
INTRODUCTION

We begin with an overview of those areas in the theory of computation that
we present in this course. Following that, you'll have a chance to learn and/or
review some mathematical concepts that you will need later.

0.1

AUTOMATA, COMPUTABILITY, AND COMPLEXITY

This book focuses on three traditionally central areas of the theory of computa-
tion: automata, computability, and complexity. They are linked by the question:

What are the fundamental capabilities and limitations of computers?

This question goes back to the 1930s when mathematical logicians first began
to explore the meaning of computation. Technological advances since that time
have greatly increased our ability to compute and have brought this question out
of the realm of theory into the world of practical concern.

In each of the three areas-automata, computability, and complexity-this
question is interpreted differently, and the answers vary according to the inter-
pretation. Following this introductory chapter, we explore each area in a sepa-
rate part of this book. Here, we introduce these parts in reverse order because
starting from the end you can better understand the reason for the beginning.

1

2 CHAPTER 0 / INTRODUCTION

COMPLEXITY THEORY

Computer problems come in different varieties; some are easy, and some are
hard. For example, the sorting problem is an easy one. Say that you need to
arrange a list of numbers in ascending order. Even a small computer can sort
a million numbers rather quickly. Compare that to a scheduling problem. Say
that you must find a schedule of classes for the entire university to satisfy some
reasonable constraints, such as that no two classes take place in the same room
at the same time. The scheduling problem seems to be much harder than the
sorting problem. If you have just a thousand classes, finding the best schedule
may require centuries, even with a supercomputer.

What makes some problems computationally hard and others easy?

This is the central question of complexity theory. Remarkably, we don't know
the answer to it, though it has been intensively researched for the past 3 5 years.
Later, we explore this fascinating question and some of its ramifications.

In one of the important achievements of complexity theory thus far, re-
searchers have discovered an elegant scheme for classifying problems according
to their computational difficulty. It is analogous to the periodic table for clas-
sifying elements according to their chemical properties. Using this scheme, we
can demonstrate a method for giving evidence that certain problems are compu-
tationally hard, even if we are unable to prove that they are.

You have several options when you confront a problem that appears to be
computationally hard. First, by understanding which aspect of the problem is at
the root of the difficulty, you may be able to alter it so that the problem is more
easily solvable. Second, you may be able to settle for less than a perfect solution
to the problem. In certain cases finding solutions that only approximate the
perfect one is relatively easy. Third, some problems are hard only in the worst
case situation, but easy most of the time. Depending on the application, you may
be satisfied with a procedure that occasionally is slow but usually runs quickly.
Finally, you may consider alternative types of computation, such as randomized
computation, that can speed up certain tasks.

One applied area that has been affected directly by complexity theory is the
ancient field of cryptography. In most fields, an easy computational problem
is preferable to a hard one because easy ones are cheaper to solve. Cryptogra-
phy is unusual because it specifically requires computational problems that are
hard, rather than easy, because secret codes should be hard to break without the
secret key or password. Complexity theory has pointed cryptographers in the
direction of computationally hard problems around which they have designed
revolutionary new codes.

COMPUTABILITY THEORY

During the first half of the twentieth century, mathematicians such as Kurt
Godel, Alan Turing, and Alonzo Church discovered that certain basic problems
cannot be solved by computers. One example of this phenomenon is the prob-

0.2 MATHEMATICAL NOTIONS AND TERMINOLOGY 3

lem of determining whether a mathematical statement is true or false. This task
is the bread and butter of mathematicians. It seems like a natural for solution
by computer because it lies strictly within the realm of mathematics. But no
computer algorithm can perform this task.

Among the consequences of this profound result was the development of ideas
concerning theoretical models of computers that eventually would help lead to
the construction of actual computers.

The theories of computability and complexity are closely related. In com-
plexity theory, the objective is to classify problems as easy ones and hard ones,
whereas in computability theory the classification of problems is by those that
are solvable and those that are not. Computability theory introduces several of
the concepts used in complexity theory.

AUTOMATA THEORY

Automata theory deals with the definitions and properties of mathematical mod-
els of computation. These models play a role in several applied areas of computer
science. One model, called the finite automaton, is used in text processing, com-
pilers, and hardware design. Another model, called the context-free grammar, is
used in programming languages and artificial intelligence.

Automata theory is an excellent place to begin the study of the theory of
computation. The theories of computability and complexity require a precise
definition of a computer. Automata theory allows practice with formal definitions
of computation as it introduces concepts relevant to other nontheoretical areas
of computer science.

0.2
MATHEMATICAL NOTIONS AND TERMINOLOGY

As in any mathematical subject, we begin with a discussion of the basic mathe-
matical objects, tools, and notation that we expect to use.

SETS

A set is a group of objects represented as a unit. Sets may contain any type of
object, including numbers, symbols, and even other sets. The objects in a set are
called its elements or members. Sets may be described formally in several ways.
One way is by listing a set's elements inside braces. Thus the set

{7, 21, 57}

contains the elements 7, 21, and 57. The symbols e and f denote set member-
ship and nonmembership. We write 7 E {7, 21, 57} and 8 X {7, 21, 57}. For two
sets A and B, we say that A is a subset of B, written A C B, if every member of

4 CHAPTER 0 / INTRODUCTION

A also is a member of B. We say that A is a proper subset of B, written A c B,
if A is a subset of B and not equal to B.

The order of describing a set doesn't matter, nor does repetition of its mem-
bers. We get the same set by writing {57, 7, 7, 7, 211. If we do want to take the
number of occurrences of members into account we call the group a multiset in-
stead of a set. Thus {7} and {7, 7} are different as multisets but identical as sets.
An infinite set contains infinitely many elements. We cannot write a list of all
the elements of an infinite set, so we sometimes use the ". ." notation to mean,
"continue the sequence forever." Thus we write the set of natural numbers X
as

{1,2,3,...}.

