Semantics

Greg Kobele
April 16, 2018

Sets

Sets

- Formalizes the idea of a collection of elements

Group membership
Given:

- the members of Westgohliser Gartenkolonie
- the members of Michaeliskirchgemeinde Posaunenchor
we can ask:
- are all Posaunenchor members also Gartenkolonie members?
- which members of the Gartenkolonie are also in the Posaunenchor?
- which members of the Gartenkolonie are not in the Posaunenchor?

Venn Diagrams

Relations between sets

- subset
- superset
- disjoint

Making new sets from old

- intersection
- union
- relative complement

Defining sets

Define a set
by describing its members

- the set whose members are: John, Bob, Sally, Alice \{John, Bob, Sally, Alice $\}$

Defining sets

Define a set
by describing its members

- the set whose members are: John, Bob, Sally, Alice \{John, Bob, Sally, Alice $\}$
- the set of people who drive a Honda
$\{x: x$ drives a Honda $\}$

Defining sets

Define a set
by describing its members

- the set whose members are: John, Bob, Sally, Alice \{John, Bob, Sally, Alice\}
- the set of people who drive a Honda $\{x: x$ drives a Honda $\}$
comprehension
- Φ is some condition ('driving a Honda')
- the set of things that satisfy Φ is written as

$$
\{x: \Phi\}
$$

Equality of sets

Define a set
by describing its members
Sets are equal iff they have the same members

- $\{1,2,3\}=\{2,1,1,3\}$
- $\left\{x: x^{2}+2 x+1=0\right\}=\left\{x:(x+1)^{2}=0\right\}$

Membership

$x \in A$
x is one of the members of A

Recasting Relations
subset $A \subseteq B$ iff for all x, if $x \in A$ then $x \in B$
superset $A \supseteq B$ iff for all $x, x \in A$ only if $x \in B$

Membership

$x \in A$
x is one of the members of A

Recasting Operations
union $A \cup B:=\{x: x \in A$ or $x \in B\}$
intersection $A \cap B:=\{x: x \in A$ and $x \in B\}$
complement $A-B:=\{x: x \in A$ and $x \notin B\}$

Empty sets

Stipulation:

There is a set with no members
Theorem (Uniqueness)
There is exactly one empty set

Notation \emptyset

Cardinality

|A|
the number of elements in A

- $|\emptyset|=0$
- $|\{\emptyset\}|=1$

Powerset

2^{A} (sometimes written $\wp(A)$)
all possible sets made from elements of A
$2\{0,1\}$

- \emptyset
- $\{0\}$
- $\{1\}$
- $\{0,1\}$

Theorem (Powerset cardinality)
$\left|2^{A}\right|=2^{|A|}$

Sets of sets (of sets ...)

If \mathcal{A} is a set of sets

- $\cup \mathcal{A}$
- is the set which contains an element x just in case $x \in A$ for some $A \in \bigcup \mathcal{A}$
- $\{x: \exists A \in \mathcal{A} . x \in A\}$
- $\bigcap \mathcal{A}$
- is the set which contains an element x just in case $x \in A$ for every $A \in \bigcup \mathcal{A}$
- $\{x: \forall A \in \mathcal{A} . x \in A\}$

Model Theory (I)

Models

A model is an abstract mathematical structure that we construct for describing hypothetical situations. Models are used for analyzing natural language expressions (words, phrases and sentences) by associating them with abstract objects.

Winter
need

1. the individuals in the world
2. an interpretation of the words of our language
$\mathcal{M}=(E, I)$

- E is a set of individuals
- I interprets the words of our language in the model

Interpretations

I interprets words in a model
What should $I(B o b)$ be?

- Bob is a person
- so: $I(B o b) \in E$

What should I(kind) be?

- kind is not a person, but rather a property of a person
- to be able to decide whether a sentence like Bob is kind is true in our model, we need to know
- who the kind people are
- whether Bob is one of them
- so: $I($ kind $) \subseteq E$

From words to sentences

what we want is
modeling our semantic judgements of

- truth in a situation
- entailment
i.e. 'meanings' of sentences
- since we have given ourselves meanings for words
- we must find a way to build meanings for sentences out of these
we write $\llbracket \phi \rrbracket^{\mathcal{M}}$ for the meaning of arbitrary expressions in model \mathcal{M}

Bob is kind

$$
\llbracket B o b \text { is kind } \rrbracket= \begin{cases}1 & \text { if } \llbracket B o b \rrbracket \in \llbracket k i n d \rrbracket \\ 0 & \text { if } \llbracket B o b \rrbracket \notin \llbracket k i n d \rrbracket\end{cases}
$$

in general

$$
\llbracket n a m e \text { is Adj』}= \begin{cases}1 & \text { if } \llbracket n a m e \rrbracket \in \llbracket A d j \rrbracket \\ 0 & \text { if } \llbracket n a m e \rrbracket \notin \llbracket A d j \rrbracket\end{cases}
$$

