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1 Introduction

The theory of general relativity was published by Albert Einstein in 1915 and has been a corner-
stone of our understanding of the universe since then. The principal idea is that gravity, classically
being thought of as a force, is the result of spacetime being curved and not flat. Even nowadays,
more than 100 years later, there are still a lot of unresolved questions regarding general relativity.
There is ongoing research, both from the theoretical and the experimental perspective, in order
to understand the implications and limits of the theory.

The main equations in general relativity are the Einstein field equations

𝑅𝜇𝜈 −
1
2𝑅𝑔𝜇𝑣 = 8𝜋𝑇𝜇𝜈, (1.1)

where 𝑅𝜇𝜈 is the Ricci tensor, 𝑅 the Ricci scalar, 𝑔𝜇𝜈 the spacetime metric and 𝑇𝜇𝜈 the stress-energy
tensor. In the case of a vacuum spacetime (i.e. 𝑇𝜇𝜈 = 0) these equations reduce to the Einstein
vacuum equations

𝑅𝜇𝜈 = 0. (1.2)

While these equations look simple at first glance, they constitute a system of highly non-linear
partial differential equations (PDEs). In particular, due to the non-linearities, there is not a unique
vacuum solution, as we would expect for the gravitational field in vacuum in Newtonian gravity.
Finding explicit solutions, i.e. a spacetime metric 𝑔𝜇𝜈, is very hard and only a handful are known.

It is thus remarkable that not even a year after the theory was published, an exact solution
to the Einstein vacuum equations, now called the Schwarzschild solution, was found by Karl
Schwarzschild. His solution describes the exterior spacetime of a spherically symmetric, non-
rotating matter distribution. However, his solution was initially met with scepticism due to its
singular behaviour at certain coordinate values. It was not until 1958 that the significance of this
coordinate singularity was clarified, now being understood as an event horizon — a boundary
in spacetime representing the limit beyond which no timelike or lightlike signal can escape.
The region beyond the event horizon was coined as a black hole. In 1963, Roy Kerr found a
more general solution to the Einstein equations, which describes the spacetime of an uncharged,
rotating black hole. This metric, now called the Kerr metric, depends on two parameters: The
mass 𝑀 and the angular momentum 𝑎. It is of special interest from both the observational and
theoretical perspective because it is thought of as being a good toy model for understanding
realistic black holes as observed within our cosmos [3].

While studying phenomena such as gravitational waves or black hole stability, it is beneficial to
use a coordinate system which is adapted to the causal structure of spacetime. In the so-called
double null coordinate system, the metric is expressed in terms of two null coordinates (also called
optical functions) 𝑢 and 𝑣, which are defined as solutions to the Eikonal equation 𝑔(∇𝑢, ∇𝑢) = 0.
This means that the hypersurfaces of constant 𝑢, 𝑣 are null hypersurfaces, making this coordinate
system particularly useful for dealing with the propagation of light or gravitational waves, i.e.
studying the wave equation in general, globally hyperbolic spacetimes. The double null coordinate
system often simplifies calculations and offers a more comprehensible physical interpretation
of the results. That is because in this coordinate system the vacuum Einstein equations can be
decomposed into several transport equations along the null hypersurfaces of constant 𝑢 or 𝑣. We
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will see a short glimpse of this in section 2.4. Moreover, double null coordinates are used in the
construction of Penrose diagrams, which are helpful for intuitively understanding the causal
structure of a given spacetime. These diagrams compactify infinite regions of spacetime onto
finite diagrams, while leaving the causal structure intact. Thus, making it easier to understand
the causal relationships between different events, especially in the case of black hole spacetimes.

For the aforementioned advantages, having an expression for the Kerr metric in double null
coordinates would be very useful. In Minkowski and Schwarzschild spacetime, the optical
functions can be obtained explicitly and globally (apart from 𝑟 = 0) and are thus well understood.
Due to the absence of spherical symmetry and the twisting of null geodesics, the situation is
much more elusive in the case of Kerr spacetime. While Pretorius and Israel have already studied
double null coordinates in Kerr spacetime [5], a formal proof of their global existence is not given
by them. Dafermos and Luk proved the existence of double null coordinates in the interior of
sub-extremal (𝑎 < 𝑀) Kerr spacetimes [4]. However, their proof does not include the extremal
case 𝑎 = 𝑀 or the existence in the exterior region 𝑟 > 𝑟+ of the black hole.

The goal of this thesis is to prove the existence of double null coordinates in the exterior of Kerr
spacetime, in particular in the asymptotic (far away from the event horizon) region where the
radial distance 𝑟 is large. This is equivalent to saying that the reduced mass 𝜇 = 𝑀/𝑟 is small
(< 1) and hence close to the value of Minkowski spacetime (in which it is 0). The construction
of general solutions to the Eikonal equation in Kerr spacetime relies on finding solution to a
constraint equation 𝐹 = 0. Hence, in order to show that a double null foliation indeed exists, we
want to show the existence of solutions to this constraint equation in Kerr spacetime. For this
we want to make use of the fact that we can solve the Eikonal equation in Minkowski spacetime
explicitly and therefore have a solution to this constraint equation. By the implicit function
theorem (under suitable conditions), we are assured that a solution exists locally around a point
for small enough 𝜇. The idea is to show that we can incrementally expand this region, eventually
arriving at the whole exterior. For this purpose, we will be using the so-called bootstrap method,
which can be thought of as a generalized induction principle over ℝ [6].

This thesis is structured as follows: In the beginning we define and study double null coordinates in
general spacetimes. After this we review the work of Pretorius and Israel [5] on null hypersurfaces
in Kerr spacetimes and study the simplified case of Minkowski spacetime based on the methods
used by Pretorius and Israel. In the end, building up on this work, we consider the general case of
Kerr spacetime. We proof of existence of a solution to the constraint equation in (a patch of) the
exterior region using the bootstrap method.
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2 Double Null Coordinates

In this chapter we want to study the null geometry of a given spacetime. For this we will introduce
and give a local construction of the double null coordinate system and have a short look on its
properties, in particular the form of the metric in double null coordinates. This introduction is
based on the instructive lecture notes of Stefanos Aretakis on general relativity [1].

2.1 Null Hypersurfaces

In the following let (𝑀, 𝑔) be a four-dimensional Lorentzian manifold. For the moment we do
not need to assume that 𝑔 is a solution to the Einstein equations. The geometric idea behind
the double null coordinate system is to find a foliation of 𝑀 via null hypersurfaces. Thus, it is
important to have a good understanding of the geometric properties of null hypersurfaces.

A hypersurface is called null (or lightlike) if its normal vector fields are null vector fields. In other
words: Let 𝐻 ⊂ 𝑀 be a hypersurface with unit normal vector field 𝐿 ∈ 𝑇𝐻. Then 𝐻 is a null
hypersurface if the following holds:

𝑔(𝐿, 𝐿) = 0, 𝑔(𝐿, 𝑋) = 0 ∀𝑋 ∈ 𝑇𝐻 . (2.1)

In particular this means that 𝐻 is degenerate: The normal vector field is also tangent to 𝐻. This
is a very peculiar situation which does not occur in Riemannian geometry at all. Due to this
property we have that null hypersurfaces 𝐻 are rules by null geodesics. To show this, we note
that by definition there exists a global null vector field 𝐿 on 𝐻. Hence, the integral curves defined
by 𝐿(𝛾 (𝑡)) = 𝛾 ′(𝑡) are null and ruled 𝐻. To show that they are indeed geodesics, we must show
that 𝐿 satisfies the geodesic equation ∇𝐿𝐿 = 0, where ∇ is the covariant derivative. Let 𝑋 ∈ 𝑇𝐻 be
arbitrary. By using the product rule twice we find that

𝑔(∇𝐿𝐿, 𝑋) = 𝐿(𝑔(𝐿, 𝑋)⏟⏟⏟⏟⏟⏟⏟⏟⏟
0

) − 𝑔(𝐿, ∇𝐿𝑋) = −𝑔(𝐿, ∇𝑋𝐿 + [𝐿, 𝑋]⏟
0

) = −1
2𝑋(𝑔(𝐿, 𝐿)⏟⏟⏟⏟⏟⏟⏟

0

) = 0. (2.2)

Since 𝑋 was arbitrary, we must have ∇𝐿𝐿 = 𝛼𝐿, where 𝛼 is a scalar function. This is not quite the
usual geodesic equation, but still defines a non-affinely parametrized geodesic. The geodesics
obtained this way are called the null generators of 𝐻.

Later we want to use null hypersurfaces to introduce the double null coordinate system. This
means that we need a scalar function which is somehow associated to the null hypersurface. A
way to find such a function is the following: We consider 𝐻 as the level set of a differentiable
function 𝑢∶ 𝑀 → ℝ:

𝐻 = {𝑝 ∈ 𝑀 | 𝑢(𝑝) = 𝑢0 = const.}. (2.3)

Since we want 𝐻 to be a null hypersurface, the function 𝑢 cannot be arbitrary. The condition is
that the gradient vector ∇𝑢 is null:

𝑔(∇𝑢, ∇𝑢) = 0. (2.4)

This equation is known as the Eikonal equation and a solution is called an optical function.1

1This terminology stems from the so called Eikonal (from Greek εἰκών for image) from geometrical optics, which
describes the path travelled by a light ray according to Fermat’s principle.
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A simple example of a family of null hypersurfaces are the outgoing (or ingoing) light cones
in Minkowski spacetime. In spherical coordinates (𝑡, 𝑟 , 𝜃 , 𝜑), they are defined as the level set
𝐻 = {𝑡 − 𝑟 = const}. In this case the associated optical function is given by 𝑢 = 𝑡 − 𝑟 and the
normal null vector field is given by 𝐿 = 𝜕𝑡 − 𝜕𝑟. If we consider the slices 𝑡 = const of these null
hypersurfaces, then 𝑟 must be constant as well. This leaves only the angular coordinates (𝜃, 𝜑)
free to vary. From this we can infer that 𝐻 is foliated by spacelike two-surfaces, called sections,
homeomorphic to the unit two-sphere 𝕊2. This situation is depicted in the following figure:

Figure 1: A foliation of the outgoing light cone in Minkowski spacetime via sections of constant 𝑡
and 𝑟. In this picture, one angular direction is suppressed.

This way we can also obtain a foliation of a null hypersurface in a general spacetime. A spacelike
two-surface 𝑆 ⊂ 𝐻 is called a section of 𝐻 if every null generator of 𝐻 intersects it orthogonally.
The section 𝑆 is usually assumed to be homeomorphic to 𝕊2.

2.2 Pairs of Null Hypersurfaces

Let us start by considering a spacelike two-surface 𝑆 ⊂ 𝑀, homeomorphic to 𝕊2, which is a priori
not embedded in any null hypersurface. Given 𝑆, we wish to construct a pair of null hypersurfaces
from it. First, since 𝑆 is two-dimensional and spacelike, we have that its tangent bundle 𝑇 𝑆 is
isometric to two-dimensional euclidean space at every 𝑝 ∈ 𝑆. In view of this we know that its
normal bundle must be isometric to two-dimensional Minkowski spacetime at every 𝑝 ∈ 𝑆. Thus,
we find two linearly independent null vectors 𝐿𝑝, 𝐿𝑝, which correspond to the two null directions
𝑡 ± 𝑟 = 0 in Minkowski spacetime. These null vectors can be extended to null vector fields 𝐿, 𝐿 on
the normal bundle of 𝑆. Since the metric length of a null vector vanishes, they can’t be normalized
in the usual sense. Instead, we can choose them such that

𝑔(𝐿, 𝐿) = −1. (2.5)

However, this condition does not uniquely determine 𝐿 and 𝐿, because the equation is left invariant
under the transformation 𝐿 → 𝛼𝐿 and 𝐿 → 1𝛼𝐿, where 𝛼 is a continuous, positive

2 function on 𝑆.

Given a choice of 𝐿 and 𝐿 we can construct two null hypersurfaces in the following way: We
extend both vector fields as geodesic vector fields via the geodesic equation

∇𝐿𝐿 = 0, ∇𝐿𝐿 = 0. (2.6)

This gives rise to two families of null geodesics, namely the integral curves of 𝐿 and 𝐿, which
we call 𝐺𝑝 and 𝐺𝑝 respectively. Here 𝐺𝑝 denotes the geodesic starting at 𝑝 with initial tangent
vector 𝐿𝑝 and 𝐺𝑝 denotes the geodesic starting at 𝑝 with initial tangent vector 𝐿. These geodesics

2More generally, 𝛼 could also be negative, but usually 𝐿, 𝐿 are taken to be future-directed vectors and multiplying
by a negative function would reverse their orientation.
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𝑆

𝐻

𝐻

𝐿𝐿 𝐿𝐿

Figure 2: Two null hypersurfaces generated by null vector fields 𝐿, 𝐿. In this figure, one dimension
of 𝑆 and the null hypersurfaces is suppressed.

are the null generators of two null hypersurfaces3 𝐻,𝐻, which are defined as the unions over all
𝑝 ∈ 𝑆 of the geodesic families:

𝐻 = ⋃
𝑝∈𝑆

𝐺𝑝, 𝐻 = ⋃
𝑝∈𝑆

𝐺𝑝. (2.7)

This construction is illustrated in figure 2. Generally these null hypersurfaces will not be globally
smooth. This can happen for multiple reasons: (a) The null generators intersect, forming a vertex
on which the null hypersurface is singular, or (b) The spacetime is geodesically incomplete, which
means that the null generators cannot be extended indefinitely. Here we will assume that both 𝐻
and 𝐻 are smooth, so these problems do not concern us.

We can find a foliation of 𝐻 (and similarly for 𝐻) in the following way: Let us consider an affine
parameter 𝜏 of the null generator 𝐺𝑝 such that 𝐿(𝜏) = 1 and 𝜏 |𝑆 = 0. Then the level set

𝑆𝜏 = {𝐺𝑝(𝜏 ) | 𝑝 ∈ 𝑆} (2.8)

is a section of 𝐻. We can foliate 𝐻 by the sections 𝑆𝜏:

𝐻 = ⋃
𝜏∈[0,∞)

𝑆𝜏. (2.9)

Thus, we can understand the geometry of 𝐻 by studying the evolution and properties of the
sections 𝑆𝜏. Since 𝐻 is ruled by the null generators 𝐺𝑝, if 𝑞 ∈ 𝐻, then there exists 𝑝 ∈ 𝑆, 𝜏 > 0 such
that 𝑞 = 𝐺𝑝(𝜏 ). We can find a basis for 𝑇𝑞𝐻 by first considering a basis (𝐸1, 𝐸2) of 𝑇𝑝𝑆 and then
propagating this frame along 𝐺𝑝 according to the evolution equation

[𝐿, 𝐸𝑎] = 0, (2.10)

which is called Lie propagation. This means that the Lie derivative of 𝐸𝑎 along 𝐿 vanishes. This
ensures that the frame (𝐸1, 𝐸2) stays orthogonal to 𝐿. Hence, we find that (𝐿𝑞, (𝐸1)𝑞, (𝐸2)𝑞) is a
basis for 𝑇𝑞𝐻, and we can prove the following proposition.

Proposition 2.1. The sets 𝐻 and 𝐻 as defined in equation 2.7 are null hypersurfaces.

Proof. We know that 𝑇𝐻 = span(𝐿, 𝐸1, 𝐸2) and thus dim(𝐻) = 3. We need to show that 𝐿 is
orthogonal to any 𝑋 ∈ 𝑇𝐻, i.e. 𝑔(𝐿, 𝑋) = 0 for 𝑋 = 𝐿, 𝐸1, 𝐸2. At 𝑝 ∈ 𝑆 we have 𝑔𝑝(𝐿𝑝, 𝑋𝑝) = 0,
furthermore we find that

𝐿(𝑔(𝐿, 𝑋)) = 0,

so 𝑔(𝐿, 𝑋) = 0 on all of 𝐻. The proof for 𝐻 is identical. �

3Proved in proposition 2.1
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We can define coordinates on 𝐻 ∪ 𝐻 in the following way: Let 𝑢, 𝑣 be two functions on 𝐻 ∪ 𝐻
which satisfy

𝐿(𝑣) = 1, 𝐿(𝑣) = 0, 𝑣|𝑆 = 0
𝐿(𝑢) = 0, 𝐿(𝑢) = 1, 𝑢|𝑆 = 0.