The set of integers Z is written

{ . .. , -2, -1,0, 1,2,. .. }.

The set with 0 members is called the empty set and is written 0.
When we want to describe a set containing elements according to some rule,

we write {nj rule about n}. Thus {nj n = m2 for some m E A} means the set of
perfect squares.

If we have two sets A and B, the union of A and B, written AUB, is the set we
get by combining all the elements in A and B into a single set. The intersection
of A and B, written A n B, is the set of elements that are in both A and B. The
complement of A, written A, is the set of all elements under consideration that
are not in A.

As is often the case in mathematics, a picture helps clarify a concept. For
sets, we use a type of picture called a Venn diagram. It represents sets as regions
enclosed by circular lines. Let the set START-t be the set of all English words that
start with the letter "t. " For example, in the following figure the circle represents
the set START-t. Several members of this set are represented as points inside the
circle.

terrific
tundra
theory

FIGURE 0.1
Venn diagram for the set of English words starting with "t"

Similarly, we represent the set END-z of English words that end with "z" in
the following figure.

 - -1

0.2 MATHEMATICAL NOTIONS AND TERMINOLOGY 5

END-Z

quartz
jazz
razzmatazz

FIGURE 0.2
Venn diagram for the set of English words ending with "z"

To represent both sets in the same Venn diagram we must draw them so that
they overlap, indicating that they share some elements, as shown in the following
figure. For example, the word topaz is in both sets. The figure also contains a
circle for the set START-j. It doesn't overlap the circle for START-t because no
word lies in both sets.

START-t END-Z START-j

FIGURE 0.3
Overlapping circles indicate common elements

The next two Venn diagrams depict the union and intersection of sets A
and B.

A B

(a) (b)

FIGURE 0.4
Diagrams for (a) A U B and (b) A n B

6 CHAPTER 0 / INTRODUCTION

SEQUENCES AND TUPLES

A sequence of objects is a list of these objects in some order. We usually designate
a sequence by writing the list within parentheses. For example, the sequence 7,
21, 57 would be written

(7, 21, 57).

In a set the order doesn't matter, but in a sequence it does. Hence (7,21, 57) is
not the same as (57, 7, 21). Similarly, repetition does matter in a sequence, but
it doesn't matter in a set. Thus (7, 7, 21, 57) is different from both of the other
sequences, whereas the set {7, 21, 57} is identical to the set {7, 7, 21, 57}.

As with sets, sequences may be finite or infinite. Finite sequences often are
called tuples. A sequence with k elements is a k-tuple. Thus (7,21, 57) is a
3 -tuple. A 2-tuple is also called a pair.

Sets and sequences may appear as elements of other sets and sequences. For
example, the power set of A is the set of all subsets of A. If A is the set {0, 1},
the power set of A is the set { 0, {0}, {1}, {0, 1} }. The set of all pairs whose
elements are Os and is is { (0, 0), (0,1), (1, 0), (1,1) }.

If A and B are two sets, the Cartesian product or cross product of A and B,
written A x B, is the set of all pairs wherein the first element is a member of A
and the second element is a member of B.

EXAM PLE 0.5 ..

If A = {1, 2} and B {x, y, z},

A x B { (1, x), (1, y), (1, z), (2, x), (2, y), (2, z) }.

We can also take the Cartesian product of k sets, Al, A2 , ... , Ak, written
Al x A2 x ... x Ak. It is the set consisting of all k-tuples (a,, a2 , . . , ak) where
ai C Ai.

EXAMPLE 0.6 ..
If A and B are as in Example 0.5,

A x B x A = (1, x, 1), (1, x, 2), (1, y, 1), (1, y, 2), (1, z, 1), (1, z, 2),
(2, x, 1), (2, x, 2), (2 , y, 1), (2, y, 2), (2, z, 1), (2, z, 2) }.

If we have the Cartesian product of a set with itself, we use the shorthand
k

A x A x xA= .

0.2 MATHEMATICAL NOTIONS AND TERMINOLOGY

EXAM PLE 0.7 -
The set Ar' equals Ar x .'V. It consists of all pairs of natural numbers. We also
maywrite it as {(i, j)I i, j > 1}.

FUNCTIONS AND RELATIONS

Functions are central to mathematics. A function is an object that sets up an
input-output relationship. A function takes an input and produces an output.
In every function, the same input always produces the same output. If f is a
function whose output value is b when the input value is a, we write

f(a) - b.

A function also is called a mapping, and, if f (a) = b, we say that f maps a to b.
For example, the absolute value function abs takes a number x as input and

returns x if x is positive and -x if x is negative. Thus abs(2) = abs(-2) = 2.
Addition is another example of a function, written add. The input to the addi-
tion function is a pair of numbers, and the output is the sum of those numbers.

The set of possible inputs to the function is called its domain. The outputs
of a function come from a set called its range. The notation for saying that f is
a function with domain D and range R is

f: D-OR.

In the case of the function abs, if we are working with integers, the domain and
the range are Z, so we write abs: ZD- Z. In the case of the addition function
for integers, the domain is the set of pairs of integers Z x Z and the range is Z,
so we write add: Z x Z -Z. Note that a function may not necessarily use all
the elements of the specified range. The function abs never takes on the value
-1 even though -1 E Z. A function that does use all the elements of the range
is said to be onto the range.

We may describe a specific function in several ways. One way is with a pro-
cedure for computing an output from a specified input. Another way is with a
table that lists all possible inputs and gives the output for each input.

