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1 Introduction

Black holes stand as objects par excellence, showcasing the radical divergence between Einstein’s
and Newton’s theories of gravity. They are spacetime solutions to Einstein’s equations of general
relativity that are fascinating from a geometric, analytic and astrophysical perspective and form
the stage for an interplay between mathematics, theoretical physics and astrophysics.

In these lectures, we will cover the following topics on black holes:

• The geometric properties of Schwarzschild black hole spacetimes and the dynamics
of geodesics in these spacetimes. We will see how to make sense of the following pictures,
representing the maximally-extended Schwarzschild spacetime and the (sub-extremal) elec-
tromagnetically charged Reissner–Nordström spacetimes, respectively:
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Figure 1: Penrose diagrams of Schwarzschild and Reissner–Nordström spacetimes

• The Einstein equations coupled to matter in spherical symmetry. We will prove that
in the absence of matter, all spherically symmetric solutions to the Einstein equations are
locally isometric to a Schwarzschild or the Minkowski spacetime (Birkhoff’s theorem). We
will discuss how to represent general, dynamical spherically symmetric black hole spacetimes
pictorially and understand the following picture representing the formation of a dynamical
black hole:
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Figure 2: A possible Penrose diagram of a spacetime describing gravitational collapse to a black
hole in spherical symmetry.

In this part of the course, we will encounter “baby versions” of some of the big theorems in
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black hole dynamics.

• The geometric properties of rotating Kerr black hole spacetimes and the dynamics of
geodesics in these spacetimes;

• The initial value or Cauchy problem, which provides a systematic way to study dynamics
of spacetimes;

• Asymptotically flat initial data and notion of mass/energy, momentum and angular
momentum in general relativity;

• Trapped surfaces, causal geodesic incompleteness of spacetimes and the stability of the prop-
erty of “black hole-ness” via Penrose’s incompleteness theorem.

• Formulations of the weak and strong cosmic censorship conjectures.

• (if time permits) linear waves on Schwarzschild as a first tool towards understanding the
dynamics of spacetimes arising from the evolution of small perturbations of Schwarzschild
initial data.

We will present the above topics in a mathematically precise style. This means that we will organize
the material with definitions, propositions, theorems and lemmas and that we will try to keep
precise track of the various domains and codomains of the functions and maps that we encounter.
This will serve as a way to eliminate any ambiguities and confusions that have historically appeared
in the study of black holes.

Throughout the lecture notes, there will be Exercises that are meant to encourage an active
reading of the text.

These lecture notes are still work in progress! Further chapters will be added as the course
progresses. For this reason, there will inevitably be typos throughout the text. If you spot any
typos or other errors, please do let me know.

1.1 Some useful literature

These lectures will not follow any existing textbooks too closely. Nevertheless, the list below
complements the lectures and also provides different styles of presentation on some of the topics
that we will cover.

• Robert M. Wald, General relativity. University of Chicago press, 1984.
A classic text on general relativity. Note the use of “abstract index notation” for tensor fields
that we will not follow in this course.

• Stephen W. Hawking and George F.R. Ellis, The large scale structure of space-time. Cam-
bridge University Press, 1973.
A complete discussion on many topics in general relativity. Includes Penrose diagrams of
several solutions to the Einstein equations that we will also discuss. Contains a discussion
on causality and Lorentzian geometry that goes beyond this course.

• Harvey S. Reall, Mathematical Tripos Part III: General relativity. https://www.damtp.cam.
ac.uk/user/hsr1000/part3_gr_lectures.pdf, 2022
Lecture notes for a course on general relativity taught at the University of Cambridge.

• Harvey S. Reall, Mathematical Tripos Part III: Black holes. http://www.damtp.cam.ac.

uk/user/hsr1000/black_holes_lectures_2020.pdf, 2020
Lecture notes for a course on black holes taught at the University of Cambridge. Contains
a discussion on quantum field theory on curved spacetimes that will not be covered in this
course.
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• John M. Lee, Introduction to Riemannian manifolds. Springer, 1997.
In contrast with the above references, this is a mathematics textbook. Introduces concepts
of Lorentzian Riemannian geometry in a mathematically precise manner.

• Stefanos Aretakis, General Relativity. https://www.math.toronto.edu/aretakis/General%
20Relativity-Aretakis.pdf, 2018
Lecture notes on general relativity with a more mathematical focus and an accessible discus-
sion of Penrose’s incompleteness theorem.

• Demetrios Christodoulou, Mathematical problems of general relativity I. European Mathe-
matical Society, 2008.
An introduction to general relativity from a mathematical and PDE (partial differential equa-
tions) angle. Contains a discussion of conserved quantities on asymptotically flat spacetimes.

• Piotr T. Chruściel, Geometry of black holes. Oxford University Press, 2020
Extensive, mathematically rigorous, discussion on geometric properties of several families of
black hole spacetimes.

• Barrett O’Neill, Semi-Riemannian geometry with applications to relativity. Academic press,
1983.
Exhaustive, mathematically precise treatment covering various aspects of Lorentzian geom-
etry.
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2 Preliminaries: basics of spacetime geometry

Before we start discussing black hole spacetimes, we will briefly review the main mathematical
machinery that is required to introduce black hole spacetimes. The material in this section would
typically be covered in a general relativity course or differential geometry course. This section is
by no means a complete discussion and is meant to serve as a review as well as an opportunity to
set the geometric notation used throughout the course.

Let main mathematical objects in the field of general relativity are so-called “spacetimes”,
which are pairs consisting of a 4-dimensional smooth manifold M and a Lorentzian metric g:

(M, g),

together with a “time-orientation”, an unambiguous notion of past and future. We will define each
of these objects.

2.1 Manifolds

An n-dimensional smooth manifold is a mathematical object that locally “looks like” Rn. This
roughly means the following: M is a topological space1 that can be covered by open sets U ⊂ M
which come equipped with coordinate charts ϕ = (x1, . . . , xn) : U → Rn. Then we demand that
the coordinate transformations ϕ′ ◦ ϕ−1, with ϕ′ : U ′ → Rn another coordinate chart, are smooth
on the intersection U ∩ U ′ and have smooth inverses.

Rather than making the above precise, we will mostly restrict to concrete special cases of
manifolds. In particular, the following two special cases are sufficient to capture all the intricate
properties of single black holes and their dynamics in four dimensions:2

M ∼= R× R3 =: R3+1,

M ∼= R2 × S2.

Here Sn denotes the unit round n-sphere: Sn = {x ∈ Rn+1 ,
∑n
i=1 x

2
i = 1}, which is an example

of an n-dimensional manifold. The symbol ∼=, in the context of manifolds, indicates equality up
to diffeomorphism. For example, M ∼= R × R3 means that there exists a map ψ : M → R × R3

that is differentiable, bijective and has a differentiable inverse ψ−1. A Ck-diffeomorphism is k
times continuously differentiable and a smooth or C∞-diffeomorphism is arbitrarily many times
continuously differentiable.

We will also use the notation M = R × Σ, with Σ = R3 or Σ = R × S2, to treat these two
cases simultaneously. Later in the course, we will see that (n+ 1)-dimensional globally hyperbolic
spacetimes, the class of spacetimes relevant for studying dynamical aspects of general relativity,
always take the form M = R× Σ, where Σ is an n-dimensional manifold.

In the case Σ ∼= R × S2, we already notice an important property: there exists no global
coordinate chart on Σ. Instead we often consider standard spherical coordinates (θ, φ), which are
defined as follows:

x = cosφ sin θ,

y = sinφ sin θ,

1It comes with an notion of “open subset” and, related to this, continuity of maps on M.
2In the case of spacetimes describing gravitational collapse to a black hole, M ∼= R4. It can also be shown

that under very general assumptions (Hawking 1972), the exterior region of a stationary (time-independent) 4-
dimensional black hole spacetime with reasonable matter is diffeomorphic to R2 × S2. The event horizon (the
boundary of the black hole region) at any fixed time, is diffeomorphic to S2. For dynamical spacetimes containing
black hole regions, or in the case of higher spacetimes dimensions, the topology of the horizon at an instant in time
may be more complicated.
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z = cos θ.

Since we cannot always work in a single coordinate chart it will be convenient to introduce a
few geometric objects that make sense even if we do not specify exactly what coordinate chart we
are working in.

2.2 Tensors and tensor fields

In the physics literature, you may have encountered tensor fields as objects defined in the following
way:

A tensor field is a list of functions that transforms like a tensor field.

Though this “definition” might seem rather circular, it can be made mathematically precise. We
will, however, define tensors and tensor fields in a different, less utilitarian manner.

Before discussing tensor fields, we first need to introduce tensors. Before we introduce tensors,
we recall the definition of vectors and covectors.

Definition 2.1. Let V be a finite-dimensional vector space over R. Then elements v ∈ V are
referred to as vectors. The dual space V ∗ is defined as follows:

V ∗ := {f : V → R , f is linear}.

Elements f ∈ V ∗ are called covectors. Sometimes elements of V are referred to as contravariant
vectors and elements of V ∗ as covariant vectors.

We can also consider the double dual space of V : V ∗∗ := (V ∗)∗. It turns out that (V ∗)∗ is
isomorphic to V if V is finite dimensional. This means that there exist a bijective (injective and
surjective, or “onto” and “one-to one”) linear map:

Φ : V → V ∗∗.

Indeed, we define Φ as follows: let f ∈ V ∗, then

Φ(v)(f) := f(v)

is clearly linear. We will also use “∼=” to denote to indicate an isomorphism between vector spaces,
so V ∼= V ∗∗.

[Exercise: Show that Φ is injective, i.e. kerΦ = {0}. Then use the rank-nullity theorem,
which says that general linear maps L : V → W , with V,W vector spaces satisfy dim(kerL) +
dim(ranL) = dimV , to conclude that Φ is bijective.]

We can therefore also identify vectors v ∈ V with linear maps of the form v : V ∗ → R.

Definition 2.2. An (r, s)-tensor in V is a multilinear (over R) map of the form:

T : V ∗ × . . .× V ∗︸ ︷︷ ︸
r times

×V × . . .× V︸ ︷︷ ︸
s times

→ R.

The set of (r, s)-tensors in V forms a nr+s-dimensional vector space, which we denote as follows:

T (r,s)(V ).

We also use the following alternative notation for T (r,s)(V ):

V ⊗ . . .⊗ V︸ ︷︷ ︸
r times

⊗V ∗ ⊗ . . .⊗ V ∗︸ ︷︷ ︸
s times

.
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Let dimV = n and let {eµ}1≤µ≤n be a basis of V . Let fµ ∈ V ∗ be the unique linear maps
satisfying: fµ(eν) = δµν , with δ

µ
ν the Kronecker delta. Then {fµ}1≤µ≤n form a basis of V ∗, which

we refer to as the dual basis associated to {eµ}. The (r, s)-tensors of the form

eµ1 ⊗ . . .⊗ eµr︸ ︷︷ ︸
r times

⊗ fν1 ⊗ . . .⊗ fνs︸ ︷︷ ︸
s times

form a basis of T (r,s)(V ). The above notation is defined is defined as follows: let ωi ∈ V ∗,
i ∈ {1, . . . , r}, and vj ∈ V , j ∈ {1, . . . , s}, then:

(eµ1
⊗ . . .⊗ eµr

⊗ fν1 ⊗ . . .⊗ fνs)(ω1, . . . , ωr, v1, . . . , vs) := eµ1
(ω1) . . . eµr

(ωr)f
ν1(v1) . . . f

νs(vs).

In other words, we can expand T ∈ T (r,s)(V ) as follows:

T =

n∑
µ1=1

. . .

n∑
µr=1

n∑
ν1=1

. . .

n∑
νs=1

Tµ1...µr
ν1...νseµ1

⊗ . . .⊗ eµr
⊗ fν1 ⊗ . . .⊗ fνs ,

where Tµ1...µr
ν1...νs ∈ R. To shorten notation, we will usually omit the summation symbols. This

is called the Einstein summation convention:

T = Tµ1...µr
ν1...νseµ1

⊗ . . .⊗ eµr
⊗ fν1 ⊗ . . .⊗ fνs .

Example 2.1. Consider the tensor T : V ∗ × V → R. Then A : V → V , defined as

A(v) := T (·, v) ∈ V ∗∗ ∼= V

is a linear map, which can be represented by a matrix after choosing a basis. The matrix coefficients
are given by Tµν .

To be able to define tensor fields on M, we first need to introduce the relevant vector spaces
that will play the role of V and V ∗: the tangent spaces and cotangent spaces of the manifold M.

Definition 2.3. Let M be an n+ 1-dimensional manifold and let x ∈ M. Suppose that x ∈ U ⊂
M is covered by the coordinate chart ϕ := (x0, . . . , xn) : U → Rn+1. Let γ1, γ2 : R → M be
differentiable curves with γ1(0) = γ2(0) = x. Then we write γ1 ∼ γ2 if (ϕ ◦ γ1)′(0) = (ϕ ◦ γ2)′(0).3

Let γ : R → M be differentiable with γ(0) = x. Denote

[γ] := {γ̃ : R → M differentiable, with γ̃(0) = x and γ̃ ∼ γ}

Then the tangent space at x, denoted TxM is defined as follows:

TxM = {[γ], γ : R → M differentiable, with γ(0) = x} .

The set TxM can be equipped with a vector space structure, by introducing “addition” and
“scalar multiplication”. This is not immediate, since we cannot simply “add” curves in M (unless
M = Rn+1). Consider the following map:

dϕx : TxM → Rn+1

dϕx([γ]) := (ϕ ◦ γ)′(0).

[Exercise: Show that dϕx is a bijection.]
Then we define for λ ∈ R:

[γ1] + λ · [γ2] := (dϕx)
−1(dϕx([γ1]) + λ · dϕx([γ2])).

3The relation ∼ is an equivalence relation.
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Figure 3: The tangent space TxS2.

Definition 2.4. We define the coordinate basis vectors at x ∈ M as follows:

∂

∂xµ

∣∣∣
x
:= dϕ−1

x ((

µ︷ ︸︸ ︷
0, . . . , 0, 1, 0, . . .))

[Exercise: Convince yourself that the vectors ∂
∂xµ |x form a basis of TxM, so TxM is an

(n+ 1)-dimensional vector space. ]
For example, TxR4 ∼= R4 and Tx(R2 × S2) ∼= R4.
If ψ = (y0 . . . , yn) : U → Rn+1 is another choice of coordinates and γ : R → M satisfies

(ψ ◦ γ)′(0) = (

µ︷ ︸︸ ︷
0, . . . , 0, 1, 0, . . .). Then

(xν ◦ γ)′(0) = ((xν ◦ ψ−1) ◦ (ψ ◦ γ))′(0) =
n∑
α=0

∂(xν ◦ ψ−1)

∂yα
(yα ◦ γ)′(0) = ∂(xν ◦ ψ−1)

∂yµ
.

Hence, we can write
∂

∂yµ
|x =

∂xν

∂yµ
∂

∂xν
|x,

where we shortened the notation by writing ∂xν

∂yµ instead of ∂(x
ν◦ψ−1)
∂yµ .

[Exercise: Show that TxM is independent of the choice of coordinate chart ϕ : U → Rn+1.]
We can think of ∂

∂xµ |x as acting on functions f ∈ C∞(M) in the following way: ∂
∂xµ |x(f) =

∂(f◦ϕ−1)
∂xµ |x. This leads to an alternative, but equivalent, characterization of TxM:

TxM ∼= {v : C∞(M) → R linear, such that v(fg) = v(f)g + fv(g) ∀f, g ∈ C∞(M)}.

We denote T ∗
xM = (TxM)∗. Then dxµ|x ∈ T ∗

xM and

dxµ|x
(

∂

∂xν

∣∣∣
x

)
= δµν ,

so {dxµ|x} is the dual basis associated to the basis { ∂
∂xµ |x}.

Definition 2.5. A vector field X is a continuous map X : M → TM, with X(x) = (x,Xx), where
Xx ∈ TxM and TM is the tangent bundle of M, which is defined as follows:4

TM :=
⋃
x∈M

{x} × TxM.

4Note that the notion of continuity (and smoothness) of maps to TM makes sense since TM can be given the
structure of a smooth manifold (it “locally looks like R2n).
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We denote the space of all vector fields by T (M). A vector field X is Ck or smooth if the map X
is Ck or smooth, respectively.

We can interpret X ∈ T (M) as a map X : C1(M) → C0(M), where

X(f)(x) := Xx(f).

Note that on the right-hand side, we are interpreting vectors in TxM as maps acting on functions.

Consider the coordinate chart (U, {xµ}). By construction of the differentiable structure on
TM, it follows that the following maps are smooth vector fields on U :

∂

∂xµ
: U → TM,

∂

∂xµ
(x) :=

(
x,

∂

∂xµ

∣∣∣
x

)
.

We can express a general vector field X ∈ T (M) as follows when restricted to the domain U of
the coordinate chart:

X|U = Xµ ∂

∂xµ
|U ,

withXµ : U → R continuous functions (or Ck/smooth functions if the vector fieldX is Ck/smooth).
To shorten notation, we will write ∂µ = ∂

∂xµ when there is no ambiguity about the coordinate
chart under consideration.

Definition 2.6. The cotangent bundle of M is the set:

T ∗M :=
⋃
x∈M

{x} × T ∗
xM.

Covector fields or 1-forms are continuous maps ω : M → T ∗M, with ω(x) = (x, ωx). We denote
the space of all covector fields/1-forms by Ω1(M).

We define dxµ ∈ Ω1(M) as the 1-forms saitsfying dxµ(x) = (x, dxµ|x), with {dxµ|x} denoting
the dual basis in T ∗

xMcorresponding to the coordinate basis { ∂
∂xµ |x}.

Now we are ready to define tensor fields. Note that are several different but equivalent ap-
proaches to defining tensor fields and we will only present the one that is most convenient for the
purposes of this course.

Definition 2.7. An (r, s)-tensor field T is a map

T : Ω1(M)× . . .Ω1(M)︸ ︷︷ ︸
r times

×T (M)× . . .× T (M)︸ ︷︷ ︸
s times

→ C0(M)

that is multilinear over C0(M). This means that for all f ∈ C0(M), ωi, θ ∈ Ω1(M) with i ∈
{1, . . . , r}, Xj , Y ∈ T (M) with j = {1, . . . , s}:

T (ω1, . . . , (fωi + θ), . . . , ωr, X1, . . . , Xs) = fT (ω1, . . . , ωr, X1, . . . , Xs) + T (ω1, . . . , θ, . . . , ωr, X1, . . . , Xs),

T (ω1, . . . , ωr, X1, . . . , (fXj + Y ), . . . , Xs) = fT (ω1, . . . , ωr, X1, . . . , Xs) + T (ω1, . . . , ωr, X1, . . . , Y, . . . , Xs).

We denote the space of (r, s)-tensor fields by T (r,s)(M).
If C0(M) above is replaced with Ck(M), with k ≤ ∞, we say T is a Ck tensor field.
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Example 2.2. Note that X ∈ T (M) can be interpreted as a (1, 0)-tensor field in the following
way: for all ω ∈ Ω1(M)

(X(ω))(x) := ω|x(X|x).
Similarly, ω ∈ Ω1(M) can be interpreted as a (0, 1)-tensor field in the following way: for all
X ∈ T (M)

(ω(X))(x) := ωx(Xx).

Example 2.3. The following maps are special cases of (r, s) tensor fields: let Xi ∈ T (M), 1 ≤
i ≤ r, and ωi ∈ Ω1(M), 1 ≤ j ≤ s, then for all Yj ∈ T (M) and θi ∈ T (M)

(X1⊗. . .⊗Xr⊗ω1⊗. . . ωs)(θ1, . . . , θr, Y1, . . . , Ys) = X1(θ
1)X2(θ

2) . . . Xr(θ
r)ω1(Y1)ω

2(Y2) . . . ωs(Ys).

In the domain of a coordinate chart (U, {xµ}), we can express a general tensor field T ∈ T (M)
as follows: let 0 ≤ µi ≤ n and 0 ≤ νj ≤ n, then

T |U = Tµ1...µr
ν1...νs

∂

∂xµ1
⊗ . . .⊗ ∂

∂xµr
⊗ dxν1 ⊗ . . .⊗ dxνs |U .

where Tµ1...µr
ν1...νs ∈ C0(U) for all 0 ≤ µi ≤ n and 0 ≤ ν1 ≤ n.

[Exercise: Let ψ = (y0, . . . , yn) : U → Rn+1 be a different coordinate chart on U . Determine

the relation between Tµ1...µr
ν1...νs and T̃µ1...µr

ν1...νs , where

T |U = T̃µ1...µr
ν1...νs

∂

∂yµ1
⊗ . . .⊗ ∂

∂yµr
⊗ dyν1 ⊗ . . .⊗ dyνs |U .]

A special class of tensor fields are the alternating tensor fields or differential forms.

Definition 2.8. The space of s-forms on M (or differential forms of degree s, or alternating
(0, s)-tensor fields) is denoted by Ωs(M) and is defined as follows:

Ωs(M) :=
{
T ∈ T (0,s)(M) |T (Xσ(1), Xσ(2), . . . , Xσ(s)) = sign(σ)T (X1, . . . , Xs) ∀σ ∈ Ss

}
,

with Ss the set of all permutations of the set {1, . . . , s} and sign(σ) the sign of the permutation
σ which is +1 if σ can be written as an even number of transpositions (exchanges between two
elements), for example, a cyclic permutation, and −1 if it can be written as an odd number of
transpositions.

Example 2.4.

Ω2(M) :=
{
T ∈ T (0,2)(M) |T (X,Y ) = −T (Y,X)

}
.

In particular, suppose ω, θ ∈ Ω1(M). Then ω⊗θ or ω⊗θ+θ⊗ω are not 2-forms, but ω⊗θ−θ⊗ω
is a 2-form.

With respect to a coordinate chart (U, {xµ}), T ∈ Ωs(M) if and only if Tν1...νs is fully anti-
symmetric in its indices.

Definition 2.9. The wedge product between an r-form ω and an s-form θ is defined as the
following (r + s)-form:

(ω ∧ θ)(X1, . . . , Xr+s) :=
∑

σ∈Sr+s

sign(σ)(ω ⊗ θ)(Xσ(1), . . . , Xσ(r+s))

By introducing the notation

T[ν1...νs] :=
1

s!

∑
σ∈Ss

sign(σ)Tνσ(1)...νσ(s)
,

we can write
(ω ∧ θ)ν1...νr+s = (r + s)!ω[ν1...νrθνr+1...νr+s].
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2.3 The exterior derivative

We now provide a definition of the exterior derivative d which can appear in front of a function
f : M → R to obtain a 1-form df , but also in front of a general s-form ω to obtain an s+ 1-form
dω.

Definition 2.10. The exterior derivative d : C1(M) → Ω1(M) is defined as follows: for any
X ∈ T (M)

(df)(X) := X(f).

With respect to a coordinate chart (U, {xµ}), we therefore have that

df |U = ∂µfdx
µ|U = ∂xµfdxµ|U .

We can extend d as a map from the space of C1 elements of Ωs(M) to Ωs+1(M) with s ≥ 0 by
imposing the following additional requirements:

d(ω ∧ η) = dω ∧ η + (−1)rω ∧ dη for all ω ∈ Ωr(M) and η ∈ Ωs(M),

d ◦ d = 0.

For example, if ω = ωµdx
µ with respect to a coordinate chart, then

dω|U = d(ων)∧ dxν |U +0 = ∂µωνdx
µ ∧ dxν |U = (∂µων − ∂νωµ)dx

µ⊗ dxν |U = 2∂[µων]dx
µ⊗ dxν |U .

[Exercise: Show that, for a C1 r-form ω ∈ Ωr(M), the following identity holds in the domain
of a coordinate chart (U, {xµ}):

dω|U = (r + 1)∂[ν1ων2...νr+1]dx
ν1 ⊗ . . .⊗ dxνr+1 |U .]

Let ω ∈ Ωs(M). If dω = 0, we say ω is closed. If s ≥ 1 and ω = dη for some η ∈ Ωs−1(M),
then we say ω is exact. Note that in the latter case, dω = d2η = 0, so ω must be closed. The
converse need not be true: closed forms need not be exact.5

2.4 Pullbacks and pushforwards

Let ψ : M → N be a smooth diffeomorphism between two manifolds M and N .

Example 2.5. Let ϕ : U → Rn be a coordinate chart on an n-manifold M. Then we can use
diffeomorphisms ψ : U → U to obtain a different coordinate chart ϕ̃ = ϕ ◦ ψ.

Conversely, given two coordinate charts ϕ, ϕ̃ : U → Rn, the map ψ = ϕ−1 ◦ ϕ̃ defines a
diffeomorphism on U . The study of diffeomorphism on a single manifold M is therefore closely
related to coordinate transformations. For example, let ϕ = id be a Cartesian coordinate chart on
R3 and ϕ̃ a spherical coordinate chart on s subset of R3. Then the change of coordinates from
Cartesian to spherical corresponds to a diffeomorphism: ψ = ϕ̃.

There is a natural way to associate to diffeomorphism ψ maps that act between spaces of
tensor fields on N and M. From the perspective of coordinate charts, this is closely related to
determining how components of a tensor field with respect to one coordinate chart are related to
its components with respect to another coordinate chart.

5When restricted to a suitably small neighbourhood of any point x ∈ M, all closed forms are exact. Under a
topological condition on the manifold M, namely simply connectedness, all closed forms are globally exact. Simply
connectedness roughly means that any loop in M cannot be continuously contracted to a single point.
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Definition 2.11. The pullback map ψ∗ : C0(N ) → C0(M) is defined as follows:

ψ∗f = f ◦ ψ,

for all f ∈ C0(N ).
The pushforward map ψ∗ : T (M) → T (N ) is defined as follows:

(ψ∗X)(f) := X(f ◦ ψ) ◦ ψ−1,

for all X ∈ T (M) and f ∈ C1(N ).
The pullback map ψ∗ : Ω1(N ) → Ω1(M) is defined as follows:

(ψ∗ω)(X) := ω(ψ∗X) ◦ ψ,

for all X ∈ T (M).
The pullback map ψ∗ : T (r,s)(N ) → T (r,s)(M) is defined as follows:

(ψ∗T )(ω1, . . . , ωr, X1, . . . , Xs) = T ((ψ−1)∗ω1, . . . , (ψ−1)∗ωr, ψ∗X1, . . . , ψ∗Xs) ◦ ψ,

for all ωi ∈ Ω1(M), with i ∈ {1, . . . , r} and Xj ∈ T (M), with j ∈ {1, . . . , s}.

ψ(x)

xM N

ψ

ψ∗

ψ∗

Figure 4: The pushforward and pullback maps.

The behaviour of the pullback map to linear order is determined by the Lie derivative.

Definition 2.12. • An integral curve of a vector field X ∈ T (M) is a map γ : R ⊃ I → M
satisfying γ′(s) = Xγ(s) ∈ Tγ(s)M. Here, γ′(s) = [δ] ∈ Tγ(s)M, with δ : R → M satisfying
δ(0) = γ(s) and (ϕ◦δ)′(0) = (ϕ◦γ)′(s), where ϕ : U → M is a coordinate chart and γ(s) ∈ U .

• A global flow is a map ψ : R × M → M satisfying ψ(s, p) = γ(s), with γ : R → M an
integral curve of X such that γ(0) = p, assuming that the domain of all integral curves γ is
R. Denote ψs = ψ(s, ·). Then the following properties hold (Exercise)

ψ0 = id, (2.1)

ψs+τ = ψs ◦ ψτ for all s, τ ∈ R. (2.2)

For general X ∈ T (M), ψ need not be defined for all s ∈ R. In this case, we simply refer to
ψ as a flow.

• Conversely, given a C1 map ψ : R ×M → M satisfying (2.1) and (2.2), the map X(f) =
d
ds |s=0(f ◦ ψs), with f ∈ C1(M) defines a vector field X ∈ T (M), such that ψ is the global
flow corresponding to X (Exercise).
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• The Lie derivative in the direction of X of a tensor field T ∈ T (r,s)(M) is defined as follows:

LXT =
d

ds

∣∣∣
s=0

ψ∗
sT,

with ψs corresponding to the flow of X.

