Semantics

Greg Kobele
April 30, 2018

Counting

Properties of functions

injective each lhs is paired with a unique rhs (no two lhs' have the same rhs)

$$
\text { if } x \neq y \text { then } f(x) \neq f(y)
$$

surjective each element of codomain is paired with some ths for all $y \in B$, there is some $x \in A$ such that $f(x)=y$
bijective injective and surjective

Numerosity

Given $f: A \rightarrow B$
If f is an injection
then B must be at least as large as A
If f is a surjection
then A must be at least as large as B
If f is a bijection
then A and B must be the same size

Counting

works great in finite case

$$
[n]:=\{1, \ldots, n\}
$$

- [0] := \emptyset
- $[1]:=\{1\}$
- [2] $:=\{1,2\}$
cardinality
$|A|=n$ iff there is a bijection $f:[n] \rightarrow A$

Infinity

Counting is weird amongst infinities

- all numbers vs odd numbers?
- numbers vs pairs of numbers (vs triples of numbers)?
- numbers vs sets of numbers?

Theorem (Cantor's lemma)
$A<2^{A}$

Proving Cantor's lemma

Theorem (Cantor's lemma)
$A<2^{A}$

1. assume we had a surjection $A \rightarrow 2^{A}$

- that is, assume A is at least as big as 2^{A}

2. show this leads to a contradiction

Proving Cantor's lemma

Theorem (Cantor's lemma)
$A<2^{A}$

1. assume we had a surjection $A \rightarrow 2^{A}$

- that is, assume A is at least as big as 2^{A}

2. show this leads to a contradiction

- let $f: A \rightarrow 2^{A}$ be a surjection

Proving Cantor's lemma

Theorem (Cantor's lemma)
$A<2^{A}$

1. assume we had a surjection $A \rightarrow 2^{A}$

- that is, assume A is at least as big as 2^{A}

2. show this leads to a contradiction

- let $f: A \rightarrow 2^{A}$ be a surjection
- define $X:=\{a: a \notin f(a)\}$

Proving Cantor's lemma

Theorem (Cantor's lemma)
$A<2^{A}$

1. assume we had a surjection $A \rightarrow 2^{A}$

- that is, assume A is at least as big as 2^{A}

2. show this leads to a contradiction

- let $f: A \rightarrow 2^{A}$ be a surjection
- define $X:=\{a: a \notin f(a)\}$
- question: what maps to X ?

Open problems

Open problems

1. unifying constructions
2. and, or and not across categories

Unifying constructions

subjects

$$
\begin{aligned}
\llbracket N P V P \rrbracket & =1 \text { iff } \llbracket N P \rrbracket \in \llbracket V P \rrbracket \\
& =f_{S}(\llbracket N P \rrbracket, \llbracket V P \rrbracket)
\end{aligned}
$$

objects

$$
\begin{aligned}
\llbracket V N P \rrbracket & =\{x:\langle x, \llbracket N P \rrbracket\rangle \in \llbracket V \rrbracket\} \\
& =f_{V P}(\llbracket V \rrbracket, \llbracket N P \rrbracket)
\end{aligned}
$$

what do f_{S} and $f_{V P}$ have to do with one another?

And, Or, Not

sentences

$$
\llbracket S_{1} \text { and } S_{2} \rrbracket=\llbracket S_{1} \rrbracket \& \llbracket S_{2} \rrbracket
$$

VPs

$$
\llbracket V P_{1} \text { and } V P_{2} \rrbracket=\llbracket V P_{1} \rrbracket \cap \llbracket V P_{2} \rrbracket
$$

NPs

$$
\llbracket N P_{1} \text { and } N P_{2} \rrbracket=? ? ?
$$

transitive Vs

$$
\llbracket V_{1} \text { and } V_{2} \rrbracket=? ? ?
$$

what does and mean?

