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Counting



Properties of functions

injective each lhs is paired with a unique rhs (no two lhs’
have the same rhs)

if x 6= y then f (x) 6= f (y)
surjective each element of codomain is paired with some lhs

for all y ∈ B, there is some x ∈ A such that f (x) = y
bijective injective and surjective
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Numerosity

Given f : A→ B

If f is an injection
then B must be at least as large as A

If f is a surjection
then A must be at least as large as B

If f is a bijection
then A and B must be the same size
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Counting

works great in finite case
[n] := {1, . . . ,n}

• [0] := ∅
• [1] := {1}
• [2] := {1, 2}

cardinality
|A| = n iff there is a bijection f : [n] → A
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Infinity

Counting is weird amongst infinities

• all numbers vs odd numbers?
• numbers vs pairs of numbers (vs triples of numbers)?
• numbers vs sets of numbers?

Theorem (Cantor’s lemma)
A < 2A
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Proving Cantor’s lemma

Theorem (Cantor’s lemma)
A < 2A

1. assume we had a surjection A→ 2A

• that is, assume A is at least as big as 2A

2. show this leads to a contradiction

• let f : A→ 2A be a surjection
• define X := {a : a /∈ f (a)}
• question: what maps to X?
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Open problems



Open problems

1. unifying constructions
2. and, or and not across categories
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Unifying constructions

subjects

[[NP VP]] = 1 iff [[NP]] ∈ [[VP]]
= fS([[NP]] , [[VP]])

objects

[[V NP]] = {x : 〈x, [[NP]]〉 ∈ [[V]]}
= fVP([[V]] , [[NP]])

what do fS and fVP have to do with one another?
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And, Or, Not

sentences
[[S1 and S2]] = [[S1]] & [[S2]]

VPs
[[VP1 and VP2]] = [[VP1]] ∩ [[VP2]]

NPs
[[NP1 and NP2]] =???

transitive Vs
[[V1 and V2]] =???

what does and mean?
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Unifying constructions



Unifying constructions

subjects
fS(x,A) = 1 iff x ∈ A

objects
fVP(x,R) = {y : 〈y, x〉 ∈ R}

what do they have in common?

strategy
change our perspective
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Change of perspective

If you can’t say something in two ways
you can’t say it at all

• started with sets (℘(E), ℘(E × E))
• change to functions ([E → 2], [E → [E → 2]])
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Notation

[A→ B]
the set of all functions with

• domain A
• codomain B

0 = ∅
the empty set

[0→ A]
exactly one function:

f =
[

1 = {•}
a set with just one element

[1→ A]
exactly |A| functions:

fa =
[
• 7→ a
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From sets to functions

Sets
are about membership

• is x ∈ A or not?

Given A, summarize these answers…

χA is the characteristic function of A
χA(x) = 1 iff x ∈ A
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Characteristic examples

χA is the characteristic function of A
χA(x) = 1 iff x ∈ A

Let E = {a,b, c,d}

χ∅ =


a 7→ 0
b 7→ 0
c 7→ 0
d 7→ 0

χ{a} =


a 7→ 1
b 7→ 0
c 7→ 0
d 7→ 0

χ{b,d} =


a 7→ 0
b 7→ 1
c 7→ 0
d 7→ 1

χE =


a 7→ 1
b 7→ 1
c 7→ 1
d 7→ 1
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Characteristic functions

χ is a function

• from ℘E
• to [E → 2]

it is injective
if A 6= B, then χA 6= χB

• why?

is it surjective?

• given some f ∈ [E → 2],
• is there a set A

• such that f = χA?
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From functions to sets

Towards surjectivity

• given some f ∈ [E → 2],
• find an A

• such that f = χA

Define Xf
Xf := {a : f (a) = 1}
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Characteristic examples

Xf is the set associated with f
Xf := {a : f (a) = 1}

Let E = {a,b, c,d}

f =


a 7→ 1
b 7→ 0
c 7→ 1
d 7→ 0

Xf = {a, c}

g =


a 7→ 0
b 7→ 1
c 7→ 1
d 7→ 1

Xg = {b, c,d}
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Back and forth