EXAMPLE 0.8 ..
Consider the functions: {0,1, 2, 3, 4} {O. 1, 2, 3, 4}.

a f (n)
0 1
1 2
2 3
3 4
4 0

7

8 CHAPTER 0 / INTRODUCTION

This function adds 1 to its input and then outputs the result modulo 5. A number
modulo m is the remainder after division by m. For example, the minute hand
on a clock face counts modulo 60. When we do modular arithmetic we define
Zm {0, 1, 2, . . ., m - 1}. With this notation, the aforementioned function f
has the form f: Z5 - 5 .A

EXAM PLE 0.9

Sometimes a two-dimensional table is used if the domain of the function is the
Cartesian product of two sets. Here is another function, g: Z 4 x Z 4 - Z4 . The
entry at the row labeled i and the column labeled j in the table is the value of
g(i,j).

g 0 1 2 3
0 0 1 2 3
1 1 2 3 0
2 2 3 0 1
3 3 0 1 2

The function g is the addition function modulo 4.

When the domain of a function f is Al x ... x Ak for some sets Al, ... Ak,
the input to f is a k-tuple (a,, a2 , ... , ak) and we call the ai the arguments to f.
A function with k arguments is called a k-aryfunction, and k is called the arity
of the function. If k is 1, f has a single argument and f is called a unary.function.
If k is 2, f is a binaryfunction. Certain familiar binary functions are written in
a special infix notation, with the symbol for the function placed between its
two arguments, rather than in prefix notation, with the symbol preceding. For
example, the addition function add usually is written in infix notation with the
+ symbol between its two arguments as in a + b instead of in prefix notation
add(a, b).

A predicate or property is a function whose range is {TRUE, FALSE}. For
example, let even be a property that is TRUE if its input is an even number and
FALSE if its input is an odd number. Thus even(4) = TRUE and even(5)
FALSE.

A property whose domain is a set of k-tuples A x x A is called a relation,
a k-ary relation, or a k-ary relation on A. A common case is a 2 -ary relation,
called a binary relation. When writing an expression involving a binary rela-
tion, we customarily use infix notation. For example, "less than" is a relation
usually written with the infix operation symbol <. "Equality," written with the
= symbol is another familiar relation. If R is a binary relation, the statement
aRb means that aRb = TRUE. Similarly if R is a k-ary relation, the statement
R(ai, ... , ak) means that R(al, ... , ak) = TRUE.

0.2 MATHEMATICAL NOTIONS AND TERMINOLOGY 9

EXAM PLE 0.10 ...-..

In a children's game called Scissors-Paper-Stone, the two players simultaneously
select a member of the set {SCISSORS, PAPER, STONE} and indicate their selec-
tions with hand signals. If the two selections are the same, the game starts over.
If the selections differ, one player wins, according to the relation beats.

beats SCISSORS PAPER STONE
SCISSORS FALSE TRUE FALSE

PAPER FALSE FALSE TRUE
STONE TRUE FALSE FALSE

From this table we determine that SCISSORS beats PAPER is TRUE and that
PAPER beats SCISSORS is FALSE.

Sometimes describing predicates with sets instead of functions is more con-
venient. The predicate P: D-o {TRUE, FALSE} may be written (D, S), where
S = {a e DI P(a) = TRUE}, or simply S if the domain D is obvious from the
context. Hence the relation beats may be written

{(SCISSORS, PAPER), (PAPER, STONE), (STONE, SCISSORS)}.

A special type of binary relation, called an equivalence relation, captures the
notion of two objects being equal in some feature. A binary relation R is an
equivalence relation if R satisfies three conditions:

1. R is reflexive if for every x, xRx;
2. R is symmetric if for every x and y, xRy implies yRx; and
3. R is transitive if for every x, y, and z, xRy and yRz implies xRz.

EXAM PLE 0.1 1 *---.-..----............................

Define an equivalence relation on the natural numbers, written -7. For i, j E X

say that i - 7 j, if i - j is a multiple of 7. This is an equivalence relation because it
satisfies the three conditions. First, it is reflexive, as i - i = 0, which is a multiple
of 7. Second, it is symmetric, as i - j is a multiple of 7 if j - i is a multiple of 7.
Third, it is transitive, as whenever i -j is a multiple of 7 and j -k is a multiple
of 7, then i - k = (i - j) + (j - k) is the sum of two multiples of 7 and hence a
multiple of 7, too.

10 CHAPTER 0 / INTRODUCTION

GRAPHS

An undirected graph, or simply a graph, is a set of points with lines connecting
some of the points. The points are called nodes or vertices, and the lines are
called edges, as shown in the following figure.

(a) (b)

FIGURE 0.12
Examples of graphs

The number of edges at a particular node is the degree of that node. In
Figure 0.12(a) all the nodes have degree 2. In Figure 0.12(b) all the nodes have
degree 3. No more than one edge is allowed between any two nodes.

In a graph G that contains nodes i and j, the pair (i, j) represents the edge that
connects i and j. The order of i and j doesn't matter in an undirected graph, so
the pairs (i, j) and (j, i) represent the same edge. Sometimes we describe edges
with sets, as in {i, j}, instead of pairs if the order of the nodes is unimportant. If
V is the set of nodes of G and E is the set of edges, we say G = (V, E). We can
describe a graph with a diagram or more formally by specifying V and E. For
example, a formal description of the graph in Figure 0.12(a) is

({1, 2, 3, 4, 5}, {(1, 2), (2, 3), (3, 4), (4, 5), (5, 1)}),

and a formal description of the graph in Figure 0.12(b) is

({1, 2,3,4}, {(1, 2), (1, 3), (1,4), (2, 3), (2,4), (3,4)}).

Graphs frequently are used to represent data. Nodes might be cities and
edges the connecting highways, or nodes might be electrical components and
edges the wires between them. Sometimes, for convenience, we label the nodes
and/or edges of a graph, which then is called a labeled graph. Figure 0.13 depicts
a graph whose nodes are cities and whose edges are labeled with the dollar cost
of the cheapest nonstop air fare for travel between those cities if flying nonstop
between them is possible.