Unifying constructions

Unifying constructions

subjects

$$
f_{S}(x, A)=1 \text { iff } x \in A
$$

objects

$$
f_{V P}(x, R)=\{y:\langle y, x\rangle \in R\}
$$

what do they have in common?
strategy
change our perspective

Change of perspective

If you can't say something in two ways
you can't say it at all

- started with sets $(\wp(E), \wp(E \times E))$
- change to functions ([E $\rightarrow 2]$, $[E \rightarrow[E \rightarrow 2]]$)

Notation

$$
\begin{aligned}
& {[A \rightarrow B]} \\
& \text { the set of all functions with }
\end{aligned}
$$

- domain A
- codomain B
$0=\emptyset$
the empty set
$[0 \rightarrow A]$
exactly one function:
$f=[$
$1=\{\bullet\}$
a set with just one element
$[1 \rightarrow A$]
exactly $|A|$ functions:
$f_{a}=[\bullet \mapsto a$

From sets to functions

Sets
are about membership

- is $x \in A$ or not?

Given A, summarize these answers...
χ_{A} is the characteristic function of A $\chi_{A}(x)=1$ iff $x \in A$

Characteristic examples

χ_{A} is the characteristic function of A
$\chi_{A}(x)=1$ iff $x \in A$
Let $E=\{a, b, c, d\}$

$$
\begin{gathered}
\chi_{\emptyset}=\left[\begin{array}{l}
a \mapsto 0 \\
b \mapsto 0 \\
c \mapsto 0 \\
d \mapsto 0
\end{array} \quad \chi_{\{a\}}=\left[\begin{array}{l}
a \mapsto 1 \\
b \mapsto 0 \\
c \mapsto 0 \\
d \mapsto 0
\end{array}\right.\right. \\
\chi_{\{b, d\}}=\left[\begin{array}{l}
a \mapsto 0 \\
b \mapsto 1 \\
c \mapsto 0 \\
d \mapsto 1
\end{array} \quad \chi_{E}=\left[\begin{array}{l}
a \mapsto 1 \\
b \mapsto 1 \\
c \mapsto 1 \\
d \mapsto 1
\end{array}\right.\right.
\end{gathered}
$$

Characteristic functions
χ is a function

- from $\wp \mathrm{B}$
- to $[E \rightarrow 2]$
it is injective
if $A \neq B$, then $\chi_{A} \neq \chi_{B}$
- why?
is it surjective?
- given some $f \in[E \rightarrow 2]$,
- is there a set A
- such that $f=\chi_{A}$?

From functions to sets

Towards surjectivity

- given some $f \in[E \rightarrow 2]$,
- find an A
- such that $f=\chi_{A}$

Define X_{f}
$X_{f}:=\{a: f(a)=1\}$

Characteristic examples
X_{f} is the set associated with f
$X_{f}:=\{a: f(a)=1\}$
Let $E=\{a, b, c, d\}$

$$
\left.\begin{array}{l}
f=\left[\begin{array}{l}
a \mapsto 1 \\
b \mapsto 0 \\
c \mapsto 1
\end{array} \quad X_{f}=\{a, c\}\right. \\
d \mapsto 0
\end{array}\right] \begin{aligned}
& g=\left[\begin{array}{l}
a \mapsto 0 \\
b \mapsto 1 \\
c \mapsto 1 \\
d \mapsto 1
\end{array} \quad X_{g}=\{b, c, d\}\right.
\end{aligned}
$$

Back and forth

$$
X_{X_{A}}=A
$$

$$
\begin{aligned}
x_{\chi_{A}} & =\left\{a: \chi_{A}(a)=1\right\} \\
& =\{a: a \in A\} \\
& =A
\end{aligned}
$$

$$
\chi_{x_{f}}=f
$$

$$
\begin{aligned}
\chi_{X_{f}}(a) & =1 \text { iff } a \in X_{f} \\
& =1 \text { iff } f(a)=1 \\
& =f(a)
\end{aligned}
$$

The moral

Sets and Characteristic functions are two ways of looking at the same thing

$$
\wp(E) \cong[E \rightarrow 2]
$$

Predication

with sets

$$
f_{S}(x, A)=1 \text { iff } x \in A
$$

with functions

$$
f_{S}\left(x, \chi_{A}\right)=\chi_{A}(x)
$$

Multiple predication

with sets

$$
f_{V P}(x, R)=\{y:\langle y, x\rangle \in R\}
$$

with functions

$$
f_{V P}(x, R)=\chi_{\{y:\langle y, x\rangle \in R\}}
$$

we would like to turn R into a function...

