
Direct Compositionality

Greg Kobele
Universität Leipzig

Winter Semester, 2020

H&K and Compositionality

Semantics in Generative Grammar

Binary branching nodes[[
•

↵ �

]]g
= [[α]]g ⊕ [[β]]g

Unary branching nodes[[
•

↵

]]g
= [[α]]g

Binding[[
•

i ↵

]]g
= λx.[[α]]g[i:=x]

Traces
[[ti]]g = g(i)

1 22

Parts and their meanings

Most expressions don’t have any meaning

 V

V

praise

D

D

every

N

boy

g = [[praise]]g ⊕
[[

D

D

every

N

boy

]]g
= [[praise]]g ⊕ ([[every]]g ⊕ [[boy]]g)

[[every]]g ⊕ [[boy]]g : (et)t [[praise]]g : eet

these cannot be combined!
FA αβ → α→ β BA α→ αβ → β

PM αt→ αt→ αt

2 22

Revisiting meaningless parts

merge

praise merge
every boy

⇓

V
V

praise
D

D
every

N
boy

What is the contribution of praise
every boy to expressions it is part
of?

a quantifier part every(boy)(λx. . . .
and a property part praise(x)

Let’s write instead:

[every(boy)]x ` praise(x)

3 22

Notation and Operations

[every(boy)]x ` praise(x)

the general case:

[Q1]x1
, . . . , [Qi]xi ` M

The entire point
is to ignore what is stored

M ↑` M
Γ ` M ∆ ` N <*>

Γ,∆ ` M N

4 22

Working with Storage

seem ↑` seem

Pass ↑` Pass

...
[every(boy)]x ` praise(x)

<*>
[every(boy)]x ` Pass(praise(x))

<*>
[every(boy)]x ` seem(Pass(praise(x)))

5 22

Building praise every boy

praise ↑
` praise

every ↑` every
boy ↑` boy

<*>` every boy
<*>

type mismatch!

We want to ’insert a trace’

` M
�

[M]x ` x

6 22

Building praise every boy

praise ↑
` praise

every ↑` every
boy ↑` boy

<*>` every boy

We want to ’insert a trace’

` M
�

[M]x ` x

6 22

Building praise every boy

praise ↑
` praise

every ↑` every
boy ↑` boy

<*>` every boy
�

[every boy]x ` x

We want to ’insert a trace’

` M
�

[M]x ` x

6 22

Building praise every boy

praise ↑
` praise

every ↑` every
boy ↑` boy

<*>` every boy
�

[every boy]x ` x <*>
[every boy]x ` praise x

We want to ’insert a trace’

` M
�

[M]x ` x

6 22

Taking things out of storage

seem ↑` seem

Pass ↑` Pass

...
[every(boy)]x ` praise(x)

<*>
[every(boy)]x ` Pass(praise(x))

<*>
[every(boy)]x ` seem(Pass(praise(x)))

retrieval

Γ, [Mi]xi ,∆ ` N [⊕]iΓ,∆ ` Mi ⊕ (λxi.N)

7 22

Taking things out of storage

seem ↑` seem

Pass ↑` Pass

...
[every(boy)]x ` praise(x)

<*>
[every(boy)]x ` Pass(praise(x))

<*>
[every(boy)]x ` seem(Pass(praise(x)))

retrieval

Γ, [Mi]xi ,∆ ` N [⊕]iΓ,∆ ` Mi ⊕ (λxi.N)

7 22

Taking things out of storage

seem ↑` seem

Pass ↑` Pass

...
[every(boy)]x ` praise(x)

<*>
[every(boy)]x ` Pass(praise(x))

<*>
[every(boy)]x ` seem(Pass(praise(x)))

[FA]1` every(boy)(λx.seem(Pass(praise(x))))

retrieval

Γ, [Mi]xi ,∆ ` N [⊕]iΓ,∆ ` Mi ⊕ (λxi.N)

7 22

Manipulating Stores

pure

M ↑` M

apply

Γ ` M ∆ ` N <*>
Γ,∆ ` M N

retrieve

Γ, [Mi]xi ,∆ ` N [⊕]iΓ,∆ ` Mi ⊕ (λxi.N)

store

` M
�

[M]x ` x

8 22

More notation

idiom brackets
write (|f a1 . . . ai|)

for f ↑ <*> a1 <*> . . . <*> ai

application

Forward f B a := f a
Backward aC f := f a

9 22

Unpacking the notation

Recall that

λm,n.(|mB n|)
means

λm,n.(B)↑ <*> m <*> n

B ↑` B
(m)

