Semantics

Greg Kobele April 30, 2018

Counting

injective each lhs is paired with a *unique* rhs (no two lhs' have the same rhs) if $x \neq y$ then $f(x) \neq f(y)$ surjective each element of codomain is paired with some lhs for all $y \in B$, there is some $x \in A$ such that f(x) = ybijective injective and surjective

Numerosity

Given $f : A \rightarrow B$

If f is an injection then B must be at least as large as A

If f is a surjection then A must be at least as large as B

If *f* is a *bijection* then *A* and *B* must be the same size

Counting

works great in finite case

$$[n] := \{1, \ldots, n\}$$

- $[0] := \emptyset$
- · [1] := {1}
- [2] := $\{1, 2\}$

cardinality |A| = n iff there is a bijection $f : [n] \rightarrow A$

Counting is weird amongst infinities

- all numbers vs odd numbers?
- numbers vs pairs of numbers (vs triples of numbers)?
- numbers vs sets of numbers?

- 1. assume we had a surjection $A \rightarrow 2^A$
 - $\cdot\,$ that is, assume A is at least as big as 2^A
- 2. show this leads to a contradiction

- 1. assume we had a surjection $A \rightarrow 2^A$
 - $\cdot\,$ that is, assume A is at least as big as 2^A
- 2. show this leads to a contradiction
 - let $f : A \rightarrow 2^A$ be a surjection

- 1. assume we had a surjection $A \rightarrow 2^A$
 - that is, assume A is at least as big as 2^A
- 2. show this leads to a contradiction
 - let $f : A \rightarrow 2^A$ be a surjection
 - define $X := \{a : a \notin f(a)\}$

- 1. assume we had a surjection $A \rightarrow 2^A$
 - that is, assume A is at least as big as 2^A
- 2. show this leads to a contradiction
 - let $f : A \rightarrow 2^A$ be a surjection
 - define $X := \{a : a \notin f(a)\}$
 - question: what maps to X?

Open problems

- 1. unifying constructions
- 2. and, or and not across categories

Unifying constructions

subjects

$$[[NP VP]] = 1 \text{ iff } [[NP]] \in [[VP]]$$
$$= f_{S}([[NP]], [[VP]])$$

objects

$$[V NP]] = \{x : \langle x, [NP]] \rangle \in [V]\}$$
$$= f_{VP}([V]], [NP]])$$

what do f_{S} and f_{VP} have to do with one another?

And, Or, Not

sentences

 $\llbracket S_1 \text{ and } S_2 \rrbracket = \llbracket S_1 \rrbracket \And \llbracket S_2 \rrbracket$

VPs

$$\llbracket VP_1 \text{ and } VP_2 \rrbracket = \llbracket VP_1 \rrbracket \cap \llbracket VP_2 \rrbracket$$

NPs

 $[\![NP_1 \text{ and } NP_2]\!] = ???$

transitive Vs

 $[V_1 \text{ and } V_2] =???$

what does and mean?

Unifying constructions

Unifying constructions

subjects

$$f_{S}(x,A) = 1 \text{ iff } x \in A$$

objects

$$f_{VP}(x,R) = \{y : \langle y,x \rangle \in R\}$$

what do they have in common?

strategy change our perspective

If you can't say something in two ways you can't say it at all

- started with sets ($\wp(E)$, $\wp(E \times E)$)
- change to functions ($[E \rightarrow 2], [E \rightarrow [E \rightarrow 2]]$)

Notation

 $[A \rightarrow B]$ the set of all functions with

- domain A
- codomain B

 $\mathbf{0} = \emptyset$ the empty set

 $\begin{bmatrix} \mathbf{0} \to \mathbf{A} \end{bmatrix}$ exactly one function: $f = \begin{bmatrix} \\ \end{bmatrix}$ $1 = \{\bullet\}$ a set with just one element

 $\begin{array}{l} [1 \rightarrow A] \\ \text{exactly} |A| \text{ functions:} \end{array} \\ f_a = \left[\bullet \mapsto a \end{array} \right.$

From sets to functions

Sets are about *membership*

• is $x \in A$ or not?

Given A, summarize these answers...