- that outputs another function

Rethinking Relations

Given:

- $E:=\{a, b\}$
- $R:=\{\langle a, a\rangle,\langle a, b\rangle,\langle b, b\rangle\}$

Question:
Given an object, which subjects go with it?
We write:
$R_{y}:=\{x:\langle x, y\rangle \in R\}$

Rethinking Relations

Given:

- $E:=\{a, b\}$
- $R:=\{\langle a, a\rangle,\langle a, b\rangle,\langle b, b\rangle\}$

Question:
Given an object, which subjects go with it?
We write:
$R_{y}:=\{x:\langle x, y\rangle \in R\}$
Answer:

- $R_{a}=\{a\}$

Rethinking Relations

Given:

- $E:=\{a, b\}$
- $R:=\{\langle a, a\rangle,\langle a, b\rangle,\langle b, b\rangle\}$

Question:
Given an object, which subjects go with it?
We write:
$R_{y}:=\{x:\langle x, y\rangle \in R\}$
Answer:

- $R_{a}=\{a\}$
- $R_{b}=\{a, b\}$

Relations and functions

A relation R as a function:
$f_{R}=\left[\begin{array}{c}a \mapsto \chi_{R_{a}} \\ b \mapsto \chi_{R_{b}} \\ \vdots\end{array}\right.$

Constructions unified

subjects

$$
f_{S}(x, g)=g(x)
$$

objects

$$
f_{V P}(x, g)=g(x)
$$

what do they have in common?
they both apply a function to an argument
all constructions are interpreted as function application

Revisiting Predicates

What is the meaning of is?

- $\llbracket k i n d \rrbracket \in[E \rightarrow 2]$

Revisiting Predicates

What is the meaning of is?

- $\llbracket k i n d \rrbracket \in[E \rightarrow 2]$
- $\llbracket V P \rrbracket \in[E \rightarrow 2]$

Revisiting Predicates

What is the meaning of is?

- $\llbracket k i n d \rrbracket \in[E \rightarrow 2]$
- $\llbracket V P \rrbracket \in[E \rightarrow 2]$
- $\llbracket i s ~ k i n d \rrbracket=\llbracket i s \rrbracket(\llbracket k i n d \rrbracket)$

Revisiting Predicates

What is the meaning of is?

- $\llbracket k i n d \rrbracket \in[E \rightarrow 2]$
- $\llbracket V P \rrbracket \in[E \rightarrow 2]$
- $\llbracket i s ~ k i n d \rrbracket=\llbracket i s \rrbracket(\llbracket k i n d \rrbracket)$
- $\llbracket i s \rrbracket \in[[E \rightarrow 2] \rightarrow[E \rightarrow 2]]$

Revisiting Predicates

What is the meaning of is?

- $\llbracket k i n d \rrbracket \in[E \rightarrow 2]$
- $\llbracket V P \rrbracket \in[E \rightarrow 2]$
- $\llbracket i s ~ k i n d \rrbracket=\llbracket i s \rrbracket(\llbracket k i n d \rrbracket)$
- $\llbracket i s \rrbracket \in[[E \rightarrow 2] \rightarrow[E \rightarrow 2]]$
- we want: $\llbracket i s \rrbracket(\llbracket k i n d \rrbracket)(b)=\llbracket k i n d \rrbracket(b)$

Revisiting Predicates

What is the meaning of is?