Γ ` M <*>
Γ ` MB

(n)

∆ ` N <*>
Γ,∆ ` MB N

10 22

Minimalist semantics

[[merge]] 7→ λm,n.(|m⊕ n|)
[[merge]] 7→ λm,n.(|m⊕�n|)

[[move]] 7→ λm.m
[[move]] 7→ λm. [⊕]k m

[[`]] = I(`)↑

for ⊕ ∈ {B,C}

11 22

Example

[[move]]

[[merge]]

[[will]] [[merge]]

[[laugh]] [[merge]]

[[every]] [[boy]]

12 22

Example

[[move]]

[[merge]]

I(will)↑ [[merge]]

I(laugh)↑ [[merge]]

I(every)↑ I(boy)↑

12 22

Example

[[move]]

[[merge]]

` will [[merge]]

` laugh [[merge]]

` every ` boy

12 22

Example

[[move]]

[[merge]]

` will [[merge]]

` laugh λm,n.(|mB n|)

` every ` boy

12 22

Example

[[move]]

[[merge]]

` will [[merge]]

` laugh ` every boy

12 22

Example

[[move]]

[[merge]]

` will λm,n.(|mB�n|)

` laugh ` every boy

12 22

Example

[[move]]

[[merge]]

` will [every boy]x ` laugh x

12 22

Example

[[move]]

λm,n.(|mB n|)

` will [every boy]x ` laugh x

12 22

Example

[[move]]

[every boy]x ` will (laugh x)

12 22

Example

λm.[B]1m

[every boy]x ` will (laugh x)

12 22

Example

` every boy (λx.will (laugh x))

12 22

Derivations

Plan

Explain what derivations are
Show relation between derivations and more familiar
derived structures

Main claim
Syntactic structures are and always have been derivations

13 22

Derivations are recipes

lexical items are ingredients
merge and move instead of
bake, beat, stir . . .

14 22

Derivations are structured

Order is important

Some things must happen before others
Sometimes, it doesn’t matter

merge det and noun
before you merge the
verb

cream sugar and butter
before you add the flour

15 22

Representing derivations

1. select every
2. select boy
3. merge 1 and 2

[DP every [NP boy]]

4. select laugh
5. merge 4 and 3

[VP laugh [DP every boy]]

6. select will
7. merge 6 and 5

[IP will [VP laugh [DP every boy]]]

8. move every boy
[IP[DP every boy][I′ will [VP laugh t]]]

every

16 22

Representing derivations

1. select every

2. select boy
3. merge 1 and 2

[DP every [NP boy]]

4. select laugh
5. merge 4 and 3

[VP laugh [DP every boy]]

6. select will
7. merge 6 and 5

[IP will [VP laugh [DP every boy]]]

8. move every boy
[IP[DP every boy][I′ will [VP laugh t]]]

every

16 22

Representing derivations

1. select every
2. select boy

3. merge 1 and 2
[DP every [NP boy]]

4. select laugh
5. merge 4 and 3

[VP laugh [DP every boy]]

6. select will
7. merge 6 and 5

[IP will [VP laugh [DP every boy]]]

8. move every boy
[IP[DP every boy][I′ will [VP laugh t]]]

every boy

16 22

Representing derivations

1. select every
2. select boy
3. merge 1 and 2

[DP every [NP boy]]

4. select laugh
5. merge 4 and 3

[VP laugh [DP every boy]]

6. select will
7. merge 6 and 5

[IP will [VP laugh [DP every boy]]]

8. move every boy
[IP[DP every boy][I′ will [VP laugh t]]]

merge

every boy

16 22

Representing derivations

1. select every
2. select boy
3. merge 1 and 2

[DP every [NP boy]]

4. select laugh

5. merge 4 and 3
[VP laugh [DP every boy]]

6. select will
7. merge 6 and 5

[IP will [VP laugh [DP every boy]]]

8. move every boy
[IP[DP every boy][I′ will [VP laugh t]]]

laugh merge

every boy

16 22

Representing derivations

1. select every
2. select boy
3. merge 1 and 2

[DP every [NP boy]]

4. select laugh
5. merge 4 and 3

[VP laugh [DP every boy]]

6. select will
7. merge 6 and 5

[IP will [VP laugh [DP every boy]]]

