
Lexical Decomposition

Greg Kobele

June 18, 2018

1 Decomposition of Feature Bundles
Given a lexical entry w :: α, we can divide α up into the following parts:

• the part that occurs before the first category feature x

• the first category feature itself x

• the part that occurs after the first category feature

In a useful lexical item (i.e. one which can be used in a convergent deriva-
tion), there will be exactly one category feature, the precategorial part will
consist of some number of positive merge and move features (=x, x=, +x,⊕x),
and the postcategorial part will consist of some number of negative move
features (-x).

So let again w = w :: αβxγ be a lexical item with αβ the precategorial
part of its feature bundle (one or both of α and β may be empty). We can
decompose w into two lexical items in the following way (I assume that w is
fresh; i.e. no other lexical item has a feature of that type):

w :: αw ε :: =wβxγ

From a linguistic perspective, this amounts to saying that what we used
to think of as an XP (remember that w had category x) is really two phrases,
XP with complement WP . We can view this process in terms of the trees
we would construct in figure 1.

Exercises Decompose the following lexical items at the vertical bar

1. ε :: =V +k | d= v

2. give :: =d +k | d= V

1



>

β >

α w

=⇒

>

β <

ε >

α w

Figure 1: Decomposition in pictures

1.1 Decomposition and Generalization

The entire point about this sort of lexical decomposition can be summarized
in the following way:

lexical decomposition allows us to express regularities in the lex-
icon as new lexical items

If we measure the size of a grammatical description in terms of the number of
features used (i.e. the sum of all features on all lexical items), then lexical
decomposition can be used to reduce the size of our lexicon, by reifying
repeated feature sequences as separate lexical items. Consider the set of
lexical items in figure 2. Each of these six lexical items has three features,

will :: =v.+k.s must :: =v.+k.s
had :: =perf.+k.s was :: =prog.+k.s
has :: =perf.+k.s is :: =prog.+k.s

Figure 2: Some tensed auxiliaries

giving us a total lexical size of 18. However, all six lexical items end with
the same length two sequence of features: +k.s. This expresses that they
check the case of a subject, and are a sentence; in even more naïve terms
each lexical item demands that the subject moves to its specifier. We can
decompose our lexical items so as to factor this common feature sequence
out, giving rise to the lexicon in figure 3. This lexicon has seven lexical

will :: =v.t must :: =v.t
had :: =perf.t was :: =prog.t
has :: =perf.t is :: =prog.t

ε :: =t.+k.s

Figure 3: Some tensed auxiliaries, with some redundancies factored out

2



is :: =prog.+k.s been :: =prog.perf

Figure 4: Various forms of (auxiliary) /be/

items, but only fifteen features. We can see that decomposition has reified
the repeated feature sequence as a new lexical item, which expresses the
generalization that subjects move to a specifier position at (or above) TP.

Exercises

1. Identify and decompose redundancies in the following set of lex-
ical items.

John :: d.-k Mary :: d.-k
the :: =n.d.-k every :: =n.d.-k
no :: =n.d.-k some :: =n.d.-k

2. Give a preliminary analysis of the Saxon genitive construction in
English (NP’s N):

• John’s doctor
• every man’s mother

Crucially, the NP to the left of the ’s cannot undergo movement.

1.2 Decomposition and Syntactic Word-Formation

Our decomposition scheme as described above treats the two parts of lexical
items (their phonological and syntactic forms) asymmetrically; the syntactic
feature sequence is split, but the phonological segment sequence is not. We
can imagine, however, wanting to factor out redundancy, not only within
feature bundles, but within the relation between phonological forms and
feature bundles. Consider the pair of lexical items in figure 4. Not only do
both of these lexical items begin with an =prog feature, but (we know) they
are all forms of the auxiliary verb be. This generalization is, however, not
expressed in the language of our theory (i.e. in terms of our lexicon). We
would like to factor out the auxiliary from its endings. Abstractly, we need
a decomposition rule like the following:

w :: αβ 7→


u :: α.x
v :: =x.β
w = u⊕ v

3



s :: =v.+k.s en :: =v.perf
be :: =prog.v

is = be⊕ s
been = be⊕ en

Figure 5: Factoring out /be/

This rule would allow us to split a lexical item into two, but now the original
phonological form of the lexical item (w) is factored into two pieces (u and
v). The resulting pair of lexical items no longer give us the same structures
we would have created with the original one, as now there are two heads
(a u and a v) instead of just one (w), and in addition all specifiers in α
intervene between these two heads. In order to remedy this problem, we
must allow u and v to combine to form w. We do this in two steps. First,
when merging expressions headed by u and v respectively, we combine the
phonological material from both heads, and put them together into just one
of the two.1 Second, we record that these two heads are not pronounced
separately as u and v, but are rather pronounced together as w. This is
done in two ways. First, in the lexical entry for v (the selector), we record
(by underlining the relevant feature) that it enters into a special relationship
with the head of its selected argument (=x). Second, we record that u and
v are jointly pronounced as w.2 This latter is, in linguistic theory, the
provenance of morphology. It is simply represented here as a finite list of
statements (morphology can be thought of as a way of compressing this list,
or alternatively a way of identifying and expressing rule-like generalizations).
Using this decomposition rule, we obtain the lexical items in figure 5.

1.3 Complex heads

Once we move from whole word syntax to one which manipulates sub-word
parts,3 we must confront two questions.

1Just which head should host the phonological material is something we shall address
in a bit.

2It would make sense as well to, upon combining u and v, to replace them with w. I
prefer, when doing theory construction, to factor out logically distinct steps: syntax will
then assemble complex heads, and these complex heads will be interpreted elsewhere. Of
course, when actually using this theory to model performance, these logically distinct
steps can and perhaps should be interleaved with one another.

3In current parlance, this would be described as moving from a pre-syntactic morpho-
logical module to a post-syntactic one.

4



1. how do the heads which constitute a single word get identified?

2. where does the word corresponding to multiple distinct heads get pro-
nounced?

The answer to the first question we gave implicitly in the previous sec-
tion: two heads are part of the same word just in case one selects for the
other with an underlined feature. There are many possible answers to the
second question. Following Brody [2000], we say that a word is pronounced
(relative to other words) as though it occupied the position of the highest
of its heads (with respect to c-command) with a particular property (and
in the lowest of its heads, if none have that property). This property is
called strength in Brody’s work, but is formally merely an ad hoc property
of lexical items. To distinguish between strong and weak lexical items, we
write strong lexical items with three colons separating their phonological
and syntactic features, and weak ones with the usual two (as in figure 6).

u ::: α v :: β

Figure 6: Strong (left) and weak (right) lexical items

2 Decomposition and Learning
Decomposition can be thought of as a part of a learning mechanism for
minimalist grammars. In particular, it provides a principled route from
a whole-word syntactic analysis to the sort of decompositional syntactic
analysis which is characteristic of minimalist-style analyses.

It is known that learning can take place in minimalist grammars in a
highly supervised setting [Kobele et al., 2002, Stabler et al., 2003], where

1. words are segmented into morphemes

2. ordered and directed dependencies link words which are in a feature
checking relationship

• the ith dependency of word u connects it to the jth dependency
of word v just in case the ith feature of word u was checked by
the jth feature of word v

• the source of the dependency is the attractor feature, and the
target of the dependency is the attractee feature

5



In this setting, the learner is given (essentially) full lexical items where
feature names are unique to a particular dependency, and the learner’s task
is to identify which feature distinctions should be kept, and which should
be collapsed. In the cited works (following Kanazawa [1998]), the pressure
to collapse distinctions is provided by a limit on the number of homophones
in the grammar.

We can use our decomposition mechanism to relax the supervision pro-
vided by the segmentation of words into morphemes (1). Accordingly, we
assume that we are provided with sentences based on whole words, with
dependency links between them as described by point 2 above.

2.1 English auxiliaries

As a simple case study, consider the English auxiliary system. Imagine the
learner being exposed to sentences like the following.

