Semantics

Greg Kobele
May 28, 2018

Review

Semantic Interpretation

Expressions denote in boolean domains
t, et, eet, (et)t, ...
Semantic Combination via Function Application

$$
\left[\left[\begin{array}{ll}
\stackrel{\bullet}{\prime} \backslash \\
\alpha & \\
\beta
\end{array}\right]\right]= \begin{cases}\llbracket \alpha \rrbracket(\llbracket \beta \rrbracket) & \text { if } \alpha: a b \text { and } \beta: a \\
\llbracket \beta \rrbracket(\llbracket \alpha \rrbracket) & \text { if } \alpha: a \text { and } \beta: a b\end{cases}
$$

I will write $\alpha \otimes \beta$ to mean $\alpha(\beta)$ or $\beta(\alpha)$, which ever is appropriate

The type (et)t
an object of type (et)t

- looks at a property
- and says yes or no

This is called a generalized quantifier
John
is true of a property P iff
someone
is true of a property P iff
everyone
is true of a property P iff
no one
is true of a property P iff

The type (et)t
an object of type (et)t

- looks at a property
- and says yes or no

This is called a generalized quantifier
John
is true of a property P iff $j \in P$
someone
is true of a property P iff
everyone
is true of a property P iff
no one
is true of a property P iff

The type (et)t
an object of type (et)t

- looks at a property
- and says yes or no

This is called a generalized quantifier
John
is true of a property P iff $j \in P$
someone
is true of a property P iff something is in P
everyone
is true of a property P iff
no one
is true of a property P iff

The type (et)t
an object of type (et)t

- looks at a property
- and says yes or no

This is called a generalized quantifier
John
is true of a property P iff $j \in P$
someone
is true of a property P iff something is in P
everyone
is true of a property P iff everything is in P
no one
is true of a property P iff

The type (et)t
an object of type (et)t

- looks at a property
- and says yes or no

This is called a generalized quantifier
John
is true of a property P iff $j \in P$
someone
is true of a property P iff something is in P
everyone
is true of a property P iff everything is in P
no one
is true of a property P iff nothing is in P

Boolean Homomorphisms

g is a boolean homomorphism if

1. it distributes over
complement $g(\neg a)=\neg(g(a))$
meet $g(a \wedge b)=g(a) \wedge g(b)$
join $g(a \vee b)=g(a) \vee g(b)$
2. it maps extrema to extrema

$$
\text { top } g(1)=1
$$

bottom $g(0)=0$

Proper names revisited

We have shown:

1. all individuals are homomorphisms
2. all homomorphisms are individuals

'Entities'
 are exactly those GQs which

- distribute over logical operations
- map extrema to extrema

A purely semantic characterization of proper name denotations

Determiners

Some GQs

- every boy
- some girl
- no professor
- at least 3 students
- most doctors
- more doctors than lawyers
- between 3 and 12 professors

Lexical GQs

Some lexical GQs

- John, Mary, Susan, Bill
- everybody, nobody, somebody
- ...?

Are there any?

Proper names
but:

- this John, every Susan

Quantifiers everybody vs every body

Most GQs are derived

every boy danced
is built up out of (at least) three parts
dance, boy are properties
every
maps a property boy to a GQ

Determiners

(et)(et)t

- function from properties to GQs
- function from two properties to a truth value

Counting

E	et	(et)t	$($ et $)($ et $) t$
n	2^{n}	$2^{\left(2^{n}\right)}$	$\left(2^{2^{n}}\right)^{2^{n}}=2^{4^{n}}$
1	2	4	16
2	4	16	65,536
3	8	256	$18,446,744,073,709,551,616$

Different Kinds of Determiners

Determiner Denotations

- $\operatorname{some}(A)(B)=1$ iff
- some element in A which is also in B
- $A \cap B \neq \emptyset$
- $\operatorname{every}(A)(B)=1 \mathrm{iff}$
- every element in A is also in B
- $A \subseteq B$
- $A-B=\emptyset$
- $A \cap B=A$
- no $(A)(B)=1 \mathrm{iff}$
- no element in A is also in B
- $A-B=A$
- $A \cap B=\emptyset$

Comparing Properties

What do we need to know...