8. move every boy
[IP[DP every boy][I′ will [VP laugh t]]]

merge

laugh merge

every boy

16 22

Representing derivations

1. select every
2. select boy
3. merge 1 and 2

[DP every [NP boy]]

4. select laugh
5. merge 4 and 3

[VP laugh [DP every boy]]

6. select will

7. merge 6 and 5
[IP will [VP laugh [DP every boy]]]

8. move every boy
[IP[DP every boy][I′ will [VP laugh t]]]

will merge

laugh merge

every boy

16 22

Representing derivations

1. select every
2. select boy
3. merge 1 and 2

[DP every [NP boy]]

4. select laugh
5. merge 4 and 3

[VP laugh [DP every boy]]

6. select will
7. merge 6 and 5

[IP will [VP laugh [DP every boy]]]

8. move every boy
[IP[DP every boy][I′ will [VP laugh t]]]

merge

will merge

laugh merge

every boy

16 22

Representing derivations

1. select every
2. select boy
3. merge 1 and 2

[DP every [NP boy]]

4. select laugh
5. merge 4 and 3

[VP laugh [DP every boy]]

6. select will
7. merge 6 and 5

[IP will [VP laugh [DP every boy]]]

8. move every boy
[IP[DP every boy][I′ will [VP laugh t]]]

move

merge

will merge

laugh merge

every boy

16 22

The structure of derivations

move

merge

will merge

laugh merge

every boy

x dominates y: x was built using y
x c-commands y: x ’s sister was built using y

17 22

Structure in Minimalism

will

every

every boy

will

will laugh

laugh every

every boy

occurrences of every boy
are "non-distinct"

coindexation
multiple dominance

Antisymmetry
Order not meaningful

18 22

Structure in Minimalism

will

every

every boy

will

will laugh

laugh every

every boy

occurrences of every boy
are "non-distinct"

coindexation
multiple dominance

Antisymmetry
Order not meaningful

18 22

Structure in Minimalism

will

everyi

everyi boyi

will

will laugh

laugh everyi

everyi boyi

occurrences of every boy
are "non-distinct"

coindexation

multiple dominance

Antisymmetry
Order not meaningful

18 22

Structure in Minimalism

will

will

will laugh

laugh

every

every boy

occurrences of every boy
are "non-distinct"

coindexation
multiple dominance

Antisymmetry
Order not meaningful

18 22

Structure in Minimalism

will

will

will laugh

laugh

every

every boy

occurrences of every boy
are "non-distinct"

coindexation
multiple dominance

Antisymmetry
Order not meaningful

18 22

Structure in Minimalism

will

will

will laugh

laugh every

every boy

occurrences of every boy
are "non-distinct"

coindexation
multiple dominance

Antisymmetry
Order not meaningful

18 22

Derivations of Derived Structures

every boy will laugh

has the structure on the right
constructed via the process on the left

move

merge

will merge

laugh merge

every boy

will

will

will laugh

laugh every

every boy

19 22

Derivations of Derived Structures

The derivation is building a copy of itself
Derived structure is a reification of

the structure of the derivational process

move

merge

will merge

laugh merge

every boy

will

will

will laugh

laugh every

every boy

19 22

Derivations of Derived Structures

We have been writing derivation trees all along

move

merge

will merge

laugh merge

every boy

will

will

will laugh

laugh every

every boy

19 22

The derivational perspective

Structure = derivation
the derivational process structures expressions

in just the way we want

Practical consequences
no post-facto alteration of structure

build it the way you want it

Conceptual benefit
two structures are identical

when they describe the same process

20 22

The Determinacy of Movement

move

merge

will merge

laugh merge

every boy

Attract Closest

Minimal Link

Shortest Move

SMC
can only be 1 thing moving
for a particular reason at any
time

No tampering
No indices
No lexical
(sub-)arrays

21 22

The Determinacy of Movement

move

merge

will merge

laugh merge

every boy

Attract Closest

Minimal Link

Shortest Move

SMC
can only be 1 thing moving
for a particular reason at any
time

No tampering
No indices
No lexical
(sub-)arrays

21 22

The Determinacy of Movement

move

merge

will merge

laugh merge

every boy

merge(α, β) = {α, β}

move(α) = merge(α, α) = {α}

{{will, {laugh, {every, boy}}}}

No tampering
No indices
No lexical
(sub-)arrays

21 22

A familiar picture

Syntactic structure is no more than the trace of the
algorithm which delivers the interpretation

(Steedman, 2000)

22 / 22

	H&K and Compositionality
	Derivations