0.2 MATHEMATICAL NOTIONS AND TERMINOLOGY

FIGURE 0.13
Cheapest nonstop air fares between various cities

We say that graph G is a subgraph of graph H if the nodes of G are a subset
of the nodes of H, and the edges of G are the edges of H on the corresponding
nodes. The following figure shows a graph H and a subgraph G.

Grap]

Subgraph G
shown darker

FIGURE 0.14
Graph G (shown darker) is a subgraph of H

A path in a graph is a sequence of nodes connected by edges. A simple path
is a path that doesn't repeat any nodes. A graph is connected if every two nodes
have a path between them. A path is a cycle if it starts and ends in the same node.
A simple cycle is one that contains at least three nodes and repeats only the first
and last nodes. A graph is a tree if it is connected and has no simple cycles, as
shown in Figure 0. 15. A tree may contain a specially designated node called the
root. The nodes of degree I in a tree, other than the root, are called the leaves
of the tree.

1 1

12 CHAPTER 0 / INTRODUCTION

(a) (b) (c)

FIGURE 0.15
(a) A path in a graph, (b) a cycle in a graph, and (c) a tree

If it has arrows instead of lines, the graph is a directed graph, as shown in the
following figure. The number of arrows pointing from a particular node is the
outdegree of that node, and the number of arrows pointing to a particular node
is the indegree.

FIGURE 0.16
A directed graph

In a directed graph we represent an edge from i to j as a pair (i, j). The
formal description of a directed graph G is (V, E) where V is the set of nodes
and E is the set of edges. The formal description of the graph in Figure 0.16 is

({1,2,3,4,5,6}, {(1,2), (1,5), (2,1), (2,4), (5,4), (5,6), (6,1), (6,3)}).

A path in which all the arrows point in the same direction as its steps is called a
directed path. A directed graph is strongly connected if a directed path connects
every two nodes.

0.2 MATHEMATICAL NOTIONS AND TERMINOLOGY 13

EXAM PLE 0.17 ...
The directed graph shown here represents the relation given in Example 0.10.

FIGURE 0.18
The graph of the relation beats

Directed graphs are a handy way of depicting binary relations. If R is a binary
relation whose domain is D x D, a labeled graph G = (D, E) represents R,
where E = {(x, y)I xRy}. Figure 0.18 illustrates this representation.

If V is the set of nodes and E is the set of edges, the notation for a graph G
consisting of these nodes and edges is G = (V, E).

STRINGS AND LANGUAGES

Strings of characters are fundamental building blocks in computer science. The
alphabet over which the strings are defined may vary with the application. For
our purposes, we define an alphabet to be any nonempty finite set. The members
of the alphabet are the symbols of the alphabet. We generally use capital Greek
letters Z and F to designate alphabets and a typewriter font for symbols from an
alphabet. The following are a few examples of alphabets.

Y = {0,1};

E 2 = {a,b,c,d,e,f,g.hij,k,lm,n,o,p,q,r,s,t,u,v,w,x,y,z};

F {=,1,x,y,z}.
A string over an alphabet is a finite sequence of symbols from that alphabet,

usually written next to one another and not separated by commas. If E1 = {0,1},
then 01001 is a string over El. If 2 = {a, b, c, . . , z}, then abracadabra is a
string over E2 . If w is a string over E, the length of w, written Iwl, is the number
of symbols that it contains. The string of length zero is called the empty string
and is written e. The empty string plays the role of 0 in a number system. If w

14 CHAPTER 0 / INTRODUCTION

has length n, we can write w = w1W2 ... w, where each wi e E. The reverse
of w, written wv', is the string obtained by writing w in the opposite order (i.e.,

Wn -i ... wi). String z is a substring of w if z appears consecutively within w.
For example, cad is a substring of abracadabra

If we have string 2 of length rn and string y of length n, the concatenation
of x and y, written x2, is the string obtained by appending y to the end of x, as
in x1 .xyl ... yE. To concatenate a string with itself many times we use the
superscript notation

k

-- 2X = ok

The lexicographic ordering of strings is the same as the familiar dictionary
ordering, except that shorter strings precede longer strings. Thus the lexico-
graphic ordering of all strings over the alphabet {0,1} is

(E, O. A, 00, 0, 10, 11,00,. ..).

A language is a set of strings.

BOOLEAN LOGIC

Boolean logic is a mathematical system built around the two values TRUE and
FALSE. Though originally conceived of as pure mathematics, this system is now
considered to be the foundation of digital electronics and computer design. The
values TRUE and FALSE are called the Boolean values and are often represented
by the values 1 and 0. We use Boolean values in situations with two possibilities,
such as a wire that may have a high or a low voltage, a proposition that may be
true or false, or a question that may be answered yes or no.

We can manipulate Boolean values with specially designed operations, called
the Boolean operations. The simplest such operation is the negation or NOT
operation, designated with the symbol -. The negation of a Boolean value is the
opposite value. Thus -0 = 1 and -11 = 0. The conjunction, or AND, operation
is designated with the symbol A. The conjunction of two Boolean values is 1 if
both of those values are 1. The disjunction, or OR, operation is designated with
the symbol V. The disjunction of two Boolean values is 1 if either of those values
is 1. We summarize this information as follows.

0A0 0 0 V 0 0 -0 1
0 A 1 0 O V I 1 -1 0
1 A 0 0 1 V 0 1
lAl 1 lVi 1

We use Boolean operations for combining simple statements into more com-
plex Boolean expressions, just as we use the arithmetic operations + and x to
construct complex arithmetic expressions. For example, if P is the Boolean value

0.2 MATHEMATICAL NOTIONS AND TERMINOLOGY

representing the truth of the statement "the sun is shining" and Q represents
the truth of the statement "today is Monday", we may write P A Q to represent
the truth value of the statement "the sun is shining and today is Monday" and
similarly for P V Q with and replaced by or. The values P and Q are called the
operands of the operation.