 χ_A is the characteristic function of A $\chi_A(x) = 1$ iff $x \in A$

Characteristic examples

 χ_A is the characteristic function of A $\chi_A(x) = 1$ iff $x \in A$

Let $E = \{a, b, c, d\}$ $\chi_{\emptyset} = \begin{vmatrix} a \mapsto 0 \\ b \mapsto 0 \\ c \mapsto 0 \\ d \mapsto 0 \end{vmatrix} \qquad \chi_{\{a\}} = \begin{vmatrix} a \mapsto 1 \\ b \mapsto 0 \\ c \mapsto 0 \\ d \mapsto 0 \\ d \mapsto 0 \end{vmatrix}$ $\chi_{\{b,d\}} = \begin{vmatrix} a \mapsto 0 \\ b \mapsto 1 \\ c \mapsto 0 \\ d \mapsto 1 \end{vmatrix} \qquad \chi_E = \begin{vmatrix} a \mapsto 1 \\ b \mapsto 1 \\ c \mapsto 1 \\ d \mapsto 1 \end{vmatrix}$

Characteristic functions

χ is a function

- from _{\$\$\$}E
- to $[E \rightarrow 2]$

it is injective if $A \neq B$, then $\chi_A \neq \chi_B$

• why?

is it surjective?

- given some $f \in [E \rightarrow 2]$,
- is there a set A
 - such that $f = \chi_A$?

From functions to sets

Towards surjectivity

- given some $f \in [E \rightarrow 2]$,
- find an A
 - such that $f = \chi_A$

Define X_f $X_f := \{a : f(a) = 1\}$

Characteristic examples

 X_f is the set associated with f $X_f := \{a : f(a) = 1\}$ Let $E = \{a, b, c, d\}$ $f = \begin{vmatrix} a \mapsto 1 \\ b \mapsto 0 \\ c \mapsto 1 \\ d \mapsto 0 \end{vmatrix} \quad X_f = \{a, c\}$ $g = \begin{bmatrix} a \mapsto 0 \\ b \mapsto 1 \\ c \mapsto 1 \\ d \mapsto 1 \end{bmatrix} \quad X_g = \{b, c, d\}$

Back and forth

 $X_{\chi_A} = A$

$$X_{\chi_A} = \{a : \chi_A(a) = 1\}$$
$$= \{a : a \in A\}$$
$$= A$$

$$\chi_{X_f} = f$$

$$\chi_{X_f}(a) = 1 \text{ iff } a \in X_f$$
$$= 1 \text{ iff } f(a) = 1$$
$$= f(a)$$

Sets and Characteristic functions are two ways of looking at the same thing

$$\wp(E)\cong [E\to 2]$$

Predication

with sets

$$f_{S}(x,A) = 1$$
 iff $x \in A$

with *functions*

$$f_{\rm S}({\rm X},\chi_{\rm A})=\chi_{\rm A}({\rm X})$$

Multiple predication

with sets

$$f_{VP}(x,R) = \{y : \langle y,x \rangle \in R\}$$

with functions

$$f_{VP}(x,R) = \chi_{\{y:\langle y,x\rangle \in R\}}$$

we would like to turn R into a function...

• that *outputs* another function

Rethinking Relations

Given:

- $E := \{a, b\}$
- $R := \{ \langle a, a \rangle, \langle a, b \rangle, \langle b, b \rangle \}$

Question: Given an object, which subjects go with it?

We write: $R_y := \{x : \langle x, y \rangle \in R\}$

Rethinking Relations

Given:

- $E := \{a, b\}$
- $R := \{ \langle a, a \rangle, \langle a, b \rangle, \langle b, b \rangle \}$

Question: Given an object, which subjects go with it?

We write: $R_y := \{x : \langle x, y \rangle \in R\}$

Answer:

•
$$R_a = \{a\}$$

Rethinking Relations

Given:

- $E := \{a, b\}$
- $R := \{ \langle a, a \rangle, \langle a, b \rangle, \langle b, b \rangle \}$

Question: Given an object, which subjects go with it?

