Semantics

Greg Kobele April 23, 2018

Review

Elementhood

$x \in A$

x is one of the members of A

Equality

iff have exactly the same members

Define sets by specifying their members

Sequences

 $\langle a, b, a, c \rangle$ first comes a, then b, then a again, then finally c

Sequences are equal iff they have

- 1. the same length
- 2. the same elements at each position

Defining a sequence

- 1. how long is it?
- 2. what is at each position?

Models

A picture of the world

- what things there are
- what properties they have

 $\mathcal{M} = (E, I)$

- E is a set of individuals
- I interprets the words of our language in the model

Build sentence meanings from word meanings $\llbracket \phi \rrbracket^{\mathcal{M}}$ is the meaning of ϕ in \mathcal{M}

• for any word w, $\llbracket w \rrbracket = I(w)$

Properties

things have properties or not things are elements of sets, or not

• we represent properties as sets

kind [[kind]] is the set of kind things

Intransitives

John laughs true iff John actually laughs

- he either does (then true)
- or doesn't (then false)

things do actions, or not represent actions as the set of those things which do them Transitives

Relations

Things don't just have properties, they stand in relations to others

- I like lasagna
- My wife likes yoga

but

- Lasagna doesn't like me
- Yoga doesn't like my wife

Relations as sets of pairs

• I like lasagna

$\left< \llbracket me \rrbracket, \llbracket lasagna \rrbracket \right> \in \llbracket like \rrbracket$

1 1 1 1 1 1

Transitive sentences

John praises Mary

$$\llbracket John \text{ praises Mary} \rrbracket = \begin{cases} 1 & \text{if } \langle \llbracket John \rrbracket, \llbracket Mary \rrbracket \rangle \in \llbracket \text{ praise} \rrbracket \\ 0 & \text{if } \langle \llbracket John \rrbracket, \llbracket Mary \rrbracket \rangle \notin \llbracket \text{ praise} \rrbracket \end{cases}$$

in general

$$\llbracket NP_1 \lor NP_2 \rrbracket = \begin{cases} 1 & \text{if } \langle \llbracket NP_1 \rrbracket, \llbracket NP_2 \rrbracket \rangle \in \llbracket V \rrbracket \\ 0 & \text{if } \langle \llbracket NP_1 \rrbracket, \llbracket NP_2 \rrbracket \rangle \notin \llbracket V \rrbracket$$

Interpreting parts of sentences

currently just interpret constructions predicative adjective NP is Adj Adj coordination Adj and Adj intransitive NP V transitive NP V NP

Why should we interpret parts of sentences? anywhere there is *infinity*, we must find *finitude*

- boolean operations
- recursive embedding

want to interpret VP praise Mary

praise Mary

$\llbracket praiseMary \rrbracket = f_{TVP}(\llbracket praise \rrbracket, \llbracket Mary \rrbracket)$

Compositionality

The meaning of a sentence is determined by

- 1. the meanings of its parts
- 2. the way they are put together

Putting Mary and praise together

f_{TVP}([[praise]], [[Mary]]) =???

Considerations

- f_S([[John]], f_{TVP}([[praise]], [[Mary]])) = 1 iff ([[John]], [[Mary]]) ∈ [[praise]]
- 2. [[praise Mary and laugh]] should be defined

Putting Mary and praise together

f_{TVP}([[praise]], [[Mary]]) =???

Considerations

- f_S([[John]], f_{TVP}([[praise]], [[Mary]])) = 1 iff ([[John]], [[Mary]]) ∈ [[praise]]
- 2. [[praise Mary and laugh]] should be defined

$$\{x : \langle x, \llbracket Mary \rrbracket \} \in \llbracket praise \rrbracket \}$$

VP denotations

be friendly the set of friendly things

 $\{x : x \in [[friendly]]\}$

laugh the set of laughers

 $\{x: x \in \llbracket laugh \rrbracket\}$

praise Mary the set of things which praise Mary

 $\{x: \langle x, \llbracket Mary \rrbracket \rangle \in \llbracket praise \rrbracket \}$

Denotation domains

expression	meaning type
sentence	{0,1}
name	Ε
VP	℘(E)
TVP	$\wp(E \times E)$

Lexical postulates

John kissed Mary \implies John touched Mary world knowledge every kissing is a touching

Constraints on denotations require $I(kiss) \subseteq I(touch)$

only interpretations satisfying the above are considered

Semantics

- 1. denotations of words
- 2. constraints on possible denotations
- 3. combining word denotations to build sentence denotations

What about

lexical categories

ditransitives?

[[John gave Susan the book]]

prepositions?

[[Thebook is under the table]]

• nouns?

[Bill stole the book]

• (nominal) adjectives?

[[The heavy book fell]]

determiners?

Functions

Functions

A special kind of binary relation - $f \subseteq A \times B$

- A is the domain
- B is the codomain
- each left-hand-side is paired with exactly one right-hand-side

it makes sense to write: f(x) = y

Notations

1.
$$f = \{\langle 1, 1 \rangle, \langle 2, 4 \rangle, \langle 3, 9 \rangle, \langle 4, 16 \rangle, \ldots \}$$

2. $f = \begin{bmatrix} 1 \mapsto 1 \\ 2 \mapsto 4 \\ 3 \mapsto 9 \\ 4 \mapsto 16 \\ \vdots \end{bmatrix}$

$$2$$
 $C(\lambda)$ 2

injective each lhs is paired with a *unique* rhs (no two lhs' have the same rhs) if $x \neq y$ then $f(x) \neq f(y)$ **surjective** each element of codomain is paired with some lhs for all $y \in B$, there is some $x \in A$ such that f(x) = y

Counting

If there is an *injection* between two sets, A and B

• then B must be at least as large as A

works great in finite case

$$[n] := \{1, \ldots, n\}$$

· [0] := \emptyset

•
$$[1] := \{1\}$$

• [2] := $\{1, 2\}$

cardinality |A| = n iff *n* is the biggest number such that there is an injection $f : [n] \rightarrow A$ Counting is weird amongst infinities

- all numbers vs odd numbers?
- numbers vs pairs of numbers (vs triples of numbers)?
- numbers vs sets of numbers?

Theorem (Cantor's lemma) $A < 2^A$