- $\llbracket k i n d \rrbracket \in[E \rightarrow 2]$
- $\llbracket V P \rrbracket \in[E \rightarrow 2]$
- $\llbracket i s ~ k i n d \rrbracket=\llbracket i s \rrbracket(\llbracket k i n d \rrbracket)$
- $\llbracket i s \rrbracket \in[[E \rightarrow 2] \rightarrow[E \rightarrow 2]]$
- we want: $\llbracket i s \rrbracket(\llbracket k i n d \rrbracket)(b)=\llbracket k i n d \rrbracket(b)$
- so... 【is】 $(f)=f$

Logical constants

$\llbracket i s \rrbracket$ vs $\llbracket k i n d \rrbracket$

- who is kind depends on the way the world is

Logical constants

$\llbracket i s \rrbracket$ vs $\llbracket k i n d \rrbracket$

- who is kind depends on the way the world is
- but is-ness doesn't

Logical constants

【is】 vs 【kind】
－who is kind depends on the way the world is
－but is－ness doesn＇t
－two kinds of words

Logical constants

【is】 vs 【kind】
－who is kind depends on the way the world is
－but is－ness doesn＇t
－two kinds of words
content words denotations can vary

Logical constants

【is】 vs 【kind】
－who is kind depends on the way the world is
－but is－ness doesn＇t
－two kinds of words
content words denotations can vary function words denotations are fixed

Logical constants

【is】 vs 【kind】
－who is kind depends on the way the world is
－but is－ness doesn＇t
－two kinds of words
content words denotations can vary function words denotations are fixed
－$\llbracket i s \rrbracket=$ id in every model

Interim summary

- the attempt to unify differences
- has not only
- given us a one-size-fits-all perspective on semantic composition
- but also a way of investigating meanings of otherwise puzzling words

A slogan

- unification
- via changing perspectives
- can lead to explanation

The meaning of And

And, Or, Not

sentences

$$
\llbracket S_{1} \text { and } S_{2} \rrbracket=\llbracket S_{1} \rrbracket \& \llbracket S_{2} \rrbracket
$$

VPs

$$
\llbracket V P_{1} \text { and } V P_{2} \rrbracket=\llbracket V P_{1} \rrbracket \cap \llbracket V P_{2} \rrbracket
$$

NPs

$$
\llbracket N P_{1} \text { and } N P_{2} \rrbracket=? ? ?
$$

transitive Vs

$$
\llbracket V_{1} \text { and } V_{2} \rrbracket=? ? ?
$$

what does and mean?

Unifying sets and truth values

and in truth values \& and in sets \cap

Changing notation for unification

Unifying sets and truth values

and in truth values \& and in sets \cap

Changing notation for unification
truth values $\cdot x \& y \leq x$

Unifying sets and truth values

and in truth values \& and in sets \cap

Changing notation for unification

$$
\begin{array}{ll}
\text { truth values } & \cdot x \& y \leq x \\
& \cdot x \& y \leq y
\end{array}
$$

Unifying sets and truth values

and in truth values \& and in sets \cap

Changing notation for unification
truth values

- $x \& y \leq x$
- $x \& y \leq y$
- not just any lower number, but the biggest

Unifying sets and truth values

and in truth values \& and in sets \cap

Changing notation for unification
truth values

- $x \& y \leq x$
- $x \& y \leq y$
- not just any lower number, but the biggest
- 1 \& $1=1$ not 0

Unifying sets and truth values

and in truth values \& and in sets \cap

Changing notation for unification
truth values

- $x \& y \leq x$
- $x \& y \leq y$
- not just any lower number, but the biggest
- 1 \& $1=1$ not 0

Unifying sets and truth values

and in truth values \& and in sets \cap

Changing notation for unification
truth values $\cdot x \& y \leq x$

- $x \& y \leq y$
- not just any lower number, but the biggest
- $1 \& 1=1$, not 0
sets $\cdot A \cap B \subseteq A$

Unifying sets and truth values

and in truth values \& and in sets \cap

Changing notation for unification
truth values

- $x \& y \leq x$
- $x \& y \leq y$
- not just any lower number, but the biggest
- 1 \& $1=1$ not 0
sets $\cdot A \cap B \subseteq A$
- $A \cap B \subseteq B$

Unifying sets and truth values

and in truth values \& and in sets \cap

Changing notation for unification
truth values

- $x \& y \leq x$
- $x \& y \leq y$
- not just any lower number, but the biggest
- 1 \& $1=1$ not 0
sets $\cdot A \cap B \subseteq A$
- $A \cap B \subseteq B$
- not just any subset, but the biggest