We write: $R_y := \{x : \langle x, y \rangle \in R\}$

Answer:

•
$$R_a = \{a\}$$

•
$$R_b = \{a, b\}$$

Relations and functions

A relation *R* as a function: $f_{R} = \begin{bmatrix} a \mapsto \chi_{R_{a}} \\ b \mapsto \chi_{R_{b}} \\ \vdots \end{bmatrix}$

Constructions unified

subjects

$$f_{\rm S}(x,g)=g(x)$$

objects

$$f_{VP}(x,g) = g(x)$$

what do they have in common? they both apply a function to an argument

all constructions are interpreted as function application

What is the meaning of is?

• $\llbracket kind \rrbracket \in [E \rightarrow 2]$

What is the meaning of is?

- $\llbracket kind \rrbracket \in [E \rightarrow 2]$
- $\llbracket VP \rrbracket \in \llbracket E \rightarrow 2 \rrbracket$

What is the meaning of is?

- $\llbracket kind \rrbracket \in [E \rightarrow 2]$
- $\llbracket VP \rrbracket \in \llbracket E \rightarrow 2 \rrbracket$
- [[is kind]] = [[is]] ([[kind]])

What is the meaning of is?

- $\llbracket kind \rrbracket \in [E \rightarrow 2]$
- $\llbracket VP \rrbracket \in \llbracket E \rightarrow 2 \rrbracket$
- [[is kind]] = [[is]] ([[kind]])
- $\llbracket is \rrbracket \in \llbracket E \to 2 \rrbracket \to \llbracket E \to 2 \rrbracket$

• we want: $\llbracket is \rrbracket (\llbracket kind \rrbracket)(b) = \llbracket kind \rrbracket (b)$

- $\llbracket is \rrbracket \in \llbracket E \to 2 \rrbracket \to \llbracket E \to 2 \rrbracket$
- [[is kind]] = [[is]] ([[kind]])
- $\llbracket kind \rrbracket \in [E \to 2]$ • $\llbracket VP \rrbracket \in [E \to 2]$

What is the meaning of is?

Revisiting Predicates

Revisiting Predicates

What is the meaning of is?

- $\llbracket kind \rrbracket \in [E \rightarrow 2]$
- $\llbracket VP \rrbracket \in \llbracket E \rightarrow 2 \rrbracket$
- [[is kind]] = [[is]] ([[kind]])
- $\llbracket is \rrbracket \in \llbracket E \to 2 \rrbracket \to \llbracket E \to 2 \rrbracket$
- we want: [[is]] ([[kind]])(b) = [[kind]] (b)
- so... [[is]] (f) = f

• who is kind depends on the way the world is

- \cdot who is kind depends on the way the world is
- but is-ness doesn't

- \cdot who is kind depends on the way the world is
- but is-ness doesn't
- two kinds of words

- \cdot who is kind depends on the way the world is
- but is-ness doesn't
- two kinds of words
 - content words denotations can vary

- \cdot who is kind depends on the way the world is
- but is-ness doesn't
- two kinds of words

content words denotations can vary function words denotations are fixed

- \cdot who is kind depends on the way the world is
- but is-ness doesn't
- two kinds of words

content words denotations can vary function words denotations are fixed

• [[is]] = id in every model

Interim summary

- the attempt to unify differences
- has not only
 - given us a one-size-fits-all perspective on semantic composition
 - but also a way of investigating meanings of otherwise puzzling words

A slogan

- unification
- via changing perspectives
- can lead to explanation

The meaning of And

And, Or, Not

sentences

 $\llbracket S_1 \text{ and } S_2 \rrbracket = \llbracket S_1 \rrbracket \And \llbracket S_2 \rrbracket$

VPs

$$\llbracket VP_1 \text{ and } VP_2 \rrbracket = \llbracket VP_1 \rrbracket \cap \llbracket VP_2 \rrbracket$$

NPs

 $[\![NP_1 \text{ and } NP_2]\!] = ???$

transitive Vs

 $[V_1 \text{ and } V_2] =???$

what does and mean?

and in truth values & and in sets \cap

Changing notation for unification

and in truth values & and in sets \cap

Changing notation for unification

truth values $\cdot x \& y \le x$

and in truth values & and in sets \cap

Changing notation for unification

truth values $\cdot x \& y \le x$

•
$$x \& y \le y$$

```
and in truth values & and in sets \cap
```

Changing notation for unification

truth values $\cdot x \& y \le x$

•
$$x \& y \le y$$

• not just any lower number, but the biggest

```
and in truth values &
and in sets \cap
```