(2.11)

Then 𝑢, 𝑣 can be thought of as the affine parameters of 𝐺𝑝, 𝐺𝑝 subject to the conditions above.
In particular, since 𝐿(𝑢) = 0 and 𝑢|𝑆 = 0, we see that 𝐻 is the level set {𝑢 = 0} and similarly
𝐻 = {𝑣 = 0}. Hence, we see that 𝑢, 𝑣 are also optical functions. The sections of 𝐻 are the level sets
𝑆𝜏 = {𝑣 = 𝜏} and equivalently for 𝐻. Now we consider coordinates 𝜃1, 𝜃2 on 𝑆 and extend them
onto 𝐻 ∪ 𝐻 according to

𝐿(𝜃𝑎) = 0, 𝐿(𝜃𝑎) = 0. (2.12)

The extended functions 𝜃1, 𝜃2 are now also coordinates on the sections 𝑆𝜏 and 𝑆𝜏. We can use the
affine parameters 𝑢 and 𝑣 to obtain coordinates on 𝐻 and 𝐻 respectively. We find that (𝑢, 𝜃1, 𝜃2)
are coordinates for 𝐻, while (𝑣, 𝜃1, 𝜃2) are coordinates for 𝐻.4

2.3 Defining the Null Coordinates

Now we want to construct a (local) coordinate system a spacetime 𝑀. For this we want to
obtain a foliation of our spacetime by families of null hypersurfaces and then use the coordinates
established on the null hypersurfaces to obtain a new coordinate system for the spacetime. This
coordinate system is called the double null coordinate system and the foliation of 𝑀 by two
families of null hypersurfaces is known as the double null foliation. Because the construction is a
local one, the resulting coordinate system will generally also be a local one.

Again we consider a spacelike two-sphere 𝑆0 ⊂ 𝑀 and the out and ingoing null congruences
𝐻0, 𝐻0 generated by the null generators. Let Ω ∶ 𝐻0 ∪ 𝐻0 → ℝ be a smooth, positive function and
𝐿′, 𝐿′ be two null vector fields normal to 𝑆0. We normalize them such that

𝑔(𝐿′, 𝐿′) = −Ω−2. (2.13)

The function Ω, called the null lapse, can be regarded as a gauge choice related to the foliation
density of the sections. In the previous sections we had that Ω = 1, but since we will have families
of null hypersurfaces, we need a more general approach. Now we extend 𝐿′ and 𝐿′ as geodesic
vector fields onto 𝐻0 and respectively 𝐻0 as before:

∇𝐿′𝐿′ = 0, ∇𝐿′𝐿
′ = 0. (2.14)

This again means that the integral curves of those vector fields are null geodesics. Additionally,
we consider the conformally rescaled vector fields

𝐿 = Ω2𝐿′, 𝐿 = Ω2𝐿′, (2.15)

which satisfy 𝑔(𝐿, 𝐿) = −Ω2. Using these vector fields, we now define two functions 𝑢, 𝑣 on 𝐻0∪𝐻0
according to equation 2.11:

𝐿(𝑣) = 1, 𝐿(𝑣) = 0, 𝑣|𝑆0 = 0
𝐿(𝑢) = 0, 𝐿(𝑢) = 1, 𝑢|𝑆0 = 0,

(2.16)

4More precisely both of them are only local coordinate systems, because 𝑆 ≃ 𝕊2 possesses no global coordinate
system. To cover the complete hypersurfaces, we would have to choose suitable coordinates ̃𝜃1, ̃𝜃2, which cover the
remaining part of 𝑆.
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which means that 𝑣 and 𝑢 are affine parameters of the null geodesics defined by 𝐿 and 𝐿. Using
these functions, we can define sections of 𝐻0 and 𝐻0: Let 𝑆0,𝜏 ⊂ 𝐻0 be the embedded two-sphere
such that 𝑣 = 𝜏 and let 𝑆𝜏 ,0 ⊂ 𝐻0 be the embedded two-sphere such that 𝑢 = 𝜏. Then 𝑆𝜏 ,0 (and
similarly 𝑆0,𝜏) is a section of 𝐻0 = ⋃𝜏 𝑆𝜏.

As of now, the vector fields 𝐿′ and 𝐿′ are only defined on 𝐻0 and 𝐻0 respectively. We define 𝐿′

on 𝐻0 and 𝐿′ on 𝐻0 such that both 𝐿′ and 𝐿′ are null and satisfy 𝑔(𝐿′, 𝐿′) = −Ω−2. As we did in
equation 2.15, we define 𝐿 = Ω2𝐿′ on 𝐻0 and 𝐿 = Ω2𝐿′ on 𝐻0.

Now we can start constructing new null congruences from the sections of 𝐻0 and 𝐻0. For example,
starting at the section 𝑆0,𝑣 ⊂ 𝐻0, we extend the vector fields 𝐿′, 𝐿′ as geodesic vector fields onto
𝑀. In view of proposition 2.1, we obtain two new null hypersurfaces, which we call 𝐻0,𝑣 and 𝐻0,𝑣.
Next we can also extend the vector fields 𝐿, 𝐿 onto these hypersurfaces by defining

𝐿 = Ω2𝐿′, 𝐿 = Ω2𝐿′, where Ω2 = −𝑔(𝐿′, 𝐿′). (2.17)

Finally, we extend 𝑢, 𝑣 onto 𝐻0,𝑣 ∪ 𝐻0,𝑣 according to equation 2.11 again. And we get that

𝐻0,𝜏 = {𝑢 = 0 ∧ 𝑣 ≥ 𝜏}, 𝐻0,𝜏 = {𝑢 ≥ 0 ∧ 𝑣 = 𝜏}. (2.18)

Similarly, starting from the sphere 𝑆𝜏 ,0, we obtain two null hypersurfaces

𝐻𝜏 ,0 = {𝑢 = 𝜏 ∧ 𝑣 ≥ 0}, 𝐻𝜏 ,0 = {𝑢 ≥ 𝜏 ∧ 𝑣 = 0}, (2.19)

which means that both 𝑢, 𝑣 are optical functions, i.e. they satisfy equation 2.4. Generally, these
null hypersurfaces can intersect other null hypersurfaces. For example the intersection

𝑆𝜏 , ̃𝜏 = 𝐻𝜏 ,0 ∩ 𝐻0, ̃𝜏 (2.20)

is again a spacelike two-sphere, from which we could construct two new null hypersurfaces in
the same fashion as before. Repeating this process, we obtain a double foliation of 𝑀 by null
hypersurfaces. This construction is illustrated in figure 3.

𝑆0

𝐻0

𝑆0,𝑣1

𝐻0,𝑣1

𝑆𝑢1,𝑣1

𝐻𝑢1,0

𝑆𝑢1,0

𝐻0

𝐻𝑢1,0

𝑆0,𝑣2

𝐻0,𝑣1

𝑆𝑢2,0

Figure 3: A schematic representation of the double null foliation construction. In this picture
every point corresponds to a sphere 𝕊2.

To establish coordinates on the sphere 𝑆𝑢,𝑣, we pick a local coordinate system (𝜃1, 𝜃2) on 𝑆0. We
consider a point 𝑞 ∈ 𝑆𝑢,𝑣 and follow backwards the unique null generator of 𝐻0,𝑣, which passes
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through a point in 𝑆0,𝑣. From there we follow the null generator passing through this point to 𝑆0.
The point of intersection, call it 𝑝 ∈ 𝑆0, has coordinates 𝜃1(𝑝), 𝜃2(𝑝), which we assign to 𝑞. In this
way we also uniquely assign coordinates to any other �̃� ∈ 𝑆𝑢,𝑣 and hence find a coordinate system
for the sections 𝑆𝑢,𝑣. This method will work as long the null generators do not intersect each
other, in other words in the absence of focal points. We obtain, using the previously established
coordinate systems for the null hypersurfaces, the (local) coordinate system (𝑢, 𝑣, 𝜃1, 𝜃2) on 𝑀.
This coordinate system is called the double null coordinate system.

In our construction of the coordinates (now viewed with 𝑆0 as the starting point), we first
transported 𝜃𝑎 along the 𝐿-direction and then the 𝐿-direction. It is important to note that switching
the order would result in a different coordinate system. We have that 𝐿 = 𝜕𝑢 on 𝑀, but 𝐿 = 𝜕𝑣
only holds on 𝐻0. More generally we will have that 𝐿 = 𝜕𝑣 + 𝑏𝑎𝜕𝜃𝑎 , for some vector 𝑏 = 𝑏𝑎𝜕𝜃𝑎 and
hence

[𝐿, 𝐿] = [𝜕𝑣, 𝜕𝑢] + [𝑏𝑎𝜕𝜃𝑎 , 𝜕𝑢] = −(𝜕𝑢𝑏𝑎)𝜕𝜃𝑎 , (2.21)

which is generally non-zero. From this we see that 𝜕𝑣 is only null on 𝐻0, but spacelike elsewhere.
The vector 𝑏 = 𝑏𝑎𝜕𝜃𝑎 is called the shift vector and 𝑏𝑎 indicates how much 𝜃𝑎 changes along 𝐿. The
(𝑢-derivative of the) components of 𝑏 can be obtained by

𝑑𝜃𝑎([𝐿, 𝐿]) = −𝜕𝑢(𝑏𝑎). (2.22)

To finish this discussion we find the expression of the metric in double null coordinates.

Proposition 2.2. The metric 𝑔 in double null coordinates (𝑢, 𝑣, 𝜃1, 𝜃2) is given by

𝑔 = −2Ω2𝑑𝑢𝑑𝑣 + /𝑔𝑎𝑏(𝑑𝜃
𝑎 − 𝑏𝑎𝑑𝑣)(𝑑𝜃𝑏 − 𝑏𝑏𝑑𝑣), (2.23)

where Ω is the null lapse, 𝑏 the shift vector and /𝑔𝑎𝑏 = 𝑔(𝜕𝜃𝑎 , 𝜕𝜃𝑏) the induced metric on 𝑆𝑢,𝑣.

Proof. In order to derive this expression we compute the components 𝑔𝛼𝛽 = 𝑔(𝜕𝑥𝛼 , 𝜕𝑥𝛽) (for
𝑥𝛼 = 𝑢, 𝑣, 𝜃1, 𝜃2) of the metric. First we have that

𝑔(𝐿, 𝜕𝜃𝑎) = 0, 𝑔(𝐿, 𝜕𝜃𝑏) = 0, (2.24)

since 𝐿, 𝐿 are normal and 𝜕𝜃𝑎 is tangent to the sections 𝑆𝑢,𝑣. Also, we remember that 𝐿 and 𝐿 are
null vector fields which are normalized with respect to each other by 𝑔(𝐿, 𝐿) = −Ω2. Hence, we
obtain

𝑔𝑢𝑢 = 𝑔(𝐿, 𝐿) = 0

𝑔𝑣𝑣 = 𝑔(𝐿, 𝐿) − 2𝑔(𝐿, 𝜕𝜃𝑎) 𝑏𝑎 + 𝑔(𝜕𝜃𝑎 , 𝜕𝜃𝑏) 𝑏
𝑎𝑏𝑏 = /𝑔𝑎𝑏𝑏

𝑎𝑏𝑏

𝑔𝑢𝑣 = 𝑔(𝐿, 𝐿) − 𝑔(𝐿, 𝜕𝜃𝑎) 𝑏𝑎 = −Ω2

𝑔𝑢𝑎 = 𝑔(𝐿, 𝜕𝜃𝑎) 𝑏𝑎 = 0

𝑔𝑣𝑎 = 𝑔(𝐿, 𝜕𝜃𝑎) − 𝑔(𝜕𝜃𝑏 , 𝜕𝜃𝑎) 𝑏
𝑏 = −/𝑔𝑎𝑏𝑏

𝑏

𝑔𝑎𝑏 = 𝑔(𝜕𝜃𝑎 , 𝜕𝜃𝑏) = /𝑔𝑎𝑏,

(2.25)

which gives us

𝑔 = 𝑔𝛼𝛽 𝑑𝑥𝛼𝑑𝑥𝛽 = 2𝑔𝑢𝑣 𝑑𝑢 𝑑𝑣 + 𝑔𝑣𝑣 𝑑𝑣2 + 2𝑔𝑣𝑎 𝑑𝑣 𝑑𝜃𝑎 + 𝑔𝑎𝑏 𝑑𝜃𝑎𝑑𝜃𝑏

= −2Ω2 𝑑𝑢 𝑑𝑣 + /𝑔𝑎𝑏 (𝑏
𝑎𝑏𝑏 𝑑𝑣2 − 2𝑏𝑏 𝑑𝑣 𝑑𝜃𝑎 + 𝑑𝜃𝑎𝑑𝜃𝑏)

= −2Ω2 𝑑𝑢 𝑑𝑣 + /𝑔𝑎𝑏(𝑑𝜃
𝑎 − 𝑏𝑎 𝑑𝑣)(𝑑𝜃𝑏 − 𝑏𝑏 𝑑𝑣).

(2.26)

�
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2.4 Application: The Wave Equation in Minkowski Spacetime

Before we start working on the problem of double null coordinates in Kerr, let us consider a short
application which illustrates the usefulness of double null coordinates. They are particularly
handy to study conservation laws associated with the scalar wave equation. Here we will consider
the wave equation in Minkowski spacetime, which is given by

0 = 𝜂𝑎𝑏𝜕𝑎𝜕𝑏𝜓 = −𝜕2𝑡 𝜓 + 1
𝑟 𝜕

2
𝑟 (𝑟𝜓 ) +

1
𝑟2
/Δ𝜓 (2.27)

in spherical coordinates (𝑡, 𝑟 , 𝜃 , 𝜑). Here /Δ denotes the induced Laplacian on the two-spheres of
constant 𝑡 , 𝑟. Let us define the functions

𝑢 = 1
2(𝑡 − 𝑟), 𝑣 = 1

2(𝑡 + 𝑟), (2.28)

which are the optical functions from the usual light cones. We adapt 𝑢, 𝑣 as coordinates instead of
(𝑡, 𝑟). By the chain rule we obtain

𝜕𝑢 = 𝜕𝑡 − 𝜕𝑟, 𝜕𝑣 = 𝜕𝑡 + 𝜕𝑟, and thus − 𝜕𝑣𝜕𝑢 = −𝜕2𝑡 + 𝜕2𝑟 . (2.29)

To study the wave equation in double null coordinates, we multiply the equation with 𝑟 > 0 and
replace the 𝑡 , 𝑟-derivatives with the derivatives with respect to the null coordinates 𝑢, 𝑣. This gives
us a new PDE for 𝑟𝜓:

0 = −𝜕2𝑡 (𝑟𝜓 ) + 𝜕2𝑟 (𝑟𝜓 ) +
1
𝑟2
/Δ(𝑟𝜓 )

= −𝜕𝑣𝜕𝑢(𝑟𝜓 ) +
1
𝑟2
/Δ(𝑟𝜓 ).

(2.30)

We can integrate this equation over the sphere 𝑆𝑢,𝑣 = (𝑣 −𝑢)2 ⋅ 𝕊2 of constant 𝑢, 𝑣. Further, applying
Stokes theorem on the term with the Laplacian, we find that this integral vanishes since a sphere
has no boundary:

∫
𝑆𝑢,𝑣

/Δ(𝑟𝜓 ) 𝑑𝑆 = ∫
𝑆𝑢,𝑣

/div /grad(𝑟𝜓 ) 𝑑𝑆

= ∫
𝜕𝑆𝑢,𝑣

/grad(𝑟𝜓 ) ⋅ 𝑁 𝑑𝑠 = 0,
(2.31)

where 𝑁 is the outwards-pointing unit normal vector field on 𝑆𝑢,𝑣. We are left with

𝜕𝑣( ∫
𝑆𝑢,𝑣

𝜕𝑢(𝑟𝜓 ) 𝑑𝑆
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑄

) = 0. (2.32)

Hence, we find that the quantity 𝑄 is conserved along the null generators of 𝜕𝑣. In other words
specifying the value of 𝑄 on a sphere 𝑆𝑢0,𝑣0 fixes the value of 𝑄 on any sphere 𝑆𝑢0,𝑣, where 𝑣 > 𝑣0.
In other coordinate systems such a conservation law would be hard to identify. The reason that
the double null coordinates system is very useful for studying the wave equation is that the
characteristics of the wave equation are in fact the in and outgoing light cones, i.e. the level sets
of 𝑢 and 𝑣.

By Noether’s theorem a conservation law gives rise to a continuous symmetry. Therefore, it is
an interesting question whether there are such conservation laws along null hypersurfaces in
more complicated spacetimes; for example Schwarzschild or (extremal) Kerr spacetime. Stefanos
Aretakis showed that sub-extremal Kerr black holes do not admit such conservation laws, but
extremal ones do admit exactly one such conservation law along their event horizon [2].
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3 Kerr Spacetime and Null Hypersurfaces

From now on we are mainly interested in the specific case of Kerr spacetime. In this chapter we
will introduce the Kerr metric and study its null hypersurfaces following and filling in between
the steps of Pretorius and Israel [5].

