DFAs

Greg Kobele

November 19, 2018

A DFA is a 5-tuple (Q, X, qo, F, ) consisting of

—_

a set (Q of states

2. a set X of symbols

3. a start state qo

4. a set I of final states
5

. and a (partial) function § mapping state-symbol pairs to states
We can simply write this directly in Haskell.

type DFA state symb =
([statel, [symb],state, [state], (state,symb) -> state)

Note that this is a definition of a type synonym; we have taken an already
existing type, and given it a new name. Note further that we use lists in the
Haskell definition to implement sets.

1 Some machines

Now that we have a type for (deterministic) finite state machines, we can
define objects which have that type. We begin with a machine which rejects
all words over the alphabet ¥ = {a, b, c} containing a b; in linguistic terms,
it is a constraint against b.

notB :: DFA Int Char
notB = ([0,1],[’a’,’b?,’c’],0, [0] ,deltaB)

where
deltaB (0,’b’) =1
deltaB (0,_) =0
deltaB (1,_) =1



Our next machine recognizes strings over the alphabet ¥ = {0,1} con-
taining both an even number of the letter 0 and an odd number of the letter
1. However, instead of an alphabet of ¥ = {0,1}, we will use Bool, with
False standing for 0 and True for 1. That is, we will represent the input
[1,0,0] as the list [True,False,False].

evenFoddT :: DFA String Bool
evenFoddT = (["ee","eo","oe","oo"], [False,True] ,"ee", ["eo0"],deltaEQl)
where

deltal ("ee",False) = "oe"
deltal ("eo",False) = "oo"
deltal ("oe",False) = "ee"

deltal ("oo",False) = "eo"

deltal ("ee",True) = "eo"
deltal ("eo",True) = "ee"
deltal ("oe",True) = "oo"
deltal ("oo",True) = "oe"

2 Recognition

Recognition requires an implementation of the following mathematical con-
dition:

A recognizes w iff 6*(qo, w) € F
This can be rendered almost verbatim in Haskell.

a@(gs,sigma,q0,fs,delta) ‘recognizes‘ input =
deltaStar (q0,input) ‘elem® fs
where
deltaStar (q,[]) = q
deltaStar (q,(b:bs)) = deltaStar ((delta (qg,b)),bs)

In the above code, we used an as-pattern in the first argument of recognize.
An as-pattern has the following syntax: var @ pattern, where var is a vari-
able name, and pattern is any pattern. This allows us to give a name (var)
to the entire argument, and at the same time break it down into subparts
using pattern matching. In the code above, the name for the argument a
was just used to enhance readability. In addition, the function deltaStar
was defined locally to the function recognize in a where clause. This means
that deltaStar is visible only inside of recognize, and is not defined in the
global name space.



Somewhat unsurprisingly, the action of deltaStar is a common one,
when dealing with lists: given a starting value (here ¢), walk through a list
element by element, each time updating the current value somehow (here
delta). This transforms a list of the form a:b:c:d:[] is to a sequence of
function applications £ (f (£ (f i a) b) c¢) d where f is the update rule
and ¢ the initial value. Going through a list one element at a time, updating
the results, is called folding through a list, and depending on whether the
initial value is combined first with the initial (leftmost) or final (rightmost)
element. The behaviour of deltaStar is a left fold, and is implemented in
Haskell as foldl. We can thus define deltaStar (internally to recognizes)
using foldl in the following way.

deltaStar (q,input) = foldl (curry delta) q input

This definition is complicated by the fact that delta is defined as taking
both its arguments simultaneously (as a pair), instead of taking them one
after the other. The function curry turns a function that wants its next two
arguments simultaneously into one that expects them one after the other.
Using the inverse of curry, called uncurry, we can simplify the definition of
deltaStar somewhat.

deltaStar = uncurry $ foldl (curry delta)

Note that delta needs to be curried, because foldl wants a function that
takes arguments one after the other, and then the expression foldl (curry
delta) is uncurried because deltaStar wants the next two arguments of this
expression to be given simultaneously. The operator ($) is simply an explicit
representation of function application (so f a is the same thing as £ $ a),
however, it has a very low precedence, which means roughly that Haskell
tries to interpret the entirety of what comes to its right as the argument,
and the entirety of what comes to its left as the function. This can allow
us to save on parentheses, as the sequence of function applications £ (g a)
can be given as f $§ g a.