For X,Y ∈ T (M), we can alternatively express:

LXY =
d

ds

∣∣∣
s=0

(ψ−s)∗Y = [X,Y ],

with [X,Y ](f) = X(Y (f))− Y (X(f)) the commutator.
It can be shown that the Lie derivative satisfies the following additional properties: for all

X,Xi ∈ T (M), with i ∈ {i, . . . , s}, ωj ∈ Ω1(M), with j ∈ {1, . . . , r}, f ∈ C∞(M), T ∈ T (r,s)(M),
S ∈ T (r′,s′)(M)

LX(f) =X(f),

LX(S ⊗ T ) = (LXS)⊗ T + S ⊗ (LST ),
LX(T (ω1, . . . , ωr, X1, . . . , Xs)) = (LXT )(ω1, . . . , ωr, X1, . . . , Xs)

+ T (LXω1, . . . , ωr, X1, . . . , Xs) + . . .+ T (ω1, . . . ,LXωr, X1, . . . , Xs)

+ T (ω1, . . . , ωr,LXX1, . . . , Xs) + . . .+ T (ω1, . . . , ωr, X1, . . . ,LXXs)

[LX , d]f = 0.

2.5 Metrics

Definition 2.13. A metric (tensor field) is a (0, 2)-tensor field g ∈ T (0,2)(M) that satisfies the
additional two properties:

• (symmetry) g(X,Y ) = g(Y,X),

• (non-degeneracy) if g(X,Y ) = 0 for all Y ∈ T (M), then X = 0.

We say g is a Riemannian metric (tensor field) if moreover

• (positive-definiteness) g(X,X) ≥ 0 with equality if and only if X = 0.

To define a Lorentzian metric (tensor field) we first make the following observation. The
following map is bilinear and non-degenerate:6

gx : TxM× TxM → R,
gx(v, w) = g(V,W )(x), V |x = v,W |x = w.

Pick a basis {eµ} of TxM. Let G be the matrix with coefficients Gµν = gx(eµ, eν). Then,
by the symmetry and non-degeneracy of g, G is invertible and symmetric. This means we can
diagonalize G and that its eigenvalues are non-zero.

We define the signature (n+, n−) of gx as follows: n+ is the total number of positive eigenvalues
and n− is the total number of negative eigenvalues of G. This definition only makes sense if the
signature is a quantity that is invariant under a choice of basis. That is to say, if we define G̃ as
the matrix with coefficients G̃µν = gx(ẽµ, ẽν), then we need to show that n+ and n− of G̃ are the
same as n+ and n− of G. This follows from Sylvester’s Law of Inertia (Exercise).7

For a Riemannian metric g, we have that n− = 0 for all x ∈ M.

6Exercise: Convince yourself of the existence of V , W and the fact that g(V,W ) only depends on V |x and
W |x = v.

7Sylvester’s Law of Inertia: if A is an n × n symmetric matrix with n+ positive eigenvalues and n− negative
eigenvalues, then, for any n× n matrix B, the symmetric matrix BABT will also have n+ positive eigenvalues and
n− negative eigenvalues.
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Definition 2.14. A metric g is Lorentzian if n− = 1 for all x ∈ M.

Not every manifold M admits a Lorentzian metric. For example, the sphere S4 does not admit
a Lorentzian metric.8

[Exercise: Manifolds of the form M = R × Σ always admit a Lorentzian metric. Hint : You
may use that Σ always admits a Riemannian metric.]

2.5.1 Basic concepts of causality

The structure of a Lorentzian metric allows us to talk about causality and make sense of whether
spacetime points are in the future or past of other spacetime points.

Definition 2.15. A vector v ∈ TxM is:

• timelike if gx(v, v) < 0,

• null if gx(v, v) = 0 and v ̸= 0,

• spacelike if gx(v, v) > 0.

Via the isometric identification TxM ∼= Rn+1, we can identify the union of all null vectors at
x ∈ M with a double cone in Rn+1 minus the vertex:

Cx =

{
v ∈ Rn+1 \ {0} | v20 =

n∑
i=1

(vi)2

}
.

The cone Cx is called the lightcone.
The union of all timelike vectors at x ∈ M can be identified with the interior of a double cone

in Rn+1:

Ix =

{
v ∈ Rn+1 | v20 >

n∑
i=1

(vi)2

}
.

The union of all spacelike vectors is the interior of the following double cone:

Sx =

{
v ∈ Rn+1 | v20 <

n∑
i=1

(vi)2

}
.

A vector field X ∈ T (M) is timelike/spacelike/null if Xx satisfies exactly one of the three above
three conditions for all x ∈ M.

We similarly say that a curve γ : R ⊃ I → M is timelike/spacelike/null if its tangent vector
γ′(s) is everywhere timelike/spacelike/null, respectively. We say a curve is causal if it is timelike
or null and achronal if it is spacelike or null.

We will frequently refer to timelike curves of timelike vector fields as (idealized) observers.

Definition 2.16. A (smooth) hypersurface is a subset Σ ⊂ M, which has the structure of an
n-dimensional manifold, such that the inclusion map ι : Σ → M, ι(x) = x, is a (smooth) diffeo-
morphism onto its image (i.e. ι : Σ → ι(Σ) is a diffeomorphism).9

8By the so-called Hairy Ball Theorem, the sphere S4 does not admit a vector field that is non-vanishing every-
where. If we could equip S4 with a Lorentzian metric, then once can show that there must exist a vector field that
does not vanish everywhere, which is a contradiction. Conversely, if a manifold admits a non-vanishing vector field

X, we can construct the following Lorentzian metric: g = −2X♭⊗X♭

g(X,X)
+ h, with h a Riemannian metric on M and

where X♭ is a 1-form dual to X that we define below.
9More generally, a subset Σ ⊆ M is called a (smooth) embedded k-dimensional submanifold if it is a k-dimensional

manifold and the inclusion map ι : Σ → M is a (smooth) diffeomorphism onto its image.
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Cx

Ix

Ix

SxSx

Figure 5: The double lightcone Cx (drawn as a subset of Rn+1) and its interior Ix and exterior Sx.

• If the induced metric10 on Σ is Riemannian, we say Σ is a spacelike hypersurface. Equiva-
lently, there exists a timelike vector field N ∈ T (M) such that g(N,X) = 0 for all X ∈ T (M)
with Xx ∈ TxΣ (i.e. N is normal to Σ).

• If the induced metric is Lorentzian, we say Σ is a timelike hypersurface. Equivalently, there
exists a spacelike vector field N ∈ T (M) such that g(N,X) = 0 for all X ∈ T (M) with
Xx ∈ TxΣ.

• If there exists a vector field L ∈ T (M) that is null along Σ, such that g(L,X)|Σ ≡ 0 for all
X ∈ T (M) with Xx ∈ TxΣ, we say Σ is a null hypersurface.

Definition 2.17. The arc length of a spacelike curve γ between s = 0 and s = s0 is defined as
follows:

ℓ[γ](s0) :=

∫ s0

0

√
gγ(s)(γ′(s), γ′(s)) ds.

In the case of a timelike curve γ, we define the proper time of γ between s = 0 and s = s0 as
follows:

τ [γ](s0) :=

∫ s0

0

√
−gγ(s)(γ′(s), γ′(s)) ds.

We need to equip our manifold with an additional structure to be able to define the notion of
a spacetime.

Definition 2.18. A Lorentzian manifold (M, g) is said to be time-orientable if there exists a
global timelike vector field T . We define a spacetime to be the triple

(M, g, [T ]),

with [T ] := {X ∈ T (M) | g(X,T ) < 0} the time orientation. We will refer to a spacetime as
(M, g) and omit [T ] from the notation.

Remark 2.1. In our definition of a “spacetime”, we will also include “manifolds-with-boundary”
M. These, strictly speaking, are not “manifolds” because in a neighbourhood of points on their
boundary, they are look likes a half-space {(x1, . . . , xn) | xn ≥ 0} ⊂ Rn+1 rather than Rn. For
example, the set {xn ≥ 0} ⊂ Rn+1 itself is a manifold-with-boundary, or the set [0, 1].

10If ι : Σ → M is the inclusion map, which just maps x ∈ Σ to x ∈ Σ ⊂ M, then the induced metric gΣ is defined
as gΣ = ι∗g (the pullback makes sense, even though ι is not a diffeomorphism!), i.e. for X,Y ∈ T (Σ) and x ∈ Σ,
gΣ(X,Y )(x) := g(ι∗X, ι∗Y )(x) for all x ∈ Σ, with (ι∗X)(f) = X(f ◦ ι). In practice, you may use that Σ can locally
be expressed as the level set of a function with respect to a coordinate chart. For example x0 = h(x1, . . . , xn) along
Σ, so you can use that dx0 = ∂ihdx

i, i = 1, . . . , n on Σ to write gΣ = g00(∂ihdx
i)⊗ (∂ihdx

i) + gj0dx
j ⊗ (∂ihdx

i) +
gijdx

i ⊗ dxj , with j = 1, . . . , n.
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A time-orientation allows us to define the future and past lightcones C+
x and C−

x :

C+
x = {v ∈ Cx | g(v, Tx) < 0},

C−
x = {v ∈ Cx | g(v, Tx) > 0},

with C = C+
x ∪ C−

x .
We similarly define:

I+x = {v ∈ Ix | g(v, Tx) < 0},
I−x = {v ∈ Ix | g(v, Tx) > 0},

with I = I+x ∪ I−x .
The structures of a Lorentzian metric and time orientation allow us to determine the regions

of M that can be influenced by a given subset S of M. This is a notion that is fundamentally
Lorentzian; it does not have a Riemannian analogue.

Definition 2.19. Let S ⊂ M. The causal future/past J±(S) is the following subset of M:

J±(S) = {p ∈ M , ∃ causal future-/past-directed curve γ : [0, 1] → M, with γ(0) ∈ S and γ(1) = p} .

The chronological future/past I±(S) of S is the following subset of M:

I±(S) = {p ∈ M , ∃ timelike future-/past-directed curve γ : [0, 1] → M, with γ(0) ∈ S and γ(1) = p} .

Note that the constant curve γ(s) = p for all s is not timelike, null or spacelike.
The future/past domain of dependence D+(S) of S is the following subset of M:

D±(S)

= {p ∈ M , all causal past/future directed, past/future inextendible causal curves containing p intersect S} .

Note that automatically S ⊂ D±(S).

J+(S)

J−(S)

p

T

q

S

(a) The causal future and past
J±(S) of a set S ⊂ R1+1, with
(R1+1,m) the 1+1-dimensional
Minkowski spacetime.

I+(S)

I−(S)

T

S

(b) The chronological future and
past I±(S) of a set S ⊂ R1+1, with
(R1+1,m) the 1+1-dimensional
Minkowski spacetime.

I+(S)

I−(S)

T D+(S)

D−(S)

p

S

(c) The future/past domains of
dependence D±(S) of a set
S ⊂ R1+1, with (R1+1,m)
the 1+1-dimensional Minkowski
spacetime. Here, p ∈ J+(S) but
p /∈ D+(S) ∪D−(S).

Figure 6: Examples of chronological/causal futures/pasts and future/past domains of dependence
in the 2-dimensional Minkowski spacetime (R1+1,m).

Definition 2.20. A set S ⊂ M is achronal if I+(S) ∩ S = ∅.
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A particularly important class of spacetimes are globally hyperbolic spacetimes. As we will
later see, their relevance is motivated by the fact that they constitute the spacetimes that can be
obtained from the time evolution of initial data in the context of the initial value problem for the
Einstein equations.

Definition 2.21. A Cauchy hypersurface Σ is an achronal hypersurface of a spacetime (M, g)
such that

D+(Σ) ∪D−(Σ) = M.

If a spacetime admits a Cauchy hypersurface, we say it is globally hyperbolic.
If D+(Σ) ∪D−(Σ) ̸= M, then the future boundary of D+(Σ) in M,

CH+(Σ) := D+(Σ) \
(
I−(D+(Σ)) ∩D+(Σ)

)
is called the future Cauchy horizon of Σ and the past boundary of D−(Σ) in M,

CH−(Σ) := D−(Σ) \
(
I+(D−(Σ)) ∩D−(Σ)

)
is called the past Cauchy horizon of Σ.

[Exercise: Show that CH+(Σ) must be achronal. Hint : Show that the boundary of S =
D+(Σ) ∪ I−(D+(Σ)) is achronal by using that I−(S) ⊂ S.]

The presence of a future Cauchy horizon of a achronal hypersurface Σ indicates the end of
predictability of the spacetime arising from initial data on Σ.

Lemma 2.1. If Σ is a Cauchy hypersurface of a spacetime (M, g), then any inextendible timelike
curve in M must intersect Σ exactly once.

Proof. Let γ be an inextendible timelike curve. Suppose γ intersects Σ at times s, t ∈ Σ, with
s ̸= t. Then γ(s) ∈ I+(γ(t)) or γ(t) ∈ I+(γ(s)), which is in contradiction with achronality.

[Exercise: Explain whether any inextendible null curve needs to intersect a Cauchy hyper-
surface exactly once.]

It turns out for globally hyperbolic spacetimes M ∼= R× Σ, with Σ a Cauchy hypersurface.

Theorem 2.2 (A spacetime splitting theorem). Let (M, g) be a globally hyperbolic spacetime, with
M a smooth manifold and g a Ck-metric, with 1 ≤ k ≤ ∞. Let Σ be a Cauchy hypersurface.

Then M is diffeomorphic to R× Σ.

Proof. (non-examinable) By the time-orientability property, there exists a smooth timelike vector
field T . At each x ∈ Σ, consider the inextendible curve γ̃x : Ix → M satisfying γ̃x(0) = x and
˙̃γ = T . We can then reparametrize γ̃ to obtain γx : R → M, with γx(0) = x and γ̇ proportional
to T . Since M is smooth, x 7→ γx(t) is smooth for all t ∈ R.

Now let Φ : R×Σ → M be the smooth map defined as Φ(t, x) = γx(t). We will now show that
this map is bijective.

• “Surjectivity”: For any p ∈ M, the timelike curve obtained by flowing along T must in-
tersect Σ at some x ∈ Σ, using the Cauchy hypersurface property of Σ. After possible
reparametrization, we therefore have that p = γx(t) for some t ∈ R.

• “Injectivity”: Let p = γx(t) = γy(s), with s, t ∈ R and x, y ∈ Σ. By Lemma 2.1, we must
have that x = y. Suppose s ̸= t, then there exists a closed timelike curve emanating from
p. Suppose that this curve does not intersect Σ. Then this is in contradiction with the
Cauchy surface property of Σ. Suppose the curve intersects Σ at two points. Then this is in
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contradiction with Lemma 2.1. Finally, suppose the curve touches Σ at once point. Then we
can perturb it a little bit to obtain a closed timelike curve that either does not intersect Σ,
which is a case that leads to a contradiction, as we have shown above.

The inverse map Φ−1 corresponds to flowing along the integral curves of a rescaled T and
therefore also is smooth. Hence, Φ is a differemorphism between R× Σ and M.

[Exercise: Suppose Σ and Σ′ are two Cauchy hypersurfaces. Show that Σ is diffeomorphic to
Σ′.]

2.5.2 Musical isomorphisms: “raising and lowering indices”

On a manifold equipped with a metric (M, g), we can use the metric g to identify vector fields
and 1-forms.

Let X ∈ T (M). Then we define

X♭ := g(X, ·) ∈ Ω1(M).

The symbol ♭ is called “flat” and is inspired by musical notation. Indeed g(X, ·) : T (M) → C0(M)
is multilinear over C0(M) so it defines a 1-form. We therefore have the existence of a map:

♭ : T (M) → Ω1(M)

such that ♭(X) = X♭. Note that the associated maps ♭x : TxM → T ∗
xM, ♭x(v) = gx(v, ·), with

x ∈ M, are linear maps between two vector spaces of equal dimension. Furthermore, by the non-
degeneracy of g, ♭x must be injective. By the rank–nullity theorem of linear algebra, we therefore
have that:

dimker ♭x + dim ran ♭x = dimTxM

and hence dim ran ♭x = dimT ∗
xM, so ♭x must also be surjective. It therefore has a well-defined

inverse ♯x : T ∗
xM → TxM at each x ∈ M and we can make sense of the associated map:

♯ : Ω1(M) → T (M).

For ω ∈ Ω1(M), we denote ω♯ := ♯(ω). The maps ♭ and ♯ are called musical isomorphisms.
It is instructive to investigate the above maps with respect to a coordinate chart (U, {xµ}). We

can then express:
g = gµνdx

µ ⊗ dxν =: gµνdx
µdxν ,

with gµν ∈ C0(U). Let X = Xα∂xα ∈ T (U) and Y = Y α∂xα ∈ T (U). Then we can express in U :

X♭(Y ) = gµνX
µY ν .

hence, X♭ = (gνµX
ν)dxµ = (gµνX

ν)dxµ. In particular,(
∂

∂xµ

)♭
= gµβdx

β .

We will denote the components of X♭ with an index in the subscript, i.e.

Xµ := gµνX
ν .

For this reason, it is said that the map ♭, “lowers indices”.
We now define g ∈ T (2,0)(M) in the following way: for all ω, θ ∈ Ω1(M),

g(ω, θ) := g(ω♯, θ♯).
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We can express in U :
g = gµν∂xµ ⊗ ∂xν =: gµν∂xµ∂xν .

By the definition of g, we have that:

gµν = g(∂xµ , ∂xν ) = g((∂xµ)♭, (∂xν )♭) = gµαgνβg(dx
α, dxβ) = gµαgνβg

αβ

and hence
gνβg

αβ = δαν .

This means that the matrix with components gµν is the inverse of the matrix with components
gµν . We will therefore use the notation:

g−1 := g.

We can use g−1 to “raise indices”. Let ω, θ ∈ Ω1(M). We have that

ω♯(θ) = g−1(ω, θ) = (g−1)µνωµθν .

Define ωµ := (g−1)µνων .
Let T ∈ T (r,s)(M). With respect to the coordinate chart (U, {xµ}), we can write:

T = Tµ1...µr
ν1...νs

∂

∂xµ1
⊗ . . .⊗ ∂

∂xµr
⊗ dxν1 ⊗ . . .⊗ dxνs .

We can now create an (r − 1, s+ 1) tensor field with the components

Tµ1...µk−1 µk+1...µr
µk ν1...νs := gµkαT

µ1...µk−1αµk+1...µr
ν1...νs .

Similarly, we can create a (r + 1, s− 1) tensor fields with the components:

Tµ1...µr νk
ν1...νk−1 νk+1...νs

:= (g−1)νkαTµ1...µr
ν1...νk−1ανk+1...νs

.

2.5.3 The Levi–Civita connection

A priori, there is no way to compare vectors in different tangent spaces on a general manifold M.
The Levi–Civita connection is a construction that provides a natural way to transport vectors from
one tangent space to the other in the setting of manifolds equipped with a metric. For the sake of
convenience, we will restrict ourselves to smooth tensor fields.

Definition 2.22. An affine connection is a bilinear (over R) map ∇ : T (M) × T (M) → T (M)
with (X,Y ) 7→ ∇XY , such that for all X,Y ∈ T (M) and f ∈ C∞(M)

1. (linearity over C∞(M)) ∇fXY = f∇XY ,

2. (Leibniz rule) ∇X(fY ) = X(f)Y + f∇XY .

A Levi-Civita connection with respect to a metric g is an affine connection that satisfies addition-
ally: for all X,Y, Z ∈ T (M):

1. (metric-preserving) X(g(Y,Z)) = g(∇XY,Z) + g(Y,∇XZ),

2. (torsion free) ∇XY −∇YX = [X,Y ].
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We define the corresponding covariant derivative as the map:

∇ : T (M) → T (1,1)(M),

(∇Y )(X,ω) := ω(∇XY ).

Note that ∇Y is a well-defined tensor field because it is bilinear over C∞(M).
[Exercise: Verify this by considering (∇Y )(fX + Z, hω + α) for f, h ∈ C∞(M), X,Y, Z ∈

T (M) and ω, α ∈ Ω1(M).]
We state without proof (the proof can be found in several of the suggested texts in the first

section of these notes):

Theorem 2.3. Let (M, g) be a manifold equipped with a metric. Then there exists a unique
Levi–Civita connection with respect to g.

We can express the Levi–Civita connection as follows with respect to a coordinate chart
(U, {xµ}):

(∇∂µ∂ν)
σ =

1

2
(g−1)σρ (∂µgνρ + ∂νgµρ − ∂ρgµν) =: Γσµν .

The expressions Γσµν are called the Christoffel symbols. Hence,

(∇XY )σ = (∇Xµ∂µ(Y
ν∂ν))

σ = Xµ∂µY
σ + ΓσµνX

µY ν ,

(∇Y )σµ = ∂µY
σ + ΓσµνY

ν .

We would like to extend ∇ to act on more general tensor fields: ∇ : T (r,s)(M) → T (r,s+1)(M).

Definition 2.23. Define ∇f := df for f ∈ C∞(M) = T (0,0)(M). This implies that C∞(M) ∋
∇Xf = df(X) = X(f).

Consider ω ∈ Ω1(M) = T (0,1)(M) and define ∇ω as follows:

(∇ω)(X,Y ) := ∇X(ω(Y ))− ω(∇XY )

for all X,Y ∈ T (M). Note that linearity over C∞(M) in the first argument follows immediately,
and linearity in the second argument follows from:

(∇ω)(X, fY ) = ∇X(ω(fY ))−ω(∇X(fY )) = f(∇ω)(X,Y )+(∇Xf)ω(Y )−(∇Xf)ω(Y ) = f(∇ω)(X,Y ).

This definition ensures that ∇ is compatible with tensor contraction. With respect to a coordi-
nate chart (U, {xµ}), we obtain for all 0 ≤ ν ≤ n+ 1

∇ν(ωρY
ρ) = (∇ω)νρY ρ + ωρ(∇Y )ρν .

We can therefore also express:
(∇ω)νµ = ∂νωµ − Γρµνωρ.

We will use the following notational conventions:

∇νωµ := (∇ω)νµ,
∇νY

µ := (∇Y )µν

We now extend ∇ as a map on general tensor fields: ∇ : T (r,s)(M) → T (r,s+1)(M) is defined
as

(∇T )(X,ω1, . . . , ωr, Y1, . . . , Ys) := (∇XT )(ω
1, . . . , ωr, Y1, . . . , Ys),

with

(∇XT )(ω
1, . . . , ωr, Y1, . . . , Ys) = X(T (ω1, . . . , ωr, Y1, . . . , Ys))

− T (∇Xω
1, . . . , ωr, Y1, . . . , Ys)− . . .− T (∇Xω

1, . . . ,∇Xω
r, Y1, . . . , Ys)

− T (ω1, . . . , ωr,∇XY1, . . . , Ys)− . . .− T (ω1, . . . , ωr, Y1, . . . ,∇XYs).
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[Exercise: Show that ∇g = 0.]
With respect to a coordinate chart (U, {xµ}), we obtain:

∇µT
ν1...νr

µ1...µs
= ∂µT

ν1...νr
µ1...µs

−Γρµµ1
T ν1...νrρ...µs

−Γρµµ2
T ν1...νrµ1ρµ3...µs

−. . .−Γρµµs
T ν1...νrµ1...µs−1ρ

+ Γν1µρT
ρν2...νr

µ1...µs
+ Γν2µρT

ν1ρν3...νr
µ1...µs

+ . . .+ ΓνrµρT
ν1...νr−1ρ

µ1...µs
.

Proposition 2.4. Covariant derivatives and Lie derivatives are related in the following way. Let
(U, {xµ}) be an arbitrary coordinate chart. Let X ∈ T (M) and T ∈ T (r,s)(M), then

(LXT )ν1...νrµ1...µs
= Xα∇αT

ν1...νr
µ1...µs

− Tαν2...νr µ1...µs
∇αX

ν1 − . . .− T ν1...νr−1α
µ1...µs

∇αX
νr

+ T ν1...νrαµ2...µs
∇µ1X

α + . . .+ T ν1...νrµ1...µs−1α∇µsX
α

The Lie derivative plays an important role when considering isometries.

Definition 2.24. An isometry between manifolds equipped with metric, (M, g) and (M̃, g̃), is a

diffeomorphism ψ : M → M̃ satisfying
ψ∗g̃ = g.

Definition 2.25. A vector field X ∈ T (M) is called a Killing vector field if it satisfies:

LXg = 0.

In particular, ifX(f) = d
ds |s=0(f◦ψs) for a 1-parameter group of diffeomorphisms ψs : M → M

that are isometries, i.e. ψ∗
sg = g, then X is a Killing vector field. [Exercise: Show that LXg = 0

implies the following equation with respect to an arbitrary coordinate chart:

∇µXν +∇νXµ = 0.]

2.5.4 Geodesics

Geodesics can be defined compactly using the covariant derivative.

Definition 2.26. A curve γ : R ⊇ I → R, with I an interval, is an affinely parametrized geodesic,
if for X ∈ T (M) an extension of the tangent vectors to the curve, γ′(s) ∈ Tγ(s)M, away from the
curve γ:

∇XX = 0.

[Exercise: Convince yourself that the above definition is invariant under the choice of exten-
sion X.]

With respect to a coordinate chart (U, {xµ}), we can write

(γ′′)σ + Γσµνγ
′µγ′

ν
= 0,

where we really mean γ′
µ
(s) = (xµ ◦ γ)′(s) and (γ′′)µ(s) = (xµ ◦ γ)′′(s).

[Exercise: 1) Show that for affinely parametrized spacelike geodesics γ there exists an a ∈ R
such that ℓ[γ](s) = as. This explains the term “affinely parametrized”.] 2) Show that for affinely
parametrized timelike geodesics γ there exists an a ∈ R such that τ [γ](s) = as.]

It can be shown that spacelike geodesics are locally arc-length minimizing and timelike geodesics
are locally proper time maximizing. Null geodesics do not admit such a variational interpretation.

Proposition 2.5. Let Y be a Killing vector field. Let X be a vector field such that X|γ(s) = γ′(s),
with γ : I → M an affinely parametrized geodesic. Then

X(g(X,Y ))|γ = 0.

Hence, the “inner product” of a Killing vector field with the tangent to an affinely parametrized
geodesic constitutes a conserved quantity along the geodesic.

Proof. Exercise
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2.6 The Riemann tensor, Ricci tensor and Ricci scalar

The Riemann tensor field is a geometric object that captures the “intrinsic curvature” of a manifold.
That is to say, it provides a notion of curvature that is independent of how the manifold may be
embedded inside some bigger manifold. It is the central object of study in general relativity.

Definition 2.27. We define the Riemann tensor field as the following map:

Riem[g] : T (M)× T (M)× T (M)× Ω1(M) → C∞(M)

Riem[g](Z,X, Y, ω) = ω
(
∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z

)
.

We will also refer to this map as the Riemann tensor and denote its components with respect to a
coordinate chart by R σ

µνρ .

[Exercise: Show that Riem[g] is multilinear over C∞(M) and hence, it is a smooth tensor
field: Riem[g] ∈ T (1,3)(M).]

With respect to a coordinate chart (U, {xµ}) we obtain:

R σ
µνρ := Riem[g](∂µ, ∂ν , ∂ρ, dx

σ) = dxσ(∇∂ν∇∂ρ∂µ −∇∂ρ∇∂ν∂µ)

= dxσ(∇∂ν (Γ
α
ρµ∂α)−∇∂ρ(Γ

α
νµ∂α))

= dxσ(∂νΓ
α
ρµ∂α − ∂ρΓ

α
νµ∂α + ΓαρµΓ

β
να∂β − ΓανµΓ

β
ρα∂β)

= ∂νΓ
σ
ρµ − ∂ρΓ

σ
νµ + ΓαρµΓ

σ
να − ΓανµΓ

σ
ρα.

By acting with ♭, we obtain a (0, 4)-tensor field with components Rµνρσ = gσαR
α

µνρ . We will also
refer to this tensor field as “the Riemann tensor”.

Definition 2.28. The Ricci tensor (field) is a (0, 2)-tensor field Ric[g] with components Rµν with
respect to an arbitrary coordinate chart satisfying:

Rµν = R σ
µσν = (g−1)σρRµσνρ.

Definition 2.29. The Ricci scalar R[g] ∈ C∞(M) is defined as follows:

R = (g−1)µνRµν .

The Riemann tensor and its tensor contractions (“summing over upper and lower indices”) are

natural quantities to consider on (M, g) because they are invariant under isometries ψ : M → M̃.
Indeed, it can be shown that:

Riem[ψ∗g̃] = ψ∗(Riem[g̃]), (2.3)

Ric[ψ∗g̃] = ψ∗(Ric[g̃]), (2.4)

R[ψ∗g̃] = ψ∗(R[g̃]) = R[g̃] ◦ ψ (2.5)

and we can apply in addition the isometry property ψ∗g̃ = g.
The Riemann tensor enjoys various symmetry properties.

Proposition 2.6. With respect to an arbitrary coordinate chart, the components of the Riemann
tensor satisfy:

(i) R σ
(µν)ρ = 0,

(ii) R σ
[µνρ] = 0,

(iii) Rµνρσ = Rρσµν ,
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(iv) ∇[αRσµ]νρ = 0 (Bianchi identity).

Here, we take the round brackets to mean a symmetrization over the indices: for example, T(µν) :=
1
2 (Tµν + Tνµ).