3.1 Properties of Kerr Spacetime

The Kerr metric was first discovered by Roy Kerr in 1963. It is a solution to the vacuum Einstein
equations

Ric(𝑔) = 0 (3.1)

and describes the spacetime of an uncharged, rotating black hole. The Kerr metric characterized
by two parameters: The mass 𝑀 and the reduced angular momentum 𝑎, also called the Kerr
parameter. In the case that 𝑎 = 0, the Kerr metric reduces to the non-rotating Schwarzschild
metric. Thereby, it generalizes the non-rotating Schwarzschild solution. We will not consider the
case of over-extremal Kerr black holes, nor the case Schwarzschild, so 0 < 𝑎 ≤ 𝑀. Originally the
Kerr metric was derived in cartesian-like coordinates (called Kerr-Schild coordinates), however
nowadays, the metric is often expressed in the latter derived spherical-like Boyer-Lindquist
coordinates (𝑡, 𝑟 , 𝜃 , 𝜑) in which it is given by

𝑔 = − (1 − 2𝑀𝑟
Σ ) 𝑑𝑡2 + Σ

Δ 𝑑𝑟2 + Σ 𝑑𝜃2 + 𝑅2 sin2(𝜃) 𝑑𝜑2 − 4𝑀𝑎𝑟 sin2(𝜃)
Σ 𝑑𝜑𝑑𝑡, (3.2)

where we defined the three quantities

Σ = 𝑟2 + 𝑎2 cos2(𝜃), Δ = 𝑟2 + 𝑎2 − 2𝑀𝑟, 𝑅2 = (𝑟2 + 𝑎2)2 − 𝑎2Δ sin2(𝜃)
Σ . (3.3)

Since these coordinates resemble spherical coordinates, it seems natural that the range of the
coordinates is

𝑡 ∈ (−∞,∞), 𝑟 ∈ (0,∞), 𝜃 ∈ (0, 𝜋), 𝜑 ∈ (0, 2𝜋). (3.4)

However, the metric expression becomes singular if Δ = 0 or Σ = 0. Solving for the roots of the
polynomial Δ we find two solutions 𝑟± = 𝑀 ± √𝑀2 − 𝑎2, which define an inner and outer event
horizon. However, this singularity is only due to the choice of the coordinates and not a curvature
singularity, which can be seen by evaluating the Kretschmann scalar

𝑅𝑎𝑏𝑐𝑑𝑅𝑎𝑏𝑐𝑑 =
6𝑀2 (𝑟6 − 15𝑎2𝑟4 cos2(𝜃) + 15𝑎4𝑟2 cos4(𝜃) − 𝑎6 cos6(𝜃))

Σ6
(3.5)

at 𝑟±. On the other hand, Σ vanishes when 𝑟 = 0 and also 𝜃 = 𝜋/2. For Σ = 0 the Kretschmann
scalar diverges, and hence we see that Σ = 0 indicates a curvature singularity. Since this singularity
appears for any value of 𝜑 it has the same topological structure as a circle and is thus called ring
singularity. In this thesis we are mainly interested in the exterior region of the black hole, so we
consider the region where 𝑟 ∈ (𝑟+, ∞), which means that Δ > 0 and also that the aforementioned
singularities do not occur.

The Kerr metric exhibits a frame-dragging effect, which causes radially inwards falling observers,
not subjected to any force, to start rotating with the black hole. This becomes apparent through
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the 𝑑𝜑 𝑑𝑡 cross term in the metric. This also holds true for light rays, which means that the radial
null geodesics twist around the axis of rotation.

In the case of a non-rotating Schwarzschild black hole, the spacetime is spherically symmetric.
Due to the rotation of the Kerr black hole, the spacetime is no longer spherically symmetric, but
rather axisymmetric around the axis of rotation. The surfaces defined by 𝑟 = const are oblate
spheroids instead of spheres. For this reason, when studying null hypersurfaces in Kerr, we will
assume that they are axisymmetric instead of being spherically symmetric.

3.2 Eikonal Equation in Kerr

We want to find axisymmetric null hypersurfaces in Kerr spacetime. We want to consider these
null hypersurfaces as level sets of functions 𝑢 = 𝑢−, 𝑣 = 𝑢+ parametrized as

𝑢±(𝑡, 𝑟 , 𝜃) = 𝑡 ± 𝑟∗(𝑟 , 𝜃) = const . (3.6)

The function 𝑟∗ is called the tortoise coordinate, and is to be determined such that 𝑢, 𝑣 are optical
functions. This means that they satisfy the Eikonal equation 2.4 and 𝑟∗4 satisfies

Proposition 3.1. Let 𝑢 = 𝑡 − 𝑟∗ be a solution to the Eikonal equation in Kerr spacetime. Then the
function 𝑟∗ satisfies the equation

Δ(𝜕𝑟𝑟∗)2 + (𝜕𝜃𝑟∗)2 =
Σ𝑅2
Δ = (𝑟2 + 𝑎2)2

Δ − 𝑎2 sin2(𝜃), (3.7)

which is a first-order, non-linear PDE for 𝑟∗.

Proof. Inserting 𝑢 into the Eikonal equation we obtain that

𝑔(∇𝑢, ∇𝑢) = (𝑔−1)𝑎𝑏𝜕𝑎𝑢 𝜕𝑏𝑢

= (𝑔−1)𝑡 𝑡 + (𝑔−1)𝑟 𝑟(𝜕𝑟𝑟∗)2 + (𝑔−1)𝜃𝜃(𝜕𝜃𝑟∗)2

= 0.

(3.8)

To obtain an explicit expression for the Eikonal equation we therefore need to find the components
of the inverse metric. Since the metric is block-diagonal, the 𝑟- and 𝜃-components are easily found
to be

(𝑔−1)𝑟 𝑟 = Δ
Σ , (𝑔−1)𝜃𝜃 = 1

Σ. (3.9)

In order to obtain (𝑔−1)𝑡 𝑡 we need to invert the 𝑡 , 𝜑 block of the metric:

(
𝑔𝑡 𝑡 𝑔𝜑𝑡
𝑔𝜑𝑡 𝑔𝜑𝜑

)
−1

= 1
det 𝑔(𝑡,𝜑)

(
𝑔𝜑𝜑 −𝑔𝜑𝑡
−𝑔𝜑𝑡 𝑔𝑡 𝑡

) (3.10)

The determinant is given by

det 𝑔(𝑡,𝜑) = 𝑔𝑡 𝑡𝑔𝜑𝜑 − 𝑔2𝜑𝑡

= −(1 − 2𝑀𝑟
Σ ) 𝑅2 sin2(𝜃) − (2𝑀𝑎𝑟 sin2(𝜃)

Σ )
2

= (−𝑅2 + 2𝑀𝑟𝑅2
Σ − 4𝑀2𝑎2𝑟2 sin2(𝜃)

Σ2
) sin2(𝜃)
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= (−𝑅2 + 2𝑀𝑟
Σ2

((𝑟2 + 𝑎2)2 − 𝑎2Δ sin2(𝜃) − 2𝑀𝑟𝑎2 sin2(𝜃))) sin2(𝜃)

= (−𝑅2 + 2𝑀𝑟
Σ2

(𝑟2 + 𝑎2) (𝑟2 + 𝑎2 cos2(𝜃))) sin2(𝜃)

= −(𝑟2 + 𝑎2)2 − 𝑎2Δ sin2(𝜃) + 2𝑀𝑟(𝑟2 + 𝑎2)
Σ sin2(𝜃)

=
−(𝑟2 + 𝑎2 − 2𝑀𝑟) (𝑟2 + 𝑎2 cos2(𝜃))

Σ sin2(𝜃)

= −Δ sin2(𝜃).

Hence, we find

(𝑔−1)𝑡 𝑡 =
𝑔𝜑𝜑

det 𝑔(𝑡,𝜑)
= −𝑅2

Δ . (3.11)

After multiplying this by Σ we can separate this expression into a 𝑟- and 𝜃-dependent part:

Σ𝑅2
Δ = 1

Δ ((𝑟2 + 𝑎2)2 − 𝑎2Δ sin2(𝜃))

= (𝑟2 + 𝑎2)2
Δ − 𝑎2 sin2(𝜃).

(3.12)

Inserting these components of 𝑔−1 into the Eikonal equation gives the claimed equation. �

Constructing the General Solution

We now want to proceed solving this equation by finding a so-called complete integral and then
constructing the general solution from it. A complete integral is a family 𝑟∗(𝑟 , 𝜃 , 𝜆, 𝜇) of solutions
to equation 3.7 depending on as many parameters (here 𝜆, 𝜇) as independent variables. Here we
can take 𝜇 to be a function of 𝜆 since this function can be chosen arbitrarily: 𝜇 = 𝑓 (𝜆).

The left-hand side of the Eikonal equation consists of two positive summands while the right-hand
side consists of a difference. We can introduce a separation variable 𝑎2𝜆 such that the right-hand
side also becomes a sum of two (positive) summands:

Σ𝑅2
Δ = (𝑟2 + 𝑎2)2 − 𝑎2𝜆Δ

Δ + 𝑎2(𝜆 − sin2(𝜃)) = 𝑄(𝑟 , 𝜆)2
Δ + 𝑃(𝜃, 𝜆)2, (3.13)

where we defined

𝑄(𝑟 , 𝜆) = √(𝑟2 + 𝑎2)2 − 𝑎2𝜆Δ, (3.14)

𝑃(𝜃, 𝜆) = 𝑎√𝜆 − sin2(𝜃). (3.15)

The definition of 𝑃 suggests that we must have 𝜆 ≥ sin2(𝜃). We now consider the exact differential

𝑑𝜌 = 𝜕𝑟𝜌 𝑑𝑟 + 𝜕𝜃𝜌 𝑑𝜃 = 𝑄
Δ 𝑑𝑟 + 𝑃 𝑑𝜃. (3.16)

If we plug the values for 𝜕𝑟𝜌 and 𝜕𝜃𝜌 into equation 3.7, we see that 𝑑𝜌 is in fact the differential of a
solution 𝜌 to Eikonal equation:

Δ𝑄
2

Δ2 + 𝑃2 = Δ(𝜕𝑟𝜌)2 + (𝜕𝜃𝜌)2 =
𝑄2

Δ + 𝑃2. (3.17)
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In principle, since 𝑄 and 𝑃 are known, we can obtain a particular solution to equation 3.7 by
integrating 𝑑𝜌 along a path. Since the differential is exact, the result is solely dependent on the
endpoints and not the specific path. Thus, we can integrate 𝑑𝜌 separately in 𝑟 and 𝜃5:

𝜌(𝑟 , 𝜃 , 𝜆) =
𝑟

∫
∞

𝑄(𝑟 ′, 𝜆)
Δ(𝑟 ′) 𝑑𝑟 ′ +

𝜃

∫
0

𝑃(𝜃′, 𝜆) 𝑑𝜃′ + 𝐶(𝜆), (3.19)

which is the complete integral we were looking for. However, this is only a particular solution
and not the general solution in which we are interested in because we want to be able to assert
general boundary conditions.

We can construct the general solution using envelopes. An envelope is a function 𝑟∗(𝑟 , 𝜃) which
at each point is tangent to some member of the family 𝜌(𝑟 , 𝜃 , 𝜆). To find an envelope we promote
the parameter 𝜆 to be an independent variable. Since we consider 𝜆 as an independent parameter
now, the differential 3.16 obtains an extra term:

𝑑𝜌 = 𝑄(𝑟 , 𝜆)
Δ(𝑟) 𝑑𝑟 + 𝑃(𝜃, 𝜆) 𝑑𝜃 + 𝑎2

2 𝐹(𝑟 , 𝜃 , 𝜆) 𝑑𝜆 with 𝑎2
2 𝐹 = 𝜕𝜆𝜌, (3.20)

For 𝑟∗ to be an envelope we must have that the differential in equations 3.16 and 3.20 are the same,
which requires that 𝐹(𝑟 , 𝜃 , 𝜆) = 0. This means that we cannot choose 𝜆 arbitrarily, but rather
that we have an implicit relationship between 𝑟 , 𝜃 and 𝜆. We come back to this relationship in a
moment.

By taking 𝜆-derivative of 𝜌 we find an expression for 𝐹. First we compute the 𝜆-derivatives of 𝑃
and 𝑄:

𝜕𝑄(𝑟 , 𝜆)
𝜕𝜆 = − 𝑎2Δ(𝑟)

2𝑄(𝑟 , 𝜆) ,
𝜕𝑃(𝜃, 𝜆)

𝜕𝜆 = 𝑎2
2𝑃(𝜃, 𝜆) . (3.21)

Thus, we obtain6 (and by replacing 𝐶 by 𝑎2/2 𝑓):

𝐹(𝑟 , 𝜃 , 𝜆) = 2
𝑎2
𝜕𝜆𝜌 =

∞

∫
𝑟

1
𝑄(𝑟 ′, 𝜆)𝑑𝑟

′ +
𝜃

∫
0

1
𝑃(𝜃′, 𝜆) 𝑑𝜃

′ + 𝑓 ′(𝜆). (3.22)

The relation between 𝑟 , 𝜃 and 𝜆 is as follows: Since we must impose 𝐹 = 0, 𝜆 is fixed by specifying
𝑟 , 𝜃. We want to consider 𝜆 to be function 𝜆(𝑟 , 𝜃) such that 𝐹(𝑟 , 𝜃 , 𝜆(𝑟 , 𝜃)) = 0. Then

𝑟∗(𝑟 , 𝜃) = 𝜌(𝑟 , 𝜃 , 𝜆(𝑟 , 𝜃)) (3.23)

is an envelope to the complete integral which we found and thus also is the general solution
to the Eikonal equation for axisymmetric null hypersurfaces. In principle, if 𝜆(𝑟 , 𝜃) were to be
known, we could find 𝑟∗ explicitly in terms of 𝑟 , 𝜃 and also the integration constant 𝑓 (𝜆(𝑟 , 𝜃)).

5Here we made the choice of integrating in the 𝑟-direction starting from infinity. We need to be very careful about
this since the integral does not convergence when integrating starting from infinity:

∞

∫
𝑟

𝑄(𝑟 ′, 𝜆)
Δ(𝑟 ′) 𝑑𝑟 ′ =

∞

∫
𝑟

√(𝑟 ′2 + 𝑎2)2 − 𝑎2𝜆Δ
𝑟 ′2 + 𝑎2 − 2𝑀𝑟 ′

𝑑𝑟 ′ ∼
∞

∫
𝑟

𝑟 ′2
𝑟 ′2

𝑑𝑟 ′ = ∞. (3.18)

Thus, we actually need to start integrating from some fixed 𝑟∞ > 𝑟+ in order to ensure that the integral converges. As
will become clear later, the limit 𝑟∞ → ∞ can be still be taken by choosing appropriate boundary conditions. Hence,
we agree to still write ∞, while keeping in mind this caveat.

6In this case the 𝑟-integral converges even when integrating to infinity.
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The Implicit Function Theorem

The construction of envelopes relies on the fact that 𝐹(𝑟 , 𝜃 , 𝜆(𝑟 , 𝜃)) = 0. The question is whether
there are any solutions to this equation and whether such a function even exists locally in the
neighbourhood of a point. This question is answered by the implicit function theorem (IFT):
Suppose that 𝐹 has a zero at a point (𝑟0, 𝜃0, 𝜆0) and also 𝜕𝜆𝐹 ≠ 0 at that point. Then there exists a
(small) neighbourhood around this point for such a function 𝜆(𝑟 , 𝜃) exists. However, this function
is not given explicitly, but only implicitly in terms of 𝐹(𝑟 , 𝜃 , 𝜆(𝑟 , 𝜃)) = 0. We will concern ourselves
with this question in the last chapter.

For the remainder of this chapter we will assume that a global solution 𝜆(𝑟 , 𝜃) to the equation
𝐹(𝑟 , 𝜃 , 𝜆(𝑟 , 𝜃)) = 0 exists and study the general form of the Kerr metric in double null coordinates.

3.3 Kerr Metric in Double Null Coordinates

In order to express the Kerr metric in double null coordinates we want to replace the Boyer-
Lindquist 𝑟-coordinate with 𝑟∗ as defined in equation 3.23. However, since 𝑟∗ does not only depend
on 𝑟, but also on the coordinate 𝜃, just changing coordinates from 𝑟 to 𝑟∗ would yield an undesirable
𝑑𝑟∗𝑑𝜃 cross term in the metric. We can overcome this problem by also replacing 𝜃 as a coordinate.
In fact replacing 𝜃 by 𝜆 is the coordinate change we are looking for:

Proposition 3.2. The gradients of the functions 𝑟∗(𝑟 , 𝜃) and 𝜆(𝑟 , 𝜃) are orthogonal with respect to
the Kerr metric:

𝑔(∇𝑟∗, ∇𝜆) = 0. (3.24)

Before we can proof this and show that 𝜆 is indeed the coordinate we are looking for, we need to
know the 𝑟- and 𝜃-derivatives of 𝑟∗ and 𝜆 in order to compute the metric product.