3 Revisiting partiality

We have been using an implicit representation of partiality; delta was just
left undefined whenever it was, well, undefined! This can cause problems
(run-time errors) in our programs, making their behaviour unpredictable.
Here we reimplement machines so as to make the partiality of the transition
function explicitly represented. We use for this a Maybe data type.



type DFA state symb =
([statel, [symb] ,state, [state], (state,symb) -> Maybe state)

The type of DFA now says explicitly that the transition function will only
maybe return a next state. This forces us to be more careful in functions
that use DFAs, but guarantees that they will not crash our programs!

recognizes :: Eq q => DFA q s -> [s] -> Bool
a@(gs,sigma,q0,fs,delta) ‘recognizes‘ input =
case deltaStar (qO,input) of
Nothing -> False
Just q -> q ‘elem® fs
where
deltaStar (q,[]) = Just q
deltaStar (q,(b:bs)) =
do
q’ <- delta (q,b)
deltaStar (q’,bs)

To deal with the possibility that delta returns nothing, deltaStar has been
rewritten using do-notation. Inside a do-block, we extract the contents of a
Maybe value, if any, by writing q° <- delta (q,b). If delta (q,b) is Just
X, this extracts the state x and binds it to q’. If delta (q,b) is Nothing, the
entire do-block returns Nothing[] Now that deltaStar only maybe returns
a state, we must deal with this possibility in the code. The code is written
with an explicit case analysis (using the keywords case ... of).

We can redefine the previous machine accepting words with an even num-
ber of the letter 0, and an odd number of 1 (represented as truth values). We
take advantage of the regularities in the transitions, and encode the states
as pairs of boolean values, where a state (b, c) says whether we have seen an
odd number of 0 (if b == True), and whether we have seen an odd number
of 1 (¢ == True).

evenFoddT :: DFA (Bool,Bool) Bool
evenFoddT = (qEO, [False,True], (False,False), [(False,True)],deltaEQ)
where
qE0 = [(b,c) | b <- [False,True], c <- [False,Truell
deltakED ((b,c),False) = Just (not b, c)
deltaF0 ((b,c),True) = Just (b, not c)
'The do-block is syntactic sugar (i.e. a pretty syntactic abbreviation) for the code:
delta (q,b) »= \q’ -> deltaStar (q’,bs), at which the entire thing might better be

written in terms of foldl: deltaStar = uncurry $ foldl (\accu i -> accu »= flip
(curry delta) 1i).




4 Testing

We would like to be sure that our code does what we think it should (i.e.,
that I did not make a mistake while typing). One way to do this is to have
a test suite! We can create a list of examples, and check whether our code
performs correctly on these examples.

testl = []

test2 = [True]

test3 = [False,True]

test4 = [False,False,False,True,Falsel]

testb = [False,False,False,True,False,False,True]

Haskell reports the following results:

*Main> evenFoddT ‘recognizes‘ testl
False
*Main> evenFoddT ‘recognizes‘ test2
True
*Main> evenFoddT ‘recognizes‘ test3
False
*Main> evenFoddT ‘recognizes‘ test4
True
*Main> evenFoddT ‘recognizes‘ testb
False

Developing a good test suite is hard work! We need to make sure we pick
good examples, which are diverse enough to instantiate all the difficulties
of the problem. Of course, each program we attempt to write may have
different bugs, and it is not clear that a static test suite will find all of them.

Another, ’fairer’ way of testing our code is to generate random examples.
We can leverage the functionality of the Test.QuickCheck module for this.
First we create a property (a function from objects of interest to True or
False).

prop_soundEQ :: [Bool] -> Property
prop_soundEQ s =
acceptedEQ s ==> (evenFalse s && oddTrue s)
where
acceptedE0 = recognizes evenFoddT
evenFalse = even . length . filter (not . id)
oddTrue = odd . length . filter id



This property is True of a string accepted by evenFoddT if the string has an
even number of the letter False and an odd number of True. We can define
a related property of a string, which is had whenever a string with an even
number of False and an odd number of True is accepted by evenFoddT

prop_completeED :: [Bool] -> Property
prop_completeEQ s =
(evenFalse s && oddTrue s) ==> acceptedEQ s
where
acceptedE0 = recognizes evenFoddT
evenFalse = even . length . filter (nmot . id)
oddTrue = odd . length . filter id

Then we can pass these properties to the quickCheck function, to see whether
100 randomly generated inputs satisfy it.

*Main> quickCheck prop_soundEQ
+++ 0K, passed 100 tests.

*Main> quickCheck prop_completeEQD
+++ 0K, passed 100 tests.



	Some machines
	Recognition
	Revisiting partiality
	Testing