From the above symmetry properties, we can deduce symmetry properties at the level of the
Ricci tensor and Ricci scalar. We first introduce the Einstein tensor.

Definition 2.30. The Einstein tensor (field) G[g] ∈ T (0,2)(M) is defined as follows:

G[g] = Ric[g]− 1

2
R[g]g.

Corollary 2.7. The Ricci and Einstein tensors are symmetric and, with respect to an arbitrary
coordinate chart, G[g] satisfies the contracted Bianchi identity

∇µGµν = 0.

Proof. Symmetry of G[g] follows immediately from symmetry of Ric[g]. Recall,

Rµν = Rσµσν = (g−1)σαRαµσν .

By property (iv) of Proposition 2.6, we have that

(g−1)σαRαµσν = (g−1)σαRσναµ = Rνµ.

To derive the contracted Bianchi identity, we combine (i) and (iii) to infer that Rσµνρ = Rσ[µν]ρ
and

∇αRσµνρ +∇σRµανρ +∇µRασνρ = 0.

Now we contract the above identity with (g−1)σν(g−1)µρ to obtain:

0 = (g−1)σν(g−1)µρ∇α(Rσµνρ +∇σRµανρ +∇µRασνρ)

=∇αR−∇νRαν −∇ρRαρ

=∇αR− 2∇νRαν

= − 2∇νGαν .

2.7 The Einstein equations

The Einstein equations in (M, g) (with respect to physical units in which c = G = 1):

G[g] = 8πT.

Here, T ∈ T (0,2)(M) is the stress-energy tensor (field) or energy-momentum tensor (field), whose
expression depends on the physical matter that one is interested in studying. By the contracted
Bianchi identity ∇µGµν = 0, the stress-energy tensor must be divergence-free:

∇µTµν = 0.

The Einstein equations are coupled with appropriate equations for the matter model of interest.
Let ψ : M → M be a diffeomorphism. By (2.4) and (2.5), G[g] = 8πT if and only if

G[ψ∗g] = 8π(ψ∗T) = 0.

This property is sometimes also referred to as general covariance (“the laws of general relativity
take the same form when expressed with respect to a different coordinate chart).

As we will see later in the course, it will be useful to restrict to stress-energy tensors satisfying
additional energy conditions, which are supposed to describe necessary conditions on “physically
reasonable” matter.
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Definition 2.31. A stress-energy tensor T satisfies:

• the null energy condition (NEC) if for all null vector fields X ∈ T (M)

T(X,X) ≥ 0.

• the weak energy condition (WEC) if for all causal vector fields X ∈ T (M)

T(X,X) ≥ 0.

If we interpret the integral curve of X as representing an observer, this means that the energy
density measured by the observer is non-negative.

• the strong energy condition (SEC) if for all causal vector fields X ∈ T (M)

T(X,X)− 1

2
trTg(X,X) ≥ 0.

In the context of the Einstein equations, this means that Ric[g](X,X) ≥ 0. By considering
the integral curves of a timelike X, it can be shown that this implies that observers get closer
together towards the future, i.e. gravity is attractive. For null curves, this is already encoded
in the null energy condition.

• the dominant energy condition (DEC) if for all future-directed timelike vector fields X ∈
T (M)

−T(X, ·)♯

is a future-directed causal vector field. We can interpret −T(X, ·)♯ as as a momentum 4-
vector field according to the observer represented by the integral curve of X. Hence, the
“speed of matter” is less or equal to the speed of light.

[Exercise: Show that

DEC ⇒ WEC ⇒NEC,

SEC ⇒NEC.]

Despite what its name might suggest, SEC ⇏ WEC. For example, consider the following example
of a valid stress-energy tensor:

T = g.11

Then T− 1
2 trTg = g − 1

2 · 4g = −2g, so the SEC is satisfied, but the WEC fails.

2.7.1 Vacuum

If T = 0, we refer to the corresponding Einstein equations as the vacuum Einstein equations. In
that case, they reduce to

Ric[g] = 0.

Let ψ : M → M be a diffeomorphism. By (2.4), Ric[g] = 0 iff

Ric[ψ∗g] = ψ∗(Ric[g]) = 0,

so ψ∗g is automatically also a solution to the vacuum Einstein equations. Nevertheless, we would
like to think of g and ψ∗g as the “same” solution. This becomes relevant in the context of the
initial value problem, where “uniqueness” of solutions corresponding to the same initial data can
only hold “up to diffeomorphism”.

11Note that g is symmetric and ∇g = 0.
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2.7.2 Lagrangian field theories

Given a choice of matter model, how do we determine the stress-energy tensor? In the context
of matter models described by Lagrangian field theories, one can follow the prescription that we
outline below.

Suppose the equations of motion of the matter is described by a Lagrangian L ◦ (ϕ,∇gϕ, g),12

with a field ϕ ∈ T (r,s)(M), where ∇g denotes the Levi–Civita covariant derivative with respect to
g.

For example, in the case of a Klein–Gordon scalar field ϕ ∈ C∞(M)

LKG ◦ (ϕ,∇gϕ, g) =
1

2
g−1(∇gϕ,∇gϕ) +

m2

2
ϕ2,

or in the case of an electromagnetic potential A ∈ Ω1(M)

LEM ◦ (A,∇gA, g) =
1

16π
FαβF

αβ ,

with F = dA.
Then the stress energy tensor T can be defined as follows:

Tµν [ϕ, g] := 2

(
∂L

∂(g−1)µν
◦ (ϕ,∇gϕ, g)− 1

2
gµνL ◦ (ϕ,∇gϕ, g)

)
.

Hence,

TKG
µν [ϕ, g] = ∂µϕ∂νϕ− 1

2
gµν((g

−1)αβ∂αϕ∂βϕ+m2ϕ2),

TEM
µν [A, g] =

1

4π

[
(g−1)αβFµαFνβ − 1

4
FαβF

αβgµν

]
.

Note that the equation of motion for ϕ (which corresponds to the Euler–Lagrange equations)
can be expressed as follows:

m2ϕ = □gϕ := (g−1)αβ(∇2ϕ)αβ =
1√

−det g
∂α(
√
− det g(g−1)αβ∂βϕ) = 0.

The differential operator on the very right-hand side is called the Laplace–Beltrami operator asso-
ciated to g. When m = 0, we refer to this equation as the (geometric) wave equation. Combining
it with the Einstein equations, we obtain the Einstein-scalar field system of equations.

The equations of motion for F correspond to the Maxwell equations on a curved background
with no charges or currents:

dF = 0,

∇µF
µν = 0.

If M = R1+3 or if we restrict to a sufficiently small neighbourhood U of a point x ∈ M, F is
moreover an exact 2-form, so there exist a A ∈ Ω1(M), such that dA = F .

Exercise: Show that the stress-energy tensors corresponding to the Klein–Gordon equation
and the Maxwell equations satisfy the dominant energy condition. Do they satisfy the strong
energy condition?]

12The Lagrangian is a map L : N → R, where N is manifold that can be chosen appropriately so that the
composition L ◦ (ϕ,∇gϕ, g) : M → R is a well-defined map and the partial derivatives of L make sense.
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2.7.3 Perfect fluids

Suppose we would like to describe the gravitational properties of fluids, modelling for example
stars. If we ignore properties of fluids like their viscosity and heat conduction, they are described
be so-called perfect fluids.

The equations of motion of perfect fluids can be obtained by starting with the following stress-
energy tensor: let U ∈ T (M) with g(U,U) = −1 and ρ, p ∈ C∞(M). Then

Tfluid
µν := (ρ+ p)UµUν + pgµν .

With respect to an orthononormal basis {eµ} at x ∈ M, such that e0 = Ux, we can represent T
by the following matrix with components Tfluid

x (eµ, eν):
ρ(x) 0 0 0
0 p(x) 0 0
0 0 p(x) 0
0 0 0 p(x)

 .

Then it can be shown that the equation ∇µTµνfluid = 0 gives the relativistic Euler equations on
(M, g):

Uα∇αρ+ (ρ+ p)∇αU
α = 0,

(ρ+ p)Uα∇αU
µ =− ((g−1)µν + UµUν)∇νp,

where ρ can be interpreted as the mass-energy density of a fluid, p can be interpreted as the fluid
pressure and U is the 4-velocity of the fluid.

Using that g(U,U) = −1, U has three independent components, so the relativistic Euler equa-
tions constitute four equations for five variables, three components of Uµ, p and ρ. To obtain
a closed system of equations, one needs to prescribe an equation of state relating p and ρ. For
example, p can be written as a function of ρ and a temperature T : p(ρ, T ).

The special case p ≡ 0 is called dust. Note that in this case∇UU = 0, so the integral curves of U
are affinely parametrized timelike geodesics. [Exercise: Show that the perfect fluid stress-energy
tensor satisfies:

• the null energy condition if and only if ρ+ p ≥ 0,

• the weak energy condition if and only if ρ+ p ≥ 0 and ρ ≥ 0,

• the dominant energy condition if and only if ρ ≥ |p|,

• the strong energy condition if and only if ρ+ p ≥ 0 and ρ+ 3p ≥ 0.]
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3 The Minkowski spacetime

Before we introduce examples of black hole spacetimes, we will first review the Minkowski spacetime
solution to the vacuum Einstein equations (Minkowski 1905). This is sometimes also referred to
as the “Minkowski space”. This can be thought of as the “trivial solution” to the vacuum Einstein
equations (which, as we will see, admit highly non-trivial solutions!). The study of causal curves
on the Minkowski spacetime encompasses Einstein’s theory of special relativity.

The Minkowski spacetime (R3+1,m) is defined as follows:

m = −dt2 + dx2 + dy2 + dz2,

with (t, x, y, z) Cartesian coordinates on R3+1, which cover the spacetime globally.
In order to obtain a compact, two-dimensional representation of Minkowski, it will be useful

to switch to spherical coordinates (r, θ, φ) with

x = r sin θ cosφ,

y = r sin θ sinφ,

z = r cos θ,

where θ ∈ (0, π), φ ∈ (0, 2π) and r ∈ (0,∞). Note that these coordinates do not cover R3+1

globally due to a degeneracy at the origin 0 ∈ Rn+1, as well as at a great circle segment on S2
connecting the north and south poles.

[Exercise: Show that with respect to standard spherical coordinates (t, r, θ, φ), we can express:

m = −dt2 + dr2 + r2(dθ2 + sin2 θdφ2).]

We denote:

/̊g = dθ2 + sin2 θdφ2.

And observe that /̊g is the induced Riemannian metric of the unit round sphere S2 in R3.

t

x

y

u = 1

u = 0

v = 0

v = 1

Figure 7: A depiction of the u- and v-level sets for (R2+1,m). The intersections of the level sets
are in this case round circles.

We now introduce the ingoing null coordinate u and the outgoing null coordinate v, which are
defined as follows:

u = t− r,
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v = t+ r.

Then:

m = −1

2
(du⊗ dv + dv ⊗ du) + r2̊/g =: −dudv + r2̊/g.

Note that the level sets {u = u0} and {v = v0} are outgoing and ingoing cones with vertices
at the t-axis and an opening angle of 45◦ or π

2 rad. The ingoing null coordinate is also called the
retarded time function and the outgoing null coordinate v is called the advanced time function.

We can depict (R3+1,m) as a half plane {u− v > 0} by suppressing the spheres of intersection
of u- and v-level sets.

u = 1

u = 0

v = 1

v = 0

t

u− v = 0

Figure 8: A depiction of the u- and v-level sets in (R3+1,m) supressing the spherical directions.
Every point on away from the t-axis represents a round sphere of radius r(u, v) = v−u

2 .

To be able to depict (R3+1,m) more compactly, we introduce the following rescaled double null
coordinates.

ũ =arctanu,

ṽ = arctan v.

[Exercise: Show that the metric takes the form m = − 1
cos2 ũ cos2 ṽdũdṽ +

(tan ṽ−tan ũ)2

4 /̊g.]
We can represent (R3+1,m) by the following subset of R2:

Q =
{
(ũ, ṽ) ∈

(
−π
2
,
π

2

)
×
(
−π
2
,
π

2

)
, ṽ − ũ > 0

}
We denote

Γ := {ṽ − ũ = 0}.

Note that Γ represent the t-axis and it is a centre of spherical symmetry, i.e. it consists of all points
that stay fixed with respect to spatial rotations around the t-axis.

The closure Q of Q in R2 is called a (Carter–)Penrose diagram of the Minkowski spacetime.
Changing the function arctan to a different function results in a different diagram. However,
lightcones emanating from the t-axis will always be represented by straight lines at a 45◦ angle
with the vertical. Note that Γ need not not be a straight line in all Penrose diagrams! We will
give a definition of these diagrams in a more general setting later in the course.
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We label elements of the boundary ∂Q \ Q in the following way:

I+ :=
(
−π
2
,
π

2

)
×
{π
2

}
,

I− :=
{
−π
2

}
×
(
−π
2
,
π

2

)
,

i+ :=
{π
2

}
×
{π
2

}
,

i− :=
{
−π
2

}
×
{
−π
2

}
,

i0 :=
{
−π
2

}
×
{π
2

}
.

We refer to I± as future/past null infinity, i± as future/past timelike infinity and i0 as spacelike
infinity. This nomenclature is motivated by the fact that null cones in Minkowski emanating from
the t-axis are represented by lines at 45◦ with Γ (or with the lines v−u = const.) with future/past
limit points on I±, timelike curves with bounded acceleration are represented by curves whose
tangent is at an angle uniformly smaller than 45◦ with Γ with future/past limit points at i± and
spacelike curves with tangents that have a norm bounded away from zero are represented by curves
whose tangent is at an angle uniformly larger than 45◦ with Γ and which have endpoints at i0.

Similarly, spherically symmetric null/ timelike/ spacelike hypersurfaces are represented by
curves at/below/above 45◦ with γ.

QΓ
ũ = ṽ

I+

I−

ṽ = π
2

ũ = −π
2

i+

i−

i0

u = 1

u = 0

v = 0

v = 1

Figure 9: A Penrose diagram of the Minkowski spacetime.

[Exercise: Prove that all geodesics in Minkowski must be straight lines.]
[Exercise: Draw the null line {x− t = 1, z = 0, y = 1} in a Minkowski Penrose diagram.]
[Exercise: Draw the hyperboloids {t2 − r2 = s2} and the hyperboloids {(t+ s)2 − r2 = 1} in

a Minkowski Penrose diagram, for different values of s ∈ R. ]
[Exercise: Consider the sphere S2

u0,v0 := {u = u0} ∩ {v = v0} in Minkowski, with u0, v0 ∈ R.
Draw J+(S2

u0,v0), J
−(S2

u0,v0) in a Penrose diagram.]
[Exercise: Let Σ = {t = 0} ∩ {r ≤ 1} be a subset of Minkowski. Draw Σ, D+(Σ) and D−(Σ)

in a Penrose diagram.]
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4 Schwarzschild black hole spacetimes

LetM ∈ (0,∞). Then the Schwarzschild spacetimes (Schwarzschild 1915) are pairs (Mext, gM ),
with Mext = R× (2M,∞)× S2 and

gM = −
(
1− 2M

r

)
dt2 +

(
1− 2M

r

)−1

dr2 + r2̊/g, (4.1)

where t ∈ R, r ∈ (0, 2M) and (θ, φ) ∈ S2. Note that this expression features the usual degeneration
of spherical coordinates at a great circle segment connecting the north and south pole and hence
multiple coordinate charts are required to fully cover the spheres of constant t and r.

It can be shown that the Schwarzschild spacetimes are solutions to the vacuum Einstein equa-
tions (we will revisit this later). We will also refer to them as Schwarzschild exteriors, since we
will show in the next section that they can be extended to obtain a Schwarzschild interior.

The parameter M is called the mass of the Schwarzschild spacetime. Somewhat paradoxically,
it is sensible to assign a notion of mass or energy to spacetimes even when they solve the vacuum
Einstein equations, i.e. matter is absent.

We will encounter the concepts of mass and energy in more generality later in the course.
Loosely speaking, you may think of this as a measure of the total energy contained in the “gravi-
tational field” at any fixed time.

It may seem like the Schwarzschild metric is singular at r = 2M . Indeed, the metric compo-
nents in (4.1) become ill-defined at r = 2M . This fact was a source of significant confusion after
Schwarzschild wrote down his metric. It was Lemâıtre who first realized in 1932 that the space-
time (Mext, gM ) can actually be extended across r = 2M and any problems at r = 2M are purely
an artefact of the particular choice of coordinates (t, r, θ, φ). They can therefore be compared to
the issues at θ = 0, π in spherical coordinates.

To see that nothing goes wrong at r = 2M , we will first introduce null coordinates (u, v) that
generalize the null coordinates that we already encounter in the Minkowski spacetime. First, we
introduce the tortoise coordinate r∗ : (2M,∞) → R, which satisfies

dr∗
dr

=
1

1− 2M
r

.

[Exercise: Show that we can write

r∗(r) = c0 + r + 2M log

(
r − 2M

2M

)
for an arbitrary constant c0 ∈ R and hence the range of r∗ is the full real line R.]

For the sake of convenience, we will take c0 = 0 and define:

r∗ = r + 2M log

(
r − 2M

2M

)
. (4.2)

With respect to (t, r∗, θ, φ) coordinates, we can express:

gM =

(
1− 2M

r

)[
−dt2 + dr2∗

]
+ r2̊/g.

We now define the null functions u and v as follows:

u = t− r∗,

v = t+ r∗.
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Note that u, v can take on any value in R and: [Exercise: Show that du♯ and dv♯ are null vector
fields.]

Then

gM = −
(
1− 2M

r

)
dudv + r2̊/g,

where we view r as a function of u and v in the following way: r = r(r∗) = r
(
1
2 (v − u)

)
. The

coordinates (u, v, θ, φ) are called Eddington–Finkelstein double null coordinates.
[Exercise: Show that gM takes the following form with respect to (v, r) coordinates (in-

going Eddington–Finkelstein coordinates) and (u, r) coordinates (outgoing Eddington–Finkelstein
coordinates or Bondi coordinates):

gM =−
(
1− 2M

r

)
dv2 + 2dvdr + r2̊/g,

gM =−
(
1− 2M

r

)
du2 − 2dudr + r2̊/g.]

As in the Minkowski case, we can obtain a Penrose diagram of the Schwarzschild spacetime by
rescaling:

ũ =arctanu,

ṽ = arctan v.

Then Mext is represented by the bounded subset Q = (−π
2 ,

π
2 )× (−π

2 ,
π
2 ) ⊂ R2.

I+

I−

H+

H−

ũ
=
π
2

r
=
2M

ṽ
=
π
2

ṽ
=
−
π
2

ũ
=
−
π
2r

=
2M

u = const.

v = const.
i0

i+

i−

Q

Figure 10: A Penrose diagram of the Schwarzschild exterior spacetime.

Note that, we can define, as in the Minkowski case, future/past null infinity I±, future/past
timelike infinity i± and spacelike infinity i0. We moreover have two additional boundary compo-
nents H± and their intersection, which we will give a name to later.

I+ :=
(
−π
2
,
π

2

)
×
{π
2

}
,

H+ :=
{π
2

}
×
(
−π
2
,
π

2

)
,

I− :=
{
−π
2

}
×
(
−π
2
,
π

2

)
,
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H− :=
(
−π
2
,
π

2

)
×
{
−π
2

}
,

i+ :=
{π
2

}
×
{π
2

}
,

i− :=
{
−π
2

}
×
{
−π
2

}
,

i0 :=
{
−π
2

}
×
{π
2

}
.

4.1 Maximally-extended Schwarzschild

Now we will show that we can extend the spacetime smoothly across the boundaries H+ and H−

of Q in R2, where r approaches the value 2M . We will do so by first switching from the ingoing
null coordinate u to an affine parameter of appropriate ingoing null geodesics.

Note first that ∂u is a null vector field. Furthermore: [Exercise: Show that

∇∂u∂u = Γuuu = Ω−2(∂uΩ
2)∂u,

with Ω2(u, v) := 1− 2M
r(u,v) .]

Consider an integral curve γ : R → M of ∂u, with

γ(u) ∼=


γu

γv

γθ

γφ

 (u) =


u
v0
θ0
φ0

 ,

for some v0 ∈ R, θ0 ∈ (0, π) and φ0 ∈ (0, 2π).
To show that γ is a (non-affinely parametrized) null geodesic, we rescale:

dU ′

du
= Ω2(u, v0) = 1− 2M

r(u, v0)
.

Then along γ:

∇∂′
U
∂′U |γ = ∇Ω−2∂u(Ω

−2∂u)|γ = −Ω−6∂uΩ
2|γ∂u|γ +Ω−4∇∂u∂u|γ = 0,

so ∂U ′ |γ satisfies the defining property of a tangent vector field to an affinely-parametrized null
geodesic. We will show below that U ′(∞) = 0, so γ reaches the boundary H+ at a finite affine time.

By (4.2), we can express:

e
v−u
4M = e

r∗
2M = e

r
2M

(
r − 2M

2M

)
,

so that

dU ′

du
= 1− 2M

r(u, v0)
=

2M

r(u, v0)
e−

r(u,v0)
2M e

v0−u
4M = e−1+

v0
4M e−

u
4M (1 +O(e−

u
4M ))

and therefore, as u→ ∞,

U ′(u) = − 1

4M
e−1+

v0
4M e−

u
4M (1 +O(e−

u
4M )).

Note the exponential relation between U and u and U ′(∞) = 0. To simplify matters a bit, we
consider instead the following ingoing null coordinate:

U(u) = −e− u
4M .
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We can similarly define
dV ′

dv
= 1− 2M

r(u0, v)
,

to obtain
dV ′

dv
=

2M

r(u0, v)
e−

r(u0,v)
2M e

v−u0
4M = e−1− u0

4M e
v

4M (1 +O(e
v

4M ))

and therefore, as v → −∞,

V ′(v) =
1

4M
e−1− u0

4M e
v

4M (1 +O(e
v

4M )),

so V ′(−∞) = 0.
Again, we consider the simplified outgoing null coordinate:

V (v) = e
v

4M .

We refer to the coordinates (U, V, θ, φ) as Kruskal–Szekeres coordinates. Note that

U · V = −e
v−u
4M = −e

r∗
2M = −e r

2M
r − 2M

2M
. (4.3)

We can therefore express

gM = −r−1(r − 2M)
du

dU

dv

dV
dUdV + r2̊/g

= 16M2r−1(r − 2M)(UV )−1dUdV + r2̊/g

= −32M3r−1e−
r

2M dUdV + r2̊/g,

with U < 0 and V > 0.
Since nothing singular occurs at U = 0 or V = 0, we can extend (Mext, gM ) to obtain the

bigger spacetime (MKrus, gM ), which is called a maximally-extended Schwarzschild spacetime or
Kruskal spacetime. We proceed as follows:

• First, we will extend r(U, V ) = r(U · V ) to U ≥ 0 and V ≤ 0 by requiring (4.3) to hold, i.e.
let f : (0,∞) → (−∞, 1) with f(x) = −e x

2M
x−2M
2M , then:

⋆ f is smooth (in fact, analytic),

⋆ df
dx (x) = − 1

2M

(
x−2M
2M + 1

)
< 0 for all x ∈ (0,∞),

⋆ f is bijective (injective by df
dx (x) < 0 and surjective by the fact that f(x) → 1 as x ↓ 0

and f(x) → −∞ as x→ ∞ and the intermediate value theorem.

This implies that the inverse f−1 : (−∞, 1) → (0,∞) is well-defined and, by the Inverse
Function Theorem, f−1 is smooth (in fact, analytic). We can therefore extend: r(U, V ) :=
f−1(U · V ) smoothly to the set {(U, V ) ∈ R2 , 0 ≤ UV < 1}, where it will take on values in
(0, 2M ].

• We will define the maximally-extended Schwarzschild or Kruskal manifold by

MKrus =: {(U, V ) ∈ R2 , UV < 1} × S2

and equip it with the metric

gM = −32M3r−1e−
r

2M dUdV + r2̊/g.
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It is clear that (MKrus, gM ) agrees with the Schwarzschild exterior spacetime in the subset
{U < 0, V > 0} and that it remains well-defined in the region {0 ≤ UV < 1}. We will use
the shorthand notation gM = −Ω2

Krus(U, V )dUdV + r2̊/g, with

Ω2
Krus(U, V ) = −32M3r−1e−

r
2M .

[Exercise: Show that the region {0 ≤ UV < 1} can be covered by coordinates (t′, r, θ, φ),
such that

gM = −
(
2M

r
− 1

)−1

dr2 +

(
2M

r
− 1

)
dt′2 + r2̊/g.

for a suitable choice of t′(U, V ).]
The set UV = 1 consists of two disconnected hyperbolas. Is it possible to extend the spacetime

across UV = 1?
One can show that the following contraction of the Riemann tensor, the so-called Kretschmann

scalar RµνρσR
µνρσ satisfies [Excercise: Show this (at your own peril!).]:

RµνρσR
µνρσ =

48M2

r6
.

and hence RµνρσR
µνρσ blows up at r = 0.

Proposition 4.1. The spacetime (MKrus, gM ) cannot be extended across {UV = 1} as a spacetime
with a C2 metric.

Proof. Suppose such an extension did exist. Then RµνρσR
µνρσ (the Kretschmann scalar) would be

well-defined. But since RµνρσR
µνρσ is a function that does not depend on the choice of coordinates

on the manifold, this is in contradiction with the fact that RµνρσR
µνρσ blows up at UV = 1, since

r → 0.

In fact, it can be shown (Sbierski 2016) that (MKrus, gM ) is inextendible with a C0 metric
across {UV = 1}. Observers experience an “infinite tidal deformation” as they approach UV = 1,
rather than merely an infinite tidal force (consistent with blow-up of the Kretschmann scalar).

We can represent the maximally-extended Schwarzschild spacetime (MKrus, gM ) via a Penrose
diagram. We redefine:

Ũ =arctanU,

Ṽ = arctanV.

Note that UV = 1 corresponds to tan Ũ · tan Ṽ = 1. Hence (Ũ , Ṽ ) have the following range:

{(Ũ , Ṽ ) ∈
(
−π
2
,
π

2

)
×
(
−π
2
,
π

2

)
, tan Ũ · tan Ṽ < 1}.

The set {r = 0} is therefore represented by the curves:{
Ũ = arctan

(
1

tan Ṽ

)}
=
{
Ũ =

π

2
− Ṽ

∣∣ 0 < Ṽ <
π

2

}
∪
{
Ũ = −π

2
− Ṽ

∣∣ − π

2
< Ṽ < 0

}
,

where we used that

arctan

(
1

tanx

)
= arctan

(cosx
sinx

)
= arctan

(
sin(x+ π

2 )

− cos(x+ π
2 )

)
= arctan

(
− tan(x+

π

2
)
)

= − arctan
(
tan(x+

π

2
)
)
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=

{
−(x+ π

2 ) (−π
2 < x < 0),

−(x+ π
2 − π) (0 < x < π

2 ).

We can immediately see from the Penrose diagram that future-directed causal curves in the
region where {U ≥ 0, V ≥ 0} cannot enter the region {U < 0, V ≥ 0}, since J−({U < 0, V ≥
0})∩{U ≥ 0, V ≥ 0} = ∅. We refer to the region BH := {U ≥ 0, V ≥ 0} as the Schwarzschild black
hole region. The intersection of H±

L and H±
R at (U, V ) = (0, 0) is called the bifurcation sphere.

I+
RI+

L H+
RH+

L

I−
L I−

R
H−

L H−
R

S+

S−

i0i0

i+ i+

i−i−

BH Ṽ = π
2Ũ = π

2

U
=
0

V
=
0

Ũ = −π
2Ṽ = −π

2

Ũ = π
2 − Ṽ

Ũ = −π
2 − Ṽ

r = 0

r = 0

r
=
2M

r
=
2M r

=
2M

r
=
2M

r > 2Mr > 2M

r < 2M

r < 2M

Figure 11: A Penrose diagram of the maximally-extended Schwarzschild spacetime.

The lines S+ and S− in ∂Q represents the Schwarzschild singularity, where r = 0. It is a
spacelike curve in R1+1, so we say the Schwarzschild singularity is spacelike.

[Exercise: 1) Construct a Penrose diagram of Schwarzschild spacetimes with M < 0. 2) Are
these spacetimes globally hyperbolic? ]

4.2 Isometries and Killing vector fields

Consider the region (Mext, gM ). Since the metric coefficients of gM do not depend on t, it follows
that

(L∂tgM )µν = ∂t(gM )µν = 0,

so ∂t is a Killing vector field. With respect to (U, V ) coordinates, we can express

∂t = ∂tU∂U + ∂tV ∂V = ∂tu∂uU∂U + ∂tv∂vV ∂U =
1

4M
(−U∂U + V ∂V ).

