Semantics

Greg Kobele
May 14, 2018

Review

Semantic Interpretation

Expressions denote in boolean domains $t, e t$, eet, ... and e?

Semantic Combination via Function Application

$$
\left[\left[\begin{array}{cc}
\bullet & \\
\alpha & \\
\beta
\end{array}\right]\right]= \begin{cases}\llbracket \alpha \rrbracket(\llbracket \beta \rrbracket) & \text { if } \alpha: a b \text { and } \beta: a \\
\llbracket \beta \rrbracket(\llbracket \alpha \rrbracket) & \text { if } \alpha: a \text { and } \beta: a b\end{cases}
$$

I will write $\alpha \otimes \beta$ to mean $\alpha(\beta)$ or $\beta(\alpha)$, which ever is appropriate

Conjoining NPs

NP Coordination

Logical operators

- denote boolean operations
- can combine with any element in a boolean domain

Problem:
e (the type of entities) is not a boolean domain
but we can still coordinate NPs

- John and Mary
- every teacher or some student
- Greg and some student

John laughs
true iff the individual john is a laugher i.e. iff
【laugh】 $(\llbracket J o h n \rrbracket)=1$
everyone laughs
true iff the individual everyone is a laugher???
no one laughs
true iff the individual noone is a laugher???
someone laughs
true iff the individual someone is a laugher???

Inference patterns with quantifiers

everyone laughs
entails

1. John laughs
2. Mary laughs
no one laughs entails
3. John doesn't laugh
4. Mary doesn't laugh
someone laughs
entails that for some name Name,
5. Name laughs

Inferences with individuals

everyone laughs entails

1. John laughs
2. Mary laughs
there must be some individual $e \in E$ such that if $e \in A$ then every other individual is also in A

- except for the individual 【noone】
no one laughs
entails

1. John doesn't laugh
2. Mary doesn't laugh
there must be some individual $n \in E$ such that if $n \in A$ then no other individual is also in A

- and nothing is true of nothing, but rather of n
someone laughs
entails that for some name Name，
1．Name laughs
there must be some individual $s \in E$
such that if $s \in A$ then at least one other individual is also in A
- but not just 【everyone】
- and not 【noone】

This is a little weird

Who are these mysterious individuals？

- 【everyone】
- 【someone】
- 【noone】

They don＇t act like normal individuals：
－We are three．All of us were at the party．Therefore，five people went to the party：
－the three of us，Someone，and Everyone
－No one went to the party．Therefore，exactly one person went to the party：
－No one

Rethinking types

$$
N P_{e} \oplus V P_{e t}=S_{t}
$$

Rethinking types

$$
N P_{\square} \oplus V P_{e t}=S_{t}
$$

Rethinking types

$$
N P_{\square} \oplus V P_{e t}=S_{t}
$$

Possible choices for \square

- e
- (et)t

The type (et)t
an object of type (et)t

- looks at a property
- and says yes or no

This is called a generalized quantifier
John
is true of a property P iff
someone
is true of a property P iff
everyone
is true of a property P iff
no one
is true of a property P iff

The type (et)t
an object of type (et)t

- looks at a property
- and says yes or no

This is called a generalized quantifier
John
is true of a property P iff $j \in P$
someone
is true of a property P iff
everyone
is true of a property P iff
no one
is true of a property P iff

The type (et)t
an object of type (et)t

- looks at a property
- and says yes or no

This is called a generalized quantifier
John
is true of a property P iff $j \in P$
someone
is true of a property P iff something is in P
everyone
is true of a property P iff
no one
is true of a property P iff

The type (et)t
an object of type (et)t

- looks at a property
- and says yes or no

This is called a generalized quantifier
John
is true of a property P iff $j \in P$
someone
is true of a property P iff something is in P
everyone
is true of a property P iff everything is in P
no one
is true of a property P iff

The type (et)t
an object of type (et)t

- looks at a property
- and says yes or no

This is called a generalized quantifier
John
is true of a property P iff $j \in P$
someone
is true of a property P iff something is in P
everyone
is true of a property P iff everything is in P
no one
is true of a property P iff nothing is in P

A boolean reformulation

- 【someone】 $(P)=1$ iff $P \neq 0$
- 【everyone】 $(P)=1$ iff $P=1$
- 【noone】 $(P)=1$ iff $P=0$

More GQs

- the boy
- at least 3 students
- most doctors
- more doctors than lawyers
- between 3 and 12 professors
- at least 3 adults but not more than 15 students

Booleanity

Now NPs denote in boolean algebras

- type (et)t
- so we can interpret logical operations on NPs too!
«some boy and every girl laughed】

Booleanity

Now NPs denote in boolean algebras
－type（et）t
－so we can interpret logical operations on NPs too！
«some boy and every girl laughed】

$$
=\llbracket \text { some boy and every girl】 (【laughed } \rrbracket)
$$

Booleanity

Now NPs denote in boolean algebras

- type (et)t
- so we can interpret logical operations on NPs too!
«some boy and every girl laughed】

$$
\begin{aligned}
& =\llbracket \text { some boy and every girl }(\llbracket \text { laughed } \rrbracket) \\
& =(\llbracket \text { some boy } \rrbracket \wedge \llbracket \text { every } \operatorname{gir} \downarrow \rrbracket)(\llbracket \text { laughed } \rrbracket)
\end{aligned}
$$