Bob is kind and chubby
$\llbracket B o b$ is kind and chubby $\rrbracket= \begin{cases}1 & \text { if } \llbracket B o b \rrbracket \in \llbracket k i n d ~ a n d ~ c h u b b y \rrbracket \\ 0 & \text { if } \llbracket B O b \rrbracket \notin \llbracket k i n d ~ a n d ~ c h u b b y \rrbracket\end{cases}$
in general

$$
\llbracket A d j_{1} \text { and } A d j_{2} \rrbracket=? ? ?
$$

Bob is kind and chubby
$\llbracket B o b$ is kind and chubby $\rrbracket= \begin{cases}1 & \text { if } \llbracket B o b \rrbracket \in \llbracket k i n d ~ a n d ~ c h u b b y \rrbracket \\ 0 & \text { if } \llbracket B O b \rrbracket \notin \llbracket k i n d ~ a n d ~ c h u b b y \rrbracket\end{cases}$
in general

$$
\llbracket A d j_{1} \text { and } A d j_{2} \rrbracket=\llbracket A d j_{1} \rrbracket \cap \llbracket A d j_{2} \rrbracket
$$

Models and Entailment

Consider Bob is kind and chubby \Longrightarrow Bob is kind

Assume that $\llbracket B o b$ is kind and chubby $\rrbracket=1$ what do we know about $\llbracket B o b$ is kind $\rrbracket ?$

Modeling Entailment

The question
Does A entail B?
Its analysis
setting $1=$ true and $0=$ false:

Is every model \mathcal{M} such that $\llbracket A \rrbracket^{\mathcal{M}} \leq \llbracket B \rrbracket^{\mathcal{M}}$?

Negation

Bob is not kind and chubby is Bob chubby?

Negation

Bob is not kind and chubby is Bob chubby?

Analysing negation

in general

$$
\llbracket n o t \operatorname{Adj} \rrbracket=? ? ?
$$

Analysing negation

in general

$$
\llbracket n o t \operatorname{Adj} \rrbracket=E-\llbracket A d j \rrbracket
$$

Bob is not kind and chubby is Bob chubby?

Sequences

Sequences

- Formalizes the idea of a list of elements

Defining a sequence

1. how long is it?
2. what is at each position?

- $|s|$ is the length of s
- s_{i} is the object in the $i^{\text {th }}$ position of s

An example sequence

$\langle a, b, b, a\rangle$
is the sequence where:

1. it's length is 4
2. it has

- a in the first position
- b in the second position
- b in the third position
- a in the fourth position

Remember!

- sequences are 'pointy' ($\langle a, b\rangle)$
- sets are 'curly' (\{a, b\})

Sequence Equality

Sequences are equal iff they have

1. the same length
2. the same elements at each position

Examples

- $\{a, b, c\}=\{b, c, a\}$
- $\langle a, b, c\rangle \neq\langle b, c, a\rangle$

Empty sequence

A sequence is empty

- if its length is 0
- (and has, therefore, nothing at any position)

Theorem (Uniqueness)
There is exactly one empty sequence

Notation ϵ

Relations

a set of sequences of some fixed length
unary relations
a set of sequences of length 1
binary relations
a set of sequences of length 2
ternary relations
a set of sequences of length 3
Being in front of is a relation between two individuals

- can model this as a binary relation IFO:
- a pair $\langle a, b\rangle \in I F O$ iff a is in front of b

Cross-Product

$$
\begin{aligned}
& A \times B \\
& \{\langle a, b\rangle: a \in A \text { and } b \in B\} \\
& A_{1} \times \cdots \times A_{n} \\
& \left\{\left\langle a_{1}, \ldots, a_{n}\right\rangle: a_{1} \in A_{1} \text { and } \ldots \text { and } a_{n} \in A_{n}\right\} \\
& \underbrace{A^{n}}_{n \text { times }}
\end{aligned}
$$

Functions

A special kind of binary relation $-f \subseteq A \times B$

- each left-hand-side is paired with exactly one right-hand-side
- A is the domain
- B is the codomain

Properties of functions
injective each lhs is paired with a unique rhs (no two Ihs' have the same rhs)
surjective each element of codomain is paired with some ths

Counting

If there is an injection between two sets, A and B

- then B must be at least as large as A

Theorem (Cantor's lemma) $A<2^{A}$