XχA = A

XχA = {a : χA(a) = 1}
= {a : a ∈ A}
= A

χXf = f

χXf (a) = 1 iff a ∈ Xf
= 1 iff f (a) = 1
= f (a)
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The moral

Sets and Characteristic functions
are two ways of looking at the same thing

℘(E) ∼= [E → 2]
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Predication

with sets
fS(x,A) = 1 iff x ∈ A

with functions
fS(x, χA) = χA(x)
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Multiple predication

with sets
fVP(x,R) = {y : 〈y, x〉 ∈ R}

with functions
fVP(x,R) = χ{y:〈y,x〉∈R}

we would like to turn R into a function…

• that outputs another function
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Rethinking Relations

Given:

• E := {a,b}
• R := {〈a,a〉, 〈a,b〉, 〈b,b〉}

Question:
Given an object, which subjects go with it?

We write:
Ry := {x : 〈x, y〉 ∈ R}

Answer:

• Ra = {a}
• Rb = {a,b}
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Relations and functions

A relation R as a function:

fR =

 a 7→ χRa
b 7→ χRb

...
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Constructions unified

subjects
fS(x,g) = g(x)

objects
fVP(x,g) = g(x)

what do they have in common?
they both apply a function to an argument

all constructions are interpreted as function application
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Revisiting Predicates

S

VP

kindis

Bob

What is the meaning of is?

• [[kind]] ∈ [E → 2]

• [[VP]] ∈ [E → 2]
• [[is kind]] = [[is]] ([[kind]])
• [[is]] ∈ [[E → 2] → [E → 2]]
• we want: [[is]] ([[kind]])(b) = [[kind]] (b)
• so… [[is]] (f ) = f

24



Revisiting Predicates

S

VP

kindis

Bob

What is the meaning of is?

• [[kind]] ∈ [E → 2]
• [[VP]] ∈ [E → 2]

• [[is kind]] = [[is]] ([[kind]])
• [[is]] ∈ [[E → 2] → [E → 2]]
• we want: [[is]] ([[kind]])(b) = [[kind]] (b)
• so… [[is]] (f ) = f

24



Revisiting Predicates

S

VP

kindis

Bob

What is the meaning of is?

• [[kind]] ∈ [E → 2]
• [[VP]] ∈ [E → 2]
• [[is kind]] = [[is]] ([[kind]])

• [[is]] ∈ [[E → 2] → [E → 2]]
• we want: [[is]] ([[kind]])(b) = [[kind]] (b)
• so… [[is]] (f ) = f

24



Revisiting Predicates

S

VP

kindis

Bob

What is the meaning of is?

• [[kind]] ∈ [E → 2]
• [[VP]] ∈ [E → 2]
• [[is kind]] = [[is]] ([[kind]])
• [[is]] ∈ [[E → 2] → [E → 2]]

• we want: [[is]] ([[kind]])(b) = [[kind]] (b)
• so… [[is]] (f ) = f

24



Revisiting Predicates

S

VP

kindis

Bob

What is the meaning of is?

• [[kind]] ∈ [E → 2]
• [[VP]] ∈ [E → 2]
• [[is kind]] = [[is]] ([[kind]])
• [[is]] ∈ [[E → 2] → [E → 2]]
• we want: [[is]] ([[kind]])(b) = [[kind]] (b)

• so… [[is]] (f ) = f

24



Revisiting Predicates

S

VP

kindis

Bob

What is the meaning of is?

• [[kind]] ∈ [E → 2]
• [[VP]] ∈ [E → 2]
• [[is kind]] = [[is]] ([[kind]])
• [[is]] ∈ [[E → 2] → [E → 2]]
• we want: [[is]] ([[kind]])(b) = [[kind]] (b)
• so… [[is]] (f ) = f

24



Logical constants

[[is]] vs [[kind]]

• who is kind depends on the way the world is

• but is-ness doesn’t
• two kinds of words

content words denotations can vary
function words denotations are fixed

• [[is]] = id in every model
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Interim summary