Several other Boolean operations occasionally appear. The exclusive or, or
XOR, operation is designated by the e symbol and is 1 if either but not both of
its two operands are 1. The equality operation, written with the symbol *-*, is
1 if both of its operands have the same value. Finally, the implication operation
is designated by the symbol - and is 0 if its first operand is 1 and its second
operand is 0; otherwise - is 1. We summarize this information as follows.

o o 0 0-0 1 0 0 1
O1 =1 I1 0 I 01 =1
I130 1 1I 0 0 1-0 0
ieiPI 0 11=1 11 1

We can establish various relationships among these operations. In fact, we
can express all Boolean operations in terms of the AND and NOT operations, as
the following identities show. The two expressions in each row are equivalent.
Each row expresses the operation in the left-hand column in terms of operations
above it and AND and NOT.

PVQ -({-PA -Q)
P- Q -PVQ
P-Q (P -Q) A (Q -P)
P Q -(P Q)

The distributive law for AND and OR comes in handy in manipulating
Boolean expressions. It is similar to the distributive law for addition and multi-
plication, which states that a x (b + c) = (a x b) + (a x c). The Boolean version
comes in two forms:

* P A (Q V R) equals (P A Q) V (P A R), and its dual

* P V (Q A R) equals (P V Q) A (P V R).

Note that the dual of the distributive law for addition and multiplication does
not hold in general.

15

16 CHAPTER 0 / INTRODUCTION

SUMMARY OF MATHEMATICAL TERMS

Alphabet
Argument
Binary relation
Boolean operation
Boolean value
Cartesian product

Complement
Concatenation

Conjunction
Connected graph
Cycle
Directed graph
Disjunction
Domain
Edge
Element
Empty set
Empty string
Equivalence relation
Function
Graph
Intersection
k-tuple
Language
Member
Node
Pair
Path
Predicate
Property
Range
Relation
Sequence
Set
Simple path
String
Symbol
Tree
Union
Vertex

A finite set of objects called symbols
An input to a function
A relation whose domain is a set of pairs
An operation on Boolean values
The values TRUE or FALSE, often represented by 1 or 0
An operation on sets forming a set of all tuples of elements from

respective sets
An operation on a set, forming the set of all elements not present
An operation that sticks strings from one set together with strings

from another set
Boolean AND operation
A graph with paths connecting every two nodes
A path that starts and ends in the same node
A collection of points and arrows connecting some pairs of points
Boolean OR operation
The set of possible inputs to a function
A line in a graph
An object in a set
The set with no members
The string of length zero
A binary relation that is reflexive, symmetric, and transitive
An operation that translates inputs into outputs
A collection of points and lines connecting some pairs of points
An operation on sets forming the set of common elements
A list of k objects
A set of strings
An object in a set
A point in a graph
A list of two elements, also called a 2-tuple
A sequence of nodes in a graph connected by edges
A function whose range is {TRUE, FALSE}
A predicate
The set from which outputs of a function are drawn
A predicate, most typically when the domain is a set of k-tuples
A list of objects
A group of objects
A path without repetition
A finite list of symbols from an alphabet
A member of an alphabet
A connected graph without simple cycles
An operation on sets combining all elements into a single set
A point in a graph

0.3 DEFINITIONS, THEOREMS, AND PROOFS

0.3
DEFINITIONS, THEOREMS, AND PROOFS

Theorems and proofs are the heart and soul of mathematics and definitions are
its spirit. These three entities are central to every mathematical subject, includ-
ing ours.

Definitions describe the objects and notions that we use. A definition may be
simple, as in the definition of set given earlier in this chapter, or complex as in
the definition of security in a cryptographic system. Precision is essential to any
mathematical definition. When defining some object we must make clear what
constitutes that object and what does not.

After we have defined various objects and notions, we usually make mathe-
matical statements about them. Typically a statement expresses that some object
has a certain property. The statement may or may not be true, but like a defini-
tion, it must be precise. There must not be any ambiguity about its meaning.

A proof is a convincing logical argument that a statement is true. In mathe-
matics an argument must be airtight, that is, convincing in an absolute sense. In
everyday life or in the law, the standard of proof is lower. A murder trial demands
proof "beyond any reasonable doubt." The weight of evidence may compel the
jury to accept the innocence or guilt of the suspect. However, evidence plays
no role in a mathematical proof. A mathematician demands proof beyond any
doubt.

A theorem is a mathematical statement proved true. Generally we reserve the
use of that word for statements of special interest. Occasionally we prove state-
ments that are interesting only because they assist in the proof of another, more
significant statement. Such statements are called lemmas. Occasionally a theo-
rem or its proof may allow us to conclude easily that other, related statements
are true. These statements are called corollaries of the theorem.

FINDING PROOFS

The only way to determine the truth or falsity of a mathematical statement is
with a mathematical proof. Unfortunately, finding proofs isn't always easy. It
can't be reduced to a simple set of rules or processes. During this course, you will
be asked to present proofs of various statements. Don't despair at the prospect!
Even though no one has a recipe for producing proofs, some helpful general
strategies are available.

First, carefully read the statement you want to prove. Do you understand
all the notation? Rewrite the statement in your own words. Break it down and
consider each part separately.

Sometimes the parts of a multipart statement are not immediately evident.
One frequently occurring type of multipart statement has the form "P if and

17

18 CHAPTER 0 / INTRODUCTION

only if Q", often written "P iff Q", where both P and Q are mathematical state-
ments. This notation is shorthand for a two-part statement. The first part is
"P only if Q," which means: If P is true, then Q is true, written P =# Q. The
second is "P if Q," which means: If Q is true, then P is true, written P <= Q.
The first of these parts is theforward direction of the original statement and the
second is the reverse direction. We write "P if and only if Q" as P A> Q. To
prove a statement of this form you must prove each of the two directions. Often,
one of these directions is easier to prove than the other.

