
Computerlinguistik
WS 2018/2019

Greg Kobele

October 26, 2018

1 Trees

A tree is a formal object inspired by a, well, tree. (I sort of want to write
’hah hah, just kidding’, but there’s too much truth in that statement to
completely dismiss!) All kidding aside, a tree is a formal object designed to
represent hierarchical structures. Hierarchical structures naturally emerge
following the arrow of time; geneology is an example, with ancestors being
temporally (and causally) prior to their decendents. The crucial aspect of
hierarchical structures formalized via trees is that there may be many entities
at the same level in the hierarchy – they are neither superior nor inferior to
each other. Siblings are an example of this in the geneological example, as
are members of the armed forces holding the same rank (say, lieutenant) in a
context where the hierarchy in question has to do with social standing rather
than time.

There is a natural formal sense in which trees are a generalization of
strings (and conversely, in which strings are a special case of trees): a string
is a tree where each superior has at most one immediate subordinate. We
will again provide two formalizations of the concept of trees, one generalizing
the array perspective, the other the list perspective on strings.

1.1 Trees as arrays

The array perspective on strings views them as sets of positions, where these
positions are totally ordered.1 We represented the positions as consecutive

1A partial ordering of a set is a relation (which we will write as ≤) defined over elements
of that set which is

reflexive for all elements a, a ≤ a

antisymmetric for all distinct elements a and b, if a ≤ b then not b ≤ a

1

natural numbers, and implicitly used the less-than-or-equal-to relation as
the total ordering. To pave the way for the generalization to trees, let us
represent instead positions as strings of numbers. The first position will be
the empty string ε, the second position will be the one-element string 0, the
third the two element string 00, etc, with the nth position being represented
as the n− 1 element string 0n−1 (0 repeated n− 1 times).2 Here, the total
ordering between positions is given by the ’is-a-prefix-of’ relation (with a
coming before b iff a is a prefix of b). Figure 1 presents the two different
notations for positions, in the context of the string abba.

0 1 2 3

a b c

ε 0 00 000

a b c

Figure 1: Two different notations for positions

Although numbers and sequences of the number 0 are interchangeable,
moving to this alternative representation of positions makes a generalization
salient which was not visible in the realm of numbers, one which allows us
to represent the possibility of having multiple next positions. If a position
is represented by the sequence σ, then σ0 is the first successor of σ. We
can represent the second successor of σ as σ1, the third as σ2, and so on;
in general, the k + 1th successor of σ is σk. Figure 2 presents a side by side
comparison of a tree (on the right) and our formal representation of it in
terms of a function from positions.

Not just any set of strings of numbers represents the positions of a tree.
A set of strings of numbers satisfying the following two conditions does, and
is called a tree domain.

Definition 1. A tree domain is a set D of sequences of natural numbers
satisfying the conditions below.

transitive for all triplets of elements a, b, and c, if a ≤ b and b ≤ c then a ≤ c

A total ordering is a partial ordering which satisfies the additional condition of being
connected.

connectedness for all distinct elements a and b, either a ≤ b or b ≤ a

The natural numbers provide a familiar example of a totally ordered set (where the or-
dering is the usual ’less than or equal to’).

2Recall that the nth position was represented by the number n − 1, and so the string
0k and the number k represent the same position.

2

ε

0

00

1

10

S
NP
VP
Jane
sleeps

S

NP

Jane

VP

sleeps

Figure 2: A position based representation of a tree

prefix closure for any sequences σ and τ , if στ ∈ D, then σ ∈ D as well

sisterhood closure for any sequence σ and number i, if σi ∈ D, then for
every number j ≤ i, it is also the case that σj ∈ D

Some trees have an upper bound on the maximal number of daughters
had by any node. (Every finite tree has such an upper bound.) Given a tree
domain D, it’s width is the least number b + 1 such that b is used in some
string in D, or 0 if D = {ε}. Strings have a width of 1.

1.2 Trees as lists

According to the inductive definition of strings presented earlier, a string
was either empty, or it consisted of a symbol, followed by the rest of the
string. Continuing to follow our imperative of viewing strings as the special
case of trees where each node has at most one successor, we see that we
must generalize our definition to allow more than one possible ’rest of the
string’ to follow a symbol. We can do this by allowing not a single object,
but rather a sequence thereof, to follow a symbol. This sets the stage for our
inductive definition of trees.

Definition 2. Given an alphabet Σ, a tree over Σ consists of a symbol a ∈ Σ
followed by a sequence ts of trees over Σ:

a C ts

The width of a tree (defined inductively) can be given as the maximal
length of any sequence of siblings in a tree. We can define this function
recursively as follows.

3

Definition 3.

width(a C ts) := max({|ts|} ∪ {width(ts(i)) : i < |ts|})

The workings of this function can be understood by translating the def-
inition; the width of a tree a C ts is the maximum number from amongst:

• the number of daughters of a (that is: |ts|)

• the widths of the trees making up ts

The size of a tree, which we shall write |t| on analogy with the length
of a list, is given by the number of symbols it contains. The size of a tree
a C ts is one greater than the sum of the sizes of the trees occurring in ts.

Definition 4.
|a C ts| := 1 +

∑
{|ts(i)| : i < |ts|}

Another measure of the size of a tree is its depth; the length of the longest
path from root to a leaf.

Definition 5.

depth(a C ts) := 1 + max({depth(ts(i)) : i < |ts|})

A tree with an infinite number of nodes (i.e., |t| = ∞) is called infinite,
otherwise it is finite. A tree is finite iff it has both a finite width and a finite
depth.

4

	Trees
	Trees as arrays
	Trees as lists