Proposition 3.3. Let Λ = 𝜕𝜆𝐹. The partial derivatives of 𝑟∗(𝑟 , 𝜃) and 𝜆(𝑟 , 𝜃) are given by

𝜕𝑟∗
𝜕𝑟 = 𝑄

Δ,
𝜕𝑟∗
𝜕𝜃 = 𝑃, (3.25)

𝜕𝜆
𝜕𝑟 = 1

Λ𝑄,
𝜕𝜆
𝜕𝜃 = − 1

Λ𝑃. (3.26)

Proof. The derivatives of 𝑟∗ can be read of the definition of 𝑑𝑟∗ (eq. 3.25). In order to obtain the
derivatives of 𝜆 we consider the differential of 𝐹:

𝑑𝐹 = Λ 𝑑𝜆 − 1
𝑄 𝑑𝑟 + 1

𝑃 𝑑𝜃. (3.27)

Imposing 𝐹(𝑟 , 𝜃 , 𝜆(𝑟 , 𝜃)) = 0 yields that 𝑑𝐹 = 0. Since now 𝜆 depends on 𝑟 and 𝜃, we can also
express 𝑑𝜆 in terms of 𝑑𝑟 and 𝑑𝜃 to find

0 = Λ (𝜕𝜆𝜕𝑟 𝑑𝑟 + 𝜕𝜆
𝜕𝜃 𝑑𝜃) − 1

𝑄 𝑑𝑟 + 1
𝑃 𝑑𝜃

= (Λ𝜕𝜆
𝜕𝑟 −

1
𝑄) 𝑑𝑟 + (Λ𝜕𝜆

𝜕𝜃 + 1
𝑃) 𝑑𝜃.

Since we assumed a global solution 𝜆(𝑟 , 𝜃) to the constraint equation, the implicit function theorem
guarantees that Λ ≠ 0. As both functions in front of 𝑑𝑟 and 𝑑𝜃 must vanish, we get the above
results. �
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With this we are now able to prove proposition 3.2:

Proof of proposition 3.2. Since both 𝑟∗ and 𝜆 solely depend on 𝑟 and 𝜃, they need to be orthogonal
with respect to the metric 𝜎 = Σ (𝑑𝑟2/Δ + 𝑑𝜃2), which is the induced metric on the two-surfaces
of constant 𝑡 , 𝜑. We have that

𝜎(∇𝑟∗, ∇𝜆) = (𝜎−1)𝑎𝑏(𝑑𝑟∗)𝑎(𝑑𝜆)𝑏
= (𝜎−1)𝑟 𝑟 𝜕𝑟𝑟∗ 𝜕𝑟𝜆 + (𝜎−1)𝜃𝜃 𝜕𝜃𝑟∗ 𝜕𝜃𝜆

= Δ
Σ (− 1

Λ𝑄
𝑄
Δ) +

1
Σ ( 1

Λ𝑃𝑃)

= − 1
ΛΣ + 1

ΛΣ = 0

(3.28)

Hence ∇𝑟∗ and ∇𝜆 are orthogonal. �

The orthogonality of the gradients means that the coordinate lines intersect orthogonally, and
we do not get a (𝑟∗, 𝜆) cross term in the metric. Thus, we are interested in the coordinate change
(𝑡, 𝑟 , 𝜃 , 𝜙) → (𝑡, 𝑟∗, 𝜆, 𝜑). Since 𝑡 and 𝜑 are left invariant under this change, we can focus on the
transformation (𝑟 , 𝜃) → (𝑟∗, 𝜆) and look at the induced metric 𝜎. In order to express 𝜎 in terms of
the new coordinates we need to invert the differential relations (eqs. 3.25 and 3.26) between (𝑟 , 𝜃)
and (𝑟∗, 𝜆).

Proposition 3.4. Let 𝐿 = Λ𝑃𝑄. The partial derivatives of 𝑟(𝑟∗, 𝜆) and 𝜃(𝑟∗, 𝜆) are given by.

𝜕𝑟
𝜕𝑟∗

= 𝑄Δ
Σ𝑅2

, 𝜕𝑟
𝜕𝜆 = −𝐿𝑃Δ

Σ𝑅2
, (3.29)

𝜕𝜃
𝜕𝑟∗

= − 𝑃Δ
Σ𝑅2

, 𝜕𝜃
𝜕𝜆 = 𝐿𝑄

Σ𝑅2
. (3.30)

Proof. To obtain these formulas we invert the Jacobian matrix

𝐽 = (
𝑄/Δ 𝑃

1/(Λ𝑄) −1/(Λ𝑃)
) , (3.31)

with the row entries given by eqs. 3.25 and 3.26. We have that

(
𝜕𝑟/𝜕𝑟∗ 𝜕𝑟/𝜕𝜆
𝜕𝜃/𝜕𝑟∗ 𝜕𝜃/𝜕𝜆

) = 𝐽−1 = 1
det 𝐽 (

−1/(Λ𝑃) −𝑃
−1/(Λ𝑄) 𝑄/Δ

) (3.32)

The determinant is given by

det 𝐽 = − 𝑄
ΔΛ𝑃 − 𝑃

𝑄Λ = −𝑄2 + Δ𝑃2
Λ𝑄𝑃Δ = Σ𝑅2

𝐿Δ , (3.33)

and therefore

𝐽−1 = 𝐿Δ
Σ𝑅2

(
−1/(Λ𝑃) −𝑃
−1/(Λ𝑄) 𝑄/Δ

) = 1
Σ𝑅2

(
𝑄Δ −𝐿𝑃Δ
𝑃Δ 𝐿𝑄

) . (3.34)

�
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With the knowledge of the derivatives can rewrite 𝜎 in (𝑟∗, 𝜆)-coordinates. From the previous
proposition we know that

Σ𝑅2 𝑑𝑟 = 𝑄Δ 𝑑𝑟∗ − 𝐿Δ𝑃 𝑑𝜆, (3.35)

Σ𝑅2 𝑑𝜃 = 𝑃Δ 𝑑𝑟∗ + 𝐿𝑄 𝑑𝜆. (3.36)

We can plug this into 𝜎 to obtain

𝜎 = Σ
𝑅2

𝑑𝑟2 + Σ 𝑑𝜃2

= 1
Σ2𝑅4

( Σ
𝑅2

(𝑄Δ 𝑑𝑟∗ − 𝐿Δ𝑃 𝑑𝜆)2 + Σ (𝑃Δ 𝑑𝑟∗ + 𝐿𝑄 𝑑𝜆)2)

= 1
Σ𝑅4

( 1Δ (𝑄2Δ2 𝑑𝑟2∗ + 𝐿2𝑃2Δ2 𝑑𝜆2) + (𝑃2Δ2 𝑑𝑟2∗ + 𝐿2𝑄2 𝑑𝜆2))

= 1
Σ𝑅4

(Δ(𝑄2 + Δ𝑃2) 𝑑𝑟2∗ + 𝐿2(𝑄2 + Δ𝑃2) 𝑑𝜆2)

= 1
𝑅2

(Δ 𝑑𝑟2∗ + 𝐿2 𝑑𝜆2) .

(3.37)

We can also rewrite the (𝑡, 𝜑) part of the Kerr metric in the following way: First we define the so
called ZAMO (zero angular momentum observer) angular velocity 𝜔𝐵 as

𝜔𝐵 = −
𝑔𝜑𝑡
𝑔𝑡 𝑡 =

2𝑀𝑎𝑟
Σ𝑅2

, (3.38)

which describes the frame dragging velocity of the black hole. Using this quantity, we then have

𝑔𝑡 𝑡 𝑑𝑡2 + 𝑔𝜑𝜑 𝑑𝜑2 + 2𝑔𝜑𝑡 𝑑𝜑 𝑑𝑡

= 𝑔𝑡 𝑡 𝑑𝑡2 −
𝑔2𝜑𝑡
𝑔𝜑𝜑 𝑑𝑡2 +

𝑔2𝜑𝑡
𝑔𝜑𝜑 𝑑𝑡2 + 𝑔𝜑𝜑 𝑑𝜑2 + 2𝑔𝜑𝑡 𝑑𝜑 𝑑𝑡

= 1
𝑔𝜑𝜑 ( 𝑔𝜑𝜑𝑔𝑡 𝑡 − 𝑔2𝜑𝑡⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

det 𝑔(𝑡,𝜑)

) 𝑑𝑡2 + 𝑔𝜑𝜑 (𝜔2
𝐵 𝑑𝑡2 + 𝑑𝜑2 − 2𝜔𝐵 𝑑𝜑 𝑑𝑡)

= − Δ
𝑅2

𝑑𝑡2 + 𝑅2 sin2(𝜃) (𝑑𝜑 − 𝜔𝐵 𝑑𝑡)2 ,

(3.39)

which is the metric in the form of a co-rotating reference frame with angular velocity 𝜔𝐵. Now
we add both metrics in order to obtain the full Kerr metric in (𝑡, 𝑟∗, 𝜆, 𝜑)-coordinates:

𝑔 = − Δ
𝑅2

(𝑑𝑡2 − 𝑑𝑟2∗) +
𝐿2

𝑅2
𝑑𝜆2 + 𝑅2 sin2(𝜃) (𝑑𝜑 − 𝜔𝐵 𝑑𝑡)2 . (3.40)

From here we reintroduce the two null coordinates we started with in the Eikonal equation and
obtain the Kerr metric in double null coordinates.

Proposition 3.5. Let 𝑢 = (𝑡 − 𝑟∗)/2, 𝑣 = (𝑡 + 𝑟∗)/2. Also define a new angular coordinate
𝜑∗ = 𝜑 − ℎ(𝑢, 𝑣) such that 𝜕𝑢ℎ = 𝜔𝐵, 𝜕𝑣ℎ = −𝜔𝐵. The form of the Kerr metric in double null
coordinates (𝑢, 𝑣, 𝜆, 𝜑∗) is

𝑔 = −4 Δ
𝑅2

𝑑𝑢 𝑑𝑣 + 𝐿2

𝑅2
𝑑𝜆2 + 𝑅2 sin2(𝜃) (𝑑𝜑∗ − 2𝜔𝐵 𝑑𝑣)2 , (3.41)
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Furthermore, the null lapse function Ω, the shift vector 𝑏 and the induced metric /𝑔 on the two-surfaces
of constant 𝑢, 𝑣 are

Ω2
Kerr=

2Δ
𝑅2

, 𝑏𝜆Kerr = 0, 𝑏𝜑∗Kerr = 2𝜔𝐵

/𝑔Kerr
𝜆𝜆 = 𝐿2

𝑅2
, /𝑔Kerr

𝜑∗𝜑∗
= 𝑅2 sin2(𝜃), /𝑔Kerr

𝜆𝜑∗
= 0.

(3.42)

Proof. The differentials of 𝑢 and 𝑣 are given by

𝑑𝑢 = 𝑑𝑡 − 𝑑𝑟∗
2 , 𝑑𝑣 = 𝑑𝑡 + 𝑑𝑟∗

2 , (3.43)

which means that 𝑑𝑡2 − 𝑑𝑟2∗ = (𝑑𝑡 + 𝑑𝑟∗)(𝑑𝑡 − 𝑑𝑟∗) = 4 𝑑𝑢 𝑑𝑣. The metric in (𝑢, 𝑣, 𝜆, 𝜑)-coordinates
becomes

𝑔 = −4 Δ
𝑅2

𝑑𝑢 𝑑𝑣 + 𝐿2

𝑅2
𝑑𝜆2 + 𝑅2 sin2(𝜃) (𝑑𝜑 − 𝜔𝐵 (𝑑𝑢 + 𝑑𝑣))2 . (3.44)

This expression looks similar to the general expression for the metric in double null coordinates
However, due to the appearance of 𝑑𝑢 in the rotational term, it is not quite of the same form as
in equation 2.23. We can overcome this obstacle by introducing a new azimuthal coordinate 𝜑∗,
which we define as

𝜑∗(𝑢, 𝑣, 𝜑) = 𝜑 − ℎ(𝑢, 𝑣), (3.45)

where ℎ(𝑢, 𝑣) is a differentiable function subject to the conditions

𝜕ℎ
𝜕𝑢 = 𝜔𝐵,

𝜕ℎ
𝜕𝑣 = −𝜔𝐵. (3.46)

These two conditions imply that the shift is coordinate-time independent: 𝜕ℎ/𝜕𝑡 = 0. We thereby
have

𝑑𝜑 = 𝑑𝜑∗ + 𝜔𝐵(𝑑𝑢 − 𝑑𝑣), (3.47)

which we use to rewrite the non-null part of the metric and obtain the Kerr metric in double null
coordinates. Inserting equation 3.47 into the metric (ignoring the 𝑑𝑢 𝑑𝑣 term) gives

𝐿2

𝑅2
𝑑𝜆2 + 𝑅2 sin2(𝜃) (𝑑𝜑 − 𝜔𝐵 (𝑑𝑢 + 𝑑𝑣))2

= 𝐿2

𝑅2
(𝑑𝜆 − 0 𝑑𝑣)2 + 𝑅2 sin2(𝜃) (𝑑𝜑∗ − 2𝜔𝐵 𝑑𝑣)2 .

(3.48)

Comparing this to equation 2.23 (with 𝜃1 = 𝜆 and 𝜃2 = 𝜑∗), we obtain the values for 𝑏 and /𝑔.
Furthermore, the null lapse can be read off from the 𝑑𝑢 𝑑𝑣 term: −2Ω2 = −4Δ/𝑅2. �

The coordinates are well-behaved as long the null geodesics associated to 𝑢, 𝑣 don’t intersect, that
is to say that no caustics develop along them. The occurrence of a caustic is indicated by the
vanishing of the volume form on the two-spheres: √det /𝑔 = 0, where the induced determinant is
given by

det /𝑔 = 𝐿2

𝑅2
𝑅2 sin2(𝜃) = Λ2𝑃2𝑄2 sin2(𝜃). (3.49)

Later we will show that this coordinate system indeed exists by showing the existence 𝜆(𝑟 , 𝜃) in
the exterior region of the black hole. In order to do this we will first study the simplified case in
which the mass 𝑀 vanishes.
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4 Minkowski Space

In this section we will study the case of vanishing mass𝑀. We will see that in this case we obtain
the flat Minkowski metric in a special curvilinear coordinate system. We will first explicitly find
the relation of these coordinates to spherical coordinates. Then we use the envelope method
from the last chapter to obtain the same results in order to verify that this method produces
the expected results and to find the correct boundary conditions. At last, we will look at the
properties of the quantities 𝑃, 𝑄, 𝜕𝜆𝐹 in Minkowski spacetime. We will need them later in the
proof of existence of the angular function 𝜆.

4.1 Oblate Spheroidal Coordinates

If we plug 𝑀 = 0 into the Kerr metric in Boyer-Lindquist coordinates we are left with the
following:

𝑔0 = −𝑑𝑡2 + 𝑟2 + 𝑎2 cos2(𝜃)
𝑟2 + 𝑎2

𝑑𝑟2 + (𝑟2 + 𝑎2 cos2(𝜃)) 𝑑𝜃2 + (𝑟2 + 𝑎2) sin2(𝜃) 𝑑𝜑2. (4.1)

In this case the cross-term vanishes and we are left with a diagonal metric. This is expected since
for 𝑀 = 0 there is no source for the frame dragging effect and hence 𝜔𝐵 vanishes. However, this
metric looks different from the Minkowski metric in spherical coordinates. Hence, we can infer
that 𝑟 is not the same as the spherical radial distance and 𝜃 not the usual spherical polar angle. To
distinguish between them, we will denote the radial distance as 𝑟∗ and the polar angle as 𝜃∗. In
spherical coordinates (𝑡, 𝑟∗, 𝜃∗, 𝜑) the Minkowski metric is given by

𝜂 = −𝑑𝑡2 + 𝑑𝑟2∗ + 𝑟2∗ (𝑑𝜃2∗ + sin2(𝜃∗) 𝑑𝜑2) . (4.2)

As we will see, the metric obtained from setting𝑀 = 0 in the Kerr metric is the Minkowski metric
expressed in so-called oblate spheroidal coordinates. We construct this coordinate system by first
considering elliptic coordinates in the 𝑥𝑧-plane, then rotating this plane around the 𝑧-axis.

Elliptical Coordinates

The elliptic coordinate system is a two-dimensional coordinate system in which we use ellipses
and hyperbolas to specify a position on the plane. Furthermore, we choose the ellipses such that
every ellipse has the same focal points, which we will fix at (𝑥, 𝑧) = (±𝑎, 0).

The usual way to define an ellipse is via the equation

𝑥2

𝐴2 + 𝑧2

𝐵2
= 1, (4.3)

where 𝐴 and 𝐵 are the semi-major/minor-axis of the ellipse. An often used parametrization is

𝑥 = 𝐴 sin(𝜃), 𝑧 = 𝐵 cos(𝜃), (4.4)

where 𝜃 ∈ (0, 2𝜋). Since the focal points are fixed at (±𝑎, 0), 𝐴 and 𝐵 can not be chosen freely.
The relation between the axes and the focal points is

𝑎2 = 𝐴2 − 𝐵2. (4.5)
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We want to use those ellipses to construct a coordinate system in ℝ2 and obtain a foliation by
ellipses. In order to specify a specific leaf of the foliation we define the coordinate function
𝑟(𝑝) = 𝐵(𝑝), where 𝐵(𝑝) is the semi-minor-axis of the unique ellipse going through the point
𝑝 = (𝑥, 𝑧). To specify the position on this ellipse, we use the parameter 𝜃 from the parametrization
of the ellipse (eq. 4.4). As we already noted in the Kerr metric with vanishing mass, this 𝜃 is not
the azimuthal angle 𝜃∗. Only in the case when 𝑎 = 0 the ellipses reduce to circles and 𝜃 = 𝜃∗. In
the general case we can construct 𝜃 via the point construction of de La Hire (depicted in figure 4).