Unifying sets and truth values

and in truth values \& and in sets \cap

Changing notation for unification
truth values

- $x \& y \leq x$
- $x \& y \leq y$
- not just any lower number, but the biggest
- 1 \& $1=1$ not 0
sets $\cdot A \cap B \subseteq A$
- $A \cap B \subseteq B$
- not just any subset, but the biggest
- if $X \subseteq A$ and $X \subseteq B$

Unifying sets and truth values

and in truth values \& and in sets \cap

Changing notation for unification
truth values

- $x \& y \leq x$
- $x \& y \leq y$
- not just any lower number, but the biggest
- 1 \& $1=1$ not 0
sets $\cdot A \cap B \subseteq A$
- $A \cap B \subseteq B$
- not just any subset, but the biggest
- if $X \subseteq A$ and $X \subseteq B$
- then $X \subseteq A \cap B$

And unified

$\llbracket \alpha$ and $\beta \rrbracket$
the biggest γ smaller than both α and β
in sets
big and small in terms of subset
in truth values
big and small in terms of implication
and everything else?

No more sets

Oops we turned sets into functions

What do big and small mean for functions?

A special case: $[E \rightarrow 2]$

- $A \subseteq B$: for every a,
- if $a \in A$
- then $a \in B$

No more sets

Oops
we turned sets into functions

What do big and small mean for functions?

A special case: $[E \rightarrow 2]$

- $A \subseteq B$: for every a,
- if $a \in A$
- then $a \in B$
- $\chi_{A} \leq \chi_{B}$: for every a

No more sets

Oops
we turned sets into functions

What do big and small mean for functions?

A special case: $[E \rightarrow 2]$

- $A \subseteq B:$ for every a,
- if $a \in A$
- then $a \in B$
- $\chi_{A} \leq \chi_{B}$: for every a
- if $\chi_{A}(a)=1$
- then $\chi_{B}(a)=1$

No more sets

Oops
we turned sets into functions

What do big and small mean for functions?

A special case: $[E \rightarrow 2]$

- $A \subseteq B$: for every a,
- if $a \in A$
- then $a \in B$
- $\chi_{A} \leq \chi_{B}$: for every a
- if $\chi_{A}(a)=1$
- then $\chi_{B}(a)=1$
- in other words:
$\chi_{A}(a) \leq \chi_{B}(a)$

Generalizing

$$
f \leq g \text { iff for all } x, f(x) \leq g(x)
$$

- Requires the codomain to be ordered!

Luckily...

- $2=\{0,1\}$ is ordered
- therefore
- $[E \rightarrow 2]$ is ordered
- $[E \rightarrow[E \rightarrow 2]]$ is ordered
- [[E $E 2] \rightarrow[E \rightarrow 2]$ is ordered
- and so on

And and glb

The greatest lower bound of a set A is the biggest thing smaller than everything else in A
written $\wedge A$
or if $A=\{x, y\} x \wedge y$

Claim:
【and】 means 'greatest lower bound'

- only works in an ordered domain

What about Or

or in truth values \vee or in sets \cup

Changing notation for unification

What about Or

or in truth values \vee
or in sets \cup
Changing notation for unification
truth values $\cdot x \leq x \vee y$

What about Or

or in truth values \vee
or in sets \cup
Changing notation for unification

$$
\begin{array}{ll}
\text { truth values } & \cdot x \leq x \vee y \\
& \cdot y \leq x \vee y
\end{array}
$$

What about Or

or in truth values \vee
or in sets \cup
Changing notation for unification
truth values $\cdot x \leq x \vee y$

- $y \leq x \vee y$
- not just any bigger number, but the smallest

What about Or

or in truth values \vee
or in sets \cup
Changing notation for unification
truth values $\cdot x \leq x \vee y$

- $y \leq x \vee y$
- not just any bigger number, but the smallest
- $0 \vee 0=0$, not 1

What about Or

or in truth values \vee
or in sets \cup
Changing notation for unification
truth values $\cdot x \leq x \vee y$

- $y \leq x \vee y$
- not just any bigger number, but the smallest
- $0 \vee 0=0$, not 1