1. John eats.

2. John will eat.

3. John has eaten.

4. John will have eaten.

5. John is eating.

6. John will be eating.

7. John has been eating.

8. John will have been eating.

The dependencies for sentence 8 are as in 7. From these dependencies, we

John will have been laughing
22 1

1

Figure 7: Dependencies for sentence 8

can reconstruct the lexical items in figure 8. Here, the names of the features
are arbitrary. After extracting lexical items from sentences 1 – 8, we have

6



John :: a.-b will :: =c.+b.s
have :: =d.c been :: =e.d
laughing :: =a.e

Figure 8: Lexical items extracted from the dependency structure in figure 7

multiple ’copies’ of certain words, which differ only in the names (but not
the types) of features in their feature bundles. For example, there are eight
(!) different copies of John, four of eating, three of will, and two each of
eaten, has, and been. We can unify these copies into single lexical items by
renaming the features involved across the whole lexicon. For example, we
might decide to rename the first feature of each of the John lexical items to
d, which would force us to replace all features with name a with the name d,
among others. After this unification procedure, we are left with the lexicon
on figure 9.

John :: d.-k eats :: =d.+k.s
will :: =v.+k.s eat :: =d.v
has :: =perf.+k.s eaten :: =d.perf
is :: =prog.+k.s eating :: =d.prog
have :: =perf.v be :: =prog.v
been :: =prog.perf

Figure 9: Lexical items after unification of features

This grammar is perfectly capable of deriving the sentences (with the
appropriate dependencies) we were given originally. However, it systemat-
ically misses generalizations: although we know (as English speakers) that
there is a single verb, eat, which is appearing in its various forms in this
lexicon, this fact is not captured in the grammar. Although this feels right,
it is a somewhat wishy-washy argument. A more concrete (although less
intuitively appealing) argument to the effect that there are missed general-
izations, is that in order to add a new verb to our grammar we would need
to add four separate lexical items (six, if we had included the past tense and
the passive voice), one for each cell in its (derivational) paradigm.

We thus want to express generalizations about our language in terms of
our theory, and this we will do via decomposition. There are many ways to
begin; we want to compare pairwise lexical items to one another which have
similar prefixes/suffixes and (ideally) similar phonologies. We should then
decompose, and unify, decompose, and unify, until further decomposition
does not achieve any succinctness gains. However we will here simply note

7



en masse that the eat verbs begin with eat, and with the feature =d, and
decompose them. The result is shown in figure 10 Note that the original

John :: d.-k s :: =V.+k.s
will :: =v.+k.s ε :: =V.v
has :: =perf.+k.s en :: =V.perf
is :: =prog.+k.s ing :: =V.prog
have :: =perf.v be :: =prog.v
been :: =prog.perf eat :: =d.V

eats = eat⊕ s eaten = eat⊕ en
eating = eat⊕ ing eat = eat⊕ ε

Figure 10: Lexical items after decomposition of eat

bare eat form has also been decomposed, leaving behind a ’dummy’ lexical
item which serves to simply change category. This is important, so that no
new forms are derived: decomposition does not change the language of the
grammar.

In the next step, we do the same with the forms of be.4 This is shown
in figure 11. There are three as yet unjustified moves just made:

John :: d.-k s :: =V.+k.s
will :: =v.+k.s ε :: =V.v
has :: =perf.+k.s en :: =V.perf
s :: =x.+k.s ing :: =V.prog
have :: =perf.v ε :: =x.v
en :: =x.perf eat :: =d.V

be :: =prog.x

eats = eat⊕ s eaten = eat⊕ en
eating = eat⊕ ing eat = eat⊕ ε
been = be⊕ en be = be⊕ ε
is = be⊕ s

Figure 11: Lexical items after decomposition of be

1. the two ε forms are unifiable, but have not been
4There is a deep issue here, regarding how we are to know that is is a form of be. There

has been computational work on identifying morphological paradigms [Lee, 2014], which
might very well be of use here.

8



2. the two en forms are unifiable, but have not been

3. the two s forms are unifiable, but have not been

Regarding the first, the ε forms serve solely to assert isa relationships be-
tween categories (every expression of type V is a expression of type v).
These must not be unified, as their presence preserves the syntactic distinc-
tions present in the input sentences.5 There are three basic possibilities for
dealing with the two en forms:

1. unify V and x

2. assert that V isa x

3. assert that x isa V

Pursuing options 1 or 3 would collapse necessary syntactic distinctions, lead-
ing the grammar to generate sentences of the form: John will be (being)*

eating. The correct option is 2. This can be determined in a less intuitive
manner by identifying cycles in selection (or the lack thereof) in the lexicon:
a V can be turned into a prog (via ing), which can be turned into an x (via
be), but an x cannot become a V. The same reasoning applies to the two s
forms. Adding this information (as an empty lexical item) to our lexicon
gives us the lexicon in figure 12.