With this we find a parametrization of (𝑥, 𝑧) in terms of (𝑟 , 𝜃):

𝑥 = √𝑟2 + 𝑎2 sin(𝜃),

𝑧 = 𝑟 cos(𝜃).
(4.6)

By noting that 𝑥2 − 𝑧2 = 𝑎2 sin2(𝜃), we see that the coordinate lines of constant 𝜃 are hyperbolas.
The coordinate lines of the coordinate system (𝑟 , 𝜃) are sketched in figure 5.

𝑧

𝑥

𝜃
𝜃∗ 𝑝

Figure 4: The point construction of an el-
lipse due to de La Hire.

𝑧

𝑥

Figure 5: A sketch of the elliptic coordinate
system in the 𝑥𝑧-plane. The two black dots
indicate the focal points of the ellipses.

Oblate Spheroidal Coordinates

We can extend this two-dimensional coordinate system into a three-dimensional one by rotating
the plane around the axis separating the two foci, which in our case is the 𝑧-axis. We thereby
introduce a new coordinate 𝜑 ∈ (0, 2𝜋) (the polar angle) and obtain a parametrization of (𝑥, 𝑦, 𝑧)
in terms of (𝑟 , 𝜃 , 𝜑):

𝑥 = √𝑟2 + 𝑎2 sin(𝜃) cos(𝜑)

𝑦 = √𝑟2 + 𝑎2 sin(𝜃) sin(𝜑)

𝑧 = 𝑟 cos(𝜃).

(4.7)

Since both 𝜃 and 𝜑 range between 0 to 2𝜋, this parametrization is twofold. Thus, we need to
restrict either 𝜃 or 𝜑. It is customary to restrict 𝜃 to 𝜃 ∈ (0, 𝜋). The coordinate system (𝑟 , 𝜃 , 𝜑) is
called the oblate spheroidal coordinate system since the surfaces of constant 𝑟 are oblate spheres.
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Relation to Spherical Coordinates

We now want to find the relation between the oblate and spherical coordinates. In the spherical
coordinate system the parametrization of (𝑥, 𝑦, 𝑧) is

𝑥 = 𝑟∗ sin(𝜃∗) cos(𝜑)

𝑦 = 𝑟∗ sin(𝜃∗) sin(𝜑)

𝑧 = 𝑟∗ cos(𝜃∗).

(4.8)

To find an expression for 𝑟∗ and 𝜃∗ in terms of the oblate coordinates we can compare the two
different parametrizations of (𝑥, 𝑦, 𝑧) and obtain

𝑟2∗ = 𝑥2 + 𝑦2 + 𝑧2 = (𝑟2 + 𝑎2) sin2(𝜃) + 𝑟2 cos2(𝜃) = 𝑟2 + 𝑎2 sin2(𝜃) (4.9)

and

tan2(𝜃∗) =
𝑥2 + 𝑦2

𝑧2
= (𝑟2 + 𝑎2) sin2(𝜃)

𝑟2 cos2(𝜃)
= 𝑟2 + 𝑎2

𝑟2
tan2(𝜃). (4.10)

From the second equation we see that 𝜃∗ ≥ 𝜃 with 𝜃∗ = 𝜃 only for 𝜃 = 0, 𝜋/2, 𝜋. With this we
can finally show that the metric 𝑔0 is in fact the Minkowski metric. For this we compute the
differentials of 𝑟∗ and 𝜃:

𝑑𝑟∗ =
𝜕𝑟∗
𝜕𝑟 𝑑𝑟 + 𝜕𝑟∗

𝜕𝜃 𝑑𝜃 = 𝑟

√𝑟2 + 𝑎2 sin2(𝜃)
𝑑𝑟 + 𝑎2 sin(𝜃) cos(𝜃)

√𝑟2 + 𝑎2 sin2(𝜃)
𝑑𝜃

= 𝑟
𝑟∗ 𝑑𝑟 + 𝑎2 sin(𝜃) cos(𝜃)

𝑟∗ 𝑑𝜃 (4.11)

𝑑𝜃∗ =
𝜕𝜃∗
𝜕𝑟 𝑑𝑟 + 𝜕𝜃∗

𝜕𝜃 𝑑𝜃 = − 𝑎2 sin(𝜃) cos(𝜃)

√𝑟2 + 𝑎2(𝑟2 + 𝑎2 sin2(𝜃))
𝑑𝑟 + 𝑟√𝑟2 + 𝑎2

𝑟2 + 𝑎2 sin2(𝜃)
𝑑𝜃

= −𝑎2 sin(𝜃) cos(𝜃)

√𝑟2 + 𝑎2𝑟2∗
𝑑𝑟 + 𝑟√𝑟2 + 𝑎2

𝑟2∗
𝑑𝜃 (4.12)

We can plug these differentials into the expression of theMinkowskimetric in spherical coordinates
(ignoring the 𝑡- and 𝜑-terms) to obtain

𝑑𝑟2∗ + 𝑟2∗ 𝑑𝜃2∗ = ( 𝑟
𝑟∗ 𝑑𝑟 + 𝑎2 sin(𝜃) cos(𝜃)

𝑟∗ 𝑑𝜃)
2
+ 𝑟2∗ (−

𝑎2 sin(𝜃) cos(𝜃)

√𝑟2 + 𝑎2𝑟2∗
𝑑𝑟 + 𝑟√𝑟2 + 𝑎2

𝑟2∗
𝑑𝜃)

2

= 𝑟2(𝑟2 + 𝑎2) + 𝑎2 sin2(𝜃) 𝑎2 cos2(𝜃)
𝑟2∗ (𝑟2 + 𝑎2)

𝑑𝑟2 + 𝑎2 sin2(𝜃) 𝑎2 cos2(𝜃) + 𝑟2(𝑟2 + 𝑎2)
𝑟2∗

𝑑𝜃2

+ 1
𝑟2∗

(𝑟𝑎2 sin(𝜃) cos(𝜃) − 𝑟𝑎2 sin(𝜃) cos(𝜃)√𝑟2 + 𝑎2

√𝑟2 + 𝑎2
) 𝑑𝑟 𝑑𝜃

= 1
𝑟2∗

(𝑟
4 + 𝑟2𝑎2(sin2(𝜃) + cos2(𝜃)) + 𝑎2 sin2(𝜃) 𝑎2 cos2(𝜃)

𝑟2 + 𝑎2
) 𝑑𝑟2 (4.13)

+ 1
𝑟2∗

(𝑎2 sin2(𝜃) 𝑎2 cos2(𝜃) + 𝑟4 + 𝑟2𝑎2(sin2(𝜃) + cos2(𝜃))) 𝑑𝜃2
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= (𝑟2 + 𝑎2 sin2(𝜃))(𝑟2 + 𝑎2 cos2(𝜃))
𝑟2∗ (𝑟2 + 𝑎2)

𝑑𝑟2 + (𝑟2 + 𝑎2 sin2(𝜃))(𝑟2 + 𝑎2 cos2(𝜃))
𝑟2∗

𝑑𝜃2

= 𝑟2 + 𝑎2 cos2(𝜃)
𝑟2 + 𝑎2

𝑑𝑟2 + (𝑟2 + 𝑎2 cos2(𝜃)) 𝑑𝜃2, (4.14)

which is precisely the 𝑟 , 𝜃-part of 𝑔0. In order to rewrite the 𝑑𝜑2-term we need an expression for
sin2(𝜃∗), which we find to be

sin2(𝜃∗) =
tan2(𝜃∗)

1 + tan2(𝜃∗)
= 𝑟2 + 𝑎2

𝑟2 + 𝑎2 sin2(𝜃)
sin2(𝜃). (4.15)

Hence, we find

𝑟2∗ sin2(𝜃∗) = (𝑟2 + 𝑎2 sin2(𝜃)) 𝑟2 + 𝑎2

𝑟2 + 𝑎2 sin2(𝜃)
sin2(𝜃) = (𝑟2 + 𝑎2) sin2(𝜃). (4.16)

With this we have shown that the Kerr metric in Boyer-Lindquist coordinates is indeed the
Minkowski metric expressed in oblate spheroidal coordinates.

4.2 Solving the Eikonal Equation

We now proceed to solve the Eikonal equation giving the derivation of Pretorius and Israel in
detail. For vanishing mass 𝑀, 𝑄 simplifies to

𝑄0(𝑟 , 𝜆) = √(𝑟2 + 𝑎2)2 − 𝑎2𝜆(𝑟2 + 𝑎2) = √(𝑟2 + 𝑎2)(𝑟2 + 𝑎2(1 − 𝜆)), (4.17)

while 𝑃 left unchanged because it is independent of 𝑀. In the following we will assume that
sin2(𝜃) < 𝜆 < 1. In this case we can find a change of variables from 𝑟 → 𝜓 such that the two
integrals occurring in the expression of 𝐹 are of the same form.

By looking at the definition of the constraint function 𝐹 (eq. 3.22), we can infer that the desired
function 𝜓(𝑟 , 𝜆) must satisfy

𝑑𝑟
𝑄0(𝑟 , 𝜆)

=
𝑑𝜓

𝑃(𝜓 , 𝜆) . (4.18)

An implicit solution to this differential equation is given by

𝑟(𝜓 , 𝜆)2 =
𝑎2(1 − 𝜆) sin2(𝜓 )

𝜆 − sin2(𝜓 )
, (4.19)

which can be verified by an explicit calculation: First we find that

𝑄0(𝑟(𝜓 , 𝜆), 𝜆) =
√
(
𝑎2(1 − 𝜆) sin2(𝜓 )

𝜆 − sin2(𝜓 )
+ 𝑎2) (

𝑎2(1 − 𝜆) sin2(𝜓 )
𝜆 − sin2(𝜓 )

+ 𝑎2(1 − 𝜆))

= 𝑎2√
((1 − 𝜆) sin2(𝜓 ) + (𝜆 − sin2(𝜓 ))) ((1 − 𝜆) sin2(𝜓 ) + (1 − 𝜆)(𝜆 − sin2(𝜓 )))

𝜆 − sin2(𝜓 )

=
𝑎2𝜆√1 − 𝜆 cos(𝜓 )

𝜆 − sin2(𝜓 )
.

(4.20)
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Taking the 𝜓-derivative of 𝑟 gives

𝜕𝑟
𝜕𝜓 =

√

𝜆 − sin2(𝜓 )
𝑎2 sin2(𝜓 )(1 − 𝜆)

(1 − 𝜆)(𝜆 − sin2(𝜓 )) + sin2(𝜓 )(1 − 𝜆)
𝜆 − sin2(𝜓 )

sin(𝜓 ) cos(𝜓 )

=
𝑎2𝜆√1 − 𝜆 cos(𝜓 )

𝑎√𝜆 − sin2(𝜓 ) (𝜆 − sin2(𝜓 ))

=
𝑄0(𝑟(𝜓 , 𝜆), 𝜆)

𝑃(𝜓 , 𝜆) .

(4.21)

Using the change of variables from 𝑟 to 𝜓, we obtain the new expression for 𝐹0:

𝐹0(𝑟 , 𝜃 , 𝜆) =

𝜓(∞,𝜆)

∫
𝜓(𝑟 ,𝜆)

𝑑𝜓 ′

𝑃(𝜓 ′, 𝜆) +
𝜃

∫
0

𝑑𝜃′
𝑃(𝜃′, 𝜆) + 𝑓 ′(𝜆)

=
𝜃

∫
𝜓(𝑟 ,𝜆)

𝑑𝜓 ′

𝑃(𝜓 ′, 𝜆) +

𝜓(∞,𝜆)

∫
0

𝑑𝜓 ′

𝑃(𝜓 ′, 𝜆) + 𝑓 ′(𝜆).

Solving equation 4.19 for 𝜓 we find

𝜓(𝑟 , 𝜆) = arcsin (
√

𝜆𝑟2

𝑟2 + 𝑎2(1 − 𝜆)
) , (4.22)

from which we see that the limit when 𝑟 → ∞ indeed exists and is given by

lim
𝑟→∞

𝜓(𝑟 , 𝜆) = lim
𝑟→∞

arcsin (
√

𝜆
1 + 𝑎2/𝑟2(1 − 𝜆)

) = arcsin (√𝜆) . (4.23)

This is a bit problematic since this implies that

lim
𝑟→∞

𝑃(𝜓(𝑟 , 𝜆), 𝜆) = √𝜆 − sin2(arcsin(√𝜆)) = 0, (4.24)

which means, in the limit as 𝑟 → ∞, that the integrand of the second integral blows up at the upper
integration limit for any value of 𝜆. However, by choosing an appropriate boundary condition we
can absorb this divergence. Remembering that we actually integrate to a fixed value 𝑟∞ instead of
∞, we can to this by stipulating that

𝜓(𝑟∞,𝜆)

∫
0

𝑑𝜓 ′

𝑃(𝜓 ′, 𝜆) + 𝑓 ′(𝜆) = 0. (4.25)

Since we can do this for any choice of 𝑟∞, we can define 𝑓 ′(𝜆) as a limit of a family of functions
̃𝑓 ′(𝜆, 𝑟∞) such that

lim
𝑟∞→∞

(

𝜓(𝑟∞,𝜆)

∫
0

𝑑𝜓 ′

𝑃(𝜓 ′, 𝜆) +
̃𝑓 ′(𝜆, 𝑟∞)) = 0 (4.26)
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holds. Of course the limit itself is not well-defined (it diverges), however in the sum the divergent
parts cancel. In this special sense, we can still consider the limit of 𝑟∞ → ∞. By imposing this
boundary condition (specifically 4.25), we obtain that

𝐹0(𝑟 , 𝜃 , 𝜆) =
𝜃

∫
𝜓(𝑟 ,𝜆)

𝑑𝜓 ′

𝑃(𝜓 ′, 𝜆) . (4.27)

From this form of 𝐹0 we can directly find a solution 𝜆0:

Proposition 4.1. Let 𝐹0(𝑟 , 𝜃 , 𝜆) be defined as in equation 4.27. Then a solution to the constraint
equation 𝐹0(𝑟 , 𝜃 , 𝜆) = 0 is given by

𝜆 = 𝜆0(𝑟 , 𝜃) =
𝑟2 + 𝑎2

𝑟2 + 𝑎2 sin2(𝜃)
sin2(𝜃). (4.28)

Proof. We want to find a solution to the equation

𝜃

∫
𝜓(𝑟 ,𝜆)

𝑑𝜓 ′

𝑃(𝜓 ′, 𝜆) = 0. (4.29)

By our assumptions we know that 𝑃 is a positive function and hence the only way that this
integral vanishes is when the integration domain itself is empty. This is precisely the case if

𝜃 = 𝜓(𝑟 , 𝜆) = 𝜓(𝑟 , 𝜆0(𝑟 , 𝜃)), (4.30)

which means that the implicit relationship between 𝑟 , 𝜃 , 𝜆 is governed by the function 𝜓. Replacing
𝜓 with 𝜃 in equation 4.19 and solving for 𝜆, we obtain the stated result for 𝜆0(𝑟 , 𝜃). �

With 𝜆0(𝑟 , 𝜃) known explicitly, we can now find an explicit expression for 𝑟∗ by integrating
equation 3.16 to obtain

Proposition 4.2. In Minkowski spacetime the tortoise coordinate is given by

𝑟∗(𝑟 , 𝜃) = √𝑟
2 + 𝑎2 sin2(𝜃). (4.31)

Proof. Inserting 𝜆0(𝑟 , 𝜃) into 𝑃(𝜃, 𝜆) gives

𝑃(𝜃, 𝜆0(𝑟 , 𝜃)) = 𝑎 sin(𝜃)
√

𝑟2 + 𝑎2

𝑟2 + 𝑎2 sin2(𝜃)
− 1 = 𝑎2 sin(𝜃) cos(𝜃)

√𝑟2 + 𝑎2 sin2(𝜃)

= 𝜕
𝜕𝜃√𝑟

2 + 𝑎2 sin2(𝜃), (4.32)

from which we can obtain a first expression for 𝑟∗ by integrating 𝑑𝜌 (eq. 3.16) with respect to 𝜃:

𝑟∗(𝑟 , 𝜃) =
𝜃

∫
0

𝑃(𝜃′, 𝜆0(𝑟 , 𝜃′)) 𝑑𝜃′ = √𝑟
2 + 𝑎2 sin2(𝜃) + 𝐶(𝑟). (4.33)
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Taking the derivative with respect to 𝑟 gives

𝜕𝑟∗
𝜕𝑟 = 𝑟

√𝑟2 + 𝑎2 sin2(𝜃)
+ 𝐶′(𝑟). (4.34)

From (𝑑𝜌)𝑟 = 𝑄/Δ(eq. 3.16) we also know

𝜕𝑟∗
𝜕𝑟 = 𝑄0(𝑟 , 𝜆0(𝑟 , 𝜃))

