Semantics

Greg Kobele July 02, 2018

Review

Urgent!!!

Klausur * NEXT WEEK!!!! *

• not in this room!!!

Location HSG HS 8

Semantic Interpretation Rules

Scope

DPs in DPs

[one [apple [in every basket]]] is rotten in eet basket,apple et one,every (et)(et)t be (et)et rotten et

compare with: one apple which was in every basket was rotten

Interpreting this sentence

one apple in every basket is rotten every(basket)(λx .one(apple \wedge in(x))(rotten))

looks like movement of every basket to a higher position

But...

...isn't this an island violation?
*which basket is one apple in rotten?

Ambiguous?

Usually implausible with a single sentence

- 1. one apple in every basket is rotten
- 2. no apple in a basket is rotten

[D [N [P DP]]] VP

- 1. for every basket, there is one apple in that basket, such that that apple is rotten $DP(\lambda x.D(N \land P(x))(VP))$
- 2. for no apple which is in a basket, is that apple rotten $D(N \land \lambda y.DP(\lambda x.P(x)(y)))(VP)$

 $D(N \land \lambda y.DP(\lambda x.P(x)(y)))(VP)$ Focus on $\lambda y.DP(\lambda x.P(x)(y))$

- \cdot ignoring the λy for the moment
- $DP(\lambda x.P(x)(y))$ looks like it would come from the following tree:

doesn't work!

- P : eet
- $\lambda x.P(x)$: eet
- DP : (et)t

But of course:

• $\lambda x.P(x)(y): et$

 $\lambda y. \mathsf{DP}(\lambda x. \mathsf{P}(x)(y))$

$$P = \lambda z.\lambda y.P(z)(y)$$

a movement construction

have [[DP]] on one hand,

• and
$$\lambda x$$
. $\begin{bmatrix} PP \\ P \\ T \end{bmatrix} = \lambda x \cdot \lambda y \cdot P(x)(y)$ on the other

how to put them together?

$$\mathsf{DP} \oplus \lambda x.\lambda y.\mathsf{P}(x)(y) = \lambda y.\mathsf{DP}(\lambda x.\mathsf{P}(x)(y))$$

Adding a new mode of composition $f \oplus g = f(g)$ $f \oplus g = \lambda y.f(\lambda x.g(x)(y))$

- g : abc
- f : (ac)d
- $\lambda y.f(\lambda x.g(x)(y))$: bd

$$\mathsf{DP} \oplus \lambda x.\lambda y.\mathsf{P}(x)(y) = \lambda y.\mathsf{DP}(\lambda x.\mathsf{P}(x)(y))$$

Adding a new mode of composition $f \oplus g = f(g)$ $f \oplus g = \lambda y.f(\lambda x.g(x)(y))$

- g : <mark>e</mark>bc
- f : (ec)d
- $\lambda y.f(\lambda x.g(x)(y))$: bd

$$\mathsf{DP} \oplus \lambda x.\lambda y.\mathsf{P}(x)(y) = \lambda y.\mathsf{DP}(\lambda x.\mathsf{P}(x)(y))$$

Adding a new mode of composition $f \oplus g = f(g)$ $f \oplus g = \lambda y.f(\lambda x.g(x)(y))$

- g : e<mark>e</mark>c
- f : (ec)d
- $\lambda y.f(\lambda x.g(x)(y)) : ed$

$$\mathsf{DP} \oplus \lambda x.\lambda y.\mathsf{P}(x)(y) = \lambda y.\mathsf{DP}(\lambda x.\mathsf{P}(x)(y))$$

Adding a new mode of composition $f \oplus g = f(g)$ $f \oplus g = \lambda y.f(\lambda x.g(x)(y))$

- g : ee<mark>t</mark>
- *f* : (et)d
- $\lambda y.f(\lambda x.g(x)(y))$: ed

$$\mathsf{DP} \oplus \lambda x.\lambda y.\mathsf{P}(x)(y) = \lambda y.\mathsf{DP}(\lambda x.\mathsf{P}(x)(y))$$

Adding a new mode of composition $f \oplus g = f(g)$ $f \oplus g = \lambda y.f(\lambda x.g(x)(y))$

- g : eet
- *f* : (*et*)**t**
- $\lambda y.f(\lambda x.g(x)(y)) : et$

```
Some notation
write f \gg g for \lambda y.f(\lambda x.g(x)(y))
```

 $GQ \gg R$ apply a GQ to the first argument of a binary relation

- prepositions
- transitive verbs (!)

What structure will give us the following term? $D(N \land DP \implies \lambda x.P(x))(VP)$

Can we avoid moving out of the DP? $DP(\lambda x.D(N \land P(x))(VP))$