiple dominance

Structure in Minimalism

occurrences of every boy are "non-distinct"

- coindexation
- multiple dominance

Antisymmetry

Order not meaningful

Structure in Minimalism

occurrences of every boy are "non-distinct"

- coindexation
- multiple dominance

Antisymmetry
Order not meaningful

Derivations of Derived Structures

every boy will laugh

- has the structure on the right
- constructed via the process on the left

Derivations of Derived Structures

The derivation is building a copy of itself

Derived structure is a reification of
the structure of the derivational process

Derivations of Derived Structures

We have been writing derivation trees all along

THE DERIVATIONAL PERSPECTIVE

Structure = derivation

the derivational process structures expressions in just the way we want

Practical consequences

 no post-facto alteration of structure build it the way you want it
Conceptual benefit

 two structures are identical when they describe the same process
The Determinacy of Movement

Attract Closest

laugh MERGE
every boy

Minimal Link

Shortest Move

SMC

can only be 1 thing moving for a particular reason at any time

The Determinacy of Movement

Attract Closest

Minimal Link

Shortest Move

SMC

can only be 1 thing moving for a particular reason at any time

The Determinacy of Movement

MOVE

MERGE
will MERGE
laugh MERGE every boy
$\operatorname{MERGE}(\alpha, \beta)=\{\alpha, \beta\}$
$\operatorname{MOVE}(\alpha)=\operatorname{MERGE}(\alpha, \alpha)=\{\alpha\}$

- No tampering
- No indices
- No lexical
(sub-)arrays

Syntactic structure is no more than the trace of the algorithm which delivers the interpretation
(Steedman, 2000)

