COMPUTATIONAL LINGUISTICS

Greg Kobele
Universität Leipzig
Winter Semester, 2020

EXPRESSIVITY

Which languages are describable as

 FSAs?- we can do many things with FSAs

Questions

- are all aspects of human languages FS?
- are any aspects of human language FS?

TAILS

TAILS

Given a language L,
what are the grammatical continuations of a word?

- w is a tail of x just in case $x w \in L$
- $T_{L}(x)$ is the set of all tails of x

BASIC FACTS

if $x \in L$, then
$\epsilon \in T_{L}(x)$
$T_{L}(\epsilon)$
is the whole language

Having the same tails

$x \equiv\llcorner y$

 means ' x and y have the same tails'$$
T_{L}(x)=T_{L}(y)
$$

\equiv_{L} is an equivalence relation

- $x \equiv{ }_{L} X$
- if $x \equiv_{L} y$ then $y \equiv_{L} x$
- if $x \equiv_{L} y$ and $y \equiv_{L} z$ then $x \equiv_{L} z$

EACH STATE IN A DFA REPRESENTS A SET OF

 TAILSFor each state q,
$L(q)=\left\{w: \delta^{*}(q, w) \in F\right\}$
■ the set of words that, from q, take you to a final state
if $\delta^{*}\left(q_{\mathrm{o}}, u\right)=q$ and $\delta^{*}\left(q_{\mathrm{o}}, v\right)=q$
then $T_{L}(u)=L(q)=T_{L}(v)$
If a DFA represents L
then L must have a finite set of distinct tails (\equiv_{L} is of finite index)

FRom tails to DFA

Construct an automaton:

1. $Q=\left\{T_{L}(w): w \in \Sigma^{*}\right\}$
2. $q_{\circ}=T_{L}(\epsilon)$
3. $F=\{q \in Q: \epsilon \in q\}$
4. $\delta\left(T_{L}(w), a\right)=T_{L}(w a)$

Finite (i.e. a DFA) just in case
L has a finite set of distinct tails (\equiv_{L} is of finite index)

Finite state languages

Myhill-Nerode Theorem

A language L is finite state iff its relation \equiv_{L} is of finite index

EXAMPLE: $L=a^{*} b^{*}$

1. $T_{L}(\epsilon)=T_{L}(a)=T_{L}(a a)=\ldots=a^{*} b^{*}$
2. $T_{L}(b)=T_{L}(a b)=T_{L}(a a a b b)=\ldots=b^{*}$
3. $T_{L}(b a)=\emptyset$

EXAMPLE: $L=a^{n} b^{n}$

$$
\begin{aligned}
& \text { 1. } T_{L}(\epsilon)=a^{n} b^{n} \\
& \text { 2. } T_{L}(a)=a^{n} b^{n+1} \\
& \text { 3. } T_{L}(a a)=a^{n} b^{n+2} \\
& \vdots \\
& \text { 4. } T_{L}(a b)=T_{L}(a a b b)=T_{L}\left(a^{n} b^{n}\right)=\ldots=\{\epsilon\} \\
& \text { 5. } T_{L}(a a b)=T_{L}(a a a b b)=T_{L}\left(a^{n+1} b^{n}\right)=\{b\} \\
& \text { 6. } T_{L}(a a a b)=T_{L}(a a a a b b)=T_{L}\left(a^{n+2} b^{n}\right)=\{b b\} \\
& \text { 7. } T_{L}(a a a a b)=T_{L}(a a a a a b b)=T_{L}\left(a^{n+3} b^{n}\right)=\{b b b\} \\
& \vdots \\
& \text { 8. } T_{L}(b)=\emptyset
\end{aligned}
$$

EXAMPLE: $L=a^{n} b^{n}$

■ $T_{L}\left(a^{i}\right)=\left\{a^{j} b^{i+j}\right\}$, for each i

- $T_{L}\left(a^{i+j} b^{i}\right)=\left\{b^{j}\right\}$, for each i and j
- $T_{L}(b)=\emptyset$

Not finite state!!!