Δ0(𝑟)
= √(𝑟

2 + 𝑎2) (𝑟2 + 𝑎2(1 − 𝜆0(𝑟 , 𝜃)))

𝑟2 + 𝑎2

= (
𝑟2 (𝑟2 + 𝑎2 sin2(𝜃)) + 𝑎2 (𝑟2 + 𝑎2 sin2(𝜃) − (𝑟2 + 𝑎2) sin2(𝜃))

(𝑟2 + 𝑎2) (𝑟2 + 𝑎2 sin2(𝜃))
)
1/2

= ( 𝑟2

𝑟2 + 𝑎2 sin2(𝜃)

𝑟2 + 𝑎2 (sin2(𝜃) + cos2(𝜃))
𝑟2 + 𝑎2

)
1/2

= 𝑟

√𝑟2 + 𝑎2 sin2(𝜃)
. (4.35)

Comparing the two expressions for 𝜕𝑟𝑟∗, we find that 𝐶′(𝑟) = 0 and hence 𝐶(𝑟) = const. We can
choose this constant to be zero, which has the effect that 𝑟∗ = 𝑟 at 𝜃 = 0, 𝜋. �

What is left is to relate the polar angle 𝜃∗ with newly found 𝜆0. By defining the polar angle 𝜃∗
implicitly via 𝜆0 = sin2(𝜃∗), we find that

sin2(𝜃∗) =
𝑟2 + 𝑎2

𝑟2 + 𝑎2 sin2(𝜃)
sin2(𝜃) (4.36)

and hence also reproduce the relation between tan(𝜃) and tan(𝜃∗):

tan2(𝜃∗) =
sin2(𝜃∗)

1 − sin2(𝜃∗)
= (𝑟2 + 𝑎2) sin2(𝜃)

𝑟2 + 𝑎2 sin2(𝜃) − (𝑟2 + 𝑎2) sin2(𝜃)
= 𝑟2 + 𝑎2

𝑟2
tan2(𝜃). (4.37)

It is important to note that the derived coordinate function 𝜆0 is only defined for 𝜃 ∈ (0, 𝜋/2) since
𝜕𝜃𝜆0 = 0 on the equator 𝜃 = 𝜋/2. Hence, by using 𝜆 as a coordinate, we only can establish a local
coordinate system on the northern hemisphere of the spheres of constant 𝑡 ± 𝑟∗. To construct a
global (ignoring the usual complications which arise from using spherical coordinates) coordinate
system, we instead adapt 𝜃∗ as a coordinate extend and extend 𝜃∗ onto 𝜃 ∈ (0, 𝜋) by defining

𝜃∗(𝑟 , 𝜋/2) = 𝜋/2 and 𝜃∗(𝑟 , 𝜃) = 𝜃∗(𝑟 , 𝜋 − 𝜃) for 𝜃 ∈ (𝜋/2, 𝜋). (4.38)

By solving the Eikonal equation we thus confirm the expression for the tortoise coordinate 𝑟∗ (in
the case the spherical distance) and the polar angle 𝜃∗. Thereby we have shown that this method
of solving the Eikonal equation, using the boundary conditions above, produces the expected
results in Minkowski spacetime.

4.3 Properties of 𝑸, 𝑷, 𝝏𝝀𝑭 in Minkowski

With 𝜆 = 𝜆0(𝑟 , 𝜃) and 𝑟∗(𝑟 , 𝜃) known for 𝜃 ∈ (0, 𝜋/2), we can find the form of the quantities 𝑃, 𝑄0
and 𝜕𝜆𝐹0 in Minkowski spacetime.
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Proposition 4.3. Let 𝜆0(𝑟 , 𝜃) be the solution to the equation 𝐹0(𝑟 , 𝜃 , 𝜆0(𝑟 , 𝜃)) = 0 and let 𝑃(𝜃, 𝜆),
𝑄0(𝑟 , 𝜆) be defined according to equations 3.14 and 3.15. Then we have that

𝑄0(𝑟 , 𝜆0(𝑟 , 𝜃)) =
𝑟(𝑟2 + 𝑎2)

√𝑟2 + 𝑎2 sin2(𝜃)
(4.39)

𝑃(𝜃, 𝜆0(𝑟 , 𝜃)) =
𝑎2 sin(𝜃) cos(𝜃)

√𝑟2 + 𝑎2 sin2(𝜃)
. (4.40)

Proof. Since 𝑟∗(𝑟 , 𝜃) = 𝜌(𝑟 , 𝜃 , 𝜆0(𝑟 , 𝜃)) is known, we can simply take the 𝑟- and 𝜃-derivatives of 𝑟∗
in order to directly obtain 𝑄0(𝑟 , 𝜆0(𝑟 , 𝜃)) and 𝑃(𝜃, 𝜆0(𝑟 , 𝜃)):

𝑄0(𝑟 , 𝜆0(𝑟 , 𝜃)) = Δ0
𝜕𝑟∗
𝜕𝑟 = (𝑟2 + 𝑎2) 𝑟

√𝑟2 + 𝑎2 sin2(𝜃)

𝑃(𝜃, 𝜆0(𝑟 , 𝜃)) =
𝜕𝑟∗
𝜕𝜃 = 𝑎2 sin(𝜃) cos(𝜃)

√𝑟2 + 𝑎2 sin2(𝜃)

�

Also, we can find an expression for the 𝜆-derivative of 𝐹0, which is an important quantity in the
applicability of the implicit function theorem.

Proposition 4.4. Let 𝜆0(𝑟 , 𝜃) be the solution to the equation 𝐹0(𝑟 , 𝜃 , 𝜆0(𝑟 , 𝜃)) = 0. Then the 𝜆-
derivative of 𝐹0 is given by

(𝜕𝜆𝐹0)(𝑟 , 𝜃 , 𝜆0(𝑟 , 𝜃)) = −
(𝑟2 + 𝑎2 sin2(𝜃))5/2

2𝑎2𝑟2(𝑟2 + 𝑎2)
1

sin2(𝜃) cos2(𝜃)
< 0, (4.41)

Proof. 𝐹0(𝑟 , 𝜃 , 𝜆) is given by

𝐹0(𝑟 , 𝜃 , 𝜆) =
𝜃

∫
𝜓(𝑟 ,𝜆)

𝑑𝜓 ′

𝑃(𝜓 ′, 𝜆) . (4.42)

Taking the 𝜆-derivative gives

(𝜕𝜆𝐹0)(𝑟 , 𝜃 , 𝜆) = −𝑎2
2

𝜃

∫
𝜓(𝑟 ,𝜆)

𝑑𝜓 ′

𝑃(𝜓 ′, 𝜆)3
−

(𝜕𝜆𝜓)(𝑟 , 𝜆)
𝑃(𝜓 (𝑟 , 𝜆), 𝜆) . (4.43)

Since we are interested in the 𝜆 = 𝜆0(𝑟 , 𝜃) case and 𝜓(𝑟 , 𝜆0(𝑟 , 𝜃)) = 𝜃, the integral term vanishes.
For the second term we have sin2(𝜓 ) = 𝑟2𝜆/(𝑟2 + 𝑎2(1 − 𝜆)) and hence find

𝑃(𝜓(𝑟 , 𝜆), 𝜆) = 𝑎
√
𝜆 − 𝑟2𝜆

𝑟2 + 𝑎2(1 − 𝜆)
=

𝑎2√𝜆(1 − 𝜆)

√𝑟2 + 𝑎2(1 − 𝜆)
. (4.44)
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Furthermore, the derivative of 𝜓 is given by

𝜕𝜆𝜓 =
𝜕𝜆 sin2(𝜓 )

2 sin(𝜓 ) cos(𝜓 )

= 1

2 sin(𝜓 )√1 − sin2(𝜓 )
𝜕𝜆 (

𝑟2𝜆
𝑟2 + 𝑎2(1 − 𝜆)

)

= 𝑟2 + 𝑎2(1 − 𝜆)

2√𝑟2𝜆√𝑟2(1 − 𝜆) + 𝑎2(1 − 𝜆)

𝑟2(𝑟2 + 𝑎2)
𝑟2 + 𝑎2(1 − 𝜆)

= 𝑟√𝑟2 + 𝑎2

𝑟2 + 𝑎2(1 − 𝜆)
1

2√𝜆(1 − 𝜆)
.

(4.45)

Putting the pieces together we obtain

(𝜕𝜆𝐹0)(𝑟 , 𝜃 , 𝜆0(𝑟 , 𝜃)) = − ( 𝑟(𝑟2 + 𝑎2)
𝑟2 + 𝑎2(1 − 𝜆0)

)
1/2

1
2𝑎2𝜆0(1 − 𝜆0)

(4.46)

To get the stated expression we note that

𝑟2 + 𝑎2(1 − 𝜆0) =
𝑄0(𝑟 , 𝜆0)2

𝑟2 + 𝑎2
= 𝑟2(𝑟2 + 𝑎2)

𝑟2 + 𝑎2 sin2(𝜃)
. (4.47)

Thus, inserting 𝜆0(𝑟 , 𝜃) gives us

(𝜕𝜆𝐹0)(𝑟 , 𝜃 , 𝜆0(𝑟 , 𝜃)) = −√𝑟
2 + 𝑎2 sin2(𝜃) (𝑟2 + 𝑎2 sin2(𝜃))2

2𝑎2(𝑟2 + 𝑎2) sin2(𝜃) 𝑟2 cos2(𝜃)

= −
(𝑟2 + 𝑎2 sin2(𝜃))

5/2

2𝑎2𝑟2(𝑟2 + 𝑎2) sin2(𝜃) cos2(𝜃)
.

(4.48)

�

From these expressions we see that 𝜕𝜆𝐹0 is non-zero for any values of 𝑟 , 𝜃 and hence, in the view
of the implicit function theorem, the calculations we did previously were justified. However, we
also see that 𝜕𝜆𝐹0 blows up if 𝜃 → 0, 𝜋/2, which underlines the fact that our coordinate system in
only defined on the patch for which 𝜃 ∈ (0, 𝜋/2). This is because if 𝜕𝜆𝐹0 diverges, then the IFT is
no longer applicable.

In the general case with non-vanishing mass, 𝜕𝜆𝐹 also diverges as 𝜃 → 0, 𝜋/2. We want to show
that the divergent behaviour is the same as in this case which would mean (this becomes clear in
the next chapter) that we could also find coordinates on the 𝜃 ∈ (0, 𝜋/2) patch in the general case.
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5 The General Case – Proof of Existence

In this chapter we want to proof that there exist solutions to the constraint equation for non-
vanishing mass 𝑀. From here on we will instead work with the reduced mass 𝜇 = 𝑀/𝑟, which
has the advantage that it is a dimensionless quantity, and thus we can make assumptions about
its smallness. If we assume 𝜇 to be small, due to 𝑀 being fixed, then this assumption means that
we are looking at a region far away from the black hole.

We also promote 𝜇 to a variable, which means not treating 𝜇 merely as a passive parameter, but
rather enlarging our variable space from (𝑟 , 𝜃) to (𝑟 , 𝜃 , 𝜇) and looking for solutions 𝜆(𝑟 , 𝜃 , 𝜇) to the
equation

𝐹(𝑟 , 𝜃 , 𝜆(𝑟 , 𝜃 , 𝜇), 𝜇) = 0. (5.1)

Comparing the new notation to the last chapter we have that 𝐹0(𝑟 , 𝜃 , 𝜆) = 𝐹(𝑟 , 𝜃 , 𝜆, 0) and also
𝜆0(𝑟 , 𝜃) = 𝜆(𝑟 , 𝜃 , 0). To ease up the notation later we will often drop the 𝑟 and 𝜃-dependence of
𝜆(𝑟 , 𝜃 , 𝜇) and write 𝜆𝜇 instead. In contrast, a 𝜆 without any subscript will refer to a general 𝜆 not
dependent on 𝑟 , 𝜃 and 𝜇.

5.1 Boundary Conditions

The function 𝐹 depends on an arbitrary function 𝑓 ′(𝜆) which we need to fix. In the Minkowski
case, after making the coordinate substitution 𝑟 → 𝜓, we made the choice of equation 4.25, which
had the effect of absorbing the divergent behaviour (in the limit of 𝑟∞ → ∞) of 𝐹 into the boundary
condition. In the limit we have

lim
𝑟→∞

𝜓(𝑟 , 𝜆) = arcsin(√𝜆) = 𝜃∗(𝜆). (5.2)

As a result, since 𝜓(𝑟 , 𝜆0) = 𝜃, we obtain that lim𝑟→∞ 𝜃∗(𝑟 , 𝜃) = 𝜃. That is to say that asymptotically
the angles 𝜃 and 𝜃∗ become the same. Since Kerr spacetime is asymptotically flat, i.e. is close
to the Minkowski metric for large 𝑟, we want to have the same property to hold there. This is
ensured if we impose the same boundary condition for 𝐹, i.e.

𝑓 ′(𝜆) = −

𝜓(𝑟∞,𝜆)

∫
0

𝑑𝜓 ′

𝑃(𝜓 ′, 𝜆) , (5.3)

where we remember that we actually integrate to 𝑟∞ in order to ensure the convergence of this
and also the complete integral 𝜌. By choosing this condition, 𝐹 is given by

𝐹(𝑟 , 𝜃 , 𝜆, 𝜇) =

𝑟∞

∫
𝑟

1
𝑄𝜇(𝑟 ′, 𝜆)

𝑑𝑟 ′ −

𝜓(𝑟∞,𝜆)

∫
𝜃

1
𝑃(𝜃′, 𝜆)𝑑𝜃

′. (5.4)

In the Minkowski case the boundary condition was precisely chosen such that we could still
consider the limit 𝑟∞ → ∞. Here, wewould like to consider this limit likewise, since the expressions
become more convenient. However, here the transformation 𝑟 → 𝜓 does not reduce the expression
for 𝐹 to the same form as before. Thus, we are not able to do this directly.

As we will see in a moment, in the bootstrap argument, we are interested in estimating differences
of 𝐹’s and 𝜕𝜆𝐹’s. When estimating such differences, we would like to get rid of the auxiliary
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variable 𝑟∞ in order to obtain simpler estimates. In particular, when estimating the 𝑟-integral, the
integral still converges when taking the limit 𝑟∞ → ∞. This results in slightly weaker bounds,
which are still enough for our argument later. As for the second integral, we will see that we
only need to work with differences in 𝜆 at 𝜇 = 0. This means that in this case we can just use the
Minkowski expressions, for which we know the limiting expression.

5.2 Idea of the Proof – Bootstrapping

Let us consider the point (𝑟0, 𝜃0, 𝜆0, 0). Since we know that

𝐹(𝑟0, 𝜃0, 𝜆0(𝑟0, 𝜃0), 0) = 0 and (𝜕𝜆𝐹)(𝑟0, 𝜃0, 𝜆0(𝑟0, 𝜃0), 0) ≠ 0, (5.5)

the IFT guarantees that there exists an open domain 𝑈 ∋ (𝑟0, 𝜃0, 0) together with a function
𝜆 ∶ 𝑈 → ℝ for which 𝐹(𝑟 , 𝜃 , 𝜆(𝑟 , 𝜃 , 𝜇), 𝜇) = 0 is satisfied on 𝑈. Notably this already shows that
there exist local solutions for non-vanishing 𝜇. However, we want to show that the domain 𝑈 is
in fact the whole 𝜃 ∈ (0, 𝜋/2) patch (where 𝜇 is suitably small).