John :: d.-k
will :: =v.+k.s ε :: =V.x
has :: =perf.+k.s
s :: =x.+k.s ing :: =V.prog
have :: =perf.v ε :: =x.v
en :: =x.perf eat :: =d.V

be :: =prog.x

eats = eat⊕ s eaten = eat⊕ en
eating = eat⊕ ing eat = eat⊕ ε
been = be⊕ en be = be⊕ ε
is = be⊕ s

Figure 12: Lexical items after asserting that V isa x

We turn now to have, which results in the lexicon in figure 13. Again,
5They can be replaced by partial ordering statements of the form V ≤ v and x ≤ v

(see Szabolcsi and Bernardi [2008]).

9



John :: d.-k
will :: =v.+k.s ε :: =V.x
s :: =y.+k.s
s :: =x.+k.s ing :: =V.prog
ε :: =y.v ε :: =x.v
en :: =x.perf eat :: =d.V
have :: =perf.y be :: =prog.x

eats = eat⊕ s eaten = eat⊕ en
eating = eat⊕ ing eat = eat⊕ ε
been = be⊕ en be = be⊕ ε
is = be⊕ s has = have⊕ s
have = have⊕ ε

Figure 13: Lexical items after decomposing have

decomposition has given rise to two unifiable instances of the morpheme
s. There are the same three options, and searching for the patterns of
connectivity in the lexicon between y and x demonstrate that x can become
a y (via the route be–en–have) but y cannot become an x. Thus we assume
that x isa y, as is shown in figure 14.

John :: d.-k
will :: =v.+k.s ε :: =V.x
s :: =y.+k.s
ε :: =x.y ing :: =V.prog
ε :: =y.v
en :: =x.perf eat :: =d.V
have :: =perf.y be :: =prog.x

eats = eat⊕ s eaten = eat⊕ en
eating = eat⊕ ing eat = eat⊕ ε
been = be⊕ en be = be⊕ ε
is = be⊕ s has = have⊕ s
have = have⊕ ε

Figure 14: Lexical items after asserting that x isa y

This lexicon has 24 features in it (18, if we discount the isa lexical items),
whereas the initial lexicon (prior to decomposition) contained 26 features.

10



We have thus achieved a (small) compression. However, the important dif-
ference between these two lexica lies in their behaviour as more words are
added to them; open class words such as intransitive verbs contribute just
two features to our final lexicon, but 9 features (distributed over four lexical
items) to our initial one.

References
M. Brody. Mirror theory: Syntactic representation in perfect syntax. Lin-

guistic Inquiry, 31(1):29–56, 2000.

M. Kanazawa. Learnable Classes of Categorial Grammars. CSLI Publica-
tions, Stanford University., 1998.

G. M. Kobele, T. Collier, C. Taylor, and E. P. Stabler. Learning mirror the-
ory. In Proceedings of the Sixth International Workshop on Tree Adjoining
Grammars and Related Frameworks (TAG+6), Venezia, 2002.

J. L. Lee. Automatic morphological alignment and clustering. Techni-
cal Report TR-2014-07, Department of Computer Science, University of
Chicago, May 2014.

E. P. Stabler, T. C. Collier, G. M. Kobele, Y. Lee, Y. Lin, J. Riggle, Y. Yao,
and C. E. Taylor. The learning and emergence of mildly context sensitive
languages. In W. Banzhaf, T. Christaller, P. Dittrich, J. T. Kim, and
J. Ziegler, editors, Advances in Artificial Life, volume 2801 of Lecture
Notes in Computer Science, pages 525–534. Springer, 2003.

A. Szabolcsi and R. Bernardi. Optionality, scope and licensing: An appli-
cation of partially ordered categories. Journal of Logic, Language and
Information, 17:237–283, 2008.

11


	Decomposition of Feature Bundles
	Decomposition and Generalization
	Decomposition and Syntactic Word-Formation
	Complex heads

	Decomposition and Learning
	English auxiliaries