Booleanity

Now NPs denote in boolean algebras
－type（et）t
－so we can interpret logical operations on NPs too！
«some boy and every girl laughed】

$$
\begin{aligned}
& =\llbracket \text { some boy and every girl】(【laughed } \rrbracket) \\
& =(\llbracket \text { some boy } \rrbracket \wedge \llbracket \text { every girl } \rrbracket)(\llbracket \text { laughed } \rrbracket) \\
& =\llbracket \text { some boy } \rrbracket(\llbracket \text { laughed } \rrbracket) \wedge \llbracket \text { every girl } \rrbracket(\llbracket \text { laughed } \rrbracket)
\end{aligned}
$$

Patterns of Distribution

When do GQs distribute over boolean operations?

$$
\begin{aligned}
& \text { 1. } g(P \wedge Q) \stackrel{?}{=} g(P) \wedge g(Q) \\
& \text { 2. } g(P \vee Q) \stackrel{?}{=} g(P) \vee g(Q) \\
& \text { 3. } g(\neg P) \stackrel{?}{=} \neg g(P)
\end{aligned}
$$

Distributivity over Disjunction

1. everyone (either) laughed or praised Mary
2. (either) everyone laughed or everyone praised Mary
3. someone (either) laughed or praised Mary
4. (either) someone laughed or someone praised Mary
5. no one (either) laughed or praised Mary
6. (either) no one laughed or no one praised Mary
7. John (either) laughed or praised Mary
8. (either) John laughed or John praised Mary

Distributivity over Disjunction

1. everyone (either) laughed or praised Mary
2. \neq (either) everyone laughed or everyone praised Mary
3. someone (either) laughed or praised Mary
4. = (either) someone laughed or someone praised Mary
5. no one (either) laughed or praised Mary
6. \neq (either) no one laughed or no one praised Mary
7. John (either) laughed or praised Mary
8. $=$ (either) John laughed or John praised Mary

Distributivity over Conjunction

1. everyone (both) laughed and praised Mary
2. everyone laughed and everyone praised Mary
3. someone (both) laughed and praised Mary
4. someone laughed and someone praised Mary
5. no one (both) laughed and praised Mary
6. no one laughed and no one praised Mary
7. John (both) laughed and praised Mary
8. John laughed and John praised Mary

Distributivity over Conjunction

1. everyone (both) laughed and praised Mary
2. = everyone laughed and everyone praised Mary
3. someone (both) laughed and praised Mary
4. \neq someone laughed and someone praised Mary
5. no one (both) laughed and praised Mary
6. \neq no one laughed and no one praised Mary
7. John (both) laughed and praised Mary
8. $=$ John laughed and John praised Mary

Distributivity over Negation

1. everyone didn't laugh
2. It is not the case that everyone laughed
3. someone didn't laugh
4. It is not the case that someone laughed
5. no one didn't laugh
6. It is not the case that no one laughed
7. John didn't laugh
8. It is not the case that John laughed

Distributivity over Negation

1. everyone didn't laugh
2. $\neq \mathrm{It}$ is not the case that everyone laughed
3. someone didn't laugh
4. \neq It is not the case that someone laughed
5. no one didn't laugh
6. $\neq \mathrm{It}$ is not the case that no one laughed
7. John didn't laugh
8. $=$ It is not the case that John laughed

Distributivity Summary

everyone

distributes only over ^
someone
distributes only over \vee
no one
never distributes
john
always distributes

Proper names

Proper names always distribute how special is this?

In other words:
What is the relation between proper names
and distributivity?

Boolean Homomorphisms

g is a boolean homomorphism if

1. it distributes over
complement $g(\neg a)=\neg(g(a))$
meet $g(a \wedge b)=g(a) \wedge g(b)$
join $g(a \vee b)=g(a) \vee g(b)$
2. it maps extrema to extrema

$$
\text { top } g(1)=1
$$

bottom $g(0)=0$

Individuals are Homomorphisms

$I_{j}(P)=1$ iff $j \in P$
in words: you are the sum of your properties

Individuals are Homomorphisms
$\prime_{j}(P)=1$ iff $j \in P$
in words: you are the sum of your properties

Extrema

$$
\begin{aligned}
& I_{j}(E) \leftrightarrow j \in E \\
& \leftrightarrow \text { True } \\
&=1 \\
& \\
& I_{j}(0) \leftrightarrow j \in \emptyset \\
& \leftrightarrow \text { False } \\
&=0
\end{aligned}
$$

Homomorphisms are Individuals
$E=\{a, b, c\}$
g is a homomorphism

$$
\begin{aligned}
g(\emptyset) & =0 \\
g(E) & =1 \\
g(E) & =g(\{a\} \vee\{b\} \vee\{c\}) \\
& =\underbrace{g(\{a\}) \vee g(\{b\}) \vee g(\{c\})}_{\text {exactly one must be true }}
\end{aligned}
$$

Proper names revisited

We have shown:

1. all individuals are homomorphisms
2. all homomorphisms are individuals

'Entities'
 are exactly those GQs which

- distribute over logical operations
- map extrema to extrema

A purely semantic characterization of proper name denotations

Summary

NPs denote in (et)t
Individuals are homomorphisms
There are many more things than individuals

- more male than female students is not a thing
- it is a function that
- looks at a property, and says
- whether or not more male than female students have that property

Are there semantic characterizations of other things?

