## Semantics

Greg Kobele
May 7, 2018

Review of Results

The big problems

1. The meaning(s) of constructions
2. Same words, different constructions

## The (proposed) solutions

1. The meaning(s) of constructions

- for any construction $C$, its meaning contribution is simply function application

2. Same words, different constructions

- words like and, or, and not do the same thing in different domains


# Today <br> Explore the consequences of these proposals 

1. Types
2. NPs

Boolean Algebra Review

## On the same thing

What does it mean to
do the same thing in different domains?

## Structure in domains

## Boolean Algebra

- greatest lower bound
- least upper bound
- complement

Based on ordering
$x \wedge y$ the biggest thing in: $\{z: z \leq x \& z \leq y\}$
$x \vee y$ the smallest thing in: $\{z: x \leq z \& y \leq z\}$
$\neg x$ the unique thing s.t. $\neg x \wedge x=0$ and $\neg x \vee x=1$

## Hasse Diagrams

## True <br>  <br> False

$a \leq b$ if

1. $a$ is connected to $b$
2. but not above it

1
the top element
0
the bottom element

The Hasse Diagram for $\wp(\{a, b\})$

$x \wedge y$
the smallest thing above (or equal to) both $x$ and $y$
$\neg x$
the element 'opposite' $x$

The Hasse Diagram for $\wp(\{a, b, c\})$


## Non-Boolean Algebras

Distributivity
$x \wedge(y \vee z)=(x \wedge y) \vee(x \wedge z)$
Diamond


## Pentagon



## Atoms

An atom is
a minimal non-zero element


Functions and Types

## Sets and Functions

$\wp(A) \cong[A \rightarrow 2]$

$$
\begin{gathered}
{\left[\begin{array}{l}
a \mapsto 1 \\
b \mapsto 1
\end{array}\right.} \\
{\left[\begin{array}{l}
a \mapsto 1 \\
b \mapsto 0
\end{array}\right.} \\
{\left[\begin{array}{l}
a \mapsto 0 \\
b \mapsto 0
\end{array}\right.}
\end{gathered}
$$

## Boolean operations

complement

$$
\neg\left[\begin{array}{l}
a \mapsto 1 \\
b \mapsto 0
\end{array}=\left[\begin{array}{l}
a \mapsto \neg 1 \\
b \mapsto \neg 0
\end{array}=\left[\begin{array}{l}
a \mapsto 0 \\
b \mapsto 1
\end{array}\right.\right.\right.
$$

glb

$$
\left[\begin{array} { l } 
{ a \mapsto 1 } \\
{ b \mapsto 0 }
\end{array} \wedge \left[\begin{array}{l}
a \mapsto 0 \\
b \mapsto 1
\end{array}=\left[\begin{array}{l}
a \mapsto 1 \wedge 0 \\
b \mapsto 0 \wedge 1
\end{array}=\left[\begin{array}{l}
a \mapsto 0 \\
b \mapsto 0
\end{array}\right.\right.\right.\right.
$$

## Building Boolean lattices

if $B$ is a boolean lattice, then for any set $A$
$[A \rightarrow B$ ] is a boolean lattice

- $f \leq g$ iff for every $a, f(a) \leq g(a)$
- $(f \wedge g)(a):=f(a) \wedge g(a)$
- $1_{A \rightarrow B}(a):=1_{B}$
- $(\neg f)(a):=\neg(f(a))$


## (Recall:) Functions

A special kind of binary relation $-f \subseteq A \times B$

- each left-hand-side is paired with exactly one right-hand-side
- $A$ is the domain
- $B$ is the codomain
$[A \rightarrow B]$
is the set of all functions with domain $A$ and codomain $B$
It doesn't make sense
to apply a function to an argument of the 'wrong' type


## Types

A type
is a description of what kind of object something is
The type of entities
is conventionally given as e
The type of truth values
as $t$
The type of a function with domain $A$ and codomain $B$ can be written as $a \rightarrow b$, or even ( $a b$ )

- here $a$ is the type of things in domain $A$
- and $b$ the type of things in codomain $B$


## Solving for Unknowns

Function application
when can $f$ apply to $a$ ?

- when $a$ is the type of thing $f$ can apply to

$$
\underbrace{f}_{(x y)}(\underbrace{a}_{x})=\underbrace{b}_{y}
$$

If you know two types, you can find the third

$$
\begin{aligned}
& \underbrace{f}_{(x y)}(\underbrace{a}_{x})=\underbrace{b}_{\square} \\
& \underbrace{f}_{(x y)}(\underbrace{a}_{\square})=\underbrace{b}_{y}
\end{aligned}
$$

Examples

## Karl criticizes Adam



## Karl criticizes Adam



- Types of words


## Karl criticizes Adam



- Types of words
- Solve for type at each node


## Karl criticizes Adam



- Types of words
- Solve for type at each node


## Karl criticizes Adam



- Types of words
- Solve for type at each node
- Compute meaning


## Non-branching nodes?



## Bill drew a pretty picture of Mark



Mark

