## Semantics

Greg Kobele
April 9, 2018

## Bureaucracy

## Course Details

- This course will be interactive
- regular class participation
- questions/comments desired
- Course webpage:
https://home.uni-leipzig.de/~gkobele/
courses/2018/Semantik


## How to contact me

- I am available for short questions immediately after class
- (please) try to ask questions about the lecture during the lecture
- email me (gkobele@uni-leipzig.de) to schedule a meeting
- my office:

```
H1 5.11
Beethovenstr 15
```


## Tutorial

- Max Polter teaches the tutorial for this course
- The tutorial is especially important:

Mathematics is like dancing, you cannot learn to do it by watching

## Grading

- The final grade is based on an exam at the end of the semester


## Readings

- It is your responsibility to learn the material in this course
- There are a number of excellent texts out there
- von Stechow's lecture notes (I, II)
- Winter's textbook
- Heim \& Kratzer's textbook (at the publisher)
- Portner's textbook (at the publisher)


## Topics

Linguistic

- What meaning is
- Meaning of complex objects
- Quantification
- Pronouns?
- Tense?
- Propositional Attitudes?


## Topics

## Formal

- Sets and functions
- Types
- Lambda calculus
- Boolean algebra?

Introduction

## Linguistics

## An empirical science

Goal:
to understand linguistic competence
Linguistic Competence
The regularities underlying our ability to use language

## Phonology

-What are the basic sounds in a language?

- What are the restrictions on sound combinations in a language?
- How does the pronunciation of morphemes change?

Phonological Competence

## Morphology

- What are the different forms of words

Morphological Competence

## Syntax

- Which sequences of words are grammatical?


## Syntactic Competence

## Semantics

What can we do?

- this sentence is true/false in this situation
- these sentences are contradictory
- these sentences entail this one


## Meaning

We could say:
Semantics is the study of meaning

## Meaning

We could say:
Semantics is the study of meaning
What is meaning?

Entailment

## Entailment

$S_{1} \Rightarrow S_{2}$

1. in any situation where $S_{1}$ is true, $S_{2}$ is also true
2. committing to $S_{1}$ commits you to $S_{2}$

- you can't (coherently) assert both $S_{1}$ and $\neg S_{2}$
sometimes I'll say 'implication'/'implies' instead of 'entailment'/'entails'


## An example

1. John walked
2. John moved

## An example

1. John walked
2. John moved

$$
1 \Rightarrow 2
$$

## A useful intuition

- imagine the people who walk (WALKERS)
- and the people who move (MOVERS)



## Another example

1. A dog barked
2. An animal barked
3. A dog made a sound

## Another example

1. A dog barked
2. An animal barked
3. A dog made a sound
$1 \Rightarrow 2$ and $1 \Rightarrow 3$

| Restrictor | Scope |
| :--- | :--- |
| up | up |

## Yet another example

1. No dog barked
2. No animal barked
3. No dog made a sound

## Yet another example

1. No dog barked
2. No animal barked
3. No dog made a sound
$1 \Leftarrow 2$ and $1 \Leftarrow 3$

| Restrictor | Scope |
| :--- | :--- |
| down | down |

## One more time

1. Every dog barked
2. Every animal barked
3. Every dog made a sound

## One more time

1. Every dog barked
2. Every animal barked
3. Every dog made a sound
$1 \Leftarrow 2$ and $1 \Rightarrow 3$

| Restrictor | Scope |
| :--- | :--- |
| down | up |

## Summary

| Det | Restrictor | Scope |
| :--- | :--- | :--- |
| $a$ | up | up |
| no | down | down |
| every | down | up |
| exactly two | xxx | xxx |

## We want to

- catalogue entailment relations between sentences
- identify regularities therein
- explain them

Semantics

## A Semantic Theory

How to explain:

1. this sentence is true/false in this situation
2. these sentences are contradictory
3. these sentences entail this one

One approach

- if we knew under what conditions a sentence were true
- we could model these abilities


## How truth conditions explain

Assume we know:
for each sentence, what the world has to be like for it to be true
this sentence is true/false in this situation check whether this situation is one which makes the sentence true
these sentences are contradictory check whether their truth conditions are incompatible
these sentences entail this one check whether the conditions the world has to satisfy to make all of these sentences true also makes this one true

## Truth conditional semantics

The goal associate to each sentence its truth-conditions

| Sentence | Truth conditions |
| :--- | :--- |
| Greg is awake | there is a person named greg <br> and he is awake at the time of speech |
| John loves pizza | there is a person named john <br> and he really likes stuff called pizza |

## Another Semantic Theory

How to explain:

1. this sentence is true/false in this situation
2. these sentences are contradictory
3. these sentences entail this one

Another approach

- If we could translate a sentence into a logical formula
- we could model these abilities