Some students read the book need to know:

- which students read the book?
- which students did not read the book?

Every student read the book need to know:

- which students read the book?
- which students did not read the book?

Most students read the book need to know:

- which students read the book?
- which students did not read the book?

What do we need to know...

Some students read the book need to know:

- which students read the book?
- which students did not read the book?

Every student read the book need to know:

- which students read the book?
- which students did not read the book?

Most students read the book need to know:

- which students read the book?
- which students did not read the book?

What do we need to know...

Some students read the book need to know:

- which students read the book?
- which students did not read the book?

Every student read the book need to know:

- which students read the book?
- which students did not read the book?

Most students read the book need to know:

- which students read the book?
- which students did not read the book?

Intersections

Intersectivity

Some DETs only care about $A \cap B$ But then: $D(A)(B)=D(X)(Y)$ whenever $A \cap B=X \cap Y$
call these Intersective

Intersectivity

Some DETs only care about $A \cap B$ But then: $D(A)(B)=D(X)(Y)$ whenever $A \cap B=X \cap Y$
call these Intersective
But of course: $A \cap B=A \cap B \cap E$

Intersectivity

Some DETs only care about $A \cap B$ But then: $D(A)(B)=D(X)(Y)$ whenever $A \cap B=X \cap Y$ call these Intersective

But of course: $A \cap B=A \cap B \cap E$
and so if D is intersective
$D(A)(B)=D(A \cap B)(E)=D(E)(A \cap B)$

- D As are Bs
- D As which are Bs exist
- D things which exist are As and Bs

Some Intersective Dets

More interesting is:
Theorem
if $D(A)(B)=D(A \cap B)(E)$ then D is intersective
This gives us a test for intersectivity!!!
Trying it out:

Some student laughed Some student who laughed exists Every student laughed Every student who laughed exists No student laughed No student who laughed exists
Most students laughed Most students who laughed exist

Seat Work

Which of the following are intersective?

- Several
- More than six
- Six out of ten
- Less than six
- At most 60% of the
- Exactly six
- Between one sixth and five sixths of the
- Between six and ten
- Almost 600

Not just intersective, but cardinal

Some DETs only care about the size of $A \cap B$ But then: $D(A)(B)=D(X)(Y)$ whenever $|A \cap B|=|X \cap Y|$
call these Cardinal
of course, these are intersective too

Cardinality

Most intersective dets are cardinal

- some, no, several, more than six, between six and ten, ...

What isn't cardinal?!
i.e. what needs to know more about $A \cap B$ than just its size?

- which students read the book
- all students but John read the book
- more male than female students read the book

Co-intersection

Co-intersectivity

Some DETs only care about $A-B$ But then: $D(A)(B)=D(X)(Y)$ whenever $A-B=X-Y$
call these Co-Intersective

Co-intersectivity

Some DETs only care about $A-B$
But then: $D(A)(B)=D(X)(Y)$ whenever $A-B=X-Y$
call these Co-Intersective
and some only care about $|A-B|: B_{\text {block }}$: these are Co-cardinal

Some Co-intersective Dets

- $\operatorname{ALL}(A)(B)$
- ALL BUT SIX(A)(B)
- EVERY ... BUT JOHN(A)(B)

Some Co-intersective Dets

- $\operatorname{ALL}(A)(B)$
- ALL BUT SIX(A)(B)
- EVERY ... BUT JOHN(A)(B)
which are co-cardinal and which are not?