• the attempt to unify differences
• has not only

• given us a one-size-fits-all perspective on semantic
composition

• but also a way of investigating meanings of otherwise
puzzling words

A slogan

• unification
• via changing perspectives
• can lead to explanation
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The meaning of And



And, Or, Not

sentences
[[S1 and S2]] = [[S1]] & [[S2]]

VPs
[[VP1 and VP2]] = [[VP1]] ∩ [[VP2]]

NPs
[[NP1 and NP2]] =???

transitive Vs
[[V1 and V2]] =???

what does and mean?
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Unifying sets and truth values

and in truth values &

and in sets ∩

Changing notation for unification

truth values • x & y ≤ x
• x & y ≤ y
• not just any lower number, but the biggest

• 1 & 1 = 1, not 0

sets • A ∩ B ⊆ A
• A ∩ B ⊆ B
• not just any subset, but the biggest

• if X ⊆ A and X ⊆ B
• then X ⊆ A ∩ B
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And unified

[[α and β]]
the biggest γ smaller than both α and β

in sets
big and small in terms of subset

in truth values
big and small in terms of implication

and everything else?
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No more sets

Oops
we turned sets into functions

What do big and small mean for functions?

A special case: [E → 2]

• A ⊆ B : for every a,
• if a ∈ A
• then a ∈ B

• χA ≤ χB : for every a

• if χA(a) = 1
• then χB(a) = 1
• in other words:
χA(a) ≤ χB(a)
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Generalizing

f ≤ g iff for all x, f (x) ≤ g(x)

• Requires the codomain to be ordered!

Luckily…

• 2 = {0, 1} is ordered
• therefore

• [E → 2] is ordered
• [E → [E → 2]] is ordered
• [[E → 2] → [E → 2]] is ordered
• and so on
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And and glb

The greatest lower bound of a set A
is the biggest thing smaller than everything else in A

written
∧
A

or if A = {x, y} x ∧ y

Claim:
[[and]] means ’greatest lower bound’

• only works in an ordered domain
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What about Or

or in truth values ∨
or in sets ∪

Changing notation for unification

truth values • x ≤ x ∨ y
• y ≤ x ∨ y
• not just any bigger number, but the smallest

• 0 ∨ 0 = 0, not 1

sets • A ⊆ A ∪ B
• B ⊆ A ∪ B
• not just any superset, but the smallest

• if A ⊆ X and B ⊆ X
• then A ∩ B ⊆ X
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Or and lub

The least upper bound of a set A
is the smallest thing bigger than everything else in A

written
∨
A

or if A = {x, y} x ∨ y

Claim:
[[or]] means ’least upper bound’

• only works in an ordered domain
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What about Not

not in truth values ¬
not in sets E −�

Changing notation for unification

truth values • ¬x ∨ x = 1
• ¬x ∧ x = 0
• the ’opposite’ number

• 1 is the biggest number
• 0 is the smallest number

sets • (E − A) ∪ A = E
• (E − A) ∩ A = ∅
• the ’opposite’ set

• E is the biggest set
• ∅ is the smallest set
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• ∅ is the smallest set