Changing notation for unification

truth values $\cdot x \& y \le x$

- $\cdot x \& y \leq y$
- not just any lower number, but the biggest

• 1 & 1 = 1, not 0

```
and in truth values &
and in sets \cap
```

Changing notation for unification

truth values $\cdot x \& y \le x$

- $\cdot x \& y \leq y$
- not just any lower number, but the biggest

• 1 & 1 = 1, not 0

and in truth values & and in sets \cap

Changing notation for unification

truth values $\cdot x \& y \le x$

- $\cdot x \& y \le y$
- not just any lower number, but the biggest

• 1 & 1 = 1, not 0

sets $\cdot A \cap B \subseteq A$

and in truth values & and in sets \cap Changing notation for unification truth values $\cdot x \& y \le x$ $\cdot x \& y \leq y$ • not just any lower number, but the biggest • 1 & 1 = 1, not 0 sets $\cdot A \cap B \subset A$ • $A \cap B \subset B$

and in truth values & and in sets \cap Changing notation for unification truth values $\cdot x \& y \le x$ • $x \& y \le y$

• not just any lower number, but the biggest

sets

- $A \cap B \subset A$
 - $A \cap B \subset B$
 - not just any subset, but the biggest

and in truth values & and in sets \cap Changing notation for unification truth values $\cdot x \& y \le x$ • $x \& y \le y$ • not just any lower number, but the biggest • 1 & 1 = 1, not 0 • $A \cap B \subset A$ sets • $A \cap B \subset B$ not just any subset, but the biggest • if $X \subset A$ and $X \subset B$

and in truth values & and in sets \cap Changing notation for unification truth values $\cdot x \& y \le x$ • $x \& y \le y$ not just any lower number, but the biggest • 1 & 1 = 1. not 0 • $A \cap B \subset A$ sets • $A \cap B \subset B$ not just any subset, but the biggest • if $X \subset A$ and $X \subset B$ • then $X \subset A \cap B$

And unified

 $\llbracket \alpha \text{ and } \beta \rrbracket$ the biggest γ smaller than both α and β

in sets big and small in terms of subset

in truth values big and small in terms of *implication*

and everything else?

Oops we turned sets into functions

What do big and small mean for functions?

- $A \subseteq B$: for every a,
 - if $a \in A$
 - then $a \in B$

Oops we turned sets into functions

What do big and small mean for functions?

- $A \subseteq B$: for every a,
 - if $a \in A$
 - then $a \in B$
- $\chi_A \leq \chi_B$: for every a

Oops we turned sets into functions

What do big and small mean for functions?

- $A \subseteq B$: for every a,
 - if $a \in A$
 - then $a \in B$
- $\chi_A \leq \chi_B$: for every a
 - if $\chi_A(a) = 1$
 - then $\chi_B(a) = 1$

Oops we turned sets into functions

What do big and small mean for functions?

- $A \subseteq B$: for every a,
 - if $a \in A$
 - then $a \in B$
- $\chi_A \leq \chi_B$: for every a
 - if $\chi_A(a) = 1$
 - then $\chi_B(a) = 1$
 - in other words: $\chi_A(a) \le \chi_B(a)$

Generalizing

$$f \leq g$$
 iff for all $x, f(x) \leq g(x)$

• Requires the codomain to be ordered!

Luckily...