We can therefore define the vector field T = 1
4M (−U∂U + V ∂V ) in the full spacetime (MKrus, gM )

and observe that it agrees with ∂t in (Mext, gM ).
Along H+

R = {U = 0} ∩ {V > 0}, we have that T = 1
4M V ∂V , so T is an outgoing null vector

field that is tangent to H+
R.

Note that we can cover the region {V > 0} ∩MKrus by ingoing Eddington–Finkelstein coordi-
nates (v, r, θ, φ), with

gM = −
(
1− 2M

r

)
dv2 + 2dvdr + r2̊/g.

[Exercise: Show that g−1
M = (∂v ⊗ ∂r + ∂r ⊗ ∂v) +

(
1− 2M

r

)
∂r ⊗ ∂r + r−2̊/g

−1
.]
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Note that in ingoing Eddington–Finkelstein coordinates, we can express along H+
R:

T =
1

4M
V ∂V =

1

4M
V (v)(∂V v)∂v = ∂v.

Since gM in (v, r) coordinates is also v-independent in the region r ≤ 2M , we conclude that T
must remain a Killing vector field when r ≤ 2M .

Since T is null along H+
R, we must have that ∇TT |H+

R
= f(v)T |H+

R
for some function f (Ex-

ercise). Furthermore, in (v, r) coordinates, using that gvr = 1, the Levi-Civita connection is
metric-preserving and ∇XY −∇YX = [X,Y ] for X,Y ∈ T (M):

f(v) = g(f(v)∂v, ∂r)|H+
R
= g(∂r,∇∂v∂v)|H+ = ∂v(g(∂v, ∂r))− g(∇∂v∂r, ∂v)|H+

R

= −g([∂v, ∂r], ∂v)|H+
R
− g(∇∂r∂v, ∂v)|H+

R
= −1

2
∂r(gvv)|H+

R
=
M

r2
|H+

R
=

1

4M
.

In particular, ∇TT |H+
R
= κ+T , where κ+ = 1

4M is called the surface gravity of the Schwarzschild

event horizon.
The vector field ∂φ is clearly also a Killing vector field. In fact:
[Exercise: Show that the following angular momentum vector fields are all Killing vector fields

of (MKrus, gM ):

L1 =− sinφ∂θ − cot θ cosφ∂φ,

L2 = cosφ∂θ − cot θ sinφ∂φ,

L3 = ∂φ.]

Definition 4.1. A spacetime (M, g) is static if it admits a timelike Killing vector field T , which
satisfies:

T ♭ ∧ dT ♭ = 0.

This is equivalent13 to the statement that around any point p ∈ M, there exist local coordinates
(τ, x1, . . . , xn), such that we can express:

g = −fdτ2 + hijdx
idxj ,

where T = ∂τ , f, hij are functions of x1, . . . , xn and hijdx
idxj is a Riemannian metric on the level

sets of τ .

Clearly, the Schwarzschild exteriors (Mext, gM ) are static.
The existence of angular momentum Killing vector fields L1, L2, L3 is a consequence of the

spherical symmetry on the (extended) Schwarzschild spacetimes.

4.3 Dynamics of geodesics

In Einstein theory of general relativity, idealized observers in a spacetime are represented by
timelike geodesics and the path of photons is represented by null geodesics. This is known as the
geodesic hypothesis.

Independently of its relation with observers, the behaviour of causal geodesics also serves as a
convenient tool for probing important geometric properties of the spacetime.

13This equivalence follows from the Frobenius theorem.
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4.3.1 Black hole exterior

Let γ : I → Mext be an affinely parametrized causal geodesic, which is either timelike or null. In
the case of timelike geodesics, we will take the affine parameter to be the proper time along the
geodesic. Then g(γ̇, γ̇) = −σ, with σ = 0 if γ is null and σ = 1 if γ is timelike.

We denote

Mext ∋ γ(s) ∼=


t(s)
r(s)
θ(s)
φ(s)

 , Tγ(s)M ∋ γ̇(s) ∼=


ṫ
ṙ

θ̇
φ̇

 (s).

Then g(γ̇, γ̇) = −σ implies that:

−σ = −
(
1− 2M

r

)
ṫ2 +

(
1− 2M

r

)−1

ṙ2 + r2θ̇2 + r2 sin2 θφ̇2. (4.4)

We can simplify this equation a bit by redefining our spherical coordinates (θ, φ) so that we
are guaranteed that θ(0) = π

2 and θ̇(0) = 0. We can now apply the transformation θ′ : θ 7→ π − θ,
which leaves the Schwarzschild metric and hence the geodesic equation invariant, and which also
leaves the geodesic initial data (γ(s), γ̇(s)) invariant. But uniqueness of solutions to the geodesic
equation, we must have that θ′(s) = θ(s) for all s ∈ I, so that necessarily θ(s) = π

2 . That is to
say, the geodesic will stay restricted to the equator.

We can therefore simplify (4.4) to obtain:

−σ = −
(
1− 2M

r

)
ṫ2 +

(
1− 2M

r

)−1

ṙ2 + r2φ̇2.

Now we use the Killing property of ∂t and ∂φ to conclude that gγ(s)(∂t, γ̇) and gγ(s)(∂φ, γ̇) are
conserved in s (Proposition 2.5). We define:

E =− gγ(s)(∂t, γ̇)(s) = −
(
1− 2M

r(s)

)
ṫ(s),

L = gγ(s)(∂φ, γ̇)(s) = r2(s)φ̇(s)

and refer to E as the energy of the geodesic with respect to ∂t and to L as the angular momentum
of the geodesic (in the z-direction). Then we obtain:

−σ = −
(
1− 2M

r

)−1

E2 +

(
1− 2M

r

)−1

ṙ2 + r−2L2

Rearranging the above equation, we obtain:

E2 = ṙ2 +

(
1− 2M

r

)
(L2r−2 + σ) =: ṙ2 + Vσ(r).

The above equation resembles the conservation of energy property of a 1-D dynamical system,
where Vσ plays the role of a potential energy term and ṙ2 plays the role of a kinetic energy term.

By studying the qualitative properties of the potential function Vσ, we can determine the
qualitative properties of the dynamics of causal geodesics.
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Null geodesics We consider first the case σ = 0. Then V0(r) = L2
(
1− 2M

r

)
r−2. If L = 0, then

V0 ≡ 0. Suppose that L ̸= 0.
Then we have that V0(2M) = 0 and V0(r) → 0 as r → ∞. Furthermore,

V ′
0(r) = −2L2r−4 (r − 3M)

Hence, V0 has one extremum at r = 3M , which is a maximum.
Suppose r(0) > 3M , ṙ(0) < 0. Then we distinguish three cases:

• E2 > V (3M): the geodesic enters the black hole region;

• E2 < V (3M): r(s) decreases until V0(r(s)) = E2 and then r(s) increases and r(s) → ∞;

• E2 = V (3M): the geodesic approaches r = 3M .

The timelike hypersurface {r = 3M} is called the photon sphere or light ring and it admits solutions
γ3M (s) with constant radius (circular orbits):

γ3M (s) ∼=


3EM−1s

3M
π
2

1
9M

−2Ls mod 2π

 .

Consider a geodesic with E2 = V (3M). Since a generic small perturbation of the initial data
(γ(0), γ̇(0)) for the geodesic equation results in E2 ̸= V (3M) and therefore corresponds to a
geodesic that either enters the black hole region or escapes to infinity, we have that the (asymp-
totically) circular orbits are unstable.

r = 2M
r

r = 3M

V0(r)

Figure 12: The potential V0(r).

Timelike geodesics Now consider the case σ = 1. Then

V1(r) = 1− 2M

r
+
L2

r2
− 2L2M

r3
.

We can compare V1(r) to the potential appearing in the 1-dimensional reduction of the following
problem: a test particle of mass 1 in a gravitational force field created by a body of mass M in
Newton’s theory of gravity. In that case, the distance r between the test particle and the body
satisfies 1

2 ṙ
2 + VNewt(r) = Ẽ, with Ẽ the total energy and

2VNewt(r) + 1 = 1− 2M

r
+
L2

r2
.
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Label E2 = 2Ẽ + 1. Then ṙ2 + (2VNewt(r) + 1) = E2. The key difference with V1(r) is the term

− 2L2M
r3 , which becomes dominant for small r.
We have that V1(2M) = 0 and V1(r) → 1 as r → ∞. Furthermore,

V ′
1(r) =

2M

r2
− 2L2

r3
+

6L2M

r4
= 2r−4(Mr2 − L2r + 3L2M).

Hence, V1(r) admits at most two extrema at radii r = R+ and r = R+, with

R± =
L2

2M
(1±

√
1− 12M2L−2).

If L2 < 12M2, then there are no extrema. If L2 = 12M2, then there is exactly one extremum at

r = L2

2M = 6M . Since

V ′′
1 (r) = 2r−5(−2Mr2 + 3L2r − 12L2M),

one can verify that in the case L2 = 12M2:

V ′′
1 (6M) = 0.

Hence, the extremum is a saddle point.
If L2 > 12M2, then there are exactly two extrema: R− is a maximum and R+ is a minimum.

r = 2M
r

V1(r)

(a) L2 < 12M2

r = 2M
r

V1(r)

r = R+

(b) L2 = 12M2

r = 2M
r

r = R−

V1(r)

r = R+

2VNewt(r) + 1

(c) L2 > 12M2

Figure 13: The potential V1(r).

As in the case of null geodesics, when E = V1(R±), there are geodesics that stay fixed at
r = R±. Since r = R− is a maximum of the potential, these geodesics correspond to unstable
circular orbits. As r = R+ is a maximum, for any ϵ > 0, all sufficiently small perturbations of the
initial data (γ(0), γ̇(0)) will result in geodesics which stay in the region R+ − ϵ ≤ r ≤ R+ + ϵ and
therefore correspond to bounded orbits (that need not be circular).14

14In the Newtonian two-body problem, such orbits are closed and form ellipses. In the Schwarzschild case, this
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4.3.2 Red-shift

Consider the region of the maximally-extended Schwarzschild spacetime that is spanned by ingoing
Eddington–Finkelstein coordinates (v, r, θ, φ).

A global red-shift effect There is a global red shift effect present in the Schwarzschild black
hole exterior. Consider an observer, Alice, entering the black hole and an observer Bob, who stays
outside of the black hole. Suppose Alice emits a photon at the spacetime point (u, vA, θ0, φ0)
moving in the radial direction, which is intercepted by Bob at the spacetime point (u, vB , θ0, φ0).

γu

H+ I+

A B

(u, vA)

(u, vB)
i+

N

T

Figure 14: Alice emitting a photon travelling at constant (θ, φ), represented by γu, that is inter-
cepted by Bob, who stays in the black hole exterior. Bob measures a red-shift of the energy of the
photon.

We describe the photon by an outgoing null geodesic γu. As we already saw, V ′, defined via:

dV ′

dv
= 1− 2M

r(u, v)
,

defines an affine parameter along γu. Hence,

γ̇u = ∂V ′ =
1

1− 2M
r(u,v)

∂v.

Let us assume for the sake of simplicity that the timelike curve describing Alice’s spacetime
path is tangent to the vector field

N = ∂v − ∂r

in (v, r) coordinates, in a neighbourhood of the event horizon.
[Exercise: Show that N is timelike and that with respect to Eddington–Finkelstein double

null coordinates (u, v):

N =

(
1 +

2

(1− 2Mr−1)

)
∂u + ∂v =

1

(1− 2Mr−1)

(
3− 2Mr−1

)
∂u + ∂v.]

Then the energy of the photon, according to Alice is given by the expression:

Eγu,A = −g(γ̇u, N)(u, vA) = − 1

(1− 2M
r )2

(
3− 2Mr−1

)
guv

∣∣∣
r=r(u,vA)

is no longer the case. It can be shown that for R+M−1 ≫ 1, the orbits trace to leading-order ellipses whose
periapsis (the shortest distance between the two massive bodies) precesses (rotates). Historically, this deviation
from Newtonian theory was used to explain the anomalous precession of the perihelion (the periapsis where the
larger body is the sun) of Mercury orbiting around the sun, which could not be accounted for using solely Newtonian
theory and the effects of the other planets in the solar system.
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=
1

2(1− 2M
r(u,vA) )

(
3− 2Mr−1

)
(u, vA).

We assume also, for the sake of simplicity that the timelike curve describing Bob’s spacetime
path is tangent to T = ∂u + ∂v. Then the energy of the photon, according to Bob is:

Eγu,B = −g(γ̇u, T )(u, vB) = − 1

1− 2M
r

guv

∣∣∣
r=r(u,vB)

=
1

2
.

The ratio of the two energies is given by

Eγu,B
Eγu,A

=
1− 2M

r

3− 2M
r

(u, vA).

Observe:

1. Eγu,B < Eγu,A,

2.
Eγu,B

Eγu,A
→ 0 as u→ ∞.

We say the energy of the photon is red-shifted and there is an infinite red-shift in the limit of the
photon emission occurring as Alice crosses the event horizon of the black hole.

This terminology is motivated by the following relation between the energy E of a photon and
its frequency ω (in radians/second): E = ℏω, with ℏ the reduced Planck constant. That is to say,
a decrease in energy corresponds to a lowering in frequency, which in turn means a shift to the red
part of the spectrum.

A horizon red-shift effect Recall that the Killing vector field T = ∂v in (v, r) coordinates is
tangential to H+.

Recall also that, in (v, r) coordinates,

∇∂v∂v|H+ = κ+∂v|H+ .

Since κ+ ̸= 0, ∂v|H+ does not correspond to γ̇, with γ an affinely parametrized null geodesic.
However, we have that

∇e−κ+v∂v
(e−κ+v∂v)|H+ = 0.

Hence, we can reparametrize the integral curves γ of ∂v alongH+ to obtain an affinely parametrized
null geodesic γ2M with parameter s(v) = e−κ+v − 1. More explicitly, we obtain the following null
geodesics γ2M : [0,∞) → MKrus that are tangent to the future-event horizon H+:

γ2M (s) ∼=


−κ−1

+ log(s+ 1)
2M
θ0
φ0

 ,

with θ0 ∈ (0, π) and φ0 ∈ (0, 2π) arbitrary.
Although the geodesics γ2M are “trapped” at r = 2M , it turns out their energy decays expo-

nentially with respect to v. We define energy with respect to the timelike vector field N = ∂v−∂r.
Note that LTN = [T,N ] = 0, so N is time-translation invariant. We can think of the integral

curves of N as representing timelike observers crossing H+. The energy of γ2M with respect to N
is as follows:

Eγ2M (v) = −gγ2M (s(v))(γ̇2M (s(v)), Nγ2M (s(v))) = −gγ2M (s(v))(e
−κ+v∂v|γ2M (s(v)), (∂v−∂r)|γ2M (s(v))) = e−κ+v.

The exponential decay of the above energy is called the horizon red-shift effect and it is closely
related to the non-vanishing of the surface gravity κ+. We will later see that there a black hole
spacetimes which have a vanishing κ+ and a non-vanishing horizon red shift effect, but, due to the
presence of an event horizon, they do have a global red-shift effect.
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H+

A

BBH

N

N

N

γ2M

Figure 15: Alice emitting a photon travelling along the event horizon, which is intercepted by Bob
as he crosses the event horizon, who measures a red-shift of the energy of the photon.

4.3.3 Black hole interior

Consider the black hole interior region, where r < 2M . With respect to (t′, r, θ, φ) coordinates, we
can express:

gM = −
(
2M

r
− 1

)−1

dr2 +

(
2M

r
− 1

)
dt′2 + r2̊/g.

As in the black hole exterior, we obtain the following equation for timelike curves, parametrized
by their proper time s:

−1 =

(
2M

r
− 1

)
ṫ′
2 −

(
2M

r
− 1

)−1

ṙ2 + r2θ̇2 + r2 sin2 θφ̇2, (4.5)

[Exercise: Show that ∂r, with respect to (t′, r, θ, φ) coordinates is a past-directed timelike
vector field.]

Since ∂r past-directed and timelike, future-directed causal curves must satisfy the following
inequality:

0 < gγ(s)(∂r, γ̇)(s) = −
(
2M

r(s)
− 1

)−1

ṙ(s)

and therefore, ṙ(s) < 0. We will now show that r = 0 is attained at a finite value of s denoted
smax.

For σ = 1, we have by (4.5) that

ṙ2 ≥
(
2M

r
− 1

)
,

with equality if the curve is an integral curve of ∂r. Since moreover ṙ ≤ 0, we in fact have that:

ṙ ≤ −
√

2M

r
− 1

and therefore

s = −
∫ r(0)

r(s)

ds

dr
(r) dr ≤

∫ r(0)

r(s)

1√
2Mr−1 − 1

dr ≤ 1√
2Mr−1(0)− 1

(r(0)− r(s)),

so smax ≤ r(0)√
2Mr−1(0)−1

.

We conclude that observers, represented by timelike curves, must reach the Schwarzschild
singularity at r = 0 in finite proper time, bounded above by smax. No matter how much they try
to accelerate away from the singularity, they are doomed to reach the end of the spacetime in finite
time!
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4.4 Reissner–Nordström spacetimes

Schwarzschild spacetimes can be embedded into the larger Reissner–Nordström family of space-
times (Reissner 1916, Weyl 1917, Nordström 1918), which solve the Einstein–Maxwell
equations with F = Q

r2 dt ∧ dr + P sin θdθ ∧ dφ, where Q ∈ R is called the electric charge of the

spacetime and P ∈ R is called themagnetic charge. We define e =
√
Q2 + P 2. Reissner–Nordström

spacetimes are pairs (Mext, gM,e), with Mext = R× (r+,∞)× S2 and

gM,e =−Ddt2 +D−1dr2 + r2̊/g,

D(r) = 1− 2M

r
+
e2

r2
,

with r± = M ±
√
M2 − e2 the roots of the polynomial r2D(r) in the case M ≥ e, otherwise

r+ = 0. If M = e (so r+ = r−) we say the spacetime is extremal, if M > e, we say the spacetime
is sub-extremal, if M > e, then we says the spacetime is super-extremal.

Just like Schwarzschild spacetimes, Reissner–Nordström spacetimes are static and spherically
symmetric.

In order to extend the spacetime from r+ < r < ∞ to r− < r < ∞, we will apply the same
strategy as in Schwarzschild. First, we can introduce double null coordinates (u, v) with respect
to which:

gM,e = −Ω2dudv + r2̊/g,

with Ω2 = 1− 2M
r + e2

r2 by defining

u =t− r∗,

v =t+ r∗,

dr∗
dr

=
1

1− 2M
r + e2

r2

.

[Exercise: Verify that r∗ is given by the following expression (up to the addition of a constant):

r∗(r) =r +
r2+

2
√
M2 − e2

log

(
r − r+
r+

)
−

r2−

2
√
M2 − e2

log

(
r − r−
r−

)
if e < M,

r∗(r) =r −
M2

r −M
+ 2M log(r −M) if e =M,

r∗(r) =r +

(
2M2 − e2

)
arctan

(
r−M√
e2−M2

)
√
e2 −M2

+M log
(
r2 − 2Mr + e2

)
if e > M.]

Before defining Kruskal coordinates, we first switch to ingoing Eddington–Finkelstein coordinates
(v, r, θ, φ) to obtain:

gM,e = −Ddv2 + 2dvdr + r2̊/g.

for 0 < r <∞.
As in Schwarzschild, we define in these coordinates the null hypersurface H+

R := {r = r+} and
T = ∂v, and we observe that ∇TT |H+

R
= κ+T |H+

R
, with the surface gravity κ+ taking on the values:

κ+ = −1

2
∂r(gvv)|H+

R
=

1

2r2+
(2M − 2e2r−1

+ )

e2=2Mr+−r2+︷︸︸︷
=

1

2r2+
(2r+ − 2M) =

√
M2 − e2

r2+
=
r+ − r−
2r2+

.
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Note in particular, the in the extremal case, κ+ = 0. Defining moreover κ− = r−−r+
2r2+

, we can

rewrite r∗ as follows in the sub-extremal case:

r∗(r) = r +
1

2κ+
log

(
r − r+
r+

)
+

1

2κ−
log

(
r − r−
r−

)
.

As in the Schwarzschild case, we consider the null curves {v = v0, θ = θ0, φ = φ0} and observe

that the affine parameter is given by: dU ′

du (u) = Ω2(u, v0). We will now restrict ourselves to the
sub-extremal case. We can express: Furthermore,

eκ+(v−u) = e2κ+r∗ = eκ+r

(
r − r+
r+

)(
r − r−
r−

) κ+
κ−

. (4.6)

Hence

dU ′

du
(u) = Ω2(u, v0) = r−2(r−r+)(r−r−) =

[
r−2r+e

−κ+r

(
r − r−
r−

)− κ+
κ−

(r − r−)

]
(u, v0)e

κ+(v0−u)

= r−2
+ r+(r+ − r−)e

−κ+r+

(
r+ − r−
r−

)− κ+
κ−

eκ+v0e−κ+u +O(e−2κ+u).

This motivates the following Krushkal coordinate:

U(u) = −e−κ+u.

Similarly, we define V (v) = eκ+v. Note that

−UV = eκ+(v−u) = r2Ω2(u, v)r−1
+ r−1

− eκ+r

(
r − r−
r−

) κ+
κ−

−1

and dU
du = −κ+U , dVdv = κ+V .

We can then express:

gM,e = −Ω2(u, v)
du

dU

dv

dV
dUdV + r2̊/g = − r+r−

κ2+r
2eκ+r

(
r − r−
r−

)1− κ+
κ−

dUdV + r2̊/g.

We can extend r(U, V ) analytically to U ≥ 0 and V ≤ 0 and therefore extend (Mext, gM,e)
analytically to the manifold:

MKrusk = RU × RV × S2θ,φ.

Rescaling Ũ = arctanU and Ṽ = arctanV , we obtain a Penrose diagram. Compared to the
Schwarzschild diagram, we have the following additional boundary components:

CH±
L :={Ũ = ±π

2
,±U > 0},

CH±
R :={Ṽ = ±π

2
,±V > 0}.

Note that CH±
L and CH±

R are the Cauchy horizons corresponding to the Cauchy hypersurface
Σ = {U + V = 0}. The spacetime (MKrusk, gM,e) is therefore globally hyperbolic. Furthermore,
since they correspond to ±U → ∞ and constant V or ±V → ∞ and constant U , we can apply
(4.6) to conclude that r → r− as we approach the Cauchy horizons.
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Figure 16: Sub-extremal Reissner–Nordström with Cauchy hypersurface Σ = {U + V = 0}.
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Figure 17: A Penrose diagram of the analytic extension of the Reissner–Nordström spacetime.

In (v, r, θ, φ) coordinates, we were able to consider also 0 < r < r−. Indeed, in these coordinates
CH+

L = {r = r−} is a smooth (in fact analytic) hypersurface of an extended manifold. Similarly, in
(u, r, θ, φ) coordinates CH+

R = {r = r−} is a smooth (in fact analytic) hypersurface of an extended
manifold obtained by considering (u, v, r, θ, φ) coordinates in the region r < r+.

We can similarly draw the Penrose diagram for the analytic extensions of MKrus across CH±
L

and CH±
R.

We will later see that a globally hyperbolic spacetime, like (MKrusk, gM,e), arises uniquely
from the time evolution of appropriate initial data posed along a Cauchy hypersurface, like Σ.
Extensions across the Cauchy horizons are independent of the initial data are therefore highly
non-unique.15 Uniqueness can be obtained by restricting the analytic extensions, but this is a very

15Note that in the particular case of Reissner–Nordström imposing the additional restriction of spherical sym-
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unphysical regularity class to restrict to as it is incompatible with the finite speed of propagation
property embedded in the Einstein equations. Indeed, knowledge of the metric on a open subset
S ⊂ M, would completely determine the spacetime globally, rather than only affect the part of
the spacetime in the causal future J+(S).

[Exercise: Consider the null hypersurface H = {v = v0, 0 < r <∞} in (v, r, θ, φ) coordinates.
Determine the globally hyperbolic spacetime region in the analytic extension of MKrusk which has
H as a Cauchy hypersurface and draw this region in a Penrose diagram.]

[Exercise: Construct the analytic extension of extremal Reissner–Nordström exterior space-
times (Mext, gM,e) across {r = r+}. Construct a Penrose diagram of this extended spacetime and
discuss the singularity properties at the boundary of the Penrose diagram.]

[Exercise: Construct a Penrose diagram of super-extremal Reissner–Nordström exterior space-
time (Mext, gM,e). Describe the properties of possible analytic extensions of these spacetimes.]

metry of smooth extensions actually singles out the unique analytic extension as the only possibility satisfying the
Einstein–Maxwell equations. We will encounter a similar “rigidity” property in vacuum in the context of Birkhoff’s
theorem. When allowing for extensions that are not spherically symmetric, however, we can construct infinitely
many extensions.
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5 Spherically symmetric spacetimes

In this section, we will focus on spherically symmetric spacetimes. We will see that the vacuum
Einstein equations have a strong rigidity property in spherical symmetry, i.e. the only possible
spherically symmetric vacuum spacetimes are isometric to a subset of the Schwarzschild spacetime
family or the Minkowski spacetime.

Via the inclusion of suitable matter, however, we can nevertheless see many of the interesting
phenomena characteristic to dynamical black holes spacetimes.

We will give a precise definition of what we mean by a “spherically symmetric” spacetime.
First, we need to introduce some notation.

Consider the manifold R2 × S2 and the associated canonical projection maps:

π : R2 × S2 → R2,

π(x, y) = x,

πS2 : R2 × S2 → S2,
πS2(x, y) = y.

Now consider the manifold Rt × R3. Then we define π : Rt × R3 → R × [0,∞) as the map that

sends all points in the spheres S2
t′,r of area radius r =

√
x2 + y2 + z2 in {t = t′}, to the point

(t′, r) ∈ R× (0,∞) and π(t′, 0) = (t′, 0). We also define πS2 : Rt× (R3 \{0}) → S2 as the projection
map to the unit round sphere S2

t,1.

Definition 5.1. Let (M, g) be a spacetime and assume that there exists a diffeomorphism: A)
ψ : M → R2 × S2 or B) ψ : M → R× R3.

In case B) we denote
Γ = ψ−1(R× {0}).

We will refer to Γ as the centre of spherical symmetry.
We say (M, g) is a spherically symmetric spacetime if ψ and g satisfy the following properties:

1. The metric g on M\ Γ can be decomposed as follows:

g = (π ◦ ψ)∗g + (r2 ◦ π) · (πS2 ◦ ψ)∗̊/g, (5.1)

where g is a C2 Lorentzian metric on A) R2 or B) R× [0,∞) and where A) r : R2 → (0,∞)
is C2, or B) r : R× [0,∞) → [0,∞) is C2 with r(t, 0) = 0.16

2. Γ is a timelike curve in (M, g).

We will denote by Q the 2-dimensional manifolds: A) R2 and B) R × (0,∞). In case B), ∂Q =
R× {0} ⊂ R2 ̸= ∅, with respect to R2.

In slight abuse of notation we will also denote by Γ the curve ∂Q in case B). To simplify the
notation, we write the requirement (5.1) as follows:

g = g + r2̊/g.

Lemma 5.1. There exists global coordinates u, v : Q → R and a C2 function Ω2 : Q → (0,∞),
such that

g = −Ω2dudv.

16A metric of the above form is called a warped product metric. We write A) M \ Γ ∼= R2 ×r S2 or B) M ∼=
(R× (0,∞))×r S2. The regularity requirements on g and r can be relaxed, but we will assume C2 for the sake of
convenience.
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Proof. (non-examinable) Let p ∈ Q be arbitrary. Let Lp and Lp be null tangent vectors at p,
such that gp(Lp, Lp) = −1 and consider corresponding affinely parametrized null geodesics γL
(“ingoing”’) and γL (“outgoing”) emanating from p, where the respective affine parameters u and
v are fixed by taking: γ̇L(p) = Lp and γ̇L(p) = Lp and setting (u, v) = 0 at p.

Denote by ∇ the covariant derivative associated to g. We extend Lp to the curve γL by defining

L := γ̇, or ∇LL = 0. Similarly, we extend Lp to γL by demanding ∇LL = 0. We also uniquely

extend L to γL by demanding ∇LL = 0 along γL, and we extend L to γL by demanding ∇LL = 0
along γL. This guarantees that g(L,L) = −1 along γL ∪ γL.

Now consider the points γL(u). Then we can consider affinely parametrized null geodesics γ̃u
with initial tangent vector L emanating from the point γL(u). This provides a further extension of

L that we will denote by L′, with L′ = ˙̃γu along γ̃u. We can carry out an analogous procedure for
affinely parametrized null geodesics emanating from γL(v) with initial tangent vector L to obtain
a vector field L′.