What about Or

or in truth values \vee
or in sets \cup
Changing notation for unification
truth values $\cdot x \leq x \vee y$

- $y \leq x \vee y$
- not just any bigger number, but the smallest
- $0 \vee 0=0$, not 1
sets $\cdot A \subseteq A \cup B$

What about Or

or in truth values \vee
or in sets \cup
Changing notation for unification
truth values $\cdot x \leq x \vee y$

- $y \leq x \vee y$
- not just any bigger number, but the smallest
- $0 \vee 0=0$, not 1
$\begin{array}{ll}\text { sets } & \cdot A \subseteq A \cup B \\ & \cdot B \subseteq A \cup B\end{array}$

What about Or

or in truth values \vee
or in sets \cup
Changing notation for unification
truth values $\cdot x \leq x \vee y$

- $y \leq x \vee y$
- not just any bigger number, but the smallest
- $0 \vee 0=0$, not 1
sets $\cdot A \subseteq A \cup B$
- $B \subseteq A \cup B$
- not just any superset, but the smallest

What about Or

or in truth values \vee
or in sets \cup
Changing notation for unification
truth values $\quad x \leq x \vee y$

- $y \leq x \vee y$
- not just any bigger number, but the smallest
- $0 \vee 0=0$, not 1
sets $\cdot A \subseteq A \cup B$
- $B \subseteq A \cup B$
- not just any superset, but the smallest
- if $A \subseteq X$ and $B \subseteq X$

What about Or

or in truth values \vee
or in sets \cup
Changing notation for unification
truth values $\quad \cdot x \leq x \vee y$

- $y \leq x \vee y$
- not just any bigger number, but the smallest
- $0 \vee 0=0$, not 1
sets $\cdot A \subseteq A \cup B$
- $B \subseteq A \cup B$
- not just any superset, but the smallest
- if $A \subseteq X$ and $B \subseteq X$
- then $A \cap B \subseteq X$

Or and lub

The least upper bound of a set A
is the smallest thing bigger than everything else in A

> written $\bigvee A$
> or if $A=\{x, y\} x \vee y$

Claim:
【or】 means 'least upper bound'

- only works in an ordered domain

What about Not

not in truth values \neg
not in sets $E-\square$
Changing notation for unification

What about Not

not in truth values \neg
not in sets $E-\square$
Changing notation for unification
truth values $\cdot \neg x \vee x=1$

What about Not

not in truth values \neg
not in sets $E-\square$
Changing notation for unification
truth values $\cdot \neg x \vee x=1$

$$
\cdot \neg x \wedge x=0
$$

What about Not

not in truth values \neg
not in sets $E-\square$
Changing notation for unification
truth values $\cdot \neg x \vee x=1$

- $\neg x \wedge x=0$
- the 'opposite' number

What about Not

not in truth values \neg
not in sets $E-\square$
Changing notation for unification
truth values $\cdot \neg x \vee x=1$

- $\neg x \wedge x=0$
- the 'opposite' number
- 1 is the biggest number

What about Not

not in truth values \neg
not in sets $E-\square$
Changing notation for unification
truth values $\cdot \neg x \vee x=1$

- $\neg x \wedge x=0$
- the 'opposite' number
- 1 is the biggest number
- 0 is the smallest number

What about Not

not in truth values \neg
not in sets $E-\square$
Changing notation for unification
truth values $\cdot \neg x \vee x=1$

- $\neg x \wedge x=0$
- the 'opposite' number
- 1 is the biggest number
- 0 is the smallest number

What about Not

not in truth values \neg
not in sets $E-\square$
Changing notation for unification
truth values $\cdot \neg x \vee x=1$

- $\neg x \wedge x=0$
- the 'opposite' number
- 1 is the biggest number
- 0 is the smallest number
sets $\cdot(E-A) \cup A=E$

What about Not

not in truth values \neg
not in sets $E-\square$
Changing notation for unification
truth values $\cdot \neg x \vee x=1$

- $\neg x \wedge x=0$
- the 'opposite' number
- 1 is the biggest number
- 0 is the smallest number
sets $\cdot(E-A) \cup A=E$
- $(E-A) \cap A=\emptyset$