Another type of multipart statement states that two sets A and B are equal.
The first part states that A is a subset of B, and the second part states that B
is a subset of A. Thus one common way to prove that A = B is to prove that
every member of A also is a member of B and that every member of B also is a
member of A.

Next, when you want to prove a statement or part thereof, try to get an in-
tuitive, "gut" feeling of why it should be true. Experimenting with examples is
especially helpful. Thus, if the statement says that all objects of a certain type
have a particular property, pick a few objects of that type and observe that they
actually do have that property. After doing so, try to find an object that fails to
have the property, called a counterexample. If the statement actually is true, you
will not be able to find a counterexample. Seeing where you run into difficulty
when you attempt to find a counterexample can help you understand why the
statement is true.

EXAM PLE 0.19 ...-.----

Suppose that you want to prove the statement for every graph G, the sum of the
degrees of all the nodes in G is an even number.

First, pick a few graphs and observe this statement in action. Here are two
examples.

sum = 2+2+2 sum = 2+3+4+3+2
= 6 = 14

Next, try to find a counterexample, that is, a graph in which the sum is an odd
number.

0.3 DEFINITIONS, THEOREMS, AND PROOFS

Every time an edge is added,
the sum increases by 2.

Can you now begin to see why the statement is true and how to prove it?

If you are still stuck trying to prove a statement, try something easier. Attempt
to prove a special case of the statement. For example, if you are trying to prove
that some property is true for every k > 0, first try to prove it for k = 1. If you
succeed, try it for k = 2, and so on until you can understand the more general
case. If a special case is hard to prove, try a different special case or perhaps a
special case of the special case.

Finally, when you believe that you have found the proof, you must write it
up properly. A well-written proof is a sequence of statements, wherein each one
follows by simple reasoning from previous statements in the sequence. Carefully
writing a proof is important, both to enable a reader to understand it and for you
to be sure that it is free from errors.

The following are a few tips for producing a proof.

* Be patient. Finding proofs takes time. If you don't see how to do it right
away, don't worry. Researchers sometimes work for weeks or even years to
find a single proof.

* Come back to it. Look over the statement you want to prove, think about
it a bit, leave it, and then return a few minutes or hours later. Let the
unconscious, intuitive part of your mind have a chance to work.

* Be neat. When you are building your intuition for the statement you are
trying to prove, use simple, clear pictures and/or text. You are trying to
develop your insight into the statement, and sloppiness gets in the way of
insight. Furthermore, when you are writing a solution for another person
to read, neatness will help that person understand it.

* Be concise. Brevity helps you express high-level ideas without getting lost in
details. Good mathematical notation is useful for expressing ideas concisely.
But be sure to include enough of your reasoning when writing up a proof
so that the reader can easily understand what you are trying to say.

19

20 CHAPTER 0 / INTRODUCTION

For practice, let's prove one of DeMorgan's laws.

THEOREM 0.20
ForanytwosetsAandB,AUB= AnB.

First, is the meaning of this theorem clear? If you don't understand the mean-
ing of the symbols u or n or the overbar, review the discussion on page 4.

To prove this theorem we must show that the two sets A U B and A n B are
equal. Recall that we may prove that two sets are equal by showing that every
member of one set also is a member of the other and vice versa. Before looking
at the following proof, consider a few examples and then try to prove it yourself.

PROOF This theorem states that two sets, A U B and A n B. are equal. We
prove this assertion by showing that every element of one also is an element of
the other and vice versa.

Suppose that x is an element of A U B. Then x is not in A U B from the
definition of the complement of a set. Therefore x is not in A and x is not in B,
from the definition of the union of two sets. In other words, x is in A and x is in
B. Hence the definition of the intersection of two sets shows that x is in A n B.

For the other direction, suppose that x is in AnB. Then x is in both A and B.
Therefore x is not in A and x is not in B, and thus not in the union of these two
sets. Hence x is in the complement of the union of these sets; in other words, x
is in A U B which completes the proof of the theorem.
..

Let's now prove the statement in Example 0. 19.

THEOREM 0.21
For every graph G, the sum of the degrees of all the nodes in G is an even
number.

PROOF Every edge in G is connected to two nodes. Each edge contributes 1
to the degree of each node to which it is connected. Therefore each edge con-
tributes 2 to the sum of the degrees of all the nodes. Hence, if G contains e
edges, then the sum of the degrees of all the nodes of G is 2e, which is an even
number.
..

0.4 TYPES OF PROOF 21

0.4
TYPES OF PROOF

Several types of arguments arise frequently in mathematical proofs. Here, we
describe a few that often occur in the theory of computation. Note that a proof
may contain more than one type of argument because the proof may contain
within it several different subproofs.

PROOF BY CONSTRUCTION

Many theorems state that a particular type of object exists. One way to prove
such a theorem is by demonstrating how to construct the object. This technique
is a proof by construction.

Let's use a proof by construction to prove the following theorem. We define
a graph to be k-regular if every node in the graph has degree k.

THEOREM 0.22
For each even number n greater than 2, there exists a 3-regular graph with n
nodes.

PROOF Let n be an even number greater than 2. Construct graph G =(V, E)
with n nodes as follows. The set of nodes of G is V {0, 1, ... n - 1}, and the
set of edges of G is the set

E {I{i, i + 1} I for 0 < i < n -2} U { n-1, O} }
U {f{i, i + n/2} |for 0 < i < n/2 -1}.

Picture the nodes of this graph written consecutively around the circumference
of a circle. In that case the edges described in the top line of E go between
adjacent pairs around the circle. The edges described in the bottom line of E go
between nodes on opposite sides of the circle. This mental picture clearly shows
that every node in G has degree 3.
..

PROOF BY CONTRADICTION

In one common form of argument for proving a theorem, we assume that the
theorem is false and then show that this assumption leads to an obviously false
consequence, called a contradiction. We use this type of reasoning frequently in
everyday life, as in the following example.