Denote Ω−2 := −g(L′, L). Note that Ω2 > 0, since L′ and L′ cannot be proportional anywhere.
In order to define double null coordinates u and v we rescale the vector fields L′ and L′ to obtain
the following alternative extensions of Lp and Lp to a neighbourhood of p:

L = Ω2L′ and L = Ω2L′.

[Exercise: Show that g([L,L], L) = g([L,L], L) = 0 and hence [L,L] = 0. Hint: Show first
that g([L′, L′], L′) = Ω−4L′(Ω2).]

We now extend u and v away from γL ∪ γL as functions defined on a neighbourhood of p,
by requiring L(u) = 0 and L(v) = 0. Since [L,L] = 0, it follows that (u, v) must be well-
defined coordinates in a neighbourhood of p and that L = ∂v and L = ∂u.

17 Furthermore, since
g(L,L) = −Ω2, we can write

g = −Ω2(u, v) dudv.

p

Q

Γ
γL(u)

γL(v)

Figure 18: The set Q (with possible centre Γ) and the global foliation by ingoing and outgoing
null geodesic.

In dimensions greater than 2, two ingoing (or two outgoing) null geodesic could in principle
intersect. This happens, for example, at the vertex of a lightcone in Minkowski, so the correspond-
ing double null coordinates would be ill-defined past the intersection point. In two dimensions,

17On a general n-manifold M, if X1,. . . ,Xn are n linearly independent smooth vector fields in a neighbourhood
of p ∈ M, such that [Xi, Xj ] = 0 for all i, j ∈ {1, . . . , n}, then there exists a coordinate chart (y1, . . . , yn) in a

neighbourhood of p such that Xi =
∂

∂yi . The idea of the proof is to use that the local flows corresponding to these

vector fields commute.
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this cannot happen, since at each point x ∈ Q the subspace of TxQ spanned by either ingoing or
outgoing null geodesics is 1-dimensional.

We provide below a precise argument for concluding that the domain of the coordinates (u, v)
constructed above in a neighbourhood of p ∈ Q is the full Q. Consider the subset

D = {q ∈ Q | there exists a neighbourhood of q covered by the (u, v) coordinates}.

q1

q2

qn

q

ũ = 0ṽ = 0

U

v = const.

u = const.

Figure 19: Showing that D is closed.

• Since p ∈ D, D ≠ ∅.

• Furthermore, if q ∈ A, then we automatically get the existence of an open neighbourhood of
q that is also contained in A by the way we defined A, so A is open.

• Let qn ∈ A, such that qn → q (convergence with respect to the R2 topology). We can repeat
the above local construction of double null coordinates around q to obtain a neighbourhood
U of q covered by different double null coordinates (ũ, ṽ), such that qn ∈ U for n suitably
large. Since the tangent spaces TxQ are 2-dimensional, the ingoing null geodesics in U with
respect to (ũ, ṽ) must agree with the null geodesics in a neighbourhood of qn associated to
(u, v) coordinates, and similarly, the outgoing null geodesics must agree. So (ũ, ṽ) and (u, v)
are related by a rescaling in u and v and a shift of the origin (ũ, ṽ) = 0. Therefore the
coordinates (u, v) can be extended to also cover q, so q ∈ D. The set D is therefore also
closed in Q.

Since D is a non-empty, open and closed subset of the connected set Q, it must be the whole
Q.

The u-level sets and v-level sets in a spherically symmetric spacetime constitute a global double
null foliation of the spacetime.

Remark 5.1. The statement g = −Ω2dudv implies that the Lorentzian spacetime (Q, g) is confor-
mally isometric to the 1+1-dimensional Minkowski metric.18 This is a Lorentzian analogue of the
Uniformization Theorem from Riemannian geometry, which can be stated as follows: let (Q, g) be
an orientable compact 2-dimensional Riemannian manifold. Then (Q, g) is conformally isometric
to a surface of constant Gauss curvature equation to 1, 0 or -1, i.e. a quotient of the unit round
sphere S2, the Euclidean plane E2 or the hyperbolic plane H2.

18A conformal isometry between (M, g) and (N , g̃) is a diffeomorphism ψ : M → N such that ψ∗g̃ = Ω2g for
some (smooth) function Ω2 : M → (0,∞).
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5.1 Penrose diagrams

We now use the existence of global double null coordinates on spherically symmetric spacetimes
to represent the spacetimes as bounded subsets of R2 via Penrose diagrams. As we will later
see, Penrose diagrams remain an invaluable (schematic) tool even when considering more general
spacetimes that are not spherically symmetric. The special property of spherically symmetric
spacetimes is that they always admits global double null coordinates and it is this property that
underlies the definition of Penrose diagrams, as we already saw in the examples of Minkowski,
Schwarzschild and Reissner–Nordström.

Definition 5.2. A (Carter–)Penrose diagram of a spherically symmetric spacetime (M, g) is a
map Φ together with a bounded subset PD ⊂ R2, such that

1.
Φ : Q → PD

is a C2 diffeomorphism.

2. Null curves in Q are mapped to null curves in (PD,−dudv) with −dudv the 1+1-dimensional
Minkowski metric in standard double null coordinates.

Γ

PD

∂PD

Figure 20: Example of a Penrose diagram of a spherically symmetric spacetime.

Corollary 5.2. Let ϕ : Q → ϕ(Q) ⊂ R2 be a global double null coordinate chart. Define (Φ ◦
ϕ−1)(u, v) = (arctanu, arctan v). Then (Φ,Φ(Q)) is a Penrose diagram of (M, g).

• We will now fix the time orientation on (M, g) so that the vector field ∂u + ∂v is future-directed!

• We will also refer to ∂v (and its integral curves) as “outgoing” and ∂u (and its integral curves)
as “ingoing”.

A main advantage of Penrose diagrams is that they depict causal curves in (M, g) by causal
curves in (PD,−dudv).

Proposition 5.3. 1. Timelike curves in (M, g) are represented by timelike curves in (PD,−dudv).

2. Null curves in (M, g) are represented by causal curves in (PD,−dudv). Radial null curves
are represented by null curves in PD.

3. Γ is represented by a timelike curve in (R2,−dudv).
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4. A null curves in (M, g) that intersects with Γ at a single point p ∈ Γ is represented by two
causal curve segments in (PD,−dudv), such that one segment is tangent to line of constant
v at p and the other segment is tangent to a line of constant u at p (see Figure 21).

Proof. Let γ be a timelike curve. Then we can express in (u, v, θ, φ) coordinates:

γ(s) ∼=


γu

γv

γθ

γφ

 (s)

and by the timelike property, we have that

0 > g(γ̇, γ̇) = −Ω2γ̇uγ̇v + r2((γ̇θ)2 + sin2 θ(γ̇φ)2).

Hence, the associated curve in Q:

γ(s) =

(
γu

γv

)
(s)

must also satisfy −Ω2γuγv < 0, so −γuγv < 0, which means that γ is timelike with respect to
(Q,−dudv) so also with respect to (PD,−dudv) (after appropriately rescaling u and v).

Similarly, if γ is null, then by the above argument −Ω2γuγv ≤ 0, so we can only say that γ is
causal with respect to (R2,−dudv), unless γ̇θ = γ̇φ = 0, in which case γ is null.

[Exercise: Show that Γ is represented by a timelike curve in (R2,−dudv). Hint: Suppose
that Γ ⊂ PD has a spacelike or null segment and use that for any p, q ∈ Γ, q ∈ I+(p) or p ∈ I+(q)
to reach a contradiction.]

Now let γ : I → M, with 0 ∋ I ⊂ R open, be a future-directed null curve in M, such that
p = γ(0) ∈ Γ. Let γ represent γ for s < 0 and γ̃ represent γ for s > 0.

By the null property of γ, we have that gp(γ̇(0), γ̇(0)) = 0. Furthermore, without loss of
generality, we can rescale our null coordinates, so that at Ω2(up, vp) = 1, with (up, vp) the limiting
value of the (u, v) coordinates at p. Then, using moreover that r|Γ ≡ 0,

−γ̇u(0)γ̇v(0) = gp(γ̇(0)γ̇(0) = − ˙̃γu(0) ˙̃γv(0).

Hence, γ̇
u
(0) = 0 or γ̇

v
(0) = 0, and ˙̃γu(0) = 0 or ˙̃γv(0) = 0.

Since γ is future-directed and by 3. we can assume WLOG that Γ boundsQ to the left. Suppose
that γ̇

u
(0) = 0. Then γ̇

v
(0) > 0, which means that 0 < vp− γv(s) = O(s) and up− γv(s) = O(s2),

which is in contradiction with the fact that Γ is a left-boundary. Hence, ˙̃γv(0) = 0. Similarly, it
follows that ˙̃γu(0) = 0. This concludes that γ must be ingoing null at p and γ̃ must be outgoing
null at p.

[Exercise: Show that spacelike curves in (M, g) need not be represented by spacelike curves
in (PD,−dudv).]

An important role will be played by the boundary ∂PD = PD\PD with respect to the ambient
space R2. The boundary ∂PD includes Γ, but it will also have additional components. Since they
are represented by curves in (R2,−dudv), we can also investigate the spacelike, timelike or null
nature of the boundary segments.

Remark 5.2. Note that a change in the map Φ : Q → PD can lead to a change in the shape
of timelike and spacelike segments of PD, but the null segments stay the same, up to a rescaling.
When we talk about “the” Penrose diagram, we really mean a particular choice of PD, where we do
not care about the precise size of PD and the precise shape of the timelike and spacelike segments
of ∂PD.
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p

u = up

v = vp

Γ

PD

γ

γ̃

Figure 21: Representation of null curves intersecting Γ at p ∈ Γ.

An important type of Penrose diagram boundary segment is “null infinity”, I (also called
“scri”), which we already encountered in Minkowski, Schwarzschild and Reissner–Nordström.

Definition 5.3. Let p ∈ ∂PD. Choose coordinates (u, v) such that p = (0, 0). We say p ∈ I if the
following holds: let (0, v) and (0, u) denote points in Q, then

lim sup
v→0

r(0, v) := lim
V→0

[
sup
|v|≤V

r(0, v)

]
= ∞ or lim sup

u→0
r(u, 0) := lim

U→0

[
sup
|u|≤U

r(u, 0)

]
= ∞.

We refer to the boundary subset I ⊆ ∂PD as null infinity. Suppose that I is achronal. Then we
say:

• p ∈ I+ ⊆ I if
lim sup
v↑0

r(0, v) = ∞ or lim sup
u↑0

r(u, 0) = 0.

We refer to the subset I+ as future null infinity.

• p ∈ I− ⊆ I if
lim sup
v↓0

r(0, v) = ∞ or lim sup
u↓0

r(u, 0) = 0.

We refer to the subset I− ⊆ I as past null infinity.

Penrose diagrams are very convenient tools for representing causal properties of hypersurfaces
and open subsets of the manifold. Let S ⊂ Q ∪ Γ. Then S represents the set M ⊃ Σ ∼=
(S∩Q)×S2∪(Γ∩S). If S is a finite union of smooth curves (with boundaries), then Σ is a smooth
hypersurface(-with-boundary) of M.

For such sets we can characterize the causal/chronological future/past and the future/past
domain of dependence on the Penrose diagram PD. Indeed,

• J±(Σ) is represented by J±(S) with respect to (PD ∪ Γ,−dudv).

• I±(Σ) is represented by I±(S) with respect to (PD ∪ Γ,−dudv).

Furthermore, since radial null geodesics in (M, g) are represented by lines in Q that are reflected
at Γ, we have to be a little more careful when discussing the domain of dependence. We have that:

• If S ∩ Γ = ∅, then D±(Σ) is simply represented by D±(S) with respect to (PD,−dudv).

• If S ∩ Γ ̸= ∅, then D±(Σ) is represented by D±(S ∪ Γ) with respect to (PD ∪ Γ,−dudv).
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Σ

M

D+(Σ)

γΓ

Figure 22: The representation of the domain of dependence of a hypersurface-with-boundary Σ in
a spherically symmetric spacetime with Γ ̸= ∅. The line γ represents a radial null curve passing
through the centre of spherical symmetry Γ in M.

In slight abuse of notation, we will use the notations J±(Σ) and J±(S), or D±(Σ) and D±(S)
interchangeably.

The Penrose diagram allows us to consider also the sets J±(S), when S ∩ (∂PD\Γ) ̸= ∅. Here,
we interpret J±(S) as a subset of R2. For example, we can consider J−(I+).

We can now define what we mean by a “black hole” region in spherical symmetry.

Definition. Let (M, g) be a spherically symmetric spacetime with I+ ̸= ∅. Then we define the
black hole region of (M, g) to be the subset of M represented by:

BH := PD \ J−(I+).

5.2 Einstein equations in spherical symmetry

Consider the Christoffel symbols:

Γρµν [g] =
1

2
(g−1)ρσ (∂µgνσ + ∂νgµσ − ∂σgµν) .

Denote by:

• Γ
c

ab, a, b, c ∈ {0, 1} the Christoffel symbols of (Q, g),

• /Γ
C
AB , A,B ∈ {2, 3}, the Christoffel symbols of (S2, /̊g).

We will use the small Latin indices a, b, c, . . . to denote elements in {0, 1} and the capital Latin
indices A,B, . . . to denote components in {2, 3}. In view of the fact that g = g+r2̊/g, the remaining
Christoffel symbols take the following form:

ΓabC = 0,

ΓaBC = − 1

2
(g−1)ab(∂br

2)̊/gBC ,

ΓAbc = 0,

ΓABc =
1

2
r−2∂c(r

2)δAB = (∂c log r)δ
A
B .
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We denote with Rabcd the Riemann tensor associated to g. Since Q is 2-dimensional, the sym-
metries of the Riemann tensor imply that the space of all Riemann tensors on Q is 1-dimensional
(see Problem Sheet 3), and we can therefore write:

Rabcd = K(gacgbd − gadgbc),

with K the Gaussian curvature of (Q, g). Similarly, let /RABCD be the Riemann tensor associated
to /̊g. Then:

/RABCD = /̊gAC /̊gBD − /̊gAD /̊gBC ,

since the Gaussian curvature of the unit round sphere is equal to 1.
The corresponding Ricci tensors take the following form:

Rac = (g−1)bdRabcd = Kgac,

/RAC = (̊/g
−1

)BD /RABCD = /̊gAC .

Now we will relate the Ricci tensor components Rab to Rab. Recall first that

R σ
µνρ = ∂νΓ

σ
ρµ − ∂ρΓ

σ
νµ + ΓαρµΓ

σ
να − ΓανµΓ

σ
ρα.

Hence,

Rac = R ν
aνc = ∂νΓ

ν
ca − ∂cΓ

ν
νa + ΓαcaΓ

ν
να − ΓανaΓ

ν
cα

=Rac + ∂AΓ
A
ac − ∂cΓ

A
Aa + ΓbcaΓ

A
Ab − ΓbAaΓ

A
cb + ΓBcaΓ

A
AB − ΓABaΓ

B
cA + ΓAcaΓ

b
bA − ΓAbaΓ

b
cA

=Kgac − ∂cΓ
A
Aa + ΓbcaΓ

A
Ab − ΓABaΓ

B
cA

=Kgac − 2(∂c∂a log r) + 2Γbca(∂b log r)− 2(∂a log r)(∂c log r)

=Kgac − 2r−1∇c∇ar,

with ∇ the Levi–Civita connection with respect to g.
Similarly,

RAC = R ν
AνC = ∂νΓ

ν
CA − ∂CΓ

ν
νA + ΓαCAΓ

ν
να − ΓανAΓ

ν
Cα

= /RAC + ∂aΓ
a
AC − ∂CΓ

a
aA + ΓBCAΓ

a
aB − ΓaBAΓ

B
Ca + ΓbCAΓ

a
ab − ΓabAΓ

b
Ca + ΓaCAΓ

B
Ba − ΓaBAΓ

B
Ca

= /̊gAC + ∂aΓ
a
AC − ΓaBAΓ

B
Ca + ΓbCAΓ

a
ab + ΓaCAΓ

B
Ba − ΓaBAΓ

B
Ca

= /̊gAC − ∂a((g
−1)abr∂br)̊/gAC + (g−1)ab(∂br)(∂ar)̊/gAC + Γaab(g

−1)abr(∂br)̊/gAC

− 2(g−1)ab(∂br)(∂ar)̊/gAC + (g−1)ab(∂br)(∂ar)̊/gAC

= (1− ∂a((g
−1)abr(∂br) + Γaab(g

−1)abr(∂br))̊/gAC

=
(
1− (g−1)ab∇a(r∇br)

)
/̊gAC .

[Exercise: Show that RaA = 0.]
From the Einstein equations:

Rµν −
1

2
Rgµν = 8πTµν ,

it follows that −R = 8π trT and hence

Rµν = 8π

(
Tµν −

1

2
trTgµν

)
.
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Note also that trT = (g−1)abTab + r−2(̊/g
−1

)ABTAB . It therefore follows immediately that

8πTAb =RAb −
1

2
RgAb = 0, (5.2)(

1− (g−1)ab∇a(r∇br)
)
/̊gAB =RAB = 8π(TAB − 1

2
trTr2̊/gAB) =: r2S/̊gAB , (5.3)

Kgab − 2r−1∇a∇br = 8π(Tab −
1

2
trTgab) (5.4)

Equation (5.3) is equivalent to:

r−1□gr = r−2 − S − (g−1)abr−2∂ar∂br

and, taking the trace of the right-hand side of (5.3) with respect to /̊g, we obtain:

S = −4π(g−1)abTab.

Now we can take the trace of (5.4) with respect to g to obtain:

K = r−1□gr − S − 4π trT = r−2 − r−2(g−1)ab∂ar∂br + 8π(g−1)abTab − 4π trT. (5.5)

Then we can rearrange (5.4) to obtain:

r−1∇a∇br =
1

2r2
[
1− (g−1)cd∂cr∂dr

]
gab − 4π(Tab − (g−1)cdTcdgab). (5.6)

Now consider double null coordinates (u, v), so that guv = − 1
2Ω

2 and guu = gvv = 0. Further-
more, (g−1)uv = −2Ω−2 and (g−1)uu = (g−1)vv = 0. Then

Γuuu =
1

2
(g−1)uv(∂uguv + ∂uguv − ∂vguu) = Ω−2∂uΩ

2,

Γvvv =Ω−2∂vΩ
2,

Γuvv = Γuuv = Γvuu = Γvuv = 0.

Hence,

−1

2
KΩ2 = Ruv = ∂bΓ

b
vu − ∂vΓ

b
bu + ΓavuΓ

b
ba − ΓabuΓ

b
va = −∂v(Ω−2∂uΩ

2) = −∂v∂u log Ω2.

From (5.5), it therefore follows that

∂v∂u log Ω
2 =

Ω2

2r2
[
1 + 4Ω−2(∂ur)(∂vr)− 4πr2 trT− 32πr2Ω−2Tuv

]
. (5.7)

From (5.6) we conclude the following equations:

∂u∂vr = − Ω2

4r

[
1 + 4Ω−2(∂ur)(∂vr)

]
+ 4πrTuv, (5.8)

Ω2∂u(Ω
−2∂ur) = −4πrTuu, (5.9)

Ω2∂v(Ω
−2∂vr) = −4πrTvv. (5.10)

We refer to (5.9) and (5.10) as the Raychaudhuri equations.
We define the Hawking mass m : Q → R as follows:

m =
r

2
(1 + 4Ω−2(∂ur)(∂vr)) =

r

2
(1− (g−1)ab(∂ar)(∂br)) =

r

2
(1− g−1(dr, dr)).
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We will later see, when discussing self-gravitating fluids, why the quantity m is compatible with a
notion of mass typically attributed to matter.

Note that in the Schwarzschild case g = gM , m =M is constant. In general,

∂um = − 8πr2Ω−2(∂vrTuu − ∂urTuv), (5.11)

∂vm = 8πr2Ω−2(−∂urTvv + ∂vrTuv). (5.12)

[Exercise: Derive (5.11) and (5.12).]
Note that these equations imply immediately that in the case of vacuum (T ≡ 0), the Hawking

mass is constant on Q. Note also that the metric tensor g can be reconstructed from the pairs
(r,Ω2) or (r,m). The Einstein equations are equivalent to (5.7)–(5.10).

Lemma 5.4. If the stress-energy tensor T satisfies the null energy condition, then

Tuu,Tvv ≥ 0.

If the stress-energy tensor T satisfies the dominant energy condition, then additionally:

Tuv ≥ 0.

Proof. Exercise

[Exercise: Show that the Schwarzschild family of metrics are solutions to the vacuum Einstein
equations. Hint: Show that gM corresponds to a solution to (5.7)–(5.10).]

5.3 The Einstein-scalar field system

In the case of the Einstein-scalar field system with m = 0, we recall that

Tµν = ∂µϕ∂νϕ− 1

2
gµν(g

−1)αβ∂αϕ∂βϕ

We can express the wave equation □gϕ = 0 for a spherically symmetric ϕ as follows:

0 = □gϕ =
1√

−det g
∂α(
√
− det g(g−1)αβ∂βϕ) = −2r−2Ω−2[∂u(r

2∂vϕ) + ∂v(r
2∂uϕ)].

Hence,
∂u∂vϕ = −r−1∂ur∂vϕ− r−1∂vr∂uϕ.

Furthermore, Tuu = (∂uϕ)
2, Tvv = (∂vϕ)

2, Tuv = 0 and

trT = 2(g−1)uvTuv + r−2(̊g−1)ABTAB = −(g−1)αβ∂αϕ∂βϕ = 4Ω−2∂uϕ∂vϕ.

The Einstein–scalar field system of equations is therefore equivalent to the following coupled
system of equations for r,Ω2 : Q → R+ and ϕ : Q → R:

∂v∂u log Ω
2 =

1

2
Ω2r−2 + 2r−2(∂ur)(∂vr)− 8π∂uϕ∂vϕ, (5.13)

∂u∂vr = −Ω2

4r

[
1 + 4Ω−2(∂ur)(∂vr)

]
, (5.14)

Ω2∂u(Ω
−2∂ur) = −4πr(∂uϕ)

2, (5.15)

Ω2∂v(Ω
−2∂vr) = −4πr(∂vϕ)

2, (5.16)

∂u∂vϕ = −r−1∂ur∂vϕ− r−1∂vr∂uϕ. (5.17)
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Remark 5.3. The equations (5.13), (5.14) and (5.17) are called propagation equations and they
form a system of 1+1-dimensional semilinear19 wave equations. Note that the products of two
derivative terms never feature two u or two v derivatives. This is called the null structure of the
Einstein-scalar field equations and it is a very important structural property that also holds outside
of spherical symmetry and is important for addressing global dynamics of small perturbations of
spacetimes as well as the nature of singularities.

This kind of structure does not apply, for example, to the relativistic (or non-relativistic and
compressible) Euler fluid equations, where “singular” behaviour, in the form of shocks, can occur
even if one considers initial data corresponding to a small perturbation of the constant state.

Remark 5.4. The equations (5.15) and (5.16) are constraint equations.

We moreover have that

∂um = − 8πr2Ω−2∂vr(∂uϕ)
2, (5.18)

∂vm = 8πr2Ω−2(−∂ur)(∂vϕ)2. (5.19)

5.4 Local existence and uniqueness of the characteristic initial value
problem for the Einstein-scalar field system

We will now show that we can sensibly study dynamics for the spherically symmetric Einstein–
scalar field problem. First we will state a local existence and uniqueness statement for general
systems of 1+1-dimensional wave equations.

H0H0

forwards evolution

backwards evolution

H0

sideways evolution

H0

sideways evolution

Figure 23: The evolution problem for systems of 1+1-dimensional wave equations spherical sym-
metry.

Theorem 5.5 (Local existence and uniqueness characteristic initial value problem for 1+1-dimensional
wave equations (with null structure)). Consider the following system of semilinear 1+1-dimensional
wave equations: let K ∈ N and Ψ : R2 ⊇ U → RK , with 0 ∈ U and

∂u∂vΨ
A =

K∑
B,C=1

NBC(Ψ)∂uΨ
B∂vΨ

C +

K∑
B=1

[
LB(Ψ)∂uΨ

B +RB(Ψ)∂vΨ
B
]
+ fA(Ψ), (5.20)

with NBC , LB , RB , f
A : RK → R smooth functions.

Consider the union of line segments H0 and H0 in R2, with:

H0 := {0}u × [0, ϵ)v, H0 := [0, ϵ)u × {0}v
19Semilinear PDE are nonlinear PDE that are linear in the highest derivative terms (second-order in this case).
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and prescribe the following characteristic initial data:

Ψ0 ∈ RK on H0 ∩H0,

Ψ′
0 : H0 → RK on H0,

Ψ′
0 : H0 → RK on H0.

(i) (Forwards and backwards evolution) Then, for ϵ > 0 suitably small depending on Ψ0,Ψ
′
0,Ψ

′
0,

there exists a unique smooth solution Ψ : [0, ϵ)× [0, ϵ) → RK to (5.20), such that

Ψ|H0∩H0
=Ψ0,

∂uΨ|H0
=Ψ′

0,

∂vΨ|H0 =Ψ′
0.

The same statement holds with ϵ replaced by −ϵ in the definitions of H0 and H0.

(ii) (Sideways evolution) The above statement also holds for Ψ : (−ϵ, 0] × [0, ϵ) → RK with the
following choices for H0 and H0:

H0 := {0}u × [0, ϵ)v, H0 := (−ϵ, 0]u × {0}v.

and also with ϵ replace by −ϵ.

We can also compare two global solutions in the following way:

Theorem 5.6. (i) (Cauchy stability) Let U0, V0 ∈ (0,∞) and let Ψ : [0, U0) × [0, V0) → RK be
a smooth solution to (5.20). Then, for any ϵ > 0 and N > 0, there exists a δ > 0 such that
for any initial data

Ψ̃0 ∈ RK on H0 ∩H0,

Ψ̃
′
0 : H0 → RK on H0,

Ψ̃′
0 : H0 → RK on H0.

with |Ψ̃0 − Ψ|H0∩H0
| < δ and for all k ≤ N , supu |∂ku(Ψ̃

′
0 − ∂uΨ|H0

)| < δ, supv |∂kv (Ψ̃′
0 −

∂vΨ|H0)| < δ, we have that the corresponding solution Ψ̃ : [0, U0)× [0, V0) → RK is CN and

sup
u,v

|∂k1u ∂k2v (Ψ̃−Ψ)| < ϵ.

(ii) (Global uniqueness) Solutions corresponding to the same initial data agree.

Remark 5.5. In higher dimensions, systems of nonlinear wave equations do not satisfy local
well-posedness for “sideways evolution”, only for “forwards” and “backwards” evolution!

We can apply the above lemma to obtain local well-posedness (existence, uniqueness, Cauchy
stability) for the spherically symmetric Einstein–scalar field equations.

Theorem 5.7 (Local well-posedness of the characteristic initial value problem for the spherically
symmetric Einstein–scalar field system). Let ϵ > 0. Consider H0 ∪H0 ⊂ R2, with

H0 := {0}u × [0, ϵ)v, H0 := [0, ϵ)u × {0}v.

Prescribe the following numbers and smooth functions:

(r0, (r
−1Ω2)0, ϕ0, r

′
0, r

′
0) ∈ R+ × R+ × R3 on H0 ∩H0,
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ϕ′
0
: H0 → R on H0,

ϕ′0 : H0 → R on H0,

(r−1Ω2)′0 : H0 → R on H0,

(r−1Ω2)′0 : H0 → R on H0.

Then, for ϵ > 0 suitably small, there exists a unique solution (r,Ω2, ϕ) : [0, ϵ)× [0, ϵ) → R2
+ ×R to

(5.13)–(5.17), such that

(r, r−1Ω2, ϕ, ∂ur, ∂vr)(0, 0) = (r0, (r
−1Ω2)0, ϕ0, r

′
0, r

′
0),

∂uϕ|H0
= ϕ′

0
,

∂vϕ|H0
= ϕ′0,

∂u(r
−1Ω2)|H0

= (r−1Ω2)′0,

∂u(r
−1Ω2)|H0 = (r−1Ω2)′0.

The above statement also holds with any of the following alternative choices for H0 and H0 (with
appropriately modified domain of (r,Ω2, ϕ):

H0 := {0}u × (−ϵ, 0]v, H0 := (−ϵ, 0]u × {0}v.

Proof. Strategy: We will show that the prescribed initial data determines the values of r,Ω2, ϕ
on H0 ∪H0 via the Raychaudhuri equations. The statement of the theorem then follows from a
direct application of (5.20) together with a verification that the Raychaudhuri equations remain
valid away from the initial null lines.