What about Not

not in truth values \neg

$$
\text { not in sets } E-\square
$$

Changing notation for unification
truth values $\cdot \neg x \vee x=1$

- $\neg x \wedge x=0$
- the 'opposite' number
- 1 is the biggest number
- 0 is the smallest number
sets $\cdot(E-A) \cup A=E$
- $(E-A) \cap A=\emptyset$
- the 'opposite' set

What about Not

not in truth values \neg

$$
\text { not in sets } E-\square
$$

Changing notation for unification
truth values $\cdot \neg x \vee x=1$

- $\neg x \wedge x=0$
- the 'opposite' number
- 1 is the biggest number
- 0 is the smallest number
sets $\cdot(E-A) \cup A=E$
- $(E-A) \cap A=\emptyset$
- the 'opposite' set
- E is the biggest set

What about Not

not in truth values \neg

$$
\text { not in sets } E-\square
$$

Changing notation for unification
truth values $\cdot \neg x \vee x=1$

- $\neg x \wedge x=0$
- the 'opposite' number
- 1 is the biggest number
- 0 is the smallest number
sets $\cdot(E-A) \cup A=E$
- $(E-A) \cap A=\emptyset$
- the 'opposite' set
- E is the biggest set
- \emptyset is the smallest set

No more sets

Oops we turned sets into functions

What does opposite mean for functions

A special case: $[E \rightarrow 2]$

- the biggest set is E
- so the biggest function is χ_{E}
- the smallest set is \emptyset
- so the smallest function is χ_{\emptyset}
- the opposite set of A is $E-A$
- the opposite function should 'flip' all 0 s and 1 s

Generalizing

Biggest

$$
1_{A \rightarrow B}(a)=1_{B}
$$

Smallest

$$
0_{A \rightarrow B}(a)=0_{B}
$$

Opposite

$$
(\neg f)(a)=\neg(f(a))
$$

Not and complement

The complement of something
is its opposite

- the glb of something and its opposite is the smallest thing
- the lub of something and its opposite is the biggest thing

Claim:
【not】 means 'complement'

- only works in an ordered domain

Interim summary

Notational history

- I wrote 1 for true
- and 0 for false
- because true is the biggest truth value
- and false the smallest
- with respect to negation:
- $\neg b \vee b=$ true
- $\neg b \wedge b=$ false

Any ordered domain
can be operated on booleanly:

- laugh and praise Mary
- praise or criticize

Boolean Lattices

Boolean lattice

- a partially ordered set
- with meets
- with joins
- which is bounded
- which is distributive
- which is complemented

Partial orders

A set A is partially ordered if

- there is a binary relation (written \leq) over A
- which is reflexive : for all x,
- $x \leq x$
- which is asymmetric: for all $x \neq y$,
- not both $x \leq y$ and $y \leq x$
- which is transitive : forall x, y, z,
- if $x \leq y$
- and $y \leq z$
- then $x \leq z$

Meets and Joins

A partial order has meets and joins if

- for any elements $x, y \in A$
- $x \vee y$ is defined (the smallest thing bigger than x and y)
- $x \wedge y$ is defined (the biggest thing smaller than x and y)

A lattice
 is a partial order with meets and joins

Boundedness

A lattice is bounded if

- it has a greatest element 1
- and a smallest element 0

Distributivity

A lattice is distributive if

$$
a \wedge(b \vee c)=(a \wedge b) \vee(a \wedge c)
$$

Complementation

A bounded lattice has complements if

- for every element $a \in A$
- its opposite element exists

Building Boolean lattices

if B is a boolean lattice, then for any set A
$[A \rightarrow B$] is a boolean lattice

- $f \leq g$ iff for every $a, f(a) \leq g(a)$
- $(f \wedge g)(a):=f(a) \wedge g(a)$
- $1_{A \rightarrow B}(a):=1_{B}$
- $(\neg f)(a):=\neg(f(a))$

Summary

The denotation domains of natural language expressions

- are functions
- are boolean lattices

> except for E...
more on this next time!