22 CHAPTER 0 / INTRODUCTION

EXAMPLE 0.23
Jack sees Jill, who has just come in from outdoors. On observing that she is
completely dry, he knows that it is not raining. His "proof" that it is not raining
is that, if it were raining (the assumption that the statement is false), Jill would be
wet (the obviously false consequence). Therefore it must not be raining.

Next, let's prove by contradiction that the square root of 2 is an irrational
number. A number is rational if it is a fraction rn/n where m and n are integers;
in other words, a rational number is the ratio of integers m and n. For example,
2/3 obviously is a rational number. A number is irrational if it is not rational.

THEOREM 0.24
vX2 is irrational.

PROOF First, we assume for the purposes of later obtaining a contradiction
that VX is rational. Thus

n
where both m and n are integers. If both m and n are divisible by the same
integer greater than 1, divide both by that integer. Doing so doesn't change the
value of the fraction. Now, at least one of m and n must be an odd number.

We multiply both sides of the equation by n and obtain

n v/2m.

We square both sides and obtain

2n2 iM2 .

Because m2 is 2 times the integer n2, we know that M2 is even. Therefore 7n,
too, is even, as the square of an odd number always is odd. So we can write
m = 2k for some integer k. Then, substituting 2k for m, we get

2n 2 = (2k)2

= 4k2 .

Dividing both sides by 2 we obtain

n2 = 2k2 .

But this result shows that n2 is even and hence that n is even. Thus we have
established that both m and n are even. But we had earlier reduced m and n so
that they were not both even, a contradiction.
..

PROOF BY INDUCTION

Proof by induction is an advanced method used to show that all elements of
an infinite set have a specified property. For example, we may use a proof by
induction to show that an arithmetic expression computes a desired quantity for

0.4 TYPES OF PROOF 23

every assignment to its variables or that a program works correctly at all steps or
for all inputs.

To illustrate how proof by induction works, let's take the infinite set to be the
natural numbers, N = {1, 2, 3, .. . }, and say that the property is called 'P. Our
goal is to prove that 'P(k) is true for each natural number k. In other words, we
want to prove that P(1) is true, as well as 7P(2), 7P(3), 7P(4), and so on.

Every proof by induction consists of two parts, the induction step and the
basis. Each part is an individual proof on its own. The induction step proves
that for each i > 1, if 'P(i) is true, then so is 'P(i + 1). The basis proves that 'P(1)
is true.

When we have proven both of these parts, the desired result follows-namely,
that 'P(i) is true for each i. WVhy? First, we know that 'P(1) is true because the
basis alone proves it. Second, we know that 7P(2) is true because the induction
step proves that, if P(1) is true then 7P(2) is true, and we already know that P(1)
is true. Third, we know that P(3) is true because the induction step proves that,
if 7P(2) is true then 7P(3) is true, and we already know that 7P(2) is true. This
process continues for all natural numbers, showing that 7P(4) is true, 7P(5) is
true, and so on.

Once you understand the preceding paragraph, you can easily understand
variations and generalizations of the same idea. For example, the basis doesn't
necessarily need to start with 1; it may start with any value b. In that case the
induction proof shows that P(k) is true for every k that is at least b.

In the induction step the assumption that 'P(i) is true is called the induction
hypothesis. Sometimes having the stronger induction hypothesis that 7P(j) is
true for every j < i is useful. The induction proof still works because, when we
want to prove that 'P(i + 1) is true we have already proved that P9(j) is true for
every j < i.

The format for writing down a proof by induction is as follows.

Basis: Prove that 7P(1) is true.

Induction step: For each i > 1, assume that P(i) is true and use this assumption
to show that P(i + 1) is true.

Now, let's prove by induction the correctness of the formula used to calculate
the size of monthly payments of home mortgages. When buying a home, many
people borrow some of the money needed for the purchase and repay this loan
over a certain number of years. Typically, the terms of such repayments stipulate
that a fixed amount of money is paid each month to cover the interest, as well as
part of the original sum, so that the total is repaid in 30 years. The formula for
calculating the size of the monthly payments is shrouded in mystery, but actually
is quite simple. It touches many people's lives, so you should find it interesting.
We use induction to prove that it works, making it a good illustration of that
technique.

24 CHAPTER 0 / INTRODUCTION

First, we set up the names and meanings of several variables. Let P be the
principal, the amount of the original loan. Let I > 0 be the yearly interest rate of
the loan, where I = 0.06 indicates a 6% rate of interest. Let Y be the monthly
payment. For convenience we define another variable M from I, for the monthly
multiplier. It is the rate at which the loan changes each month because of the
interest on it. Following standard banking practice we assume monthly com-
pounding, so M = 1 + I/12.

Two things happen each month. First, the amount of the loan tends to in-
crease because of the monthly multiplier. Second, the amount tends to decrease
because of the monthly payment. Let Pt be the amount of the loan outstand-
ing after the tth month. Then P0 = P is the amount of the original loan,
P1 = MPo -Y is the amount of the loan after one month, P2 = MP1 -Y is
the amount of the loan after two months, and so on. Now we are ready to state
and prove a theorem by induction on t that gives a formula for the value of Pt.

THEOREM 0.25 ..
For each t > 0,

Pt =PMt ,- y M t - I

PROOF

Basis: Prove that the formula is true for t = 0. If t 0, then the formula states
that

PO = PMO -Y (O I)

We can simplify the right-hand side by observing that MO = 1. Thus we get

PO P P,

which holds because we have defined Po to be P. Therefore we have proved that
the basis of the induction is true.

