# Semantics

Greg Kobele June 18, 2018

# Types

There are different kinds of things semantics propositions t individuals e trees T

## **Function Types**

Starting with a finite number of basic types,

# We allow for the type of *functions* if

- $\cdot \alpha$  is a type
- +  $\beta$  is a type

then

- $\cdot \ (lphaeta)$  is a type
- $\cdot\,$  the type of functions from  $\alpha {\rm s}$  to  $\beta {\rm s}$

# a tree: a(b)(c(e)(f))(d)

#### is not a function

it is a basic object

#### it has type T

#### a tree with a hole: $\lambda x.a(b)(x)(d)$

is a function it takes a tree as input, and puts it in the hole

it has type (TT) A tree with a hole

 $\cdot$  is what is left over when you remove a subtree from a tree

It is called a tree context

• it is the 'context' in which a subtree occurs

#### A context context

is what is left when you remove a tree context from a tree

## a context context $\lambda f.a(b)(f(e))(d)$

is also a function it takes a context as input, and puts it in the hole

It has type (TT)T

#### In general

• can play this game forever!

#### A (context context) context is a tree which is missing a context context

- $\cdot\,$  i.e. a tree, missing a tree missing a tree missing a tree
- of type ((TT)T)T

# In general $\alpha\beta$

- a  $\beta$
- which is missing an  $\alpha$

# Non-associativity of type formation

# T(TT) is different from (TT)T

## T(TT)

- takes two arguments to get a tree
- both arguments are trees

## (TT)T

- takes one argument to get a tree
- only argument is a *function*

# $\lambda x.g(x)(x)$ constructs trees with identical daughters

 $\lambda f.g(f(a))(f(b))$  can have 'differences' between the daughters

sameness is more abstract

Lambda Terms

#### $\lambda x.M$

- 1. an M with a hole named x
- 2. an M which is missing an x
- 3. a function which takes an argument (here called *x*), and outputs an *M*

# Typing terms

Variables a variable can have any type you like

#### Abstractions

- + if M has type  $\beta$
- $\cdot\,$  and x has type  $\alpha$
- then  $\lambda x.M$  has type ( $\alpha\beta$ )

## Applications

- + if M has type (lphaeta)
- and N has type  $\alpha$
- then M N has type  $\beta$

#### $\mathsf{\Gamma}\vdash\mathsf{M}:\alpha$

 $\ensuremath{\mathsf{\Gamma}}$  assumptions about types of variables

M a  $\lambda$  term

 $\alpha$  the type of M

We can use typing contexts to help find the type of a term

## Typing variables

#### Variables a variable can have any type you like

### **Translation**

- $\cdot$  x has type  $\alpha$
- + if you assume that x has type  $\alpha$

In pictures

 $\overline{\Gamma, x : \alpha \vdash x : \alpha}$ 

# Typing abstractions

#### Abstractions

- + if M has type  $\beta$
- $\cdot$  and x has type  $\alpha$
- then  $\lambda x.M$  has type  $(\alpha\beta)$

#### Translation

- $\lambda x.M$  has type ( $\alpha\beta$ )
- $\cdot$  if when you assume that x has type  $\alpha$
- $\cdot$  M has type  $\beta$

### In pictures

$$\frac{\Gamma, x : \alpha \vdash M : \beta}{\Gamma \vdash \lambda x.M : \alpha\beta}$$

# Typing applications

## Applications

- if M has type ( $\alpha\beta$ )
- $\cdot\,$  and N has type  $\alpha$
- then M N has type  $\beta$

#### Translation

- M N has type  $\beta$
- $\cdot$  if M has type (lphaeta)
- $\cdot\,$  and N has type  $\alpha$

## In pictures

$$\frac{\Gamma \vdash M : \alpha\beta \qquad \Gamma \vdash N : \alpha}{\Gamma \vdash MN : \beta}$$

### Example

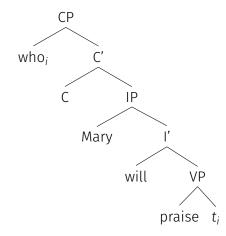
#### assume that

| constant | type |
|----------|------|
| a,c      | TTT  |
| b,d,e,f  | Т    |

- a(b)(c(e)(f))
- $\lambda x.a(b)(x)$
- λg.a(b)(g(e))

#### Typed terms

Another way of writing  $\lambda$  terms includes typing information in the term (just write variables together with their types):


- a(b)(c(e)(f))
- ·  $\lambda x^T.a(b)(x^T)$
- $\lambda g^{TT}.a(b)(g^{TT}(e))$

We can then drop the typing contexts

$$\overline{x^{\alpha}:\alpha} \qquad \frac{M:\beta}{\lambda x^{\alpha}.M:\alpha\beta}$$
$$\frac{M:\alpha\beta}{(M N):\beta}$$

**Interpreting Movement** 

#### Movement and traces



#### Why is there a trace in the VP?

- 1. because something moved out
- 2. because the VP is missing its object
- 3. because the VP has a hole

The basic idea syntax t<sub>i</sub> semantics x<sub>i</sub>

A slogan traces are holes

#### landing sites 'I moved, and left behind a hole'

$$\begin{bmatrix} & \bullet \\ & \uparrow & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & &$$

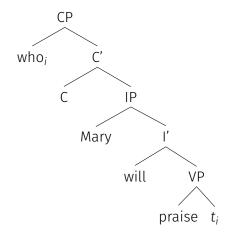
traces 'I am a hole'

$$\llbracket t_i \rrbracket = x_i$$

### The types of traces

landing sites 'I moved, and left behind a hole'

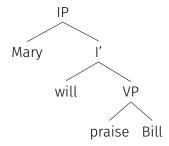
$$\begin{bmatrix} & \bullet & \\ & \uparrow & & \\ & & & \beta \end{bmatrix} = \llbracket \alpha \rrbracket (\lambda x_i, \llbracket \beta \rrbracket)$$


this requires that

- $\llbracket \alpha \rrbracket$  has type (*ab*)*c*
- ・ [[β]] has type *b*
- $x_i$  has type a

#### **Example** a DP has type (*et*)t

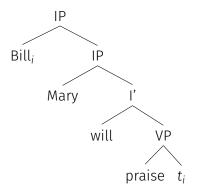
• its trace must have type *e* 


## Example



- what should the interpretation look like?
- what should the 'truth conditions' be?

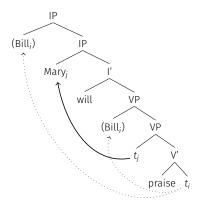
Transitivity


## Revisiting a previous example



• how could we interpret this at all?

#### **Covert movement**


answer: if the structure were different



#### Where should objects move?

answer: at least to a place where the interpretation of the sister is of type t

VP internal subjects