Note that if ϕ(0, 0) = ϕ0, then we need

ϕ(0, v) = ϕ0 +

∫ v

0

ϕ′0(v
′) dv′,

ϕ(u, 0) = ϕ0 +

∫ u

0

ϕ′
0
(u′) du′.

Similarly, if r−1Ω2(0, 0) = (r−1Ω2)0, then we need

r−1Ω2(0, v) = (r−1Ω2)0 +

∫ v

0

(r−1Ω2)′0(v
′) dv′,

r−1Ω2(u, 0) = (r−1Ω2)0 +

∫ u

0

(r−1Ω2)′0(u
′) du′.

Note that for ϵ > 0 suitably small, depending on the choice (r−1Ω2)′0 and (r−1Ω2)′0, we have that
r−1Ω2(0, v) > 0 and r−1Ω2(u, 0) > 0.

Let r(0, 0) = r0, ∂ur(0, 0) = r′0 and ∂vr(0, 0) = r′0. We can rewrite (5.15) and (5.16) as follows:

∂u

( r

Ω2
r−1∂ur

)
=− 4π

r

Ω2
(∂uϕ)

2,

∂v

( r

Ω2
r−1∂vr

)
=− 4π

r

Ω2
(∂vϕ)

2,

The left-hand sides we can further rewrite as ∂u(
r
Ω2 ∂u log r) and ∂v(

r
Ω2 ∂v log r).

Then integrating (5.15) and (5.16) gives for ϵ > 0 suitably small:

r

Ω2
(u, 0)∂u log r(u, 0) =

1

(r−1Ω2)0
r−1
0 r′0 − 4π

∫ u

0

1

r−1Ω2(u′, 0)
(ϕ′

0
)2(u′) du′,
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r

Ω2
(0, v)∂v log r(0, v) =

1

(r−1Ω2)0
r−1
0 r′0 − 4π

∫ v

0

1

r−1Ω2(0, v′)
(ϕ′0)

2(v′) dv′

and determines ∂u log r(u, 0) and ∂v log r(0, v). Integrating these then gives:

log r(u, 0)(0, v) = log r0 +

∫ v

0

∂v log r(0, v
′) dv′,

log r(u, 0)(u, 0) = log r0 +

∫ u

0

∂u log r(u
′, 0) du′.

We take r(u, 0) and r(0, v) to be the corresponding exponentials.
[Exercise: Show that, the solution (r,Ω2, ϕ) to (5.13), (5.14) and (5.17) corresponding to the

prescribed initial data satisfies also (5.15) and (5.16).]

Corollary 5.8. Two solutions (r1,Ω
2
1, ϕ1) and (r2,Ω

2
2, ϕ2) to (5.13)–(5.17) corresponding to the

same initial data on H0 and H0 must agree on the intersection of their domains.

[Exercise: Show that any spherically symmetric spacetime obtained from solutions (r,Ω2) to
the characteristic initial value problem for (5.13)–(5.17) can also be constructed with the following
restricted initial data: (r−1Ω2)0 = 1, (r−1Ω2)′0 ≡ 0 and (r−1Ω2)′0 ≡ 0. Hint : Given a spherically
symmetric spacetime with metric g = −Ω2dudv + r2̊/g, what happens to (r,Ω2, ϕ) along H0 ∪H0

under a rescaling of the u and v coordinates? ]

5.5 Birkhoff’s theorem

Using the uniqueness property from Corollary 5.8, we can show that all spherically symmetric
spacetimes in vacuum must be isometric to a subset of a Schwarzschild or Minkowski spacetime.
This result is called Birkhoff’s theorem and it goes back to Jebsen 1921, Birkhoff 1923.

Theorem 5.9 (Birkhoff’s theorem). A spherically symmetric spacetime solution (M, g) to
Ric(g) = 0 is isometric to a spacetime region inside a (maximally-extended) Schwarzschild space-
time with M ∈ R or to a spacetime region inside the Minkowski spacetime.

Remark 5.6. Note that the region {r > 0} of the Minkowski spacetime is isometric to the Schwarz-
schild spacetimes with M = 0.

Proof. Strategy: Let p ∈ Q and let H0 and H0 be null lines in Q of constant u and v, respectively,
that intersect at p. For solutions to the system (5.13)–(5.17) with ϕ ≡ 0, we can treat the values
r(p),Ω2(p), ∂ur(p), ∂vr(p) and ∂vΩ

2|H0
, ∂uΩ

2|H0
as characteristic initial data. We want to show

that there exist double null coordinates in Schwarzschild with massM ∈ R or Minkowski, such that
H0 ∪H0 are contained in Schwarzschild/Minkowski, such that r(p),Ω2(p), ∂ur(p), ∂vr(p), ∂vΩ

2|H0

and ∂uΩ
2|H0

agree with the characteristic initial data in our general spacetime.
Then, by the global uniqueness part of Corollary 5.8, (r,Ω2) must take on the corresponding

Schwarzschild or Minkowski values everywhere in the region obtained by evolving the data on
H0 ∪H0 forwards, backwards and sideways. Since the full manifold M can be covered by regions
arising from the evolution of characteristic data, the spacetime (M, g) must be isometric to a
region in Schwarzschild or Minkowski.

Without loss of generality, we can take p = (0, 0) and we consider H0 and H0 in a general
solution to (5.13)–(5.17) with ϕ ≡ 0, as in Theorem 5.7. We will fix r0 = r(0, 0) and M = m(0, 0)
and rescale our u and v coordinates u 7→ f(u), v 7→ h(v), so that Ω2|H0

≡ 1 and Ω2
H0

≡ 1, for the
sake of convenience.

As we already observed, m(u, v) = M for some constant M ∈ R. By the definition of m, we
therefore have that

4Ω−2(∂ur)(∂vr) =
2M

r
− 1.
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In particular, this means that at (0, 0):

4(∂ur)(0, 0)(∂vr)(0, 0) =
2M

r0
− 1.

This means that, given M , ∂vr(0, 0) is determined by ∂ur(0, 0) ̸= 0 (or the other way around) and
the sign of 2M

r0
− 1 determines the relative sign of ∂vr(0, 0) and ∂ur(0, 0).

By integrating the Raychaudhuri equations (5.15) and (5.16) , we have that ∂ur = ∂ur(0, 0) on
H0 and ∂vr = ∂vr(0, 0) on H0.

Case I : Suppose first that ∂ur(0, 0) ̸= 0 or ∂vr(0, 0) ̸= 0. Without loss of generality, we
may assume that ∂ur(0, 0) < 0. Otherwise, we rescale: u 7→ −u and v 7→ −v and use that
(u, v) 7→ −(u, v) is an isometry, or we simply interchange the roles of u and v in the argument.

Let ũ, ṽ be Eddington–Finkelstein double null coordinates on Schwarzschild such that the
Schwarzschild radius function rS(ũ, ṽ) satisfies rS(0, 0) = r0. Then gS = −(1 − 2M

rS
)dũdṽ + r2S /̊g.

Now let u(ũ) and v(ṽ) be defined as follows. u(0) = 0, v(0) = 0 and

dũ =
λ

1− 2M
rS

(ũ, 0)
du,

dṽ =
1− 2M

rS
(0, 0)

λ(1− 2M
rS

(0, ṽ))
dv.

Then g = −Ω2
S(u, v)dudv + r2S /̊g, with Ω2

S(u, v) =
(1− 2M

rS
(ũ(u),ṽ(v)))(1− 2M

rS
(0,0))

(1− 2M
rS

(ũ(u),0))(1− 2M
rS

(0,ṽ(v)))
. Hence Ω2

S(u, 0) =

Ω2
S(0, v) = 1, as required. Furthermore,

∂urS(0, 0) =
dũ

du
(0)(∂ũrS)(0, 0) = −λ

2
,

∂vrS(0, 0) =
dṽ

dv
(0)(∂ṽrS)(0, 0) =

1− 2M
r0

2λ

Now we simply take λ = −2∂ur(0, 0).

Case II : Suppose now that ∂ur(0, 0) = ∂vr(0, 0) = 0. Then r0 = 2M . Let (Ũ , Ṽ ) be Kruskal
coordinates on the maximally-extended Schwarzschild spacetimes with massM , such that (Ũ , Ṽ ) =
(0, 0) is the bifurcation sphere. Then ∂Ṽ rs(0, 0) = ∂Ũrs(0, 0) = 0. After a suitable rescaling, we
obtain null coordinates U and V such that Ω2

S(U, 0) = Ω2
S(0, V ) = 1.

5.6 Global properties of general spherically symmetric spacetimes

It turns out that even with minimal information about the matter model under consideration, it
is possible to make statements about global features of the spacetime.

Definition 5.4. Let (M, g) be a spherically symmetric spacetime.

1. A sphere at p ∈ Q is trapped if (∂ur)(p), (∂vr)(p) < 0.

2. A sphere at p ∈ Q is marginally trapped if (∂ur)(p) < 0 and (∂vr)(p) ≥ 0.

3. A sphere at p ∈ Q is anti-trapped if (∂ur)(p), (∂vr)(p) > 0 and marginally anti-trapped if
(∂ur)(p) = 0 and (∂vr)(p) > 0.
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[Exercise: Determine which spheres in the maximally-extended Schwarzschild spacetime (ex-
pressed in Kruskal coordinates) are trapped, marginally trapped, anti-trapped and marginally
anti-trapped.]

The existence of a trapped sphere is a local property in the spacetime. The Penrose incom-
pleteness theorem shows that this nevertheless has global consequences: the spacetime must have
future-directed and future-inextendible null geodesics whose affine parameters are bounded from
above (“future-directed null geodesics that do not live forever”). A spacetime with such a property
is said to be future-null-geodesically incomplete.

Proposition 5.10 (Spherically symmetric Penrose incompleteness theorem). Let (M, g) be a
spherically symmetric spacetime, such that Ric[g](X,X) ≥ 0 for any null vector field X. Assume
that (M, g) has a trapped sphere. Then (M, g) is future-null-geodesically incomplete.

Remark 5.7. If we define the stress energy tensor corresponding to (M, g) via 8πT = Ric[g] −
1
2R[g]g, then we require T to satisfy the null energy condition. Since this theorem does not involve
the equations satisfied by matter coupled to the Einstein equations, it is really a result in Lorentzian
geometry. We do not need to appeal to the Einstein equations!

Proof. There exists a p ∈ Q such that ∂vr(p) < 0 and ∂ur(p) < 0. Let p = (0, 0) and consider the
outgoing null line ℓ = {(0, v) ∈ Q}. By rescaling v so that Ω2|ℓ ≡ 1, we have that

∇∂v∂v = Γvvv∂v = Ω−2∂vΩ
2 = 0,

so ℓ must represent an affinely parametrized null geodesic γ in (M, g). We will show that v is
bounded along ℓ, which implies that γ is future-geodesically incomplete or reaches Γ.

Γ

∂PD

p

ℓ

Figure 24: Null lines emanating from a trapped sphere at p ∈ Q.

The key equation in this argument is the Raychaudhuri equation (5.10), which implies that

∂2vr(0, v) = −8πTvv(0, v),

where Tµν = Rµν − 1
2Rgµν . Hence, Tvv = Rvv = Ric[g](∂v, ∂v) ≥ 0, by assumption. Hence

∂2vr(0, v) ≤ 0, so ∂vr(0, v) ≤ ∂vr(0, 0) < 0.
We can now integrate ∂vr(0, v) to obtain:

r(0, v) = r(0, 0) +

∫ v

0

∂vr(0, v
′) dv′ ≤ r(0, 0)− v(−∂vr)(0, 0).

Since r(0, v) > 0, this means that

v <
r(0, 0)

(−∂vr)(0, 0)
.

We can repeat the same argument with v replaced by u to show that the future-directed ingoing
line emanating from (0, 0) must also either each ∂PD \Γ in finite affine time or reach Γ. Since the
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future-directed ingoing and outgoing lines cannot both reach Γ, we conclude that the spacetime
admits a future geodesically incomplete

[Exercise: Explain why in the case of spherically symmetric spacetimes satisfying the null
energy condition, which contain an anti-trapped sphere, there are null geodesics did not exist for
infinite affine time in the past.]

We already encountered future-directed null geodesics which did not exist for ever in the Schwarz-
schild spacetime, where such geodesics were hidden behind a black hole event horizon. We will now
show that, this remains true in very general spherical symmetric spacetimes that have a non-empty
future null infinity I+.

We will show that a trapped sphere implies the existence of a black hole.20

Definition 5.5. We define the regular set R ⊆ Q, the trapped set T ⊆ Q and the apparent
horizon A ⊂ Q as follows:

R := {(u, v) ∈ Q ∂ur(u, v) < 0, ∂vr(u, v) > 0} ,
T := {(u, v) ∈ Q ∂ur(u, v) < 0, ∂vr(u, v) < 0} ,
A := {(u, v) ∈ Q ∂ur(u, v) < 0, ∂vr(u, v) = 0} .

R

T A

Figure 25: The regions R, T and A in a maximally-extended Schwarzschild spacetime.

We consider the following to set-ups:

Set-up 1: Suppose Γ ̸= ∅. Let Σ = H0 be an outgoing line emanating from Γ. Assume that the
future limit point on H0 is an element of I and that ∂ur < 0 on H0.

Set-up 2: Suppose Γ = ∅. Consider two intersecting null lines H0 (outgoing) and H0 (ingoing)
in Q. Let Σ = H0 ∪H0. Assume that the future limit point on H0 is an element of I and that
∂ur < 0 on Σ.

In both cases, we define Q+ = D+(Σ∪Γ) (with respect to (PD,−dudv)). We will choose (u, v)
coordinates such that H0 ⊂ {u = 0} and H0 ⊂ {v = 0}. We will take v to have bounded range so
that the future limit point of H0 is given by (0, vI).

Lemma 5.11. Assume that T = Ric[g]− 1
2Rg satisfies the null energy condition. Then

Q+ = (R∪ T ∪ A) ∩Q+.
20This is a sufficient condition, but not a necessary one. Exercise: Show this by considering the extremal

Reissner–Nordström black hole spacetimes.
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Γ
H0

Q+

I+

(0, vI)

(a) Set-up 1

H0

Q+

I+

(0, vI)

H0

(b) Set-up 2

Figure 26: Penrose diagrams illustrating Q+ for the two different set-ups.

Proof. By construction, H0 ⊂ (R ∪ T ∪ A) ∩ Q+. Since any point in Q+ can be connected to
H0 via an ingoing null line and by the Raychaudhuri equation (5.9) ∂2ur ≤ 0 along that null line.
Hence ∂ur < 0 everywhere in Q+.

Proposition 5.12. Null infinity I of Q+ satisfies either I = (0, vI), or it is an ingoing null
segment I = {(u, vI) ∈ R2 |u < uI}, for some uI > 0. In the latter case, I = I+.

Proof. Consider the line segments ℓv = {(u, v) ∈ R2 |u ≥ 0} with v ≤ vI that emanate from H0.
Since ∂ur < 0 in Q+, we have that r|ℓv∩Q+ ≤ r(0, v). Hence, the lines ℓv do not intersect I for
v < vI and we conclude that I ⊂ ℓvI . Suppose that there exists a u0 > 0 such that (u0, vI) ∈ I.
Then, by ∂ur < 0, we must have that (u, vI) ∈ I) for all 0 ≤ u ≤ u0. Let uI denote the supremum
of such u0. Since I is an ingoing future boundary of Q+, it follows immediately that I = I+.

If there exist no such u0, then I consists of the single point (0, vI).

We will now assume that I consists of more than one point, so by the above proposition,
I+ = I = {(u, vI) ∈ R2 |u < uI}. We denote i+ := (uI , vI). Then i+ is the future limit point of
I+ in R2.

Recall that a black hole region in Q+ is the set:

BH := Q+ \ J−(I+)

which can be empty. If BH ≠ ∅, then the future event horizon H+ is the future boundary of
J−(I+) in Q+.

The set J−(I+) is called the domain of outer communications.
We will now show that the presence of a (marginally) trapped surface implies the non-emptyness

of BH.

Proposition 5.13. Assume that 8πT = Ric[g]− 1
2Rg satisfies the null energy condition. Suppose

that T ∪ A ̸= ∅. Then:

(i) T ∪ A ⊆ BH. In particular, the black hole region of Q+ is non-empty.

(ii) H+ is an outgoing null line with future limit point i+ and H ⊂ R∪A.

(iii) Let (u∗, v∗) ∈ T ∪ A. Then (u∗, v) ∈ T ∩ A for all v ≥ v∗.

(iv) On A, we have that 1− 2m
r ≡ 0.

Proof. “(iii)” Let p = (u∗, v∗) ∈ Q+, such that ∂vr(p) ≤ 0. Since the null energy condition is
satisfied, we have that ∂2vr(u∗, v) ≤ 0 after rescaling v, so ∂vr(u∗, v) ≤ 0.
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“(i)”: Suppose additionally that p ∈ J−(I+). Then the line {(u∗, v) , v ≥ v∗} in R2 must
intersect I+. By definition of I+, this means that lim supv≥v∗ r(u∗, v) = ∞. From the above, it
also follows that lim supv≥v∗ r(u∗, v) ≤ r(u∗, v∗) <∞, which is a contradiction. We conclude that
p /∈ J−(I+), so Q+ \ J−(I+) ̸= ∅.

“(ii)”: By definition, H+ is the future boundary of J−(I+), which is an outgoing null line
with limit point i+. Suppose H+ ∩ T ̸= ∅. Then there would exist a p ∈ H+ ∩ T and a q in
neighbourhood of p such that q ∈ J−(I+) and ∂vr(q) < 0. But this is a contradiction by (i).
Hence H+ ⊂ R ∪A.

“(iv)”: This is immediate from the definition of m and the fact that ∂vr = 0 on A.

[Exercise: Suppose H+ ∩ A ≠ ∅. Show that then Tvv ≡ 0 on H+ ∩ A.]
We immediately obtain the following corollary.

Corollary 5.14 (Hawking’s area theorem in spherical symmetry). ∂v(4πr
2) ≥ 0 on H+.

This statement is known as the second law of black hole mechanics.
By imposing the dominant energy condition, we can obtain the following monotonicity proper-

ties for the Hawking mass.

Proposition 5.15. Assume that 8πT = Ric[g] − 1
2Rg satisfies the dominant energy condition.

Then:

(i) In (R∪A) ∩Q+:

∂vm ≥ 0,

∂um ≤ 0,

(ii) Assume that m is uniformly bounded from above along H0. Then m can be continuously
extended to I+, i.e.

MBondi(u) := lim
v→vI
u<uI

m(u, v)

is well-defined. Furthermore,

MBondi(u2) ≤MBondi(u1).

for 0 ≤ u1 ≤ u2 < uI .

(iii) Assume that m is bounded from below on H0 ∩ {u ≤ uI}. Then the following limit is well-
defined Mf := limu↑uI MBondi(u).

(iv) If Γ ̸= ∅, then m|Γ ≡ 0 and m ≥ 0 in R∪A.

Proof. “(i)”: The monotonicity properties follow directly from (5.11) and (5.12), using that
Tuu,Tvv,Tuv ≥ 0 by Lemma 5.4. Since ∂um ≤ 0 and m is uniformly bounded along H0, we
must have that m is uniformly bounded in R.

“(ii)”: Let (u∗, v∗) ∈ J−(I+). Then (u, v) ∈ R for all v ≥ v∗ and u ≤ u∗ by Proposition 5.13.
Since ∂um ≤ 0 in R, this implies that m(u∗, v) ≤ m(0, v), which is uniformly bounded from above
by assumption. Since moreover ∂vm(u∗, v) ≥ 0, m(u, v) is monotonically non-decreasing and must
attain a finite limit as v ↑ vI .21. Hence, MBondi(u) is well-defined and using that the limit respects
inequalities:

0 ≥ lim
v→vI

[m(u2, v)−m(u1, v)] =MBondi(u2)−MBondi(u1)

21This follows from the following fact from real analysis: bounded monotone sequences converge.
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and we conclude (ii).
“(iv)”: Consider p ∈ Γ. We can write:

m(p) =
r

2
(1− g−1(dr, dr))(p).

Since r is certainly a C1 function on R× [0∞) and g is certainly continuous on R× [0∞), the
expression g−1(dr, dr)(p) must be finite. Since r(p) = 0, we must therefore have that m(p) = 0.

Let p = (u∗, v∗) ∈ R ∪A ∩Q+. Then p ∈ J+(Γ). By (iii) of Proposition 5.13, (u∗, v) ∈ R ∪A
for all v ≤ v∗. Since ∂vm ≥ 0 in R∪A, we have that m ≥ 0 at p.

“(iii)”: To conclude (iii) we use that MBondi(u) non-increasing and, if we can show that it
is uniformly bounded from below, we can conclude that it must attain a limit as u ↑ uI via the
argument in the proof of (ii). When Γ ̸= ∅, we have thatm ≥ 0 by (iv), soMBondi(u) ≥ 0 which is a
uniform bound from below. When Γ = ∅, we use that assumption thatm is uniformly bounded from
below on H0 ∩ {u ≤ uI} together with ∂vm ≥ 0 in R∪A to conclude that MBondi(u) ≥ infm|H0

.

We refer to Mf as the final Bondi mass of the spacetime and Mi := MBondi(0) as the initial
Bondi mass.

Proposition 5.16 (Positive Mass Theorem in spherical symmetry). Assume that
8πT = Ric[g]− 1

2R[g]g satisfies the dominant energy condition and that Γ ̸= ∅. Then Mi ≥ 0, with
equality if and only if (M, g) is isometric to a region of the Minkowski spacetime.

Proof. Let Γ ̸= ∅, then it follows from Proposition 5.15 (iv) that MBondi(u) ≥ 0, so in particular
Mi ≥ 0. If Mi = 0, then MBondi(u) = 0, so by ∂vm ≥ 0 in R ∪ A, we must have that m ≡ 0 in
R ∪ A. Suppose that T ∪ A ≠ ∅. Then A ≠ ∅, so along A, 0 = m = r

2 , which is a contradiction,
since r > 0 in Q+. Therefore Q+ = R.

By (5.11) and (5.12), together with the fact that ∂ur < 0, ∂vr ≥ 0 in R and Tuu,Tuv,Tvv ≥ 0,
we must have that Tuu = Tuv = Tvv = 0. Now it follows from Birkhoff’s theorem (Theorem 5.9)
that (M, g) must be isometric to a region of the Minkowski spacetime.

[Exercise: 1) Drop the assumption that ∂ur < 0 along H0. Assume that Γ = ∅ and m|H0
< 0

and derive ∂ur|H0 < 0. 2) Explain why H0 must be future-null-geodesically incomplete.]

A
A′A′ I+

TT

Γ

BH
H+

R

Figure 27: Example of a spherically symmetric spacetime with a complicated apparent horizon.
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Definition 5.6. The outermost apparent horizon A′ is the following subset of A:

A′ := {(u, v) ∈ A | (u′, v) ∈ R for all u′ < u such that (u′, v) ∈ Q+}.

Proposition 5.17 (Penrose inequality in spherical symmetry). r ≤ 2Mf along A′.

Proof. Exercise. Hint: Use that r(u, v) = 2m(u, v) for (u, v) ∈ A′ and connect (u, v) to I+ via
ingoing and outgoing null segments.

Note finally that the apparent horizon A can have a very complicated structure (even in spheri-
cal symmetry!). Unlike the future event horizon H+, it does not need to be connected, for example.

5.7 Cold static stars and collapsing dust clouds

We consider spherically symmetric spacetimes, with metrics that are solutions to the Einstein–
Euler equations with the perfect fluid stress-energy tensor:

Tµν := (ρ+ p)UµUν + p(g−1)µν .

We moreover assume that U is spherically symmetric, which we take to mean that U is independent
of θ, φ and UA ≡ 0, where for A ∈ {θ, φ}.22

Therefore,
−1 = g(U,U) = −Ω2UuUv

Furthermore Uu = − 1
2Ω

2Uv and Uv = − 1
2Ω

2Uu.
Let X be another spherically symmetric vector field such that g(X,U) = 0 and X(r) = 1

(which fixes X uniquely). Then

X =
1

Uv∂vr − Uu∂ur
(Uv∂v − Uu∂u) .

[Exercise: Check that g(X,U) = 0 and X(r) = 1.]
We therefore obtain:

Tuu = (ρ+ p)(Uu)
2 =

1

4
(ρ+ p)Ω4(Uv)2,

Tvv = (ρ+ p)(Uv)
2 =

1

4
(ρ+ p)Ω4(Uu)2

Tuv = (ρ+ p)UuUv −
1

2
pΩ2 =

1

4
(ρ− p)Ω2.

Recall that the Hawking mass satisfies:

∂um = − 8πr2Ω−2(∂vrTuu − ∂urTuv)
∂vm = 8πr2Ω−2(−∂urTvv + ∂vrTuv).

Note that therefore

X(m) = 8πr2Ω−2Tuv −
8πr2Ω−2

Uv∂vr − Uu∂ur
(Uv∂urTvv − Uu∂vrTuu)

= 2πr2(ρ− p) + 2πr2(ρ+ p) = 4πr2ρ. (5.21)

22This is equivalent to: LLi
U ≡ 0, where Li, i ∈ {1, 2, 3} are the angular momentum vector fields.
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5.7.1 Cold static stars

We will first investigate static solutions describing “stars” of some fixed radius r = R at zero
temperature. That is to say. We make the following assumptions on our spherically symmetric
spacetime solutions to the Euler equations:

• M ∼= R× R3,

• (M, g) is static. This means that there exists a timelike Killing vector field K, such that we
can decompose:

g = −eΦdt2 + g,

with K = ∂
∂t , g is a Riemannian metric on Σ = {t = 0} and Φ : Σ → R. Together with the

spherical symmetry assumption, this means that we can write:

g = −eΦdt2 + e−Ψdr2 + r2̊/g,

with Φ,Ψ : [0,∞)r → R. We will assume that K is future-directed.

• The fluid is at rest in (t, r, θ, φ) coordinates, so U points in the ∂t direction and ρ, p do not

depend on t. By the condition g(U,U) = −1, this means that U = e−
1
2Φ∂t.

• ρ, p ≥ 0 and in the region {r > R}, p(r) = ρ(r) = 0.

• We will assume that p is a function of ρ. This is called a barotropic equation of state. For
general equations of state, p would be a function of ρ and the temperature T . The barotropic
assumption may be motivated by the assumption that the temperature in zero; the star is
“cold” and no longer radiating.

• We assume that dp
dρ ≥ 0. If dpdρ < 0 at some point x ∈ M, then the static solution (u, p, ρ) =

(0, p, ρ) to the Euler equations would be unstable in the following heuristic sense: a small
increase in ρ at x would lead to a decrease in pressure, which would cause more fluid to flow
to x, which will cause ρ to increase further, etc. .

By Birkhoff’s theorem, the region r > R must be isometric to a region in a Schwarzschild spacetime
with mass M , so Φ(r) = Ψ(r) = log

(
1− 2M

r

)
for r > R. Furthermore, by (5.21), we obtain

M = m(R) = 4π

∫ R

0

ρ(r) r2dr > 0.

Furthermore, using that g(U,U) = −1, we must have that U = e−
1
2Φ∂t.

We can write the metric in double null coordinates by introducing u = t − r∗ and v = t + r∗
(t = 1

2 (u+ v) and r∗ = 1
2 (v − u)), with

dr∗
dr

= e−
1
2 (Φ+Ψ).

Indeed, then
g = eΦ(−dt2 + dr2∗) + r2̊/g = −eΦdudv + r2̊/g.

We have the following identities:

Ω2 = eΦ,

∂v =
1

2
(K + e

1
2 (Φ+Ψ)X),
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∂u =
1

2
(K − e

1
2 (Φ+Ψ)X),

U = e−
1
2Φ(∂u + ∂v),

X = e−
1
2 (Φ+Ψ)(∂v − ∂u),

∂vr =− ∂ur =
1

2
e

1
2 (Φ+Ψ).

By definition of m, we therefore have that

m =
r

2
(1 + 4Ω−2(∂ur)(∂vr)) =

r

2

(
1− eΨ

)
.

Rearranging the above, we have that

eΨ = 1− 2m

r
.

This implies in particular that m(r) < r
2 . This means that R > 2M . There can therefore exist no

static stars with radius R ≤ 2M . We will see below that this lower bound can be sharpened.
[Exercise: We define E, the total energy of the fluid by integrating the matter energy density

T00, i.e. E =
∫
{t=0} T00

√
−dethdθdφdr, with h the induced metric on {t = 0}. Show that

M < E. Hence, the total energy of the star, M , is smaller than the energy of the matter, E. One
can interpret the difference E −M as the gravitational binding energy of the star.]