$a^{n} b^{n}$ cannot be described by a DFA

LINGUISTIC ReLEVANCE

Hypothesis:
all phonotactic patterns are finite state

ALgEBRAIC MANIPULATION

Notation

Languages
 L, L_{1}, L_{2}, \ldots

Machines
M, M_{1}, M_{2}, \ldots

CROSS-PRODUCT MACHINE

Given M_{1} and M_{2}
The cross-product machine simulates M_{1} and M_{2} running in parallel
states are pairs $\left\langle q_{1}, q_{2}\right\rangle$
I am in state q_{1} in M_{1}, and in q_{2} in M_{2}

transitions are pointwise:

If I am in state q_{1} in M_{1}, and in q_{2} in M_{2} and read an "a" then I go to state $\delta_{1}\left(q_{1}, a\right)$ in M_{1} and $\delta_{2}\left(q_{2}, a\right)$ in M_{2}

$$
\delta\left(\left\langle\boldsymbol{q}_{1}, \boldsymbol{q}_{2}\right\rangle, a\right)=\left\langle\delta_{1}\left(q_{1}, a\right), \delta_{2}\left(q_{2}, a\right)\right\rangle
$$

COMPLEMENT

If L is finite state, so is the set of L-ungrammatical words!

$$
w \in \bar{L} \text { iff } w \notin L
$$

Algorithm:

run M on w, accept if M rejects, and reject if M accepts

Construction

take M, but exchange final and non-final states!

UNION

If L_{1} and L_{2} are finite state, so is their union!

$$
w \in L_{1} \cup L_{2} \text { iff } w \in L_{1} \text { or } w \in L_{2}
$$

Algorithm:

run both M_{1} and M_{2} on w, accept if either computation accepts

Construction

take cross-product machine of M_{1} and M_{2}; state $\left\langle q_{1}, q_{2}\right\rangle$ is final iff either of q_{1} or q_{2} are

INTERSECTION

If L and L^{\prime} are finite state, so is their intersection!

$$
w \in L \cap L^{\prime} \text { iff } w \in L \text { and } w \in L^{\prime}
$$

Algorithm:

run both M and M^{\prime} on w, accept if both computations accept

Construction

take cross-product machine; state $\left\langle q_{1}, q_{2}\right\rangle$ is final iff both of q_{1} and q_{2} are

CONCATENATION

If L and L^{\prime} are finite state, so is their concatenation!

$$
w \in L L^{\prime} \text { iff } w=u v, \text { and } u \in L \text { and } v \in L^{\prime}
$$

Algorithm:

run M on w. When you pass through a final state, you can stop, and run M^{\prime} on whatever is left.

Construction

take M and M^{\prime}. The start state is the same as in M. The final states are the same as in M^{\prime}. At each final state of M, add an empty transition to the start state of M^{\prime}.
(this is a non-deterministic machine)

ReVERSAL

If L is finite state, then so is L^{r}

$$
w \in L^{r} \text { iff } w^{r} \in L
$$

(w^{r} is just w written backwards)

Algorithm

start in a final state, read transitions backward, and accept if you end in a start state

Construction

take M. start states are M's final states, final states are M's start states, transitions are reversed: $q^{\prime} \in \delta^{r}(q, a)$ iff
$q \in \delta\left(q^{\prime}, a\right)$
(this is a non-deterministic machine)

INTERSECTION

Why?

grammatical complex pattern as the conjunction of simpler constraints
processing represent uncertainty about input!
■ Du hast Gewehre vs Du hasst Gewehre

PARSING AS INTERSECTION

Input

Intersect with Grammar

well-formed iff intersection grammar non-empty

Testing for emptiness

M is empty

'means' M doesn't accept any strings

$$
L(M)=\emptyset
$$

Idea

 is there a path from a start state to an empty state?
Algorithm

- close the set of start states under transitions

■ is at least one final state in the result?