35



What about Not

not in truth values ¬
not in sets E −�

Changing notation for unification

truth values • ¬x ∨ x = 1
• ¬x ∧ x = 0
• the ’opposite’ number

• 1 is the biggest number
• 0 is the smallest number

sets • (E − A) ∪ A = E
• (E − A) ∩ A = ∅
• the ’opposite’ set

• E is the biggest set
• ∅ is the smallest set

35



What about Not

not in truth values ¬
not in sets E −�

Changing notation for unification

truth values • ¬x ∨ x = 1
• ¬x ∧ x = 0
• the ’opposite’ number

• 1 is the biggest number
• 0 is the smallest number

sets • (E − A) ∪ A = E
• (E − A) ∩ A = ∅
• the ’opposite’ set

• E is the biggest set
• ∅ is the smallest set

35



What about Not

not in truth values ¬
not in sets E −�

Changing notation for unification

truth values • ¬x ∨ x = 1
• ¬x ∧ x = 0
• the ’opposite’ number

• 1 is the biggest number
• 0 is the smallest number

sets • (E − A) ∪ A = E

• (E − A) ∩ A = ∅
• the ’opposite’ set

• E is the biggest set
• ∅ is the smallest set

35



What about Not

not in truth values ¬
not in sets E −�

Changing notation for unification

truth values • ¬x ∨ x = 1
• ¬x ∧ x = 0
• the ’opposite’ number

• 1 is the biggest number
• 0 is the smallest number

sets • (E − A) ∪ A = E
• (E − A) ∩ A = ∅

• the ’opposite’ set

• E is the biggest set
• ∅ is the smallest set

35



What about Not

not in truth values ¬
not in sets E −�

Changing notation for unification

truth values • ¬x ∨ x = 1
• ¬x ∧ x = 0
• the ’opposite’ number

• 1 is the biggest number
• 0 is the smallest number

sets • (E − A) ∪ A = E
• (E − A) ∩ A = ∅
• the ’opposite’ set

• E is the biggest set
• ∅ is the smallest set

35



What about Not

not in truth values ¬
not in sets E −�

Changing notation for unification

truth values • ¬x ∨ x = 1
• ¬x ∧ x = 0
• the ’opposite’ number

• 1 is the biggest number
• 0 is the smallest number

sets • (E − A) ∪ A = E
• (E − A) ∩ A = ∅
• the ’opposite’ set

• E is the biggest set

• ∅ is the smallest set

35



What about Not

not in truth values ¬
not in sets E −�

Changing notation for unification

truth values • ¬x ∨ x = 1
• ¬x ∧ x = 0
• the ’opposite’ number

• 1 is the biggest number
• 0 is the smallest number

sets • (E − A) ∪ A = E
• (E − A) ∩ A = ∅
• the ’opposite’ set

• E is the biggest set
• ∅ is the smallest set

35



No more sets

Oops
we turned sets into functions

What does opposite mean for functions

A special case: [E → 2]

• the biggest set is E
• so the biggest function is χE

• the smallest set is ∅
• so the smallest function is χ∅

• the opposite set of A is E − A
• the opposite function should ’flip’ all 0s and 1s
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Generalizing

Biggest
1A→B(a) = 1B

Smallest
0A→B(a) = 0B

Opposite
(¬f )(a) = ¬(f (a))
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Not and complement

The complement of something
is its opposite

• the glb of something and its opposite is the smallest thing
• the lub of something and its opposite is the biggest thing

Claim:
[[not]] means ’complement’

• only works in an ordered domain
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Interim summary

Notational history

• I wrote 1 for true
• and 0 for false
• because true is the biggest truth value
• and false the smallest
• with respect to negation:

• ¬b ∨ b = true
• ¬b ∧ b = false

Any ordered domain
can be operated on booleanly:

• laugh and praise Mary
• praise or criticize
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Boolean Lattices

Boolean lattice

• a partially ordered set
• with meets
• with joins
• which is bounded
• which is distributive
• which is complemented
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Partial orders

A set A is partially ordered if

• there is a binary relation (written ≤) over A
• which is reflexive : for all x,

• x ≤ x
• which is asymmetric : for all x 6= y,

• not both x ≤ y and y ≤ x
• which is transitive : forall x, y, z,

• if x ≤ y
• and y ≤ z
• then x ≤ z
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Meets and Joins

A partial order has meets and joins if

• for any elements x, y ∈ A
• x ∨ y is defined (the smallest thing bigger than x and y)
• x ∧ y is defined (the biggest thing smaller than x and y)

A lattice
is a partial order with meets and joins
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Boundedness

A lattice is bounded if

• it has a greatest element 1
• and a smallest element 0
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Distributivity

A lattice is distributive if

a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c)
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Complementation

A bounded lattice has complements if

• for every element a ∈ A
• its opposite element exists
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Building Boolean lattices

if B is a boolean lattice, then for any set A

[A→ B] is a boolean lattice

• f ≤ g iff for every a, f (a) ≤ g(a)
• (f ∧ g)(a) := f (a) ∧ g(a)
• 1A→B(a) := 1B
• (¬f )(a) := ¬(f (a))
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Summary

The denotation domains of natural language expressions

• are functions
• are boolean lattices

except for E…

more on this next time!
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