The Raychaudhuri equations (5.9) and (5.10), together with the above equations then give
(Exercise): (

1− 2m

r

) 1
2

e
Φ
2
d

dr

((
1− 2m

r

) 1
2

e−
Φ
2

)
= −4πr(ρ+ p).

We apply the Leibniz rule for differentiation to obtain:

− d

dr

(m
r

)
− 1

2

(
1− 2m

r

)
dΦ

dr
= −4πr(ρ+ p).

Using that d(r−1m)
dr = 4πρr − r−2m, we obtain:

2mr−2 −
(
1− 2m

r

)
dΦ

dr
= −8πrp.

so
dΦ

dr
= 2

m+ 4πr3p

r(r − 2m)
.

The Euler equations give:

(ρ+ p)Uα∇αU
µ = −((g−1)µν + UµUν)∇νp.

Using that U = e−
1
2ΦK, with K a Killing vector field and (LKg)αµ = ∇αKµ +∇µKα = 0, so

X(p) = (g−1)µνXµ∇νp = ((g−1)µν+UµUν)Xµ∇νp = −(ρ+p)UαXµ∇αUµ = −(ρ+p)e−
Φ
2 KαXµ∇α(e

− 1
2ΦK)µ

= −(ρ+ p)e−ΦKαXµ∇αKµ = (ρ+ p)e−ΦKαXµ∇µKα

=
1

2
(ρ+ p)e−ΦX(g(K,K)) = −1

2
(ρ+ p)e−Φ d

dr
(eΦ)

= −1

2
(ρ+ p)

dΦ

dr
= −(ρ+ p)

m+ 4πr3p

r(r − 2m)
.
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The equations:

dm

dr
= 4πr2ρ,

dΦ

dr
= 2

m+ 4πr3p

r(r − 2m)
,

dp

dr
=− (ρ+ p)

m+ 4πr3p

r(r − 2m)

are called the Tolman–Oppenheimer–Volkoff (TOV) equations of hydrostatic equilibrium.
Suppose now that the star has uniform density, so ρ(r) = ρ0 in r ≤ R. Then m(r) = 4π

3 ρ0r
3

and M = 4π
3 ρ0R

3, so

dp

dr
= −4πr3(ρ0 + p)

1
3ρ0 + p

r(r − 8π
3 ρ0r

3)
. (5.22)

We can solve this ODE as follows:∫ p(0)

0

1

(ρ0 + p)
(
1
3ρ0 + p

)dp = 4π

∫ R

0

r

(1− 8π
3 ρ0r

2)
dr,

which is equivalent to:

3

2ρ0
log

(
p(0) + ρ0

3

p(0) + ρ0

)
− 3

2ρ0
log

(
1

3

)
= − 3

4ρ0
log(3− 8πρ0R

2) +
3

4ρ0
log 3,

which we can rearrange to obtain:

(3p(0) + ρ0) =

(
1− 8

3
πρ0R

2

)− 1
2

(p(0) + ρ0) =

(
1− 2M

R

)− 1
2

(p(0) + ρ0)

so

p(0) =
1

3−
(
1− 2M

R

)− 1
2

((
1− 2M

R

)− 1
2

+ 1

)
ρ0.

Note that p(0) blows up if

3 =

(
1− 2M

R

)− 1
2

or
1

9
= 1− 2M

R
,

which is satisfied if R = 9
4M . Hence, the static solution is only well defined if R > 9

4M : there can
be no static, cold, spherically symmetric stars with radius less or equal to 9

4M . This is called the
Buchdahl inequality. There is no such upper bound in the Newtonian setting!

More generally, even if ρ is not constant in {r ≤ R}, we can use the assumption that dp
dρ ≥ 0,

together with the inequality dp
dr ≤ 0 that follows from the TOV equations, to obtain dρ

dr ≤ 0 and
this can then be used to derive the following inequality:

m(r)

r
≤ 2

9

[
1− 6πr2p(r) +

√
1 + 6πr2p(r)

]
Evaluating the above inequality at r = R, where p(R) = 0, we similarly obtain R > 9

4M .
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Γ

I+

I−

r = R

p = ρ ≡ 0

Figure 28: The Penrose diagram of a spherically symmetric static star.

5.7.2 Collapsing dust clouds

Now consider the spherically symmetric Einstein-dust model by taking p = 0 in Euler equations.
Let M ∼= R × R3. Furthermore, assume that there exists a timelike curve γ in Q, such that
r = rγ(v) along γ, with ρ(r) = ρ0 for r ≤ rγ(v), ρ(r) = 0 for r > rγ(v). We can think of rγ(v)
as describing the boundary of a star. The region r ≥ rγ(v) must be isometric to a region in
Schwarzschild with mass some massM > 0, by Birkhoff’s theorem. Since ρ is discontinuous, g will
not be a C2 solution to the Einstein equations at the boundary of the star, but can nevertheless be
interpreted as a solution in a “weak sense” (multiplying the Einstein equations with a test function
and integrating over a spacetime region).

As our boundary condition, we will assume that γ is a spherically symmetric timelike geodesic in
Schwarzschild, since the Euler equations for dust imply that ∇UU = 0 in the region of non-zero ρ,
so the integral curves of U are timelike geodesics. We will assume that ṙγ(0) = 0. Then must have
that rγ(τ) → 0 in finite affine time τ .23 That is to say, there is no pressure to hold off gravitational
collapse of the dust cloud. Hence, the spacetime contains a subset of the Schwarzschild black hole
interior and therefore the black hole region BH = Q \ J−(I+) ̸= ∅ is non-empty.

These spacetimes are called the Oppenheimer–Snyder spacetimes (Oppenheimer–Snyder
1939).

r = rγ(v)

I+H+

Γ

Σ

p = ρ ≡ 0

r = 0

ρ ≡ ρ0
p = 0

BH

Figure 29: The Penrose diagram of an Oppenheimer–Snyder spacetime with initial hypersurface
Σ.

Within the spherically symmetric dust model, the behaviour of spherically symmetric, homo-
geneous collapsing dust clouds is special. By considering instead a more general class of initial

23This follows from the timelike geodesic equation in Schwarzschild and the consideration of the potential V1(r)
with total angular momentum L = 0.
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data including inhomogeneous spherically symmetric dust (of compact support), Christodoulou
proved in 1984 that within this model, for an open subset of initial data (within spherical sym-
metry), T ∪ A = ∅ and BH = ∅. Nevertheless, the boundary ∂PD has a singular point O that
can be reached in finite affine time, where moreover ρ→ ∞. Furthermore, observers moving along
{r = r0} exist for only finite time and outgoing null geodesics emanating from the centre Γ get
infinitely red-shifted when they are intercepted by the observer at their final time of existence.
The singularity can be “seen” from far-away, in contrast with the singularity inside a black hole
region, which is hidden behind an event horizon. These types of spacetimes are therefore called
“naked singularities”.

Γ

Σ

CHΓ

I+

ρ = p ≡ 0

p ≡ 0

O

Figure 30: The Christodoulou Einstein-dust naked singularities. The radius r has a non-zero limit
on CHΓ.

It is fortuitous that the naked singularities of Christodoulou were only discovered decades after
the discovery of the Oppenheimer–Snyder spacetimes, since the later played a fundamental role in
developing intuition regarding black hole formation and trapped surfaces.

The existence of naked singularities in the spherically symmetric dust model can be attributed
to the highly idealized nature of the model and the singular nature of the Einstein–Euler equations
without pressure. Indeed, since ρ→ ∞, the assumption of p = 0 becomes questionable. One might
therefore hope that these kind of spacetimes will be entirely excluded by considering less singular
matter models. In this next section, we will see that this is, however, not the case.

5.8 The cosmic censorship conjectures

Christodolou’s naked singularities can be characterized from future null infinity as follows: consider
a sequence of ingoing, future-directed, affinely parametrized radial null geodesics γn, such that

γn(0) = (u0, vn),

γ̇n(0) = ∂u|(u0,vn),

with vn → ∞ as n → ∞. Let ssupn denote the supremum of the affine parameter sn along γn. In
the naked singularity spacetimes, there exists an S < ∞ such that ssupn ≤ S for all n. You can
interpreted this as the statement that “I+ is future-null-geodesically incomplete”.

If we think of the corresponding spacetimes as arising from initial data on some Cauchy hyper-
surface Σ, there is no global existence in time of solutions to the Einstein–Euler equations. From
the perspective I+, we cannot use the equations to predict what happens “for all times”.

In 1994, Christodoulou proved that naked singularities also exist for the spherically symmetric
Einstein–scalar field system, arising from initial data that are not smooth, but still sufficiently

73



regular to have a well-posed initial value problem for the equations.24 The singular behaviour
at O, on the other hand, is too strong to extend the metric across it. In 2019, it was shown by
Shlapentokh-Rothman and Rodnianski that (non-spherically symmetric) naked singularities even
exist in vacuum.

Sometimes, the M < 0 Schwarzschild spacetimes or the M < e super-extremal Reissner–
Nordström spacetimes are called “naked singularities”. In these cases, however, the singularity
is already present at the level of initial data and does not form in the evolution of more regular
initial data.

Γ

Σ

CHΓ

I+
O

(a) A naked singularity solution to the spherically
symmetric Einstein-scalar field system with a null
boundary CHΓ emanating from a singular point O
across which the metric can be extended in a suit-
ably regular manner.

Γ

Σ

SΓ

I+
O

(b) A naked singularity solution to the spherically
symmetric Einstein-scalar field system with a null
boundary SΓ emanating from a singular point O at
which r = 0 and the metric cannot be extended in a
suitably regular manner.

Figure 31: Penrose diagrams of naked singularity solutions to the spherically symmetric Einstein-
scalar field system.

The weak cosmic censorship conjecture asserts that naked singularities are nevertheless “spe-
cial”.

Conjecture 5.18 (The weak cosmic censorship conjecture). Spacetimes arising from “generic”,
asymptotically flat, geodesically complete initial data to the Einstein equations coupled to a “reason-
able” matter model have a future-complete future null infinity (i.e. there are no naked singularities).

[Exercise: Find spacetimes arising from geodesically incomplete (characteristic) initial data
with a null infinity that is not future-null-geodesically complete. Hint: consider spacetime regions
in Minkowski arising from appropriate characteristic initial data to the spherically symmetric
Einstein-scalar field equations with a vanishing scalar field.]

We already encountered another failure in the predictability of the Einstein equations, namely
the lack of “global uniqueness” in the case of Reissner–Nordström spacetimes, which could be
thought of as arising from geodesically complete initial data, but nevertheless had Cauchy horizons
across which the spacetime could be extended smoothly in a highly non-unique manner. The strong
cosmic censorship conjecture asserts that there should generically be global uniqueness of solutions:

Conjecture 5.19 (The strong cosmic censorship conjecture). Spacetimes arising from “generic”,
geodesically complete initial data to the Einstein equations coupled to a “reasonable” matter model
are inextendible as “suitably regular” solutions to the equations.

Despite what the naming suggests, the strong cosmic censorship conjecture does not imply the
weak cosmic censorship conjecture. Indeed, this is the case in the Einstein–scalar field singularities
of Christodoulou; see the Penrose diagrams in Figure 31.

24The existence of naked singularties arising from smooth initial data remains an open problem and the time of
writing of these notes.
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6 Kerr black hole spacetimes

We will now consider our first non-spherically symmetric black hole spacetimes: the Kerr black
holes spacetimes (Kerr 1963). Just like in the Schwarzschild case, we start by defining the exterior
of the spacetimes, before extending into the black hole interior. In contrast with Schwarzschild, we
will not construct a global double null foliation (this is considerably harder on Kerr spacetimes!).
Since the existence of a global double null foliation is directly connected to the construction of a
Penrose diagram, we will, strictly speaking, not be able to draw the corresponding Penrose diagram.
Nevertheless, we will use “Penrose-like” diagrams to draw boundaries of different spacetime regions
schematically.

6.1 Kerr exterior

The Kerr exterior is the spacetime (Mext, gM,a). Here, Mext = R× (r+,∞)×S2. When a2 ≤M2,
0 < r− < r+ are the roots of of the following polynomial:

∆(r) := r2 − 2Mr + a2,

More explicitly,

r± =M ±
√
M2 − a2.

When a2 > M2, we can take r+ := 0.
We take M > 0 and interpreted this parameter as the mass or energy of the spacetime and

a = J/M ∈ R, with J the “angular momentum of the spacetime”.25 We will assume for now that
|a| ≤M . Note that when a = 0, we recover the Schwarzschild metric.

The Kerr metric gM,a is defined as follows:26

gM,a =− ∆

ρ2
(dt− a sin2 θdφ)2 +

ρ2

∆
dr2 + ρ2dθ2 +

sin2 θ

ρ2
(adt− (r2 + a2)dφ)2,

ρ2(r, θ) := r2 + a2 cos2 θ.

[Exercise: Check that the Kerr metric does not fit the definition of a spherically symmetric or
static spacetime.]

We say a Kerr spacetime is extremal if |a| =M , sub-extremal if |a| < M and super-extremal if
|a| > M . Note that for |a| =M , r+ = r− =M .

Since (gM,a)µν are independent of t and φ, the vector fields T := ∂t and Φ := ∂φ are Killing
vector fields. The vector field Φ can be interpreted as the angular momentum vector field in the
z-direction. The Kerr metric is therefore said to be axisymmetric. The coordinates (t, r, θ, φ) are
called Boyer–Lindquist coordinates.

Consider T and note that

gM,a(T, T ) = (gM,a)tt = −∆

ρ2
+
a2 sin2 θ

ρ2
= −r

2 − 2Mr + a2 − a2 sin2 θ

ρ2
= −r

2 − 2Mr + a2 cos2 θ

ρ2
.

The above expression is non-negative when

r+ ≤ r ≤M +
√
M2 − a2 cos2 θ.

25The notion of mass and angular momentum of a spacetime can be defined precisely in a very general setting at
the level of asymptotically flat initial data.

26Technically, we also have to complement (θ, φ) with another spherical coordinate chart to extend the metric to
the full sphere S2. It is a nice exercise to convince yourself that this is indeed the case, using the form of the metric
on {t = const.} ∩ {r = const.}.
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The region {r+ < r < M +
√
M2 − a2 cos2 θ} is called the ergoregion. Outside the ergoregion T is

timelike. The Kerr spacetime is said to be stationary since it admits a Killing vector field that is
timelike outside a bounded region in r. We will fix the time orientation by demanding T outside
the ergoregion to be timelike.

[Exercise: 1) Show that the vector field dt♯ is timelike everywhere and hence the level sets
{t = const.} are spacelike. 2) Show that Φ is everywhere spacelike . 3) Show that the Killing vector
fields K and Φ evaluated at any p ∈ Mext span a timelike hyperplane in TpMext and explain why
around every point p ∈ Mext there exists a Killing vector field that is timelike in a neighbourhood
of p. ]

r = r+

r = 2M

Figure 32: The ergoregion in a Kerr exterior spacetime restricted to a t-level set.

6.2 Kerr black hole interior

In this section, we will restrict to |a| ≤M .
Recall that in Schwarzschild, we could extend the spacetime across r = r+ = 2M , into the black

hole exterior. One way doing this, was to consider ingoing (or outgoing) Eddington–Finkelstein
coordinates (v, r, θ, φ). We then obtained:

gM = −∆

r2
dv2 + 2dvdr + r2̊/g.

Note that Y = ∂r is null so the integral curve to −Y is a null curve that points in the direction of
decreasing r.27

[Exercise: Show that with respect to (t, r) coordinates on Schwarzschild, we can express:

Y = −r
2

∆
∂t + ∂r.]

We would like to consider similar coordinates to ingoing Eddington–Finkelstein coordinates
(v, r) in Kerr with a ̸= 0. The above choice of Y will no longer be null. However, we can consider
the following modification (which agrees with the Schwarzschild choice if a = 0):

Y = −r
2 + a2

∆
∂t + ∂r −

a

∆
∂φ.

27And the curve can be reparametrized to obtain an affinely parametrized null geodesic, which reaches r = r+ at
finite affine time.
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Then

ρ2∆2g(Y, Y ) = ρ2[(r2 + a2)2gtt + 2a(r2 + a2)gtφ + a2gφφ] + ρ2∆2grr

= (r2+a2)2(−∆+����a2 sin2 θ )+2a(r2+a2)(a sin2 θ∆((((((((
−a sin2 θ(r2 + a2))+a2(−∆a2 sin4 θ+((((((((

(r2 + a2)2 sin2 θ )

+ (r2 + a2 cos2 θ)2∆

= −∆[(r2 + a2)2 − 2a2 sin2 θ(r2 + a2) + a4 sin4 θ − (r2 + a2 cos2 θ)2]

= −∆[(r2 + a2)(r2 + a2 cos2 θ)− a2 sin2 θ(r2 + a2(1− sin2 θ))− (r2 + a2 cos2 θ)2]

= −∆ρ2[r2 + a2 − a2 sin2 θ − (r2 + a2 cos2 θ)] = 0.

Since Y has a φ-component, we need to change (t, r, φ) to (v, r, φ∗) for an appropriate choice of v
and φ∗. To ensure Y = ∂r in these new coordinates, we moreover need Y (v) = Y (φ∗) = 0.

Define the tortoise coordinate r∗ as follows: r∗ : (r+,∞) → R, with dr∗
dr = r2+a2

∆ and define
v = t+ r∗.

28 Then clearly Y (v) = 0.
Similarly, let

φ∗ = φ−
∫ ∞

r

a

∆(r′)
dr′ mod 2π.

Then also Y (φ∗) = 0. We refer to the coordinates (v, r, θ, φ∗) as Kerr-star coordinates or ingoing
Kerr coordinates. With respect to these coordinates, the Kerr metric takes the following form
(Exercise):

gM,a = −ρ−2
(
∆− a2 sin2 θ

)
dv2 + 2dvdr − 4Marρ−2 sin2 θdvdφ∗ − 2a sin2 θdrdφ∗ + ρ2dθ2

+ ρ−2((r2 + a2)2 − a2∆sin2 θ) sin2 θdφ2
∗.

[Exercise: Show that the inverse metric is given by:

g−1
M,a = a2ρ−2 sin2 θ∂v ⊗ ∂v + ρ−2(r2 + a2)[∂v ⊗ ∂r + ∂r ⊗ ∂v] + ∆ρ−2∂r ⊗ ∂r

+ aρ−2[(∂v + ∂r)⊗ ∂φ∗ + ∂φ∗ ⊗ (∂v + ∂r)] + ρ−2[∂θ ⊗ ∂θ + (sin2 θ)−1∂φ∗ ⊗ ∂φ∗ ].

Hint: Put the matrix corresponding to gM,a in (t, r, θ, φ) coordinates in block-diagonal form by
grouping (r, θ) and (t, φ) together.]

From the above expression, it follows in particular that the level sets {v = const.} are not null
hypersurfaces when a ̸= 0.

Since the metric is not singular when 0 < r ≤ r+, we can extend the manifold Mext =
Rv × (r+,∞)r × S2θ,φ∗

to obtain M = Rv × (0,∞)r × S2θ,φ∗
and extend gM,a analytically to M.

We denote

H+
R := {r = r+},

CH+
L := {r = r−}.

These level sets are null hypersurfaces. We will refer to H+
R as the right future event horizon and

CH+
L as the left future inner horizon.

28It can be shown that r∗ takes the following form:

r∗ = r −
M2

√
M2 − a2

log

(
r − r−

r − r+

)
+M log∆ + c0 |a| < M,

r∗ = r −
2M2

r −M
+M log∆ + c0 |a| =M

with c0 ∈ R a constant.
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In the region {r− < r < r+}, we moreover can revert “back” to Boyer–Lindquist-like coordi-
nates, by defining t = v − r∗ and φ = φ∗ +

∫∞
r

a
∆(r′) dr

′ mod 2π.

Since the Kerr metric is invariant under the reflection map (t, φ) 7→ (−t,−φ), we can carry out
similar procedure in the region {r− < r < r+} with the following null vector field:

Ỹ =
r2 + a2

∆
∂t + ∂r +

a

∆
∂φ,

which motivates the coordinate changes u = t − r∗ and φ̃∗ = φ +
∫∞
r

a2

∆(r′) dr
′ mod 2π. This

allows us to further extend the manifold to obtain M̃ = Ru × (0,∞)r × S2θ,φ̃∗
. We define M̃ext :=

M̃ ∩ {r > r+}.
In analogy with before, the following level sets are null hypersurfaces:

H+
L = {r = r+},

CH+
R = {r = r−},

which we will call the left future event horizon and right inner horizon, respectively. When |a| =M ,
r+ = r−, so H+

L and CH+
R coincide.

Note that we can also introduce (u, r, θ, φ̃∗) coordinates in Mext to define the left/right past
event horizons H−

L,R and the right/left past inner horizons CH−
R,L.

−Y Mext

M∩M̃

H+
R

CH+
L

CH+
R

H+
L

M̃

−Ỹ

M̃

M

Figure 33: The integral curves of −Y and −Ỹ and the extensions of Mext.

We denote
BH = M\Mext.

and refer to it as the black hole region. Since we do not have a Penrose diagram and we have not
defined I+, it is not immediate that that BH ∩ J−(Mext) = ∅.

Our choice of time-orientation implies that −Y is future directed. Indeed, this guarantees that
−g(T, Y ) = −2 < 0, which is consistent with T being a future-directed, timelike vector field outside
the ergoregion, as we imposed.

Proposition 6.1. H+
R is a null hypersurface, with the null tangent vector field K = ∂v +ω+∂φ∗ ,

where ω+ = a
r2++a2

. The vector field K is called the Hawking vector field and the constant ω+ is

called the angular velocity of the black hole.

Proof. First since K does not have an r-component, it is tangent to H+
R. Note furthermore that

g(K,K)|H+
R
= gvv + 2ω+gvφ∗ +ω2

+gφ∗φ∗

∣∣∣
H+

R

= ρ−2 sin2 θ
[
a2 − 4Mar+ω+ + (r2+ + a2)2ω2

+

]
.

78



So, using that 2Mr+ = r2+ + a2, we have that g(K,K) = 0 if and only if

0 = ω2
+ − 2a(r2+ + a2)−1ω+ + a2(r2+ + a2)−2 =

(
ω+ − a(r2+ + a2)−1

)2
.

Hence g(K,K) = 0 if we take ω+ = a(r2+ + a2)−1.
To conclude that H+

R is a null hypersurface, we need to show that g(K,X) for every vector
field X tangent to H+

R. We immediately have that g(K, ∂θ) = 0. Furthermore,

g(K, ∂φ∗)|H+
R
= gvφ∗ + a(r2+ + a2)−1gφ∗φ∗ |H+

R
= ρ−2 sin2 θ[−2Mar+ + a(r2+ + a2)]|H+

R
= 0.

[Exercise: Show that CH+
L is a null hypersurface and find a null vector field that is tangent

to CH+
L .]

[Exercise: Show that φ+ := φ − ω+t is constant along the integral curves of K and is
well-defined on H+

R.]

[Exercise: Show that ∇KK|H+
R
= κ+K|H+

R
, with κ+ = r+−r−

4Mr+
]

Proposition 6.2. BH ∩ J−(Mext) = ∅.

Proof. Suppose that BH ∩ J−(Mext) ̸= ∅. Then there exist a future-directed causal curve γ :
[0, 2] → M, such that γ(0) ∈ BH \ H+

R, γ(2) ∈ Mext and p = γ(1) ∈ H+
R.

Denote w = γ̇(1). It will be useful to expand:

w = wY Yp + wKKp + wθ∂θ|p + wφ∗∂φ∗ |p.

Since γ is future-directed, 0 ≤ gp(Yp, w). By causality of γ we moreover have that:

0 ≥ g(w,w) = gp(w
Y Yp + (w − wY Yp), w

Y Y+ + (w − wY Yp))

= ((((((((
(wY )2gp(Yp, Yp)+2wY gp(Yp, w)−(((((((

(wY )gp(Yp, Yp)+(wθ)2gθθ(p)+(wφ∗)2gφ∗φ∗(p) ≥ 2 gp(Yp, w)︸ ︷︷ ︸
≥0

wY .

Hence, we need wY ≤ 0, which implies that ṙγ(1) ≤ 0. However, since γ is entering Mext from
BH, we need to have ṙ(1) > 0, which is a contradiction.

We conclude that BH ∩ J−(Mext) = ∅.

An observer in the black hole region BH can therefore not travel to Mext, or send signals to
Mext.

[Exercise: Show that for |a| < M , there exists an ϵ > 0 such that K is timelike in the
region {r+ < r ≤ (1 + ϵ)r+}. Is this also true for |a| = M? Show that integral curves of K in
{r ≤ (1+ ϵ)r+} rotate at an angular velocity ω+ with respect to observers represented by integral
curves of T outside the ergoregion. Since K is tangent to H+

R, the boundary of the black hole
region, we say that the black hole itself rotates at an angular velocity ω+.]
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6.3 Kruskal-like coordinates and global hyperbolicity

We will show that null hypersurfaces H+
R and H+

L actually intersect. This will result in a global
understanding of the Kerr geometry in terms of Kruskal-like coordinates (U, V ). In contrast with
Schwarzschild and Reissner–Nordström, U - and V -level sets are not going to be null hypersurfaces.

Recall, v = t+ r∗ and u = t− r∗. We restrict to sub-extremal Kerr (|a| < M) and we introduce
Kruskal-like rescaled coordinates:

U :=− e−κ+u,

V := eκ+v,

with κ+ the surface gravity of H+
R, in analogy with the Kruskal-like coordinates on Reissner–

Nordström.
We recall moreover the modified azimuthal angular coordinate φ+:

φ+ = φ−ω+t mod 2π = φ− a

r2+ + a2
t mod 2π,

which is conserved along the integral curves of the Hawking vector field K.

Proposition 6.3. Let |a| < M . The coordinates (U, V, θ, φ+) cover
29 (M∩{r > r−})∪(M̃∩{r >

r−}) and the components of gM,a are analytic in U, V, θ, φ. Furthermore:

Mext = {U < 0, V > 0},
M∩ {r > r−} = {U ≥ 0, V > 0},

M̃ext = {U > 0, V < 0},

M̃ ∩ {r > r−} = {U ≤ 0, V < 0},

We can extend gM,a further to {U ≤ 0, V ≤ 0}, including the bifurcation sphere {U = 0, V = 0}
and we denote the extension by MKrus = {(U, V, θ, φ+) | (U, V ) ∈ R2, (θ, φ) ∈ S2}.

Proof. (Sketch) The proof relies on two main observations.

1. With respect to (u, v, θ, φ+):

(gM,a)uu = (gM,a)vv = a2∆2h1(r, sin
2 θ),

(gM,a)vφ+
= (gM,a)uφ+

= a2∆h2(r, sin
2 θ),

(gM,a)uv = ∆h3(r, sin
2 θ),

with h1, h2, h3 analytic functions that are well-defined for r ∈ (r−,∞) and h3 is non-
vanishing.

2. We can express:
−UV = e2κ+(v−u) = eκ+r∗ = ∆k(r),

with k a non-vanishing, analytic function on (r−,∞).

Then we can analytically extend the function r(U, V ) and the components of gM,a from the region
Mext = {U < 0, V > 0} to the extensions of Mext. Since analytic extensions are unique, gM,a in
MKrus \ {U = 0, V = 0} must agree with the analytically extended gM obtained by switching to
Kerr-star coordinates.

29At least away from the usual breakdown of spherical coordinates at a meridian connecting the north and south
poles of the sphere S2.
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To extend across H±
L,R after changing coordinates, the factor ∆ in guv, guφ+

and gvφ+
is

important. Similarly, the factor ∆2 in guu and gvv is important.
To determine the range of U and V , we observe that we can express in the region r− < r < r+:

U = −e−κ+(v−2r∗)

and r∗ ∈ R, so as we approach CH+
L , U → ∞. Similarly, as we approach CH+

R, V → ∞. We
similarly have U, V → −∞ as we approach the time inverses CH−

R and CH−
L , respectively.

Proposition 6.4. The hypersurface Σ = {U + V = 0} is spacelike and is a Cauchy hypersurface
for (MKrus, gM,a).

Proof. Exercise. Hint: To prove the Cauchy surface property, you could consider a past-directed
and past-inextendible causal curve γ(s), with s the proper time, and investigate the sign of d

ds (U+
V )(γ(s)).

