Semantics

Greg Kobele May 7, 2018

Review of Results

- 1. The meaning(s) of constructions
- 2. Same words, different constructions

- 1. The meaning(s) of constructions
 - for any construction *C*, its meaning contribution is simply <u>function application</u>
- 2. Same words, different constructions
 - words like and, or, and not do the same thing in <u>different</u> <u>domains</u>

Today Explore the consequences of these proposals

- 1. Types
- 2. NPs

Boolean Algebra Review

What does it mean to do the same thing in different domains?

Structure in domains

Boolean Algebra

- greatest lower bound
- least upper bound
- complement

Based on ordering

 $x \land y$ the biggest thing in: $\{z : z \le x \& z \le y\}$ $x \lor y$ the smallest thing in: $\{z : x \le z \& y \le z\}$ $\neg x$ the unique thing s.t. $\neg x \land x = 0$ and $\neg x \lor x = 1$

Hasse Diagrams

 $a \leq b$ if

- 1. *a* is connected to *b*
- 2. but not above it

1 the top element

0 the bottom element

The Hasse Diagram for $\wp(\{a, b\})$

$X \wedge y$

the smallest thing above (or equal to) both x and y

$\neg x$ the element 'opposite' x

The Hasse Diagram for $\wp(\{a, b, c\})$

Non-Boolean Algebras

Distributivity $x \land (y \lor z) = (x \land y) \lor (x \land z)$

Diamond

Atoms

An atom is a minimal non-zero element

Functions and Types

Sets and Functions

 $\wp(A) \cong [A \to 2]$

Boolean operations

complement

$$\neg \begin{bmatrix} a \mapsto 1 \\ b \mapsto 0 \end{bmatrix} = \begin{bmatrix} a \mapsto \neg 1 \\ b \mapsto \neg 0 \end{bmatrix} = \begin{bmatrix} a \mapsto 0 \\ b \mapsto 1 \end{bmatrix}$$
glb

$$\begin{bmatrix} a \mapsto 1 \\ b \mapsto 0 \end{bmatrix} \wedge \begin{bmatrix} a \mapsto 0 \\ b \mapsto 1 \end{bmatrix} = \begin{bmatrix} a \mapsto 1 \wedge 0 \\ b \mapsto 0 \wedge 1 \end{bmatrix} = \begin{bmatrix} a \mapsto 0 \\ b \mapsto 0 \end{bmatrix}$$

if B is a boolean lattice, then for any set A

- $[A \rightarrow B]$ is a boolean lattice
 - $\cdot f \leq g$ iff for every $a, f(a) \leq g(a)$
 - $(f \wedge g)(a) := f(a) \wedge g(a)$
 - $1_{A \rightarrow B}(a) := 1_B$
 - $(\neg f)(a) := \neg (f(a))$

(Recall:) Functions

A special kind of binary relation - $f \subseteq \mathsf{A} \times \mathsf{B}$

- each left-hand-side is paired with exactly one right-hand-side
- A is the domain
- B is the codomain

 $[A \rightarrow B]$ is the <u>set</u> of all *functions* with domain A and codomain B

It doesn't make sense to apply a function to an argument of the 'wrong' type

Types

A type is a description of what *kind* of object something is

The type of entities is conventionally given as *e*

The type of truth values as t

The type of a function with domain A and codomain B can be written as $a \rightarrow b$, or even (*ab*)

- here *a* is the *type* of things in domain A
- and *b* the *type* of things in codomain *B*

Solving for Unknowns

Function application when can *f* apply to *a*?

 \cdot when *a* is the type of thing *f* can apply to

If you know two types, you can find the third

Examples

• Types of words

- Types of words
- Solve for type at each node

- Types of words
- Solve for type at each node

- Types of words
- Solve for type at each node
- Compute meaning

Bill drew a pretty picture of Mark

