Semantics

Greg Kobele June 25, 2018

Review

- 1. we can interpret sentences with movement
- 2. structure \rightarrow formula \rightarrow truth conditions
- 3. types govern how meanings are assembled

Semantic Interpretation Rules

Constraints on types

binary branching (no movement) $\alpha \beta$

 \cdot one must have type (*ab*), and the other type *a*

Constraints on types

binary branching (no movement) $\alpha \beta$

 \cdot one must have type (*ab*), and the other type *a*

movement

- α must have type (*ab*)*c*
- β must have type b

Transitivity

Where should objects move?

answer: at least to a place where the interpretation of the sister is of type t

VP internal subjects

Ambiguity with QNPs

Change DPs

Different structures, different meanings

- 1. $EVERY(1)(\lambda e.SOME(1)(\lambda s.PRAISE(s)(e)))$
- 2. SOME(1)(λ s.every(1)(λ e.praise(s)(e)))

Different meanings, different predictions

EVERY(1)(λe .**SOME**(1)(λs .**PRAISE**(s)(e))) for every thing, e, there is some thing, s, such that e praised s

SOME(1)($\lambda s.\text{EVERY}(1)(\lambda e.\text{PRAISE}(s)(e))$) there is some thing s, such that for every thing, *e*, *e* praised s

in English sentences with multiple quantifiers are often ambiguous

SVO

```
Subject wide scope (SWS)

S(\lambda s.O(\lambda o.V o s))

Object wide scope (OWS)

O(\lambda o.S(\lambda s.V o s))
```

Scope

Scope

A scopes over B iff B is (inside of) an argument to A

A(...B...)

corresponds roughly to c-command

SVO

Subject wide scope (SWS) $S(\lambda s.O(\lambda o.V o s))$ Object wide scope (OWS) $O(\lambda o.S(\lambda s.V o s))$

not and and

• It is not raining and snowing

every and not

• all that glisters is not gold

Some non-examples

John and every

• John praised every girl

every and every

every boy praised every girl

Semantic justification

- individuals commute with GQs!
- every and some commute with themselves

If a sentence has two meanings, it should have two structures

If a sentence has two structures, it may have two meanings

Pragmatics (reasoning about)^{*} communicative intentions

- 1. Can you open the window?
- 2. I have two children.

Forcing scope

Ellipsis can force readings

The chickens are ready to eat, and the children are too.

 structure of ellipsis site must be identical to antecedent

But consider: Every doctor praised a nurse, and John did too.

> SWS <u>bad</u> OWS ok!

context/expectations can force readings A flag was hanging in front of every building

DPs in DPs

[one [apple [in every basket]]] was rotten in eet basket,apple et one,every (et)t be (et)et rotten et

compare with: one apple which was in every basket was rotten Modification

Red denotes a property (*et***)** of being red

• This cherry is red

Red denotes a function ((*et*)*et***)** from properties to properties

• This red cherry is tasty

Red denotes a function ((*et*)*et***)** which one? Let *R* be the set of red things

•
$$\operatorname{RED}(p)(x) = 1 \operatorname{iff} p(x) \land x \in R$$

Predicate Modification

- \cdot since coordination \wedge is used
- in the definition of adjectives ((*et*)*et*)
- to let them combine with NP meanings (*et*)
- simplify meaning, and introduce new semantic rule

$$\begin{bmatrix} \swarrow & \bullet & \\ \alpha & & \beta \end{bmatrix} = \llbracket \alpha \rrbracket \land \llbracket \beta \rrbracket$$

- here the types of α and β must
 - be the same
 - be boolean

- $\cdot\,$ Not every binary branching structure can be interpreted
- must have compatible types
 - with just function application (($\alpha\beta$) and α)
 - with PM too (boolean)
- Adding more operations
 - lets us interpret more structures

Not all adjectives

Absolute $f(x) = x \wedge f(1)$

• male, female, odd, even

John is an f x ⊢ John is f and John is x

 $\frac{\text{Restrictive}}{f(x) \le x}$

• skillful, tall

John is an f x ⊢ John is an x

Non-restrictive (no restriction)

• fake

John is an f $x \vdash ???$