A Motivating Example

Before we concern ourselves with the proof of this proposition, let us consider a simpler example
to illustrate this problem. Let us consider the function

𝐹(𝑥, 𝑦) = 𝑥2 + 𝑦2 − 1 = 0, (5.6)

which is the locus of the unit circle in ℝ2. Suppose that we are not able to solve this equation for
𝑦 directly. If we want to show the existence of a function 𝑦(𝑥) such that 𝐹(𝑥, 𝑦(𝑥)) = 0, we first
need a starting point (𝑥0, 𝑦0) which satisfies the constraint equation. In our case we can choose
(𝑥0, 𝑦0) = (0, 1). The 𝑦-derivative at this point is given by (𝜕𝑦𝐹)(𝑥0, 𝑦0) = 2 ≠ 0. With this the
IFT guarantees that there exists a neighbourhood 𝑈0 ∋ 𝑥0 and a function 𝑦(𝑥) on 𝑈0 such that
𝐹(𝑥, 𝑦(𝑥)) = 0 on 𝑈0. However, the IFT does not make any statements about the size of 𝑈0. In
principle, we can incrementally increase the size of 𝑈0 to larger neighbourhoods 𝑈1 ⊂ ⋯ ⊂ 𝑈𝑛 ⊂ …
as long as the requirements for the IFT are fulfilled. In particular, we need to check if 𝜕𝑦𝐹 ≠ 0 since
the IFT also does not give information about the value of the derivative on the neighbourhood.
We find the maximal domain to be (−1, 1) because we have that (𝜕𝑦𝐹)(±1, 0) = 0 and thus the IFT

does not hold at those two points. In our case we can find 𝑦(𝑥) explicitly to be 𝑦(𝑥) = ±√1 − 𝑥2,
from which we see that 𝑦(𝑥) only describes the upper (or lower) part of the circle. This example
is depicted the following sketch:

𝑥

𝑦

𝑈0
𝑈1

(𝑥0, 𝑦0)

(1, 0)

(𝜕𝑦𝐹)(1, 0) = 0

(−1, 0)

(𝜕𝑦𝐹)(−1, 0) = 0

(0, 0)
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Bootstrapping

In our proof in Kerr spacetime we also want to show that we can expand a given domain. We
will be using a technique called the bootstrap method to conduct the proof. The assumptions
of the bootstrap principle formally captures our idea to incrementally increase the size of the
domain for which we have a solution to the constraint equation. The bootstrap method works as
follows: Assume we want to prove that an inequality holds on a region 𝑋. Then we can show
that this inequality is true by assuming it and showing that we can infer a stronger inequality
from it. Of course, we are not able to just freely assume the inequality we are trying to prove. We
also need to provide a base case for which we independently know the correctness. In this sense
the bootstrap principle can be thought of as a continuous version of induction. More generally
the bootstrap principle can be formulated in the following way [6]:

Proposition 5.1. Let 𝑋 ⊂ ℝ𝑛 be connected and consider two statements (hypothesis and conclusion)
𝐻, 𝐶∶ 𝑋 → ℤ2 which we call true if they are 1. Assume that

(a) If 𝐻(𝑥) is true then so is 𝐶(𝑥)

(b) If 𝐶(𝑥) is true then there exists a neighbourhood 𝑈 ∋ 𝑥 such that 𝐻(𝑦) is true for all 𝑦 ∈ 𝑈

(c) For any sequence (𝑥𝑛) ⊂ 𝑋 converging to 𝑥 such that 𝐶(𝑥𝑛) is true then also 𝐶(𝑥) is true

(d) There exists 𝑥0 ∈ 𝑋 such that 𝐻(𝑥0) is true.

Then 𝐻(𝑥) is true for all 𝑥 ∈ 𝑋.

Proof. Combining assumptions (a) and (d) we know that there exists 𝑥0 such that 𝐶(𝑥0) is true.
Furthermore, from combining (b) and (a) we know that 𝐶(𝑥) is true on an open neighbourhood of
𝑥0. From assumption (c) it follows that this neighbourhood is also closed and hence, since it is
non-empty, must be 𝑋 and thus the hypothesis is true on 𝑋. �

Structure of the Proof

In our case we want to show that the requirements for the IFT are met. In particular, we need to
show that (𝜕𝜆𝐹)(𝑟 , 𝜃 , 𝜆, 𝜇) ≠ 0 on 𝑈 and where 𝜆 ∈ [𝜆𝜇, 𝜆0]7. Because we do not know 𝜆𝜇 explicitly,
we generally do not have a simple expression for 𝜕𝜆𝐹 as in the Minkowski case from which we
could easily infer its properties. Hence, we want to assume that (𝜕𝜆𝐹)(𝑟 , 𝜃 , 𝜆, 𝜇) is close enough to
(𝜕𝜆𝐹)(𝑟 , 𝜃 , 𝜆0, 0) ≠ 0 such that it doesn’t vanish. Since we can split 𝜕𝜆𝐹 as

(𝜕𝜆𝐹)(𝑟 , 𝜃 , 𝜆, 𝜇) = (𝜕𝜆𝐹)(𝑟 , 𝜃 , 𝜆0, 0) − ((𝜕𝜆𝐹)(𝑟 , 𝜃 , 𝜆0, 0) − (𝜕𝜆𝐹)(𝑟 , 𝜃 , 𝜆, 𝜇)) , (5.7)

this is ensured if we assume that an inequality (the bootstrap assumption) of the form

sup
𝜆

|(𝜕𝜆𝐹)(𝑟 , 𝜃 , 𝜆, 𝜇) − (𝜕𝜆𝐹)(𝑟 , 𝜃 , 𝜆0, 0)| ≤ 𝜀 |(𝜕𝜆𝐹)(𝑟 , 𝜃 , 𝜆0, 0)|, (5.8)

with 𝜀 < 1 (say 𝜀 = 1/3) holds. From this assumption we can then infer a bound on the distance
between 𝜆𝜇 and 𝜆0:

|𝜆𝜇 − 𝜆0| ≲ 𝜇 = small. (5.9)

7A priori, we do not know whether 𝜆0 ≥ 𝜆𝜇 or 𝜆𝜇 ≥ 𝜆0. In lemma 5.4 we show that the former is true. Interestingly,
our proof will still work even without this lemma
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Using the smallness of |𝜆 − 𝜆0| we can in turn improve the bound of equation 5.8 which “closes
the bootstrap” to finish the proof.

5.3 The Detailed Proof

We now turn to the details of the bootstrap argument.

Preliminary Observations

Let us start by finding a bound for the difference of the 𝐹’s evaluated at 𝜆0 and 𝜆𝜇 at same 𝜇:

Lemma 5.1.
|𝐹 (𝑟 , 𝜃 , 𝜆𝜇, 𝜇) − 𝐹(𝑟 , 𝜃 , 𝜆0, 𝜇)| ≤

𝑎2

3𝑟3
𝜇. (5.10)

Proof. First we note that we can just consider the difference at fixed 𝜆 = 𝜆0 since

|𝐹 (𝑟 , 𝜃 , 𝜆𝜇, 𝜇) − 𝐹(𝑟 , 𝜃 , 𝜆0, 𝜇)| = |𝐹 (𝑟 , 𝜃 , 𝜆0, 0) − 𝐹(𝑟 , 𝜃 , 𝜆0, 𝜇)|, (5.11)

as both 𝐹(𝑟 , 𝜃 , 𝜆𝜇, 𝜇) = 𝐹(𝑟 , 𝜃 , 𝜆0, 0) = 0. We have that

|𝐹 (𝑟 , 𝜃 , 𝜆0, 0) − 𝐹(𝑟 , 𝜃 , 𝜆0, 𝜇)| ≤
∞

∫
𝑟

|
|
|

1
𝑄0(𝑟 ′, 𝜆0)

− 1
𝑄𝜇(𝑟 ′, 𝜆0)

|
|
|
𝑑𝑟 ′, (5.12)

with 𝑄𝜇 given by

𝑄𝜇(𝑟 , 𝜆0) = √(𝑟
2 + 𝑎2)2 − 𝑎2𝜆0Δ𝜇 = √𝑄0(𝑟 , 𝜆0)

2 + 2𝑎2𝑟2𝜆0𝜇 ≥ 𝑄0(𝑟 , 𝜆0). (5.13)

Using the expressions for 𝑄0(𝑟 , 𝜆0) and 𝜆0, we can bound the integrand in the following way:

|||
1
𝑄0

− 1
𝑄𝜇

|||
=

||𝑄𝜇 − 𝑄0||
𝑄0𝑄𝜇

=
||𝑄2

𝜇 − 𝑄2
0 ||

𝑄0𝑄𝜇(𝑄0 + 𝑄𝜇)

=
2𝑎2𝑟2𝜆0𝜇

𝑄0𝑄𝜇(𝑄0 + 𝑄𝜇)
≤

2𝑎2𝑟2𝜆0𝜇
2𝑄3

0

=
𝑎2𝑟2 (𝑟2 + 𝑎2) sin2(𝜃) (𝑟2 + 𝑎2 sin2(𝜃))

3/2

(𝑟2 + 𝑎2 sin2(𝜃)) (𝑟(𝑟2 + 𝑎2))3
𝜇

=
𝑎2 sin2(𝜃) (𝑟2 + 𝑎2 sin2(𝜃))

1/2

𝑟 (𝑟2 + 𝑎2)2
𝜇

≤
𝑎2 sin2(𝜃) (𝑟2 + 𝑎2)1/2

𝑟 (𝑟2)3/2 (𝑟2 + 𝑎2)1/2
𝜇 = 𝑎2

𝑟4
𝜇. (5.14)

Integrating this expression gives us

|𝐹 (𝑟 , 𝜃 , 𝜆0, 0) − 𝐹(𝑟 , 𝜃 , 𝜆0, 𝜇)| ≤ 𝑎2 𝜇
∞

∫
𝑟

𝑑𝑟 ′

𝑟 ′4
= 𝑎2

3𝑟3
𝜇. (5.15)

�
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Lemma 5.2. Assume that the bootstrap assumption (eq. 5.8) holds with 𝜀 = 1/3. Then we have that

|𝜆𝜇 − 𝜆0| ≤ �̃�(𝑟)𝜇 sin2(𝜃) cos2(𝜃), (5.16)

with �̃�(𝑟) = 𝑎4
𝑟4

(1 + 𝑎2
𝑟2
).

Proof. Wewant to prove this Lemma by exploiting themean value theorem. Since 𝐹 is differentiable
in 𝜆, the mean value theorem states that there exists a 𝜆∗ ∈ [𝜆0, 𝜆𝜇] such that

|𝐹 (𝑟 , 𝜃 , 𝜆𝜇, 𝜇) − 𝐹(𝑟 , 𝜃 , 𝜆0, 𝜇)| = |(𝜕𝜆𝐹)(𝑟 , 𝜃 , 𝜆∗, 𝜇)| ⋅ |𝜆𝜇 − 𝜆0|

≥ inf
𝜆∈[𝜆0,𝜆𝜇]

|(𝜕𝜆𝐹)(𝑟 , 𝜃 , 𝜆, 𝜇)| ⋅ |𝜆𝜇 − 𝜆0|,
(5.17)

which implies that

|𝜆𝜇 − 𝜆0| ≤
|𝐹 (𝑟 , 𝜃 , 𝜆𝜇, 𝜇) − 𝐹(𝑟 , 𝜃 , 𝜆0, 𝜇)|
inf𝜆∈[𝜆0,𝜆𝜇] |(𝜕𝜆𝐹)(𝑟 , 𝜃 , 𝜆, 𝜇)|

. (5.18)

We can estimate the infimum of 𝜕𝜆𝐹 by using the bootstrap assumption:

|(𝜕𝜆𝐹)(𝜆𝜇, 𝜇)| ≥ |(𝜕𝜆𝐹)(𝜆0, 0)| − |(𝜕𝜆𝐹)(𝜆0, 0) − (𝜕𝜆𝐹)(𝜆𝜇, 𝜇)|,

inf
𝜆
|(𝜕𝜆𝐹)(𝜆𝜇, 𝜇)| ≥ |(𝜕𝜆𝐹)(𝜆0, 0)| − sup

𝜆
|(𝜕𝜆𝐹)(𝜆0, 0) − (𝜕𝜆𝐹)(𝜆𝜇, 𝜇)|

≥ 2
3 |(𝜕𝜆𝐹)(𝜆0, 0)|.

(5.19)

Combing this estimate with the estimate from lemma 5.1 we obtain

|𝜆𝜇 − 𝜆0| ≤
𝑎2

2𝑟3 |(𝜕𝜆𝐹)(𝑟 , 𝜃 , 𝜆0, 0)|
𝜇

= 𝑎4

𝑟3
(𝑟2 + 𝑎2) sin2(𝜃) 𝑟2 cos2(𝜃)

(𝑟2 + 𝑎2 sin2(𝜃))5/2
𝜇

≤ 𝑎4 𝑟
2 + 𝑎2

𝑟6
sin2(𝜃) cos2(𝜃) 𝜇

= 𝑎4

𝑟4
(1 + 𝑎2

𝑟2
) sin2(𝜃) cos2(𝜃) 𝜇.

(5.20)

�

In the Minkowski case we know that 𝜆0 ∈ [0, 1]. A priori we don’t know whether 𝜆𝜇 is bounded
similarly. However, from this lemma we see that 𝜆𝜇 has fixed values for 𝜃 = 0, 𝜋/2:

𝜆𝜇(𝜃 = 0) = 𝜆0(𝜃 = 0) = 0 and 𝜆𝜇(𝜃 = 𝜋/2) = 𝜆0(𝜃 = 𝜋/2) = 1. (5.21)

Furthermore, we need to verify that 𝜆𝜇 doesn’t blow up for 𝜃 ∈ (0, 𝜋/2).

Before we show this, we first we note that
𝑎
𝑟 ≤

𝑀
𝑟 = 𝜇 ≤ 𝑀

𝑟+ = 𝑀
𝑀 + √𝑀2 − 𝑎2

≤ 1. (5.22)

This implies that we can bound the constant appearing in lemma 5.2 purely in terms of 𝜇 by

�̃�(𝑟)𝜇 ≤ 𝜇5 (1 + 𝜇2) = 𝐶(𝜇). (5.23)

Using this estimate we can prove the following lemma:
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Lemma 5.3. Let 𝜇 < 𝜇∗ ≲ 0.815, where 𝜇∗ is the real root of the polynomial (1 + 𝜇2)𝐶(𝜇) − 1. Then
we have 0 ≤ 𝜆𝜇 ≤ 1.

Proof. We can verify that for 𝜇 < 𝜇∗, we have (1 + 𝜇2)𝐶(𝜇) < 1. From lemma 5.2 we have that

1 − 𝜆𝜇 = (1 − 𝜆0) − (𝜆𝜇 − 𝜆0) ≥
𝑟2 cos2(𝜃)

𝑟2 + 𝑎2 sin2(𝜃)
− ||𝜆𝜇 − 𝜆0||

≥ ( 1
1 + 𝑎2/𝑟2 sin2(𝜃)

− 𝐶(𝜇) sin2(𝜃)) cos2(𝜃)

≥ ( 1
1 + 𝜇2

− 𝐶(𝜇)) cos2(𝜃) ≥ 0,

(5.24)

which implies that 𝜆𝜇 ≤ 1. Similarly, we find

𝜆𝜇 = 𝜆0 − (𝜆𝜇 − 𝜆0) ≥
(𝑟2 + 𝑎2) sin2(𝜃)
𝑟2 + 𝑎2 sin2(𝜃)

− ||𝜆𝜇 − 𝜆0||

≥ ( 𝑟2 + 𝑎2

𝑟2 + 𝑎2 sin2(𝜃)
− 𝐶(𝜇) cos2(𝜃) ) sin2(𝜃)

≥ ( 1
1 + 𝜇2

− 𝐶(𝜇)) sin2(𝜃) ≥ 0.

(5.25)

Furthermore, both estimates do not blow up for 𝜇 < 𝜇∗. �

In order to ensure that 0 ≤ 𝜆 ≤ 1, we will assume 𝜇 < 𝜇∗ from now on. We could further relax the
bound on 𝜇 by not omitting the angular dependence in the bound, however for our purpose this
result is good enough. Furthermore, later in the bootstrap argument, 𝜇 will be required to be even
smaller anyway.

As of now we only know an upper bound on the distance |𝜆𝜇 − 𝜆0| and not whether 𝜆0 ≥ 𝜆𝜇 or
vice versa. The following lemma answers this question.

Lemma 5.4. Let 𝜇 < 𝜇∗. Then we have that 𝜆𝜇 ≤ 𝜆0.

Proof. From the IFT, we know that for fixed (𝑟 , 𝜃) (in the domain such that 𝐹 = 0), we have

0 = 𝑑𝐹 = 𝜕𝐹
𝜕𝜇𝑑𝜇 + 𝜕𝐹

𝜕𝜆𝑑𝜆. (5.26)

Therefore, we obtain 𝜕𝜇𝜆𝜇 = −𝜕𝜇𝐹/𝜕𝜆𝐹. The 𝜇-derivative of 𝐹 is given by

(𝜕𝜇𝐹)(𝑟 , 𝜃 , 𝜆𝜇, 𝜇) =
∞

∫
𝑟

(−
(𝜕𝜇𝑄𝜇)(𝑟 ′, 𝜆𝜇)
𝑄𝜇(𝑟 ′, 𝜆𝜇)2

) 𝑑𝑟 ′ = −𝑎2𝜆
∞

∫
𝑟

𝑟 ′2

𝑄𝜇(𝑟 ′, 𝜆𝜇)3
𝑑𝑟 ′ ≤ 0. (5.27)

For the 𝜆-derivative of 𝜕𝜇𝐹 we have

(𝜕𝜆𝜕𝜇𝐹)(𝑟 , 𝜃 , 𝜆𝜇, 𝜇) = −𝑎2
∞

∫
𝑟

𝑟 ′2

𝑄𝜇(𝑟 ′, 𝜆𝜇)3
𝑑𝑟 ′ − 𝑎2𝜆𝜇

∞

∫
𝑟

3Δ𝜇(𝑟 ′)𝑟 ′2

𝑄𝜇(𝑟 ′, 𝜆𝜇)5
𝑑𝑟 ′ < 0, (5.28)

since both integrals are positive. We can switch the order of the derivatives and obtain that
𝜕𝜇𝜕𝜆𝐹 = 𝜕𝜆𝜕𝜇𝐹 ≤ 0 and hence (𝜕𝜆𝐹)( ⋅ , 𝜇) ≤ (𝜕𝜆𝐹)( ⋅ , 0) < 0. In turn this means that 𝜕𝜇𝜆𝜇 ≤ 0 so
that 𝜆𝜇 is decreasing in 𝜇, which implies that 𝜆𝜇 ≤ 𝜆0. �
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It is worth mentioning that the below statements (albeit with slightly different constants) would
also work if the opposite were true. The important part is the smallness of |𝜆𝜇 − 𝜆0|. The only
instances in where we make use of this lemma are (a) in lemma 5.7 to circumvent a case distinction;
(b) to be able to write [𝜆𝜇, 𝜆0] instead of the verbose expression [min{𝜆0, 𝜆𝜇},max{𝜆0, 𝜆𝜇}].