Induction step: For each k > 0 assume that the formula is true for t = k and
show that it is true for t = k + 1. The induction hypothesis states that

pk Mk (Mk _ IPk = _~ -y (M I)

Our objective is to prove that

Pk± = pmk+l -(Y Mkl 1)

We do so with the following steps. First, from the definition of Pk+, from

EXERCISES 25

Pk. we know that

Pk+1 = PkM- Y

Therefore, using the induction hypothesis to calculate Pk,

Multi g Pkl =[PM (M I)] Y.

Multiplying through by At and rewriting Y yields

Pk+1 = PM'~" - Y (M IM (M-

= pMk+l _ y (mk+l -I)

Thus the formula is correct for t = k + 1, which proves the theorem.
..

Problem 0.14 asks you to use the preceding formula to calculate actual mort-
gage payments.

EXERCISES

0.1 Examine the following formal descriptions of sets so that you understand which
members they contain. Write a short informal English description of each set.

a. {1,3,5,7, ... }
b. {..., -4, -2,0,2,4,...}
c. {nj n = 2m for some m in AN}
d. {nj n = 2m for some m in XA, and n = 3k for some k in AV}
e. {wl w is a string of Os and is and w equals the reverse of w}
f. {nj n is an integer and n = n + 1}

0.2 Write formal descriptions of the following sets

a. The set containing the numbers 1, 10, and 100
b. The set containing all integers that are greater than 5
c. The set containing all natural numbers that are less than 5
d. The set containing the string aba
e. The set containing the empty string
f. The set containing nothing at all

26 CHAPTER 0/ INTRODUCTION

0.3 Let A be the set {x, y, z} and B be the set {x, y}.

a. Is A a subset of B?

b. Is B a subset of A?
c. What is A U B?
d. WhatisA nB?
e. What is A x B?
f What is the power set of B?

0.4 If A has a elements and B has b elements, how many elements are in A x B?
Explain your answer.

0.5 If C is a set with c elements, how many elements are in the power set of C? Explain
your answer.

0.6 Let X be the set {1, 2, 3, 4, 5} and Y be the set {6, 7, 8, 9, 10}. The unary function
f: X- Y and the binary function g: X x Y- Y are described in the following
tables.

n f(n) g 6 7 8 9 10
1 6 1 10 10 10 10 10
2 7 2 7 8 9 10 6
3 6 3 7 7 8 8 9
4 7 4 9 8 7 6 10
5 6 5 6 6 6 6 6

a. What is the value of f (2)?
b. What are the range and domain off?
c. What is the value of g(2, 10)?
d. What are the range and domain of g?
e. What is the value ofg(4, f(4))?

0.7 For each part, give a relation that satisfies the condition.

a. Reflexive and symmetric but not transitive
b. Reflexive and transitive but not symmetric
c. Symmetric and transitive but not reflexive

0.8 Consider the undirected graph G= (V, E) where V, the set of nodes, is {1, 2,3, 4}
and E, the set of edges, is {{1,2}, {2,3}, {1,3}, {2,4}, {1,4}}. Draw the
graph G. What is the degree of node 1? of node 3? Indicate a path from node
3 to node 4 on your drawing of G.

PROBLEMS 27

0.9 Write a formal description of the following graph.

PROBLEMS

0.10 Find the error in the following proof that 2 = 1.
Consider the equation a = b. Multiply both sides by a to obtain a2 ab. Subtract
b2 from both sides to get a2 - b2 = ab -b 2 . Now factor each side, (a + b) (a -b) =
b(a -b), and divide each side by (a -b), to get a + b = b. Finally, let a and b
equal 1, which shows that 2 = 1.

0.11 Find the error in the following proof that all horses are the same color.
CLAIM: In any set of h horses, all horses are the same color.
PROOF: By induction on h.

Basis: For h = 1. In any set containing just one horse, all horses clearly are the
same color.

Induction step: For k > I assume that the claim is true for h = k and prove that
it is true for h = k + 1. Take any set H of k + 1 horses. We show that all the horses
in this set are the same color. Remove one horse from this set to obtain the set H1
with just k horses. By the induction hypothesis, all the horses in H, are the same
color. Now replace the removed horse and remove a different one to obtain the set
H2 . By the same argument, all the horses in H2 are the same color. Therefore all
the horses in H must be the same color, and the proof is complete.

0.12 Show that every graph with 2 or more nodes contains two nodes that have equal
degrees.

A*0. 13 Ramsey's theorem. Let G be a graph. A clique in G is a subgraph in which every
two nodes are connected by an edge. An anti-clique, also called an independent
set, is a subgraph in which every two nodes are not connected by an edge. Show
that every graph with n nodes contains either a clique or an anti-clique with at least
2' log2 n nodes.

28 CHAPTER 0 / INTRODUCTION

AO. 1 4 Use Theorem 0.25 to derive a formula for calculating the size of the monthly pay-
ment for a mortgage in terms of the principal P, interest rate I, and the number
of payments t. Assume that, after t payments have been made, the loan amount is
reduced to 0. Use the formula to calculate the dollar amount of each monthly pay-
ment for a 3 0-year mortgage with 3 60 monthly payments on an initial loan amount
of $100,000 with a 5% annual interest rate.

SELECTED SOLUTIONS

0.13 Make space for two piles of nodes, A and B. Then, starting with the entire graph,
repeatedly add each remaining node x to A if its degree is greater than one half the
number of remaining nodes and to B otherwise, and discard all nodes to which x
isn't (is) connected if it was added to A (B). Continue until no nodes are left. At
most half of the nodes are discarded at each of these steps, so at least log2 n steps
will occur before the process terminates. Each step adds a node to one of the piles,
so one of the piles ends up with at least 2 log2 n nodes. The A pile contains the
nodes of a clique and the B pile contains the nodes of an anti-clique.

0.14 We let Pt = 0 and solve for Y to get the formula: Y = PMt(MJ - 1)/(M' - 1).
For P = $100, 000, I = 0.05, and t = 360 we have M = 1 + (0.05)/12. We use a
calculator to find that Y $536.82 is the monthly payment.