## How logic explains

Assume we know:
for each sentence, what its logical formula is
this sentence is true/false in this situation
describe the situation in logical formulae, and see if they
prove the formula for our sentence
these sentences are contradictory
check whether their formulae prove a condtradiction
these sentences entail this one
check whether their formulae allow this one's formula to be proven

## Proof theoretic semantics

The goal associate to each sentence a logical formula

| Sentence | Formula |
| :--- | :--- |
| Greg is awake | $\exists x \cdot \operatorname{name}(x)=\operatorname{Greg}$ |
|  | $\wedge \operatorname{awake}(x)$ |

John loves pizza $\exists x$.name $(x)=$ John
$\wedge \forall y . \operatorname{pizza}(y)$
$\rightarrow$ loves $(x, y)$

## How to do this?

No matter what we choose to do we must assign something (truth-conditions, a formula) to infinitely many sentences

- we can generically call this a meaning

This is the core problem of semantics

Composition

## Lists

We cannot make a list of sentences and their meanings because infinite
but what about just those sentences that people use?

## Familiar objection

Language is creative
We can understand sentences we've never heard before
$\rightsquigarrow$ language is infinite
Let's look at all possible short sentences (20 words or fewer)

## Just short sentences please

There's still a lot to write down!

- let $n$ be the number of English words
- $n^{k}$ is the number of sequences of words of length $k$

You know around 20,000 words
Possible seqences of 20 words

$$
20000^{20}>10^{80}
$$

## Even short lists are too long

Possible seqences of 20 words

$$
20000^{20}>10^{80}
$$

The Universe there are $\approx 10^{80}$ atoms in the known universe

The moral there are too many sentences to brute force

## Regularities

The way to describe an infinite set
is to find some way to make it finite
Numbers
The set of all (non-negative) integers is gotten by the following two operations:

1. 0
2. add 1 to something

## Linguistic regularities

To describe the meaning associated with a sentence need to

1. identify parts of sentences, and
2. how they are put together

Compositionality
The meaning of a sentence is determined by

1. the meanings of its parts, and
2. the way they are put together

## Relative clause structure

NP-adjunction


that Mary likes is part of the restrictor

- every dog barked $\Rightarrow$ every dog that Mary likes barked
- the meanings of $N$ and $S$ should be combined before they are combined with the determiner


## Compositionality

The meaning of a sentence is determined by

1. the meanings of its parts, and
2. the way they are put together
if structure = syntactic structure

- syntactic theory influences semantic theory syntax this is the right structure
- and semantic theory influences syntactic theory semantics the structure must look like this

Meanings

## What are the meanings of parts?

Sentence meanings
truth conditions descriptions of how the world must be like for the sentence to be true
logical formulae structured objects that support inference

Parts
truth conditions ???
logical formulae parts of formulae

## Parts of logical formulae

Every boy will laugh

$$
\forall x \cdot \operatorname{BOY}(x) \rightarrow \operatorname{LAUGH}(x)
$$

need some way to break this up into pieces:

| word | meaning |
| :--- | :--- |
| boy | BOY |
| laugh | LAUGH |
| every | $\forall x . \square_{1}(x) \rightarrow \square_{2}(x)$ |

## Lambda calculus

$\forall x . \square_{1}(x) \rightarrow \square_{2}(x)$
a formula that is missing parts

- two 'holes'

The $\lambda$-calculus
a language for talking about decomposing structured objects

- holes have names $\lambda P, Q . \forall x . P(x) \rightarrow Q(x)$
- here, $P$ is the name for the first hole
- and $Q$ the name for the second


## Parts of truth conditions

Every boy will laugh true iff the set of all boys is a subset of the set of all laughers need some way to break this up into pieces:

| word | meaning |
| :--- | :--- |
| boy | BOYS |
| laugh | LAUGHERS |
| every | ??? |

EVERY should be a function takes two arguments

- restrictor set
- scope set
- output: a truth value true iff RESTRICTOR $\subseteq$ SCOPE


## Truth in a Model

We want truth conditions
under what circumstances a sentence is true
We explicitly represent ways the world could be
A model is a way the world might be

- there is some set of things
- there are relations that hold between these things

An interpretation of a sentence we say what each word means

- boy denotes a set of things (these are the boys)
- laugh denotes a set of things (these are the laughers)
- Greg denotes a thing (this is Greg)
in general we write
【word】 for the denotation of a word


## Parts of truth conditions again

Every boy will laugh true iff the set of all boys is a subset of the set of all laughers
«every】
the function which takes two sets and returns true if the one is a subset of the other

$$
\llbracket e v e r y \text { boy will laugh } \rrbracket=\llbracket e v e r y \rrbracket(\llbracket b o y \rrbracket, \llbracket l a u g h \rrbracket)
$$

## Parts revisited

Sentence meanings
truth conditions descriptions of how the world must be like for the sentence to be true
logical formulae structured objects that support inference
Parts
truth conditions sets, functions, relations logical formulae formulae with holes

