Semantics

Greg Kobele
April 23, 2018

Review

Elementhood

$$
\begin{aligned}
& x \in A \\
& \quad x \text { is one of the members of } A
\end{aligned}
$$

Equality
iff have exactly the same members
Define sets
by specifying their members

Sequences

$\langle a, b, a, c\rangle$
first comes a, then b, then a again, then finally c
Sequences are equal iff they have

1. the same length
2. the same elements at each position

Defining a sequence

1. how long is it?
2. what is at each position?

Models

A picture of the world

- what things there are
- what properties they have

$$
\mathcal{M}=(E, I)
$$

- E is a set of individuals
- I interprets the words of our language in the model

Build sentence meanings from word meanings $\llbracket \phi \rrbracket^{\mathcal{M}}$ is the meaning of ϕ in \mathcal{M}

- for any word $w, \llbracket w \rrbracket=I(w)$

Properties

things have properties or not things are elements of sets, or not

- we represent properties as sets
kind
$\llbracket k i n d \rrbracket$ is the set of kind things

Intransitives

John laughs
true iff John actually laughs

- he either does (then true)
- or doesn't (then false)
things do actions, or not represent actions as the set of those things which do them

Transitives

Relations

Things don't just have properties,
they stand in relations to others

- I like lasagna
- My wife likes yoga
but
- Lasagna doesn't like me
- Yoga doesn't like my wife

Relations as sets of pairs

- I like lasagna

$$
\langle\llbracket m e \rrbracket, \llbracket l a s a g n a \rrbracket\rangle \in \llbracket l i k e \rrbracket
$$

Transitive sentences

John praises Mary

$$
\llbracket J o h n \text { praises Mary } \rrbracket= \begin{cases}1 & \text { if }\langle\llbracket J o h n \rrbracket, \llbracket \text { Mary } \rrbracket\rangle \in \llbracket p r a i s e \rrbracket \\ 0 & \text { if }\langle\llbracket J o h n \rrbracket, \llbracket \text { Mary } \rrbracket\rangle \notin \llbracket p r a i s e \rrbracket\end{cases}
$$

in general

$$
\llbracket N P_{1} V N P_{2} \rrbracket= \begin{cases}1 & \text { if }\left\langle\llbracket N P_{1} \rrbracket, \llbracket N P_{2} \rrbracket\right\rangle \in \llbracket V \rrbracket \\ 0 & \text { if }\left\langle\llbracket N P_{1} \rrbracket, \llbracket N P_{2} \rrbracket\right\rangle \notin \llbracket V \rrbracket\end{cases}
$$

Interpreting parts of sentences

currently just interpret constructions
predicative adjective NP is Adj
Adj coordination Adj and Adj
intransitive NP V
transitive $N P \vee N P$
Why should we interpret parts of sentences? anywhere there is infinity, we must find finitude

- boolean operations
- recursive embedding
want to interpret VP praise Mary

Praising Mary

praise Mary

$$
\llbracket p r a i s e M a r y \rrbracket=f_{T V P}(\llbracket p r a i s e \rrbracket, \llbracket M a r y \rrbracket)
$$

Compositionality
The meaning of a sentence is determined by

1. the meanings of its parts
2. the way they are put together

Putting Mary and praise together

$$
f_{\text {TVP }}(\llbracket p r a i s e \rrbracket, \llbracket \text { Mary } \rrbracket)=? ? ?
$$

Considerations

1. $f_{s}\left(\llbracket\right.$ John ${ }^{\text {, }} \mathrm{f}_{\text {TVP }}(\llbracket p r a i s e \rrbracket, \llbracket$ Mary $\left.\rrbracket)\right)=$ 1 iff $\langle\llbracket j o h n \rrbracket, \llbracket M a r y \rrbracket\rangle \in \llbracket p r a i s e \rrbracket$
2. 【praise Mary and laugh】 should be defined

Putting Mary and praise together

$$
f_{\text {TVP }}(\llbracket p r a i s e \rrbracket, \llbracket \text { Mary } \rrbracket)=? ? ?
$$

Considerations

1. $f_{s}\left(\llbracket J o h n \rrbracket, f_{\text {TVP }}(\llbracket p r a i s e \rrbracket, \llbracket M a r y \rrbracket)\right)=$ 1 iff $\langle\llbracket j o h n \rrbracket, \llbracket M a r y \rrbracket\rangle \in \llbracket p r a i s e \rrbracket$
2. 【praise Mary and laugh】 should be defined

$$
\{x:\langle x, \llbracket \text { Mary } \rrbracket\rangle \in \llbracket p r a i s e \rrbracket\}
$$

VP denotations

be friendly
the set of friendly things

$$
\{x: x \in \llbracket f r i e n d l y \rrbracket\}
$$

laugh
the set of laughers

$$
\{x: x \in \llbracket l a u g h \rrbracket\}
$$

praise Mary
the set of things which praise Mary

$$
\{x:\langle x, \llbracket M a r y \rrbracket\rangle \in \llbracket p r a i s e \rrbracket\}
$$

Denotation domains

expression	meaning type
sentence	$\{0,1\}$
name	E
VP	$\wp(E)$
TVP	$\wp(E \times E)$

Lexical postulates

John kissed Mary \Longrightarrow John touched Mary
world knowledge every kissing is a touching

Constraints on denotations

$$
\text { require } I(\text { kiss }) \subseteq I(\text { touch })
$$

only interpretations satisfying the above are considered
Semantics

1. denotations of words
2. constraints on possible denotations
3. combining word denotations to build sentence denotations

What about

lexical categories

－ditransitives？
【John gave Susan the book】
－prepositions？
【Thebook is under the table】
－nouns？
【Bill stole the book】
－（nominal）adjectives？
【The heavy book fell】
－determiners？

Functions

Functions

A special kind of binary relation - $f \subseteq A \times B$

- A is the domain
- B is the codomain
- each left-hand-side is paired with exactly one right-hand-side
it makes sense to write: $f(x)=y$
Notations

$$
\begin{aligned}
& \text { 1. } f=\{\langle 1,1\rangle,\langle 2,4\rangle,\langle 3,9\rangle,\langle 4,16\rangle, \ldots\} \\
& \text { 2. } f=\left[\begin{array}{l}
1 \mapsto 1 \\
2 \mapsto 4 \\
3 \mapsto 9 \\
4 \mapsto 16 \\
\vdots
\end{array}\right.
\end{aligned}
$$

Properties of functions

injective each lhs is paired with a unique rhs (no two lhs' have the same rhs)

$$
\text { if } x \neq y \text { then } f(x) \neq f(y)
$$

surjective each element of codomain is paired with some ths for all $y \in B$, there is some $x \in A$ such that $f(x)=y$

Counting

If there is an injection between two sets, A and B

- then B must be at least as large as A
works great in finite case

$$
[n]:=\{1, \ldots, n\}
$$

- [0] :=
- $[1]:=\{1\}$
- [2] $:=\{1,2\}$
cardinality
$|A|=n$ iff n is the biggest number such that there is an injection $f:[n] \rightarrow A$

Infinity

Counting is weird amongst infinities

- all numbers vs odd numbers?
- numbers vs pairs of numbers (vs triples of numbers)?
- numbers vs sets of numbers?

Theorem (Cantor's lemma)
$A<2^{A}$

