
Computerlinguistik
WS 2019/2020

Greg Kobele

October 17, 2019

1 Strings

A string is a formal object inspired by a written word. Informally, it is a
sequence of objects. The precise nature of the objects is not really relevant;
we can have strings of roman letters, of cyrillic letters, of numbers, of cars
(waiting at a gas station), of people (waiting in line at the store), etc. This
is important - we can’t have strings without objects, but the nature of the
objects is irrelevant for the properties of strings we are concerned with!

We will, building on the motivating inspiration of a written word, call the
set of objects appearing in a string its alphabet, and will often use the Greek
capital letters Σ (or ∆, or Γ) to name an alphabet. In principle, alphabets
may be infinite, but we will be mostly interested in situations where they
are finite. In contrast, we will only be interested in finite strings.

There are many ways of formalizing almost everything ; strings are no
different. One of the most fundamental things we would like to do with
strings is to concatenate them. Intuitively, concatenating strings is like writ-
ing them down next to one another. For example, concatenating the string
"obst" with the string "garten" gives the string "obstgarten". One impor-
tant property of string concatenation is that it is insensitive to constituency;
concatenating strings "abc" and "def" and "ghi" (in that order) gives rise to
the string "abcdefghi", regardless of whether we first concatenate "abc" and
"def" (to form "abcdef") and then concatenate that with "ghi", or whether
we concatenate "abc" to the result of concatenating "def" and "ghi" (form-
ing "defghi"). Indicating concatenation of strings via a dot (·), we have
that ”abc” · (”def” · ”ghi”) = (”abc” · ”def”) · ”ghi”. (Binary) operations
which have this property are called associative. An adequate formalization
of strings will allow us to define concatenation.

1

1.1 Strings as arrays

A first definition of strings views them as an ordered set of positions, which
contain symbols. We begin by identifying positions with numbers, starting
at 0 (we revisit this decision in section 1.1.1).1 If a string has (say) five
positions, these will be named 0,1,2,3,4. In other words, the set of positions
in a string of length n will be {0, 1, . . . , n− 1}. It will be very convenient to
have a simple notation for the set of all natural numbers less than another.2

We define:

Definition 1. For any natural number n ∈ N, let [n] := {k : k < n}.

A string of length n over an alphabet Σ is an assignment of symbols in Σ
to each position in the string. What this means is that each position should
be associated with exactly one symbol; this notion of an assigment is made
precise as a function.

Definition 2. Given an alphabet Σ, and a natural number n, a string of
length n over Σ is a function from [n] to Σ.

Viewing a string as an association between positions and symbols (a
function from positions to symbols) means that we can speak of the symbol
at a particular position in terms of the result of applying the function to
that position. We can visualize an example as in figure 1.

0 1 2 3

a b c

Figure 1: The string "abba" over the alphabet Σ = {a, b, c}

In the figure, the positions are written sequentially at the top, and the
alphabet symbols are written sequentially at the bottom. Arrows link posi-
tions with symbols. The same alphabet symbol may be in many positions
(in the figure, ’b’ is in both positions 1 and 2), but each position must have
exactly one symbol in it.

As a special case of our definition of a string, consider what happens
when we have a string of length 0. Then a string of length 0 is a function as-
sociating each position in [0] with a symbol. But, there is no position in [0];

1This has the unfortunate consequence of implying that the first position in a string is
0, the second is 1, etc.

2We write N = {0, 1, 2, . . .} for the set of natural numbers.

2

[0] = ∅ is the empty set! This may seem puzzling at first: what should such
a function do? It is easiest to see what to do in the context of a real-world
example. Imagine that our job would be to give each subscriber the news-
paper they ordered (i.e., we should implement a function from subscribers
to newspapers). If we don’t have any newspapers, then we are in trouble;
we may be fired for not doing our job! But if we don’t have any subscribers,
then our job becomes trivial; we may as well relax on the beach, as we have
finished before even starting! Returning to the function, we see that there is
exactly one way of associating outputs with no inputs: do nothing. This is
called the empty function, and in the world of strings, it is called the empty
string, and is written with the Greek lower case ε.3

This discussion presupposes a notion of identity between strings, which
we have not yet made explicit. Two strings are identical just in case the
following holds:

1. they have the same set of positions

2. they have the same symbols in each of their positions

This can be written in a more mathematical idiom as follows.

Definition 3. Given two strings u, v of length n over alphabet Σ, we say
that u = v iff for every i ∈ [n] it holds that u(i) = v(i).

Consider how we might define string concatenation over these represen-
tations. As a concrete example, we may look at figure 2. Here we have
representations of strings "ab" and "ba", which are concatenated to form
the representation of the string "abba" which we saw above in figure 1.

0 1

a b c
•

0 1

a b c
=

0 1 2 3

a b c

Figure 2: Concatenating "ab" with "ba" (over the alphabet Σ = {a, b, c})

Studying the figure, we see that we must change the positions of the
second string so that they begin, not at 0, but at the successor position to
the end position of the first string (in the example, this is position 2). As the
alphabets of the to-be-concatenated strings are the same, we can then simply
unify the two copies into one, making sure that the arrows continue pointing

3In some places it is written with the Greek lower case λ.

3

to the same letters. Building on this idea, we can define a concatenation
operation over these representations in the following way.