Proportions

Some DETs are neither intersective nor co-intersective

- Most students smile
- Nine out of ten students will pass the exam
- At most 10% of the students slept during class
- Between one third and two thirds of the students are vegetarians
- Not one student in ten can answer that question

Proportionality

Some DETs care about comparing $A \cap B$ and A $D(A)(B)=D(X)(Y)$ whenever $\frac{|A \cap B|}{|A|}=\frac{|X \cap Y|}{|X|}$
call these Proportional

Boolean Naturality

All of these classes of Dets form boolean algebras

- they have a top and a bottom element
- they are closed under the operations
- i.e. if D, D^{\prime} are in the same class,
- then so are $\neg D, D \wedge D^{\prime}, D \vee D^{\prime}$

Because (co-)intersective Dets depend on one set only there are the same \# of them as functions of type (et)t

E	Det	Int	Co-Int
1	16	4	4
2	65,536	16	16
3	18×10^{18}	256	256

Combining (Co-)Intersective Dets

What happens when we combine different kinds of Dets?

- not necessarily (co-)intersective!

Combining (Co-)Intersective Dets

What happens when we combine different kinds of Dets?

- not necessarily (co-)intersective!

Conservativity
D is conservative iff

$$
D(A)(B)=D(A)(A \cap B)
$$

in words:
$D A$ is B iff $D A$ is an A which is B

Combining (Co-)Intersective Dets

What happens when we combine different kinds of Dets?

- not necessarily (co-)intersective!

Conservativity
D is conservative iff

$$
D(A)(B)=D(A)(A \cap B)
$$

in words:

$$
D A \text { is } B \text { iff } D A \text { is an } A \text { which is } B
$$

Theorem
The boolean closure of intersective and co-intersective Dets are the conservative Dets

Conservativity

Claim
All natural language Dets are conservative
A quick check...

Conservativity

Claim
All natural language Dets are conservative
A quick check... intersective $D(A)(B)=D(X)(Y)$ iff $A \cap B=X \cap Y$

$$
\begin{aligned}
A \cap B & =(A \cap A) \cap B \\
& =A \cap(A \cap B)
\end{aligned}
$$

Conservativity

Claim
All natural language Dets are conservative
A quick check...
intersective
co-intersective $D(A)(B)=D(X)(Y)$ iff $A-B=X-Y$

$$
\begin{aligned}
A-B & =A-((B-A) \cup(B \cap A)) \\
& =(A-(B-A))-(B \cap A) \\
& =A-(B \cap A) \\
& =A-(A \cap B)
\end{aligned}
$$

Conservativity

Claim
All natural language Dets are conservative
A quick check...
intersective
co-intersective
proportional $D(A)(B)=D(X)(Y)$ iff $\frac{|A \cap B|}{|A|}=\frac{|X \cap Y|}{|X|}$

$$
\frac{|A \cap B|}{|A|}=\frac{|A \cap(A \cap B)|}{|A|}
$$

How big a restriction is conservativity?

E	Det	Int	Co-Int	Cons
1	16	4	4	8
2	65,536	16	16	512
3	18×10^{18}	256	256	13×10^{7}

There are

$$
\begin{aligned}
& \text { total } 2^{||E|} \\
& \text { cons } 2^{3|E|}
\end{aligned}
$$

Most Dets are not conservative!

Is it even true?

Two possible exceptions:
only only students drink absinthe
many $_{1}$ many swedes have won nobel prizes can mean:

1. Of the nobel prize winners, many are swedes
2. many swedes have won nobel prizes

Linguistic Naturality

But what good is it?

A classification is not necessarily useful some animals have

- white fur on their face, no white fur on face
- green eyes, blue eyes, brown eyes, black eyes
- four legs, two legs, no legs, (three legs)

Our semantic classification describes allowable inferences
but is there more to it?

Existential There clauses

Good

1. There are many students in my class
2. There are some students in my class
3. There are more than five students in my class
4. There was no student but John in my class

Bad

1. There is every student in my class
2. There are most students in my class
3. There is between one and two thirds of the students in my class

The Existential Question

Which DPs go here:

There are X in my class

Claim
DPs with intersective Dets

Conclusion

- Determiners have type (et)(et)t
- Different kinds:
- intersective
- co-intersective
- proportional
- But always: Conservative

