Semantics

Greg Kobele
July 02, 2018

Review

Urgent!!!

Klausur

* NEXT WEEK!!!! *
- not in this room!!!

Location
HSG HS 8

Semantic Interpretation Rules

$$
\begin{aligned}
& \left.\llbracket \begin{array}{c}
\bullet \\
\vdots \\
\alpha \\
\hline
\end{array}\right] \quad=\llbracket \alpha \rrbracket \\
& \llbracket \alpha^{\prime} \stackrel{\bullet}{ }{ }^{\bullet} \rrbracket \rrbracket=\llbracket \alpha \rrbracket \otimes \llbracket \beta \rrbracket \\
& \llbracket \alpha_{i}^{\prime}{ }^{\bullet} \backslash{ }^{\bullet} \rrbracket \rrbracket=\llbracket \alpha \rrbracket \otimes\left(\lambda x_{i} . \llbracket \beta \rrbracket\right) \\
& \llbracket t_{i} \rrbracket \quad=x_{i}
\end{aligned}
$$

Scope

DPs in DPs

[one [apple [in every basket]]] is rotten
in eet
basket,apple et one,every (et)(et)t be (et)et rotten et
compare with: one apple which was in every basket was rotten

Interpreting this sentence

one apple in every basket is rotten every(basket)(λx.one(apple \wedge in $(x))($ rotten $))$
looks like movement of every basket to a higher position

But...

...isn't this an island violation?
*which basket is one apple in rotten?

Ambiguous?

Usually implausible with a single sentence

1. one apple in every basket is rotten
2. no apple in a basket is rotten

[D [N [P DP]]] VP

1. for every basket, there is one apple in that basket, such that that apple is rotten $D P(\lambda x . D(N \wedge P(x))(V P))$
2. for no apple which is in a basket, is that apple rotten $D(N \wedge \lambda y . D P(\lambda x . P(x)(y)))(V P)$

How could we build these?

$D(N \wedge \lambda y \cdot D P(\lambda x \cdot P(x)(y)))(V P)$
Focus on $\lambda y . D P(\lambda x . P(x)(y))$

- ignoring the λy for the moment
- $D P(\lambda x . P(x)(y))$ looks like it would come from the following tree:

Putting the λ back

doesn't work!

- P : eet
- $\lambda x . P(x)$: eet
- DP : (et)t

But of course:

- $\lambda x . P(x)(y): e t$

Putting the λ back (II)

$$
\lambda y \cdot D P(\lambda x \cdot P(x)(y))
$$

$P=\lambda z \cdot \lambda y \cdot P(z)(y)$
a movement construction

- have $\llbracket D P \rrbracket$ on one hand,
. and $\left.\lambda x . \llbracket \mathrm{P}_{\mathrm{P}}^{\mathrm{PP}}\right] \rrbracket=\lambda x \cdot \lambda y \cdot P(x)(y)$ on the other
how to put them together?

Putting the λ back (III)

$$
D P \oplus \lambda x \cdot \lambda y \cdot P(x)(y)=\lambda y \cdot D P(\lambda x \cdot P(x)(y))
$$

Adding a new mode of composition

$$
\begin{aligned}
& f \oplus g=f(g) \\
& f \oplus g=\lambda y \cdot f(\lambda x . g(x)(y))
\end{aligned}
$$

Types

- $g: a b c$
- $f:(a c) d$
- $\lambda y . f(\lambda x . g(x)(y)): b d$

Putting the λ back (III)

$$
D P \oplus \lambda x \cdot \lambda y \cdot P(x)(y)=\lambda y \cdot D P(\lambda x \cdot P(x)(y))
$$

Adding a new mode of composition

$$
\begin{aligned}
& f \oplus g=f(g) \\
& f \oplus g=\lambda y . f(\lambda x . g(x)(y))
\end{aligned}
$$

Types

- g : ebc
- $f:(e c) d$
- $\lambda y . f(\lambda x . g(x)(y)): b d$

Putting the λ back (III)

$$
D P \oplus \lambda x \cdot \lambda y \cdot P(x)(y)=\lambda y \cdot \operatorname{DP}(\lambda x \cdot P(x)(y))
$$

Adding a new mode of composition

$$
\begin{aligned}
& f \oplus g=f(g) \\
& f \oplus g=\lambda y \cdot f(\lambda x \cdot g(x)(y))
\end{aligned}
$$

Types

- g:eec
- $f:(e c) d$
- $\lambda y . f(\lambda x . g(x)(y)): e d$

Putting the λ back (III)

$$
D P \oplus \lambda x \cdot \lambda y \cdot P(x)(y)=\lambda y \cdot D P(\lambda x \cdot P(x)(y))
$$

Adding a new mode of composition

$$
\begin{aligned}
& f \oplus g=f(g) \\
& f \oplus g=\lambda y \cdot f(\lambda x \cdot g(x)(y))
\end{aligned}
$$

Types

- g : eet
- $f:(e t) d$
- $\lambda y . f(\lambda x . g(x)(y)): e d$

Putting the λ back (III)

$$
D P \oplus \lambda x \cdot \lambda y \cdot P(x)(y)=\lambda y \cdot D P(\lambda x \cdot P(x)(y))
$$

Adding a new mode of composition

$$
\begin{aligned}
& f \oplus g=f(g) \\
& f \oplus g=\lambda y \cdot f(\lambda x \cdot g(x)(y))
\end{aligned}
$$

Types

- g : eet
- $f:(e t) t$
- $\lambda y . f(\lambda x . g(x)(y)):$ et

Bind in the continuation monad

Some notation

 write $f \gg=g$ for $\lambda y . f(\lambda x . g(x)(y))$GQ >>= R apply a $G Q$ to the first argument of a binary relation

- prepositions
- transitive verbs (!)

Putting everything together

What structure will give us the following term? $D(N \wedge D P \gg=\lambda x \cdot P(x))(V P)$

Avoiding Islands

Can we avoid moving out of the DP? $D P(\lambda x . D(N \wedge P(x))(V P))$