Definition 4. Let Σ be an alphabet, and let u and v be strings over Σ of
lengths m and n respectively. Then u ·v is the string over Σ of length m+n,
such that

1. for each i ∈ [m], (u · v)(i) = u(i)

2. for each i ∈ [m+ n]− [m], (u · v)(i) = v(i−m)

1.1.1 Generalizing

We began by identifying positions with initial sets of natural numbers. In
this section, we relax this restriction, and allow positions to be anything.
This will allow us to see what properties of natural numbers were actually
needed (for example, every natural number can be uniquely decomposed as
the product of primes - is this important to our notion of strings?!).

A string is determined by a set of positions, as before, and a function
specifying what is ’at’ each position. However, we also require an order on
our positions, to specify which position immediately follows which other!
Now we see that a string is determined by three sets:

1. the set of positions Pos

2. a functional relation label ⊆ Pos×Alph

3. a relation prec ⊆ Pos× Pos
We can now see that our use of natural numbers exploited the inherent

ordering of natural numbers to encode the precedence relation.
With our generalization comes the need to revisit the question of string

identity; now that positions are arbitrary, we can represent one and the
same string in infinitely many ways.4 We would like to define a notion of
identity of string representations which ignores possible differences in the
names of positions, and only considers the ’relevant’ structural properties.
One natural idea is to first try to rename the positions of the two objects
we are comparing for equality, so that they have the same position names -
then equality would really just be identity.

A renaming is then a bijective function from one position set to another.
A function associates exactly one position in the target set with every posi-
tion in the source set, and it being bijective requires that all positions in the

4This does not hold for the empty string, which has exactly one possible representation.

4

target set are used as names. Two objects are equal just in case the following
are true:

1. we can rename the positions of the first as positions of the second, such
that

2. the resulting structures are identical.

1.2 Strings as lists

The position-based formalization of strings given above is correct, and every-
thing we are interested in doing can be carried out in these terms. However,
just because something is true doesn’t make it useful ! As a concrete exam-
ple, we have a conception of natural numbers, which is independent of how
we represent them.5 Using a decimal representation of numbers allows us to
perform certain operations, like multiplication by 10, very easily: just add
a 0 to the end of the representation. Other operations, like multiplication
by 2, require actual work to compute. In contrast, a binary representation
of the same makes multiplication by 2 a matter of adding a 0 to the end
of the representation, but has the trade-off of making multiplication by 10
more difficult. Both representations of natural numbers (and infinitely many
more!) are correct, but, depending on what we would like to do with them,
one may be more useful than the other.

Accordingly, we here present a different formalization of (and representa-
tion for) strings, which views them as being constructed from simpler pieces.
We will say that a non-empty string contains a first symbol, and the rest of
the string. In this way, larger strings can be built up out of smaller strings.
Because we need to make reference to other strings when defining strings,
we define at once the set of all strings over a certain alphabet.

Definition 5. Given an alphabet Σ, we define the strings over Σ as follows.

1. [] is a string over Σ

2. if w is a string over Σ, and a ∈ Σ, then (a:w) is a string over Σ

implicit in the above definition is the further clause:

3. nothing else is a string over Σ

5This might be given by the Peano axioms, for example.

5

This definition tells us that a string (over Σ) can have exactly one of
two general shapes; it can be empty, in which case it is [], or non-empty,
in which case it is of the form a:w for some symbol ’a’ and string w.6 It
gives us therefore not only a definition of strings, but also a procedure for
determining whether something is a string over Σ.

Example 1. We attempt to verify that "abba" is indeed a string over {a, b, c}.
Note that it is of the form a:w (where w = ”bba”), and so is a string over
{a, b, c} iff a ∈ {a, b, c} (which it is) and w is a string over {a, b, c}. So
whether "abba" is a string depends on whether "bba" is a string. And "bba"
(recall, it is of the form b:w, where w = ”ba”) is a string iff b ∈ {a, b, c} and
"ba" is a string. Similarly, "ba" is a string iff "a" is, and "a" is a string iff
[] is. But [] is a string (it says so in the definition). And so then "a" is,
and then "ba" is, and then "bba" is, and then "abba" is, as we wanted to
determine.

Thus, if we want to define a function over all strings, we need only to say
what it does in these two circumstances. We call this a recursive definition.
As an example, we define a function associating with each string its length,
which should tell us how many symbols occur in it. Clearly, the length of
the empty string, [], is 0. An if we want to know the length of a string of
the form a:w, it is one greater than the length of w.

Definition 6. The length of a string w, written |w|, is given inductively as
follows.

• |[]| = 0

• |a:w| = 1 + |w|

What is unique about recursive definitions is that they define something
in terms of itself.7 That is, the definition appears circular. The naïve worry
about circular definitions (such as of a word in a dictionary) is that you
will be shunted from one place to another and back, and never make any
progress. Not all definitions which refer to themselves are circular in this
sense, however! One important aspect of the definition of lengh given above
is that the size of the argument given to the function we are defining is
steadlily decreasing (w is shorter than a:w); as all strings are finite, this
means that our length function is guaranteed to eventually reach its base

6It is inconvenient to write a:b:b:a:[] for the string "abba". We will simply write
"abba" and convert in our minds between the simpler, orthographical writing convention
and the official formal representation.

7We did this already in the definition of the set of strings over Σ.

6

case, where w = [], and give us a concrete (i.e. non-self-referential) answer.
We can illustrate the workings of this definition via an example.

Example 2. We trace through the action of the length function on the string
abba.

|a:b:b:a:[]| = 1 + |b:b:a:[]|
= 1 + 1 + |b:a:[]|
= 1 + 1 + 1 + |a:[]|
= 1 + 1 + 1 + 1 + |[]|
= 1 + 1 + 1 + 1 + 0

= 4

7

	Strings
	Strings as arrays
	Generalizing

	Strings as lists

