Some formal details

Greg Kobele

April 10, 2018

1 Syntactic structures as MDSs

A tree is either a leaf or a root node with some number of daughter subtrees.
It is headed if and only if (iff) every node has a head, which is either 1. itself,
if it is a leaf, or 2. the head of one of its daughters, otherwise . Since the
structures we are concerned with are binary branching (each internal node
has exactly two daughters), we indicate that the head of a node is the head
of its left (right) daughter by giving it the label < (>). This label is intended
as a mnemonic which points to the head.

A Multiple Dominance Structure (MDS) (aka (rooted) Directed Acyclic
Graph (DAG)) is a tree where nodes may have multiple mothers. Inter-
preting each branch as a dependency, this allows an expression to be depen-
dent on multiple others. This is intended to be an uncontroversial theory-
independent claim; clearly in a sentence like the below, we want to say that
John is dependent on (i.e. is semantically related to) the verb laugh, and
that it is dependent on (related to) the matrix verb seems, as witnessed by
the overt expression of agreement:

John seems to laugh loudly.

1.1 how does this relate to the trees with traces we know
and love?

This is more general. We can get the familiar ‘trace’-full trees by making
(all but one) edges to a multiply dominated node point instead at a trace.
However, the same kind of grammatical information is present.

the ‘point’ of movement is to allow a single expression to be in multiple
places ‘at once’. Multiple dominance structures encode this information in
an arguably simpler way.

Using MDSs over trees with coindexed nodes, or coindexed copies, is not
a substantive claim about anything |Kracht, [2001|!!! This is just a way of
presenting information (about syntactic dependencies) that I think is conve-
nient.

1.2 how do we pronounce these?
The provisional answer:
turn it into a tree first, and then pronounce it as usual

We can turn an MDS into a tree in lots of ways. The one we will adopt at
the moment is to simply remove all branches into nodes except the ‘highest’.
Other answers have been proposed in the literature, and we will encounter
some of them later on/[l]

2 Describing sets of MDSs

In syntax we are interested in assigning structures to strings. (This structure
should represent in some way some interesting property of the string, such
as its meaning.) Therefore, to a first approximation, a language consists of
a set of MDSs (the structures we want to assign to its expressions). Usu-
ally, we want to say that languages have potentially infinitely many well-
formed /meaningful expressions (if S is a sentence, so is I believe that S).
One way to describe an infinite set of MDSs is by specifying how to con-
struct larger MDSs from smaller ones. In the evolution of transformational
grammar to minimalism, the vast array of transformations have given way
to just two basic operations.

1. Merge / External Merge

+/\:/.\

2. Move / Internal Merge

' A wide variety is given in [Kobele| [2006].

Observe that, architecturally, merge and move have something in common:

they both introduce a new ‘root’ node, and two branches from the root.
One of these branches always goes to the root of one of the inputs to the
function.

In the case of merge, the other branch from the root goes to the root of
the other input. In the case of move, the other branch from the root goes
to the root of some maximal projection contained within the input. Thus,
we might think of there as being just a single operation, which takes two
arguments, with two cases:

case 1 its second argument is part of its first (i.e. it’s internal to the first
argument)

case 2 its second argument is not part of its first (i.e. it’s external to the
first argument)

Many people seem to think that this is a BIG DEAL. I am not convinced.

2.1 Overgeneration

By themselves, merge and move wildly overgenerate. we want to control
them, to rein them in. This is the same problem faced by grammar for-
malisms of all stripes, and our solution is every-man’s solution:

operations are controlled by the categories of the expressions they apply to

In many traditions, categories are viewed as structured objects. We will call
a category a feature bundle, and think of it as consisting of a list of features.
Features come in two different kinds :

1. those relevant for merge

We write these as ‘=x’, ‘x=’, and ‘x’

2. those relevant for move

We write these as ‘+x’ and ‘-x’
...and have two different polarities

1. those which are ‘active’ (endocentric)

4

These are ‘=x’, ‘x=", and ‘+x’
) b

2. those which are ‘passive’ (exocentric)

These are ‘x’ and ‘-x’

We will view features as resources, which are are consumed at each deriva-
tional step. We indicate this by getting rid of them (as opposed to marking
them as ‘consumed’ or ‘checked’).

A prominent research question in modern syntax asks whether we explain
syntactic features in terms of something else. In other words:

can we eliminate the need to specify the syntactic feature bundle of an
expression because we can derive it from its semantic, morphological, etc
properties?

This is a reductionist question, which is, while perhaps important, some-
what orthogonal to the goal of specifying a set of MDSs; it doesn’t matter
whether you specify the set by using a particular bunch of feature bundles,
or whether you specify the same set by first deriving these feature bundles
from something more principled. At any rate, I don’t know what the answer
to the above question is, and won’t worry about it too much yet.

2.2 merge and move, take two

In the below, I indicate the position of the head of an expression by pointing
to the subtree it is contained in (> points to the right, and < to the left).
Furthermore, a triangle with a squiggily line running down from the top to
somewhere on its base, under which is a feature bundle, indicates an MDS
whose head (the leaf that is ultimately pointed to by the arrow at the root)
has these features.

1. Merge / External Merge

e on the right

<
+ =
=Xy x0
Y)

e on the left

>
+ =
X=y x0
) Y

One popular idea is that there is only rightward (or leftward) merge,
and apparent exceptions are the result of movement. The most fa-
mous proponent of this idea is Richard Kayne |[Kaynel [1994]. Kayne is
actually famous for (among many other things) popularizing an idea
about how to avoid directly stipulating this. It turns out that there
is no set of sentences you can describe with both right- and leftward
merge than you can’t already describe with just rightward or with just
leftward (which are themselves descriptively equivalent).

2. Move / Internal Merge

+x7y

-x0 \

We could easily add rightward movement (like we added rightward
merger), and then I would here have written that "one popular idea is
that there is only leftward move."

2.3 Lexica

A lexicon is a set of atoms paired with feature bundlesﬂ Given merge and
move, we can completely specify a language (qua set of MDSs) by giving a

lexicon:
(john,d -k) (laugh,=d v)
(will; =v +k t)
The expressions generated by a lexicon are those which can be built up
from lexical items by a finite number of applications of merge and move.

Given the lexicon above, we can generate (in addition to the lexical items
themselves) all and only the following expressions :

1. merge((laugh,=d v), (john,d -k)):

<
VAN

(laugh, v) (john, -k)

2. merge((will,=v +k t) 1)) :

2An atom is whatever you want it to be. For our current purposes, you can think of it
as a word, or a morpheme.

<
7N\
(will, +k t) <
VAN
(laugh,) (john, -k)

3. move :

(laugh,)

(john,)

2.4 Which MDSs?

Viewing features as outstanding requirements (‘I need a DP to be complete’,
‘I need case to feel good about myself’, etc), it makes sense to think that
the MDSs which have no outstanding features (other than their category
(x) feature) are special (‘complete’). The ‘XPs’ generated by a lexicon are
all the MDSs which have just the category x at their heads which can be
generated by the lexicon

References

R. Kayne. The Antisymmetry of Syntar. MIT Press, Cambridge, Mas-
sachusetts, 1994.

G. M. Kobele. Generating Copies: An investigation into structural identity in
language and grammar. PhD thesis, University of California, Los Angeles,
2006.

M. Kracht. Syntax in chains. Linguistics and Philosophy, 24(4):467-529,
2001.

	Syntactic structures as MDSs
	how does this relate to the trees with traces we know and love?
	how do we pronounce these?

	Describing sets of MDSs
	Overgeneration
	merge and move, take two
	Lexica
	Which MDSs?