6.4 Dynamics of null geodesics

We will investigate the behaviour of future-directed null geodesics on Kerr black hole exteriors
(Mext, gM,a). We proceed as in Schwarzschild by writing out the equation g(γ̇, γ̇) = 0:

0 = gM,a(γ̇, γ̇) = −∆ρ−2(ṫ− a sin2 θφ̇)2 + sin2 θρ−2(aṫ− (r2 + a2)φ̇)2 +
ρ2

∆
ṙ2 + ρ2θ̇2. (6.1)

Using the Killing property of T = ∂t and Φ = ∂φ, we identify the following conserved quantities
along γ:

E =− gM,a(γ̇, T ) = −gttṫ− gtφφ̇ = ρ−2
[
∆− a2 sin2 θ

]
ṫ+ a sin2 θρ−2

[
r2 + a2 −∆

]
φ̇,

L =gM,a(γ̇,Φ) = gφφφ̇+ gtφṫ = sin2 θρ−2
[
(r2 + a2)2 − a2 sin2 θ∆

]
φ̇− a sin2 θρ−2

[
r2 + a2 −∆

]
ṫ.

We interpret E as the energy of γ according to integral curves of T and L as the z-component of
the angular momentum of γ. Note that E can in principle be non-positive if γ is restricted to the
ergoregion (and integral curves of T are not timelike).

We can write these equations as the following single matrix equation:(
E
L

)
= A

(
ρ−2ṫ

ρ−2 sin2 θφ̇,

)
with A a 2x2 matrix that is defined as follows:

A =

(
∆− a2 sin2 θ a(r2 + a2 −∆)

−a sin2 θ(r2 + a2 −∆) (r2 + a2)2 − a2 sin2 θ∆

)
=

(
ρ2 − 2Mr 2Mra

−2Mar sin2 θ (r2 + a2)ρ2 + 2Mra2 sin2 θ

)
.

Then

detA = ρ4(r2 + a2) + 2Mra2 sin2 θρ2 − 2Mr(r2 + a2)ρ2 = ρ4(r2 + a2 − 2Mr) = ρ4∆.

Therefore

A−1 =

(
ρ−4((r2 + a2)2∆−1 − a2 sin2 θ) −ρ−4a((r2 + a2)∆−1 − 1)
ρ−4a sin2 θ((r2 + a2)∆−1 − 1) ρ−4(1− a2 sin2 θ∆−1)

)
and

ρ2ṫ = a(L− Ea sin2 θ) + ∆−1(r2 + a2)(E(r2 + a2)− aL),

ρ2 sin2 θφ̇ = − Ea sin2 θ + L+∆−1a sin2 θ(E(r2 + a2)− aL).

In contrast with the Schwarzschild case, we cannot simply assume without loss of generality
that θ ≡ π

2 . Instead, we will make use of the existence of an additional, hidden, conserved quantity:
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Lemma 6.5. Let γ be an affinely parametrized null geodesic and define

Q := ρ4θ̇2 +
L2

sin2 θ
− a2E2 cos2 θ.

Then
d

ds
Q(s) = 0.

Furthermore,
Q+ a2E2 ≥ L2.

The quantity Q is called Carter’s constant.

The existence of the conserved quantity Q is related to the existence of a Killing tensor K ∈
T (0,2)(M), which is a symmetric tensor field that satisfies the following generalization of the
equation satisfied by a Killing vector field: ∇(µKνρ) = 0.

[Exercise: Show that for γ an affinely parametrized geodesic, d
ds (Kνρ(γ(s))γ̇

ν(s)γ̇ρ(s)) = 0.]
Using the above lemma, we obtain the following additional equation:

ρ4θ̇2 = Q− L2

sin2 θ
+ a2E2 cos2 θ = Q+ a2E2 − 2aEL− (L− aE sin2 θ)2

sin2 θ

We plug the equations for ṫ, φ̇ and ρ4θ̇2 in terms of E,L,Q, into (6.1) to obtain:

0 = ρ4ṙ2 −∆2(ṫ− a sin2 θφ̇)2 + sin2 θ∆(aṫ− (r2 + a2)φ̇)2 + ρ4∆θ̇2

= ρ4ṙ2 − ρ−4((E(r2 + a2)− aL)ρ2)2

+ sin2 θ∆ρ−4(a2(L− Ea sin2 θ)− Ea(r2 + a2) + L(r2 + a2)(sin2 θ)−1)2

+∆

(
Q+ a2E2 − 2aEL− (L− aE sin2 θ)2

sin2 θ

)
= ρ4ṙ2 − (E(r2 + a2)− aL)2 +∆ρ−4 sin2 θ((L− Ea sin2 θ)(r2 + a2)ρ2(sin2 θ)−1)2

+∆

(
Q+ a2E2 − 2aEL− (L− aE sin2 θ)2

sin2 θ

)
= ρ4ṙ2 − (E(r2 + a2)− aL)2 +∆

(
Q+ a2E2 − 2aEL

)
= ρ4ṙ2 − E2(r2 + a2)2 + 4MaELr − a2L2 +∆(Q+ a2E2).

Hence,

ρ4

(r2 + a2)2
ṙ2 = E2 − V0(r;E,L,Q),

V0(r;E,L,Q) :=
1

(r2 + a2)2
[
4MaELr − a2L2 +∆(Q+ a2E2)

]
Now we can analyze the dynamics of null geodesics by determining the existence and location

of maxima/minima of the potential V0, just like in Schwarzschild. Recall that in Schwarzschild,
for θ ≡ π

2 , we obtain Q = L2 and we can write V0(r;L) = r−4L2∆.

Proposition 6.6. The potential function V0 : (r+,∞) → R either:

• is non-increasing,

• has a unique critical point r+ ≤ rmax that corresponds to a global maximum, or
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• has exactly two critical points r+ ≤ rmin < rmax that correspond to a local minimum at rmin

and a local maximum at rmax.

Proof. To determine the critical points of V0, we compute:

d

dr
V0(r) =

1

(r2 + a2)3
[
−4r(4MarEL− a2L2 +∆(Q+ a2E2)) + (r2 + a2)(4MaEL+ 2(r −M)(Q+ a2E2))

]
=

1

(r2 + a2)3
[
4MaEL(−3r2 + a2) + 4ra2L2 − 2(Q+ a2E2)(r3 − 3Mr2 + a2r +Ma2)

]
.

We will investigate first the critical points of (r2 + a2)3 dV0

dr (r). We have that:

d

dr
((r2 + a2)3

dV0
dr

(r)) = −24MaELr + 4a2L2 − 2(Q+ a2E2)(3r2 − 6Mr + a2)

= −6(Q+ a2E2)

[
r2 − 2M(1− 2ξ)r +

a2

3
(1− 2µ)

]
,

where we introduced the variables ξ = EL(Q + a2E2)−1 and µ = L2(Q + a2E2)−1. The critical
points of (r2 + a2)3 dV0

dr (r) correspond to the roots of the above quadratic polynomial:

r1,2 =M(1− 2ξ)∓
√
M2(1− 2ξ)2 − a2

3
(1− 2µ)

We now distinguish two cases:

Case I: ξ ≥ 0 Since r1 ≤ M(1 − 2ξ) ≤ M ≤ r+ (with equality iff |a| = M), we have that the
only possible critical point in (r+,∞) is r2.

Case II: ξ < 0 In this case, we can express:

r1 =M(1− 2ξ)

[
1−

√
1− a2

3M2

1− 2µ

(1− 2ξ)2

]
Note that

a2

3M2

1− 2µ

(1− 2ξ)2
<

a2

3M2
≤ 1

3
,

where we used that ξ < 0, µ ≥ 0 and |a| ≤M .
Let 0 ≤ x ≤ 1

3 . Then we use that

1− x ≥ 1− x− x

3

(
1− 4

3
x

)
=

(
1− 2

3
x

)2

,

to obtain
√
1− x ≥ 1− 2

3x and therefore

r1 ≤M(1− 2ξ)
2

3

a2

3M2

1− 2µ

(1− 2ξ)2
=

2a2

9M

1− 2µ

1− 2ξ
≤ 2a2

9M
≤ 2

9
r+.

So in Case II, we also conclude that (r2+a2)3 dV0

dr (r) has at most one critical point, r2, in (r+,∞).
Since Q+ a2E2 ≥ 0, we have that

lim
r→∞

(r2 + a2)3
dV0
dr

(r) =−∞.

This implies the following properties.
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• V0(r) has at most two critical points. Indeed, suppose there are ≥ 3 critical points. Then
(r2 + a2)3 dV0

dr (r) must have at least 3 zeroes and hence, at least two critical point, which is
in contradiction with the existence of at most one critical point, r2.

• Suppose that V0(r) has no critical points. Then (r2 + a2)3 dV0

dr (r) must have a constant sign.

By limr→∞(r2 + a2)3 dV0

dr (r) = −∞, this sign must be negative.

• Suppose that V0(r) has exactly one critical point. By the limiting property of (r2+a2)3 dV0

dr (r),
it must be a maximum.

• Suppose that V0(r) has exactly two critical points. By the limiting property of (r2 +
a2)3 dV0

dr (r), the critical point with the largest r-value must be a local maximum. The other
critical point cannot be a maximum, since then there would have to be a third critical point
in between, which would contradict the existence of exactly two critical points. Similarly,
the other critical point cannot be a saddle point, because then it would be a critical point
and a zero of (r2+a2)3 dV0

dr . However, since (r2+a2)3 dV0

dr must also be zero at the maximum
of V0, it would have another critical point between the maximum and saddle points of V0,
which contradicts the existence of at most one critical point for (r2 + a2)3 dV0

dr . Hence, V0 in
this case has a local minimum and a local maximum.

The possible existence of a minimum for V0(r) might suggest the existence of trapped null
geodesics that are stable under small perturbations of their initial data in phase space. The
proposition below demonstrates that this is not the case: trapped null geodesics are also unstable
in Kerr.

The following conserved quantity will play an important role:

EK := −gM,a(γ̇,K) = −gM,a

(
γ̇, T +

a

r2+ + a2
Φ

)
= E − a

r2+ + a2
L = E − a

2Mr+
L = E −ω+L.

At H+, where K is causal and future-directed, we must have that EK ≥ 0 and we can interpret
EK as the energy of γ̇ as measured by observers rotating with the black hole.

Proposition 6.7. We have that
E2 ≥ V0(rmin)

with equality if and only if EK = 0 and rmin = r+, which can only occur when the Kerr black hole
is extremal. In particular, if EK ̸= 0 or rmin ̸= r+, then there are no trapped null geodesics at
r = rmin.

If aEKL < 0, then dV0

dr (r+) > 0 and V0(r) has exactly one critical point: a maximum at rmax.

Proof. We first compute, using that r2+ + a2 − 2Mr+ = 0:

E2 − V0(r+) = E2 − 1

(r2+ + a2)2
(4MaELr+ − a2L2)

=
E2(r2+ + a2)2 − 4MaELr+ + a2L2

(r2+ + a2)2
=

(
2MEr+ − aL

r2+ + a2

)2

= E2
K .

Hence, if EK ̸= 0, then
E2 > V0(r+) ≥ V0(rmin).

If rmin ̸= r+, then E
2 ≥ V0(r+) > V0(rmin).

Note moreover that
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(r2+ + a2)3
dV0
dr

(r+) = −4r+(r
2
+ + a2)2V0(r+) + (r2+ + a2)(4MaEL+

d∆

dr
(Q+ a2E2))

= −4r+(4Mar+EL− a2L2) + 8MaELr+ + 2(Q+ a2E2)(r2+ + a2)(r+ −M)

= −8Mr2+aEKL+ 2(Q+ a2E2)(r2+ + a2)(r+ −M).

Hence, we can only have r+ = rmin and E2 − V0(r+) = 0 if Q + a2E2 = 0 or r+ = M , the latter
which is equivalent to |a| = M . Note however that since Q2 + a2E2 ≥ L2, the first case implies
that L2 = Q2 + a2E2 = 0, so V0 ≡ 0 and there does not exist a rmin

The above computation implies moreover that in the case aEKL < 0:

dV0
dr

(r+) > 2(Q+ a2E2)(r2+ + a2)−2(r+ −M) ≥ 0.

We cannot have the existence of rmin, since that would require dV0

dr (r+) ≤ 0.

Remark 6.1. The above argument also excludes the existence of trapped null geodesics with non-
constant (oscillating) r-values (r bounded below and above). [Exercise: Convince yourself of
this.]

[Exercise: Suppose that E < 0. Show that a future-directed affinely parametrized null
geodesic γ in Mext must intersect the future event horizon H+

R. Hint: Use that γ must remain in
the ergoregion. Then suppose there exists a future-directed null geodesic with E < 0 approaching
r = rmax asymptotically. Use that the geodesic can be perturbed by slightly changing (E,L,Q) to
obtain E < 0 and E2 > V0(rmax) or E

2 > V0(rmax) and use this to reach a contradiction. ]

The presence of an ergoregion allows one to “extract energy” from a black hole. We will first
explore this in a heuristic setting. Let γ be a future-directed causal geodesic with energy E
and angular momentum L that enters a Kerr black hole with mass Mi and angular momentum
Ji = aiMi. We will assume that this dynamical process leads to a black hole that settles down
to another Kerr black hole with mass Mf and angular momentum Jf , where Mf = Mi + E and
Jf = Ji+L. Since E can be negative, the energy or mass of the black hole can decrease. Extracting
this energy difference is known as the Penrose process.

Since γ intersects H+, we must have that EK = E −ω+L ≥ 0. This implies that:

Jf − Ji = L =
1

ω+
(E − EK) =

1

ω+
(Mf −Mi)−

1

ω+
EK =

2Mir+
ai

(Mf −Mi)−
1

ω+
EK

=
2Mi(M

2
i +

√
M4
i − J2

i )

Ji
(Mf −Mi)−

1

ω+
EK ,

where we plugged in the expression for ω+ and r+ with respect to Mi and Ji, assuming that
E ≪ Mi and L ≪ Ji. We can use this inequality to derive properties of the so-called irreducible
mass Mirr, which is defined as follows:

Mirr(M,J) :=

√
1

2
(M2 +

√
M4 − J2).

By applying Taylor’s theorem, we can obtain

(M2
irr)f−(M2

irr)i =
∂M2

irr

∂M
|M=Mi,J=Ji(Mf−Mi)+

∂M2
irr

∂J
|M=Mi,J=Ji(Mf−Mi)(Jf−Ji)+O(E2)+O(L2)

=
Ji

2
√
M4
i − J4

i

[
2Mi(M

2
i +

√
M4
i − J2

i )

Ji
(Mf −Mi)− (Jf − Ji)

]
+O(E2) +O(M−2

i L2)
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≥ Ji

2
√
M4
i − J4

i ω+

EK +O(E2) +O(M−2
i L2) =

M2
i r+

2
√
M4
i − J4

i

EK +O(E2) +O(M−2
i L2).

Since EM−1
i ≪ 1 and LM−2

i ≪ 1, the right hand side above is positive if M−1
i EK ≫ M−2

i E2 +
M−4
i L2. In this case, Mirr is increasing as consequence of this dynamical process.
The name “irreducible mass” comes from the following inequality:

M2
irr =

1

2
(M2 +

√
M4 − J2) ≤M2,

so the mass M must be bounded below by Mirr. The Penrose process cannot lead to a decrease in
black hole mass below Mirr(Mi, Ji).

The concept of irreducible mass was introduced by Christodoulou in his PhD thesis and it
played an important role in the development of black hole thermodynamics, where M2

irr can be
interpreted as a non-decreasing entropy of the Kerr black hole.

[Exercise: Show that the area A of the spheres of intersection of H+ and {v = const.} satisfies
A = 16πM2

irr.]
The phenomenon of superradiance is also related to the ability to extract energy from a black

hole. Consider solutions ϕ to the wave equation on a (sub)-extremal Kerr background □gM,a
ϕ = 0,

such that that ϕ vanishes at the past event horizonH−
L and has energy equal to 1 at I−

R . The energy
at I+

R (that does not escape to the black hole) can then be bigger than 1: there can be an energy
amplification caused by the presence of a black hole. If we study this process in frequency space by
taking a Fourier transform of the solution to the wave equation and decomposing Φ =

∑
m∈Z ϕm,

where Φ(ϕm) = imϕm, we will see that only the following frequency range can lead to an energy
increase:

0 < amω < aω+m
2.

These are called superradiant frequencies.
The phenomenon of superradiance is intimately connected to the behaviour of null geodesics.

At the level of null geodesics, the superradiance frequency regime corresponds to the condition:

0 < aL · E <
a2L2

2Mr+
= aω+L

2.

We will refer to null geodesics satisfying this condition as “superradiant null geodesics”. For null
geodesics with E > 0, this amounts to the condition that the geodesic is rotating in the same
direction as the black hole and EK < 0. This implies in particular that the geodesic cannot cross
H+
R, where necessarily EK > 0, since K and γ̇ are causal and future-directed at H+

R.
The following proposition shows that superadiant null geodesics cannot be (unstably) trapped in

sub-extremal black hole exteriors. At the level of the wave equation, this is crucial for establishing
decay of waves on Kerr black hole backgrounds and, ultimately, the conjectured (as of the writing
of these notes) stability of all sub-extremal Kerr black holes under suitably small initial data
perturbations.

Proposition 6.8. Let γ be a superradiant null geodesic on a sub-extremal Kerr black hole. Then
γ cannot be trapped, i.e. V0(rmax)− E2 > 0.

Proof. We may assume without loss of generality that a > 0, so a < M . We have that aEKL < 0
so by the previous proposition, V0 has exactly one critical point, a maximum rmax. Denote Λ :=
Q + a2E2. We will consider three cases: I) EK ≤ ϵ

√
Λ, II) E2 ≤ ϵΛ and III) EK > ϵ

√
Λ and

E2 > ϵΛ, for some suitably small ϵ > 0.
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Case I: EK ≤ ϵ
√
Λ By the proof of the above proposition

E2 − V0(r+) = E2
K ≤ ϵ2Λ.

We also showed that
dV0
dr

(r+) ≥ 2Λ(r2+ + a2)−2(r+ −M) ≥ 4r−1
+ Λ

Hence, there exists a 0 < ϵ2 < δ such that

V0(r+(1 + δ))− E2 ≥ (2δ − ϵ2)Λ.

so in particular, V0(rmax)− E2 ≥ (2δ − ϵ2)Λ.

Case II: E2 ≤ ϵΛ As r → ∞, we have in this case (using that L2 ≤ Λ and E2 ≤ ϵΛ):

V0(r)− E2 = Λr−2 − E2 + ΛO(r−3).

Hence, there exists a R > r+ suitably large and an ϵ > 0 suitably small such that

V0(R)− E2 ≥ 1

2
ΛR−2 − E2 ≥ (

1

2
− ϵ)ΛR−2.

We conclude also in this case that V0(rmax)− E2 ≥ V0(R)− E2 ≥
(
1
2 − ϵ

)
ΛR−2.

Case III: EK > ϵ
√
Λ and E2 > ϵΛ Let r0 = aL2

2MLE . Since 0 < EL ≤ a
2Mr+

L2(1− ϵ2|L|−1
√
Λ),

we can estimate

r0 ≥ r+
1

1− ϵ2|L|−1
√
Λ

≥ (1− ϵ2)−1r+ > r+.

Furthermore, it can be shown that (Exercise):

V0(r0)− E2 =
∆(r0)

(r20 + a2)2

(
Λ− a2L2

4M2
(1 + 2Mr−1

0 + a2r−2
0 )

)
≥ ∆(r0)

4M(r20 + a2)2
(M − a)Λ

where we used that L2 ≤ Λ and 1+2Mr−1+a2r−2 ≤ 1+2Ma−1+a2a−2 = 2(1+ a
M ) = 4−2M−a

M .
Hence, V0(rmax)− E2 ≥ V0(r0)− E2 ≥ bΛ, for some b > 0.

Exercises:

1. Show that trapped null geodesics that are orthogonal to the integral curves of Φ must lie
outside the ergoregion. [Hint: Show that dV0

dr > 0 in the ergoregion.]

2. Show that in the extremal case, these null geodesics are located at r = (1 +
√
2)M . The

hypersurface {r = (1 +
√
2)M} therefore serves as an effective photon sphere in this case.

3. (⋆) Let b = |L|
E be the impact parameter associated to an untrapped null geodesic that

does not cross the event horizon. Show that bc = infQ,E
|L|
E is larger when aL < 0 than

when aL > 0. [Hint: Show and use that E2 < V0(rmax), with V0 attaining its maximum
at rmax ≥ r+.] Explain why a far-away observer on the equatorial plane (θ = π

2 ) will see a
shadow that “bulges outwards” in one direction when looking at a rotating black hole with
a uniformly distributed shell of stars surrounding both the observer and black hole, when
compared to a round spherical shadow. On which side of the black hole will the shadow
bulge outwards? You may use that, as in the Schwarzschild case, bc can be related to the
size of the shadow in the equatorial plane .

We will not discuss in detail the dynamics of timelike geodesics, but it can be shown that,
just like in Schwarzschild, there exist stable orbits around Kerr black holes. In contrast with

Schwarzschild, these can occur at r-values arbitrarily close to r = r+ for 1− |a|
M suitably small.
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7 Asymptotic flatness

Throughout the lectures, we have used the term “asymptotically flat” in a rather vague sense. In
particular, we referred to the Kerr and Reissner–Nordström spacetime families as being asymp-
totically flat. We will now give a precise definition of asymptotic flatness at the level of spacelike
hypersurfaces that we can also interpret as “initial data hypersurfaces”. We will then use this to
state some important propositions and theorems without proof.

First, we need to define the notion of extrinsic curvature:

Definition 7.1. Let (M, g) be a spacetime with a spacelike hypersurface Σ. Let N ∈ T (M) be (an
extension) of the future-directed normal vector field to Σ. The extrinsic curvature or the second
fundamental form of Σ is the tensor field k ∈ T (0,2)(Σ) defined as follows: let X,Y ∈ T (Σ), then

k(X,Y ) := g(∇XN,Y )|Σ.

[Exercise: 1) Show that k is symmetric. 2) Show that we can express k(X,Y ) = 1
2 (LNg)(X,Y )

for X,Y ∈ T (Σ).]

Definition 7.2. Let (M, g) be an 4-dimensional spacetime with a spacelike hypersurface Σ and
corresponding induced metric g. The hypersurface Σ is said to have an asymptotically flat end if
there exists an open subset Σext ⊂ Σ, such that:

1. Σext is diffeomorphic to R3 \ BR(0), with BR(0) the closed ball of radius R centred around
0 ∈ R3.

2. There exists a coordinate chart (x1, x2, x3) on Σext, such that with respect to this coordinate
chart:

gij = δij + o2(r
−α),

kij = o1(r
−α−1),

for R ∋ α > 1
2 , with δij the Kronecker delta. Here the “Little-o” notation ok(r

−α) groups
functions f : Σext → R that satisfy for I ∈ N3, |I| = k:

lim
r→∞

sup
∂Br(0)

|rα+k∂I1x1∂
I2
x2∂

I3
x3f |∂Br(0)| = 0,

for r :=
√
(x1)2 + (x2)2 + (x3)2.

We say Σ is a one-ended asymptotically flat hypersurface(-with-boundary) if Σ \Σext is compact.

7.1 Conservation of the total energy-momentum

With the notion of asymptotic flatness, we can define the following notions of total energy, linear
momentum and angular momentum associated to a one-ended asymptotically flat hypersurface:

Proposition 7.1. Let Σ be one-ended asymptotically flat hypersurface, with induced metric g and
second fundamental form k. Let (x1, x2, x3) be a global coordinate chart with respect tot which
asymptotic flatness is defined.

(i) Then the ADM energy30 E ∈ R and ADM linear momentum P ∈ R3 are defined as follows:

E :=
1

16π
lim
r→∞

∫
∂Br(0)

3∑
j,m=1

(∂jgjm − ∂mgjj)n
m r2dσ,

30The acronym “ADM” stands for Arnowitt–Deser–Misner.
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Pi := − 1

8π
lim
r→∞

∫
∂Br(0)

3∑
j=1

(kij − gij tr k)n
j r2dσ,

with r2 = x2 + y2 + z2, dσ = sin θdθdφ the standard volume form on the unit round sphere
in R3, n = (x2, x2, x3)T the outward unit normal to ∂Br(0) in R3.

The quantities E and Pi are finite and independent of the choice of coordinate chart (x1, x2, x3)
corresponding to asymptotic flatness.

(ii) If we make the stronger assumptions:

gij =

(
1 +

2M

r

)
δij +O2(r

−1−ϵ),

kij =O1(r
−2−ϵ),

for some ϵ > 0,31 then P = 0, E = M and the ADM angular momentum J ∈ R3 associated
to Σ is determined by the following well-defined expressions:

Ji := − 1

8π
lim
r→∞

∫
∂Br(0)

3∑
j,m,n=1

ϵijm(kmn − gmn tr k)x
jnn r2dσ,

with ϵijk the Levi-Civita symbol. The quantity J is independent of the choice of coordinate
chart (x1, x2, x3) corresponding to asymptotic flatness

By considering appropriate coordinates in the Kerr black hole exterior, it can be shown that
E = M and J = aM(0, 0, 1)T , with M,a the Kerr parameters. Furthermore, by making the
following global assumption: there exists a coordinate chart (t, x1, x2, x3) such that

gµν = mµν + o2(r
−α),

with α > 1
2 and mµν the Minkowski metric components with respect to Cartesian coordinates, it

can be shown that the quantities E and P are also independent of the precise choice of hypersurface
Σ: they are conserved quantities. With respect to a suitable choice of time function, the same can
be shown for J.

7.2 Black hole uniqueness theorems

In this section, we will state the black hole uniqueness theorems, which roughly state that asymp-
totically flat, stationary black hole spacetimes must be isometric to members of the Kerr family.
To state these theorems more precisely, we first need a suitable notion of stationarity.

Definition 7.3. A spacetime (M, g) with a one-ended asymptotically flat hypersurface Σ is sta-
tionary if there exists a Killing vector field T , which is timelike on Σext and complete (i.e. the
domain of its integral curves is R).

Let R × Σext ⊆ M be the spacetime region obtained by flowing along the integral curves of
T , starting from Σext. We will use this definition (in place of future null infinity), to define the
domain of outer commutations and the black hole region.

31Here we applied the “Big-O notation” Ok(r
−α), to group functions f : Σext → R satisfying

rα+k sup∂Br(0)
|∂I1

x1∂
I2
x2∂

I3
x3f |∂Br(0)| ≤ Ck for some constant Ck > 0 and I ∈ N3, |I| = k.
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Definition 7.4. We define the domain of outer communications Mext as follows:

Mext := I+(R× Σext) ∩ I−(R× Σext).

Then the black hole region BH,32 the future event horizon H+ and the past event horizon H− as
defined as follows:

BH := I+(R× Σext) \Mext,

H± := ∂Mext ∩ I±(R× Σext).

It can be shown that H± are null hypersurfaces, so they are foliated by non-intersecting null
geodesics, the “null generators” of H+.

Σ Σext

I+(R× Σext)

R× Σext

I−(R× Σext)

Mext

BH H+

H−

Figure 34: An picture of the objects introduced in Definition 7.4 in a Penrose diagram of sub-
extremal Reissner–Nordström.

Finally, we define the notion of axisymmetry of a spacetime.

Definition 7.5. A spacetime (M, g) is axisymmetric if there exists a Killing vector field Φ with
periodic integral curves and an axis of rotation, which is a two-dimensional, totally geodesic sub-
manifold33 of M at which Φ vanishes.

Now we obtain the following rigidity theorem for stationary, axisymmetric vacuum spacetimes:

Theorem 7.2 (Carter 1971, Chruściel–Costa 2008, Chruściel–Nguyen 2010). Let (M, g)
be a stationary and axisymmetric spacetime solution to Ric[g] = 0 with a one-ended asymptotically
flat hypersurface Σ. Assume additionally that

• Mext is globally hyperbolic,

• H+ is connected,

• If H+ ̸= ∅, then ∂Σ ⊂ H+ and ∂Σ intersects each null generator of H+ exactly once,

32The white hole region can be defined analogously as I−(R× Σext) \Mext.
33This means: every geodesic that is initially tangent to the submanifold, stays tangent to the submanifold.
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Then Mext is isometric to the domain of outer communications of a Kerr spacetime with |a| ≤M
(if H+ ̸= ∅) or to the Minkowski spacetime (if H+ = ∅).

One can remove the axisymmetry assumption, but this comes at a high cost: the restriction to
analytic spacetimes.

Theorem 7.3 (Hawking 1972, Chruściel–Costa 2008, Chruściel–Nguyen 2010). Let
(M, g) be a stationary and analytic spacetime solution to Ric[g] = 0 with a one-ended asymptot-
ically flat hypersurface Σ. Assume additionally that

• Mext is globally hyperbolic,

• H+ is connected,

• If H+ ̸= ∅, then ∂Σ ⊂ H+ and ∂Σ intersects each null generator of H+ exactly once,

Then Mext is isometric to the domain of outer communications of a Kerr spacetime with |a| ≤M
(if H+ ̸= ∅) or to the Minkowski spacetime (if H+ = ∅).

It remains an open problem whether the analyticity assumption can be removed in the above
problem!
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