- $2 = \{0, 1\}$ is ordered
- therefore
 - $[E \rightarrow 2]$ is ordered
 - $[E \rightarrow [E \rightarrow 2]]$ is ordered
 - * $[[E \rightarrow 2] \rightarrow [E \rightarrow 2]]$ is ordered
 - $\boldsymbol{\cdot}$ and so on

The greatest lower bound of a set *A* is the biggest thing smaller than everything else in *A*

written $\bigwedge A$ or if $A = \{x, y\} \ x \land y$

Claim: [[and]] means 'greatest lower bound'

 \cdot only works in an ordered domain

or in truth values ∨ or in sets ∪

Changing notation for unification

or in truth values \lor or in sets \cup Changing notation for unification truth values $\cdot x \le x \lor y$

or in truth values \lor or in sets \cup Changing notation for unification truth values $\cdot x \le x \lor y$ $\cdot y \le x \lor y$

or in truth values ∨ or in sets ∪

Changing notation for unification

truth values $\cdot x \leq x \lor y$

•
$$y \leq x \lor y$$

not just any bigger number, but the smallest

or in truth values ∨ or in sets ∪

Changing notation for unification

truth values $\cdot x \leq x \lor y$

•
$$y \le x \lor y$$

not just any bigger number, but the smallest

0 ∨ 0 = 0, not 1

or in truth values ∨ or in sets ∪

Changing notation for unification

truth values $\cdot x \leq x \lor y$

•
$$y \le x \lor y$$

not just any bigger number, but the smallest

0 ∨ 0 = 0, not 1

or in truth values \vee or in sets ∪ Changing notation for unification truth values $\cdot x \leq x \vee y$ • $y \leq x \vee y$ • not just any bigger number, but the smallest • $0 \lor 0 = 0$, not 1 • $A \subseteq A \cup B$ sets

or in truth values \vee or in sets ∪ Changing notation for unification truth values $\cdot x \leq x \vee y$ • $y \leq x \vee y$ • not just any bigger number, but the smallest • $0 \lor 0 = 0$, not 1 sets $\cdot A \subseteq A \cup B$ • $B \subset A \cup B$

or in truth values \vee or in sets ∪ Changing notation for unification truth values $\cdot x \leq x \vee y$ • $y \leq x \vee y$ not just any bigger number, but the smallest • $0 \lor 0 = 0$, not 1 • $A \subseteq A \cup B$ sets • $B \subset A \cup B$ not just any superset, but the smallest

or in truth values \vee or in sets ∪ Changing notation for unification truth values $\cdot x \leq x \lor y$ • $y \leq x \vee y$ not just any bigger number, but the smallest • $0 \lor 0 = 0$, not 1 • $A \subseteq A \cup B$ sets • $B \subset A \cup B$ not just any superset, but the smallest • if $A \subseteq X$ and $B \subseteq X$

or in truth values \vee or in sets U Changing notation for unification truth values $\cdot x < x \lor y$ • $y \leq x \vee y$ not just any bigger number, but the smallest • $0 \lor 0 = 0$, not 1 $\cdot A \subset A \cup B$ sets • $B \subset A \cup B$ not just any superset, but the smallest • if $A \subseteq X$ and $B \subseteq X$ • then $A \cap B \subset X$

Or and lub

```
The least upper bound of a set A is the smallest thing bigger than everything else in A
```

written $\bigvee A$ or if $A = \{x, y\} \ x \lor y$

Claim: [[or]] means 'least upper bound'

