
Computational Linguistics

Greg Kobele
Universität Leipzig

Winter Semester, 2020



Expressivity



Which languages are describable as
FSAs?

we can do many things with FSAs

Questions
are all aspects of human languages FS?
are any aspects of human language FS?

1 21



Tails



Tails

Given a language L,

what are the grammatical continuations of a
word?

w is a tail of x just in case xw ∈ L
TL(x) is the set of all tails of x

2 21



Basic Facts

if x ∈ L, then
ε ∈ TL(x)

TL(ε)
is the whole language

3 21



Having the same tails

x ≡L y
means ’x and y have the same tails’

TL(x) = TL(y)

≡L is an equivalence relation

x ≡L x
if x ≡L y then y ≡L x
if x ≡L y and y ≡L z then x ≡L z

4 21



Each state in a DFA represents a set of
tails

For each state q,
L(q) = {w : δ∗(q,w) ∈ F}

the set of words that, from q, take you to a final state

if δ∗(q0,u) = q and δ∗(q0, v) = q
then TL(u) = L(q) = TL(v)

If a DFA represents L
then L must have a finite set of distinct tails (≡L is of finite
index)

5 21



From tails to DFA

Construct an automaton:
1. Q = {TL(w) : w ∈ Σ∗}
2. q0 = TL(ε)
3. F = {q ∈ Q : ε ∈ q}
4. δ(TL(w),a) = TL(wa)

Finite (i.e. a DFA) just in case
L has a finite set of distinct tails (≡L is of finite index)

6 21



Finite state languages

Myhill-Nerode Theorem
A language L is finite state i� its relation ≡L is of finite index

7 21



Example: L = a∗b∗

1. TL(ε) = TL(a) = TL(aa) = . . . = a∗b∗

2. TL(b) = TL(ab) = TL(aaabb) = . . . = b∗

3. TL(ba) = ∅

ε

a

bb

b

baa

a

b

8 21



Example: L = anbn

1. TL(ε) = anbn

2. TL(a) = anbn+1

3. TL(aa) = anbn+2

...
4. TL(ab) = TL(aabb) = TL(anbn) = . . . = {ε}
5. TL(aab) = TL(aaabb) = TL(an+1bn) = {b}
6. TL(aaab) = TL(aaaabb) = TL(an+2bn) = {bb}
7. TL(aaaab) = TL(aaaaabb) = TL(an+3bn) = {bbb}

...
8. TL(b) = ∅

9 21



Example: L = anbn

TL(ai) = {ajbi+j}, for each i
TL(ai+jbi) = {bj}, for each i and j
TL(b) = ∅

Not finite state!!!
anbn cannot be described by a DFA

10 21



Linguistic Relevance

Hypothesis:
all phonotactic patterns are finite state

11 21



Algebraic manipulation



Notation

Languages
L, L1, L2, . . .

Machines
M,M1,M2, . . .

12 21



Cross-Product Machine

Given M1 and M2

The cross-product machine simulates M1 and M2 running in
parallel

states are pairs 〈q1,q2〉
I am in state q1 in M1, and in q2 in M2

transitions are pointwise:
If I am in state q1 in M1, and in q2 in M2 and read an "a" then
I go to state δ1(q1,a) in M1 and δ2(q2,a) in M2

δ(〈q1,q2〉,a) = 〈δ1(q1,a), δ2(q2,a)〉

start state
I start in the start state of M1 and in the start state of M2

13 21



Complement

If L is finite state, so is the set of L-ungrammatical words!

w ∈ L i� w /∈ L

Algorithm:
run M on w, accept if M rejects, and reject if M accepts

Construction
take M, but exchange final and non-final states!

14 21



Union

If L1 and L2 are finite state, so is their union!

w ∈ L1 ∪ L2 i� w ∈ L1 or w ∈ L2

Algorithm:
run both M1 and M2 on w, accept if either computation
accepts

Construction
take cross-product machine of M1 and M2; state 〈q1,q2〉 is
final i� either of q1 or q2 are

15 21



Intersection

If L and L′ are finite state, so is their intersection!

w ∈ L ∩ L′ i� w ∈ L and w ∈ L′

Algorithm:
run both M and M′ on w, accept if both computations accept

Construction
take cross-product machine; state 〈q1,q2〉 is final i� both of
q1 and q2 are

16 21



Concatenation
If L and L′ are finite state, so is their concatenation!

w ∈ LL′ i� w = uv, and u ∈ L and v ∈ L′

Algorithm:
run M on w. When you pass through a final state, you can
stop, and run M′ on whatever is left.

Construction
take M and M′. The start state is the same as in M. The final
states are the same as in M′. At each final state of M, add an
empty transition to the start state of M′.
(this is a non-deterministic machine)

17 21



Reversal
If L is finite state, then so is Lr

w ∈ Lr i� wr ∈ L
(wr is just w written backwards)

Algorithm
start in a final state, read transitions backward, and accept
if you end in a start state

Construction
take M. start states are M’s final states, final states are M’s
start states, transitions are reversed: q′ ∈ δr(q,a) i�
q ∈ δ(q′,a)
(this is a non-deterministic machine)

18 21



Intersection



Why?

grammatical complex pattern as the conjunction of
simpler constraints

processing represent uncertainty about input!
Du hast Gewehre vs Du hasst Gewehre

0 31Du 2hast

hasst

Gewehre

19 21



Parsing as intersection

Input

0 31Du 2hast

hasst

Gewehre

Intersect with Grammar
well-formed i� intersection grammar non-empty

20 21



Testing for emptiness

M is empty
’means’ M doesn’t accept any strings

L(M) = ∅

Idea
is there a path from a start state to an empty state?

Algorithm

close the set of start states under transitions
is at least one final state in the result?

21 / 21


	Expressivity
	Tails
	Algebraic manipulation
	Intersection