The Final Result

We now want to proceed to close the bootstrap by improving the bootstrap assumption. Let us
first state the final result:

Theorem 1. Let 𝜇 ≤ 0.17 and assume that the bootstrap assumption (eq. 5.8) holds with 𝜀 = 1/3.
Then there exists a function 𝜆(𝑟 , 𝜃 , 𝜇) on 𝑈 = [𝑀/0.17,∞) × (0, 𝜋/2) × [0, 0.17] such that

𝐹(𝑟 , 𝜃 , 𝜆(𝑟 , 𝜃 , 𝜇), 𝜇) = 0 on 𝑈 . (5.29)

In particular, this implies that we can cover the patch for which

(𝑡, 𝑟 , 𝜃 , 𝜑) ∈ ℝ × [𝑀/0.17,∞) × (0, 𝜋/2) × (0, 2𝜋) (5.30)

using double null coordinates.

Before we will prove this statement, we first prove three seemingly unrelated estimates of integrals
and functions, which we then will use in the proof the theorem.

Lemma 5.5. Let 𝜆 ∈ [𝜆𝜇, 𝜆0], 𝜇 ≤ 𝜇∗ and assume that the bootstrap assumption (eq. 5.8) holds with
𝜀 = 1/3. Then we have that

|(𝜕𝜆𝐹)(𝑟 , 𝜃 , 𝜆, 𝜇) − (𝜕𝜆𝐹)(𝑟 , 𝜃 , 𝜆, 0)| ≤
13𝜇3
𝑟 . (5.31)

Proof. Since we evaluate 𝜕𝜆𝐹 at the same values of 𝜃 and 𝜆, the 𝜃-integrals cancel each other. We
are left with

|(𝜕𝜆𝐹)(𝑟 , 𝜃 , 𝜆, 𝜇) − (𝜕𝜆𝐹)(𝑟 , 𝜃 , 𝜆, 0)| ≤
𝑎2
2

∞

∫
𝑟

|
|
|

Δ𝜇(𝑟 ′)
𝑄𝜇(𝑟 ′, 𝜆)3

− Δ0(𝑟 ′)
𝑄0(𝑟 ′, 𝜆)3

|
|
|
𝑑𝑟 ′. (5.32)

Now we need to estimate the integrand. We rewrite it as

|||
Δ𝜇
𝑄𝜇

− Δ0
𝑄0

|||
= |||

Δ0 (
1
𝑄𝜇

− 1
𝑄0

) +
Δ𝜇 − Δ0

𝑄𝜇
|||

=
|
|
|
(𝑟2 + 𝑎2)

𝑄3
0 − 𝑄3

𝜇

𝑄3
0𝑄3

𝜇
−
2𝜇𝑟2

𝑄3
𝜇

|
|
|

≤ (𝑟2 + 𝑎2)
|
|
|

𝑄3
0 − 𝑄3

𝜇

𝑄3
0𝑄3

𝜇

|
|
|
+
|
|
|
2𝜇𝑟2

𝑄3
𝜇

|
|
|

= 1
𝑄3
𝜇
(𝑟

2 + 𝑎2

𝑄3
0

||𝑄3
0 − 𝑄3

𝜇 || + 2𝜇𝑟2) .

(5.33)

Further we note that

𝑄3
0 = ((𝑟2 + 𝑎2)(𝑟2 + 𝑎2(1 − 𝜆)))3/2 ≥ (𝑟2 + 𝑎2)𝑟4

𝑄𝜇 = √𝑄
2
0 + 2𝑎2𝜆𝑟2𝜇 ≥ 𝑄0 ≥ 𝑟2,

(5.34)
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from which we obtain
|||
Δ𝜇
𝑄𝜇

− Δ0
𝑄0

|||
≤ 1

𝑟6
(
||𝑄3

0 − 𝑄3
𝜇 ||

𝑟4
+ 2𝜇𝑟2) . (5.35)

What is left is to estimate ||𝑄3
0 − 𝑄3

𝜇 ||:

||𝑄3
0 − 𝑄3

𝜇 || =
||(𝑄2

0)3 − (𝑄2
𝜇)3||

(𝑄2
0)3/2 + (𝑄2

𝜇)3/2
≤

||(𝑄2
0)3 − (𝑄2

𝜇)3||
2(𝑄2

0)3/2
≤

||(𝑄2
0)3 − (𝑄2

𝜇)3||
2𝑟6

. (5.36)

The enumerator is a polynomial in 𝑄2
0 and 𝑦 = 𝑄2

𝜇 − 𝑄2
0 . Since we have that

𝑄2
0 ≤ (𝑟2 + 𝑎2)2 = 𝑟4(1 + 𝑎2/𝑟2)2 ≤ 4𝑟4, (5.37)

and also 𝑦 ≤ 2𝑎2𝑟2𝜇 (since 𝜆 ≤ 1) we get

||(𝑄2
0)3 − (𝑄2

𝜇)3|| = ||(𝑄2
0)3 − (𝑄2

0 + 𝑦)3||
= 3(𝑄2

0)2𝑦 + 3𝑄2
0𝑦2 + 𝑦3

≤ 6(𝑟2 + 𝑎2)4𝑟2𝑎2𝜇 + 12(𝑟2 + 𝑎2)2𝑟4𝑎4𝜇2 + 8𝑟6𝑎6𝜇3

≤ 96𝑟10𝑎2𝜇 + 48𝑟8𝑎4𝜇2 + 8𝑟6𝑎6𝜇3

= 𝑟12 (96𝑎
2

𝑟2
𝜇 + 48𝑎

4

𝑟4
𝜇2 + 8𝑎

6

𝑟6
𝜇3)

≤ 𝑟12(96𝜇3 + 48𝜇6 + 8𝜇9)

≤ 152 𝑟12𝜇.

(5.38)

Plugging this into the integrand we obtain the bound

|||
Δ𝜇
𝑄𝜇

− Δ0
𝑄0

|||
≤ 1

𝑟6
(76𝜇𝑟2 + 2𝜇𝑟2) =

78𝜇
𝑟4

. (5.39)

Integrating this expression we find the desired result:

|(𝜕𝜆𝐹)(𝑟 , 𝜃 , 𝜆, 𝜇) − (𝜕𝜆𝐹)(𝑟 , 𝜃 , 𝜆, 0)| ≤
𝑎2
2

∞

∫
𝑟

78𝜇
𝑟 ′4

𝑑𝑟 ′ =
78𝑎2𝜇
6𝑟3

≤
13𝜇3
𝑟 . (5.40)

�

Lemma 5.6. Let 𝜆 ∈ [𝜆𝜇, 𝜆0], 𝜇 < 𝜇∗ and assume that the bootstrap assumption (eq. 5.8) holds with
𝜀 = 1/3. Then we have that

|||
(𝜕𝜆𝜓)(𝑟 , 𝜆)
𝑃(𝜓 (𝑟 , 𝜆), 𝜆) −

(𝜕𝜆𝜓)(𝑟 , 𝜆0)
𝑃(𝜓 (𝑟 , 𝜆0), 𝜆0)

||| ≤ 𝐵(𝜇) |(𝜕𝜆𝐹)(𝑟 , 𝜃 , 𝜆0, 0)|, (5.41)

where

𝐵(𝜇) = (1 + 𝜇2 +
(1 + 𝜇2)3𝐶(𝜇)

(1 − (1 + 𝜇2) 𝐶(𝜇))2
)
1/2

− 1. (5.42)
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Proof. We already calculated 𝜕𝜆𝜓 and 𝑃(𝜓(𝑟 , 𝜆), 𝜆) in lemma 4.4, eqs. 4.45, 4.44:

(𝜕𝜆𝜓)(𝑟 , 𝜆)
𝑃(𝜓 (𝑟 , 𝜆), 𝜆) = √

𝑟2(𝑟2 + 𝑎2)
𝑟2 + 𝑎2(1 − 𝜆)

1
2𝑎2√𝜆(1 − 𝜆)

. (5.43)

Additionally, we have that

(𝜕𝜆𝜓)(𝑟 , 𝜆0)
𝑃(𝜓 (𝑟 , 𝜆0), 𝜆0)

= −(𝜕𝜆𝐹)(𝑟 , 𝜃 , 𝜆0, 0). (5.44)

Thus, we can write

|||
(𝜕𝜆𝜓)(𝑟 , 𝜆)
𝑃(𝜓 (𝑟 , 𝜆), 𝜆) −

(𝜕𝜆𝜓)(𝑟 , 𝜆0)
𝑃(𝜓 (𝑟 , 𝜆0), 𝜆0)

||| =
|||
(𝜕𝜆𝜓)(𝑟 , 𝜆) 𝑃(𝜓 (𝑟 , 𝜆0), 𝜆0)
𝑃(𝜓 (𝑟 , 𝜆), 𝜆) (𝜕𝜆𝜓)(𝑟 , 𝜆0)

− 1||| ⋅ |(𝜕𝜆𝐹)(𝑟 , 𝜃 , 𝜆0, 0)| . (5.45)

(𝜕𝜆𝜓)(𝑟 , 𝜆) 𝑃(𝜓 (𝑟 , 𝜆0), 𝜆0)
𝑃(𝜓 (𝑟 , 𝜆), 𝜆) (𝜕𝜆𝜓)(𝑟 , 𝜆0)

= (
𝑟2 + 𝑎2(1 − 𝜆0)
𝑟2 + 𝑎2(1 − 𝜆)

)
1/2

(
𝜆0(1 − 𝜆0)
𝜆(1 − 𝜆) )

1/2

≤ (𝑟
2 + 𝑎2

𝑟2
)
1/2

(
𝜆0(1 − 𝜆0)
𝜆(1 − 𝜆) )

1/2

≤ (1 + 𝜇2)1/2 (
𝜆0(1 − 𝜆0)
𝜆(1 − 𝜆) )

1/2
.

(5.46)

Now we need to show that the ratio of the 𝜆’s is small. A priori the limits of 𝜆 → 0, 1 seem
problematic because the expression would blow up for fixed 𝜆0. However, from lemma 5.2 we
know that 𝜆 = 𝜆0 at the endpoints where 𝜃 = 0, 𝜋/2. Using this lemma we rewrite the expression
as

𝜆0(1 − 𝜆0)
𝜆(1 − 𝜆) ≤ 𝜆(1 − 𝜆)

𝜆(1 − 𝜆) +
|||
𝜆0(1 − 𝜆0) − 𝜆(1 − 𝜆)

𝜆(1 − 𝜆)
|||

= 1 +
||(𝜆0 − 𝜆) − (𝜆20 − 𝜆2)||

𝜆(1 − 𝜆)

= 1 + |𝜆0 − 𝜆| |1 − (𝜆0 + 𝜆)|
𝜆(1 − 𝜆)

≤ 1 +
𝐶(𝜇) sin2(𝜃) cos2(𝜃)

𝜆(1 − 𝜆) .

(5.47)

We already estimated (with 𝜆𝜇 instead of 𝜆) the ratios sin2(𝜃)/𝜆 and cos2(𝜃)/(1 − 𝜆) in the proof
of lemma 5.3, where we obtained expressions equivalent to

sin2(𝜃)
𝜆 ≤ ( 1

1 + 𝜇2
− 𝐶(𝜇))

−1
=

1 + 𝜇2

1 − (1 + 𝜇2)𝐶(𝜇)
, (5.48)

cos2(𝜃)
1 − 𝜆 ≤ ( 1

1 + 𝜇2
− 𝐶(𝜇))

−1
=

1 + 𝜇2

1 − (1 + 𝜇2)𝐶(𝜇)
, (5.49)

which can blow up if 𝜇 is large enough. However, by considering 𝜇 ≤ 0.8 this does not occur.
Plugging these estimates into eq. 5.45 gives

|||
(𝜕𝜆𝜓)(𝑟 , 𝜆)
𝑃(𝜓 (𝑟 , 𝜆), 𝜆) −

(𝜕𝜆𝜓)(𝑟 , 𝜆0)
𝑃(𝜓 (𝑟 , 𝜆0), 𝜆0)

|||

≤ ((1 + 𝜇2 +
(1 + 𝜇2)3𝐶(𝜇)

(1 − (1 + 𝜇2) 𝐶(𝜇))2
)
1/2

− 1) |(𝜕𝜆𝐹)(𝑟 , 𝜃 , 𝜆0, 0)| .
(5.50)

�
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Lemma 5.7. Define 𝜇# ≲ 0.745 as the real root of 1 − (1 + 𝜇2)2𝜇3. Let 𝜆 ∈ [𝜆𝜇, 𝜆0], 𝜇 < 𝜇# and
assume that the bootstrap assumption (eq. 5.8) holds with 𝜀 = 1/3. Then we have that

𝑎2
2

𝜓(𝑟 ,𝜆0)

∫
𝜓(𝑟 ,𝜆)

|
|
|

𝑑𝜓 ′

𝑃(𝜓 ′, 𝜆)3
|
|
|
≤ 𝐴(𝜇) |(𝜕𝜆𝐹)(𝑟 , 𝜃 , 𝜆0, 0)|, (5.51)

where

𝐴(𝜇) =
(1 + 𝜇2)5𝜇3

2(1 − (1 + 𝜇2) 𝐶(𝜇))(1 − (1 + 𝜇2)2𝜇3)3/2
. (5.52)

Proof. We can find an upper bound of the integral by considering the supremum of the integrand:

𝜓(𝑟 ,𝜆0)

∫
𝜓(𝑟 ,𝜆)

|
|
|

𝑑𝜓 ′

𝑃(𝜓 ′, 𝜆)3
|
|
|
≤ sup

𝜓 ′

|
|
|

1
𝑃(𝜓 ′, 𝜆)3

|
|
|
⋅ |𝜓 (𝑟 , 𝜆0) − 𝜓(𝑟 , 𝜆)|

= sup
𝜓 ′

|
|
|

1
𝑃(𝜓 ′, 𝜆)3

|
|
|
|𝜓 (𝑟 , 𝜆0) − 𝜓(𝑟 , 𝜆)|

|𝜆 − 𝜆0|
|𝜆 − 𝜆0| .

(5.53)

The term in the middle can be rewritten by invoking the mean value theorem, which states that
there exists a 𝜆∗ ∈ [𝜆, 𝜆0] such that

|𝜓 (𝑟 , 𝜆0) − 𝜓(𝑟 , 𝜆)|
|𝜆 − 𝜆0|

= |(𝜕𝜆𝜓)(𝑟 , 𝜆∗)|. (5.54)

By eq. 4.19 we have that

|(𝜕𝜆𝜓)(𝑟 , 𝜆∗)| =
𝑟√𝑟2 + 𝑎2

𝑟2 + 𝑎2(1 − 𝜆)
1

2√𝜆∗(1 − 𝜆∗)
≤ 𝑟2 + 𝑎2

𝑟2
1

2√𝜆∗(1 − 𝜆∗)

≤
1 + 𝜇2

2√𝜆∗(1 − 𝜆∗)
.

(5.55)

Also using lemma 5.2 (to estimate |𝜆 − 𝜆0|) we obtain

𝜓(𝑟 ,𝜆0)

∫
𝜓(𝑟 ,𝜆)

|
|
|

𝑑𝜓 ′

𝑃(𝜓 ′, 𝜆)3
|
|
|
≤ sup

𝜓 ′

|
|
|

1
𝑃(𝜓 ′, 𝜆)3

|
|
|

1 + 𝜇2

2√𝜆∗(1 − 𝜆∗)
�̃�(𝑟)𝜇 sin2(𝜃) cos2(𝜃)

= sup
𝜓 ′

|
|
|

1
𝑃(𝜓 ′, 𝜆)3

|
|
|
(1 + 𝜇2)�̃�(𝑟)𝜇

2 (sin
2(𝜃)
𝜆∗

)
1/2

(cos
2(𝜃)

1 − 𝜆∗
)
1/2

sin(𝜃) cos(𝜃)

≤ sup
𝜓 ′

|
|
|

1
𝑃(𝜓 ′, 𝜆)3

|
|
|

�̃�(𝑟)(1 + 𝜇2)3𝜇
2(1 − (1 + 𝜇2) 𝐶(𝜇))⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

�̃�(𝑟)𝑓 (𝜇)

sin(𝜃) cos(𝜃),

(