• only works in an ordered domain

not in truth values \neg **not** in sets $E - \Box$

Changing notation for unification

not in truth values \neg not in sets $E - \Box$

Changing notation for unification

not in truth values \neg not in sets $E - \Box$

Changing notation for unification

•
$$\neg x \wedge x = 0$$

not in truth values \neg not in sets $E - \Box$

Changing notation for unification

truth values $\cdot \neg x \lor x = 1$

•
$$\neg x \wedge x = 0$$

• the 'opposite' number

not in truth values \neg not in sets $E - \Box$

Changing notation for unification

•
$$\neg x \wedge x = 0$$

- the 'opposite' number
 - 1 is the biggest number

not in truth values \neg not in sets $E - \Box$

Changing notation for unification

•
$$\neg x \wedge x = 0$$

- the 'opposite' number
 - 1 is the biggest number
 - 0 is the smallest number

not in truth values \neg not in sets $E - \Box$

Changing notation for unification

•
$$\neg x \wedge x = 0$$

- the 'opposite' number
 - 1 is the biggest number
 - 0 is the smallest number

not in truth values \neg not in sets $E - \Box$

Changing notation for unification

•
$$\neg x \wedge x = 0$$

- the 'opposite' number
 - 1 is the biggest number
 - 0 is the smallest number

sets
$$(E - A) \cup A = E$$

not in truth values \neg not in sets $E - \Box$

Changing notation for unification

•
$$\neg x \wedge x = 0$$

- the 'opposite' number
 - 1 is the biggest number
 - 0 is the smallest number

sets
$$(E - A) \cup A = E$$

 $(E - A) \cap A = \emptyset$

not in truth values \neg not in sets $E - \Box$

Changing notation for unification

•
$$\neg x \wedge x = 0$$

- the 'opposite' number
 - 1 is the biggest number
 - 0 is the smallest number
- sets $\cdot (E A) \cup A = E$
 - $(E A) \cap A = \emptyset$
 - the 'opposite' set

not in truth values \neg not in sets $E - \Box$

Changing notation for unification

•
$$\neg x \wedge x = 0$$

- the 'opposite' number
 - 1 is the biggest number
 - 0 is the smallest number

sets
$$\cdot (E - A) \cup A = E$$

- $(E A) \cap A = \emptyset$
- the 'opposite' set
 - E is the biggest set

not in truth values \neg not in sets $E - \Box$

Changing notation for unification

•
$$\neg x \wedge x = 0$$

- the 'opposite' number
 - 1 is the biggest number
 - 0 is the smallest number

sets
$$\cdot (E - A) \cup A = E$$

•
$$(E - A) \cap A = \emptyset$$

- the 'opposite' set
 - E is the biggest set
 - $\cdot \,\, \emptyset$ is the smallest set

No more sets

Oops we turned sets into functions

What does opposite mean for functions

A special case: $[E \rightarrow 2]$

- the biggest set is E
 - \cdot so the biggest function is χ_E
- \cdot the smallest set is \emptyset
 - so the smallest function is χ_{\emptyset}
- the opposite set of A is E A
 - the opposite function should 'flip' all 0s and 1s

Generalizing

Biggest

$$1_{A \to B}(a) = 1_B$$

Smallest

$$0_{A\rightarrow B}(a) = 0_B$$

Opposite

$$(\neg f)(a) = \neg (f(a))$$

The complement of something is its opposite

- \cdot the glb of something and its opposite is the smallest thing
- \cdot the lub of something and its opposite is the biggest thing

Claim: [[not]] means 'complement'

• only works in an ordered domain

Interim summary

Notational history

- I wrote 1 for true
- and 0 for false
- because *true* is the **biggest** truth value
- and false the smallest
- with respect to negation:
 - $\neg b \lor b = true$
 - $\neg b \land b = false$

Any ordered domain can be operated on booleanly:

- laugh and praise Mary
- praise or criticize

Boolean Lattices

Boolean lattice

- a partially ordered set
- with meets
- with joins
- which is bounded
- which is distributive
- which is complemented

Partial orders

A set A is partially ordered if

- there is a binary relation (written \leq) over A
- which is *reflexive* : for all *x*,

• $x \leq x$

- which is asymmetric : for all $x \neq y$,
 - not both $x \leq y$ and $y \leq x$
- which is *transitive* : forall x, y, z,
 - if $x \leq y$
 - and $y \leq z$
 - then $x \leq z$

A partial order has meets and joins if

- for any elements $x, y \in A$
 - $x \lor y$ is defined (the smallest thing bigger than x and y)
 - $x \wedge y$ is defined (the biggest thing smaller than x and y)

A lattice

is a partial order with meets and joins

A lattice is bounded if

- it has a greatest element 1
- and a smallest element 0

A lattice is *distributive* if

$$a \wedge (b \vee c) = (a \wedge b) \vee (a \wedge c)$$

A bounded lattice has complements if

- · for every element $a \in A$
 - its opposite element exists

if B is a boolean lattice, then for any set A

- $[A \rightarrow B]$ is a boolean lattice
 - $\cdot f \leq g$ iff for every $a, f(a) \leq g(a)$
 - $(f \wedge g)(a) := f(a) \wedge g(a)$
 - $1_{A \rightarrow B}(a) := 1_B$
 - $(\neg f)(a) := \neg (f(a))$

The denotation domains of natural language expressions

- \cdot are functions
- are boolean lattices

except for E...

more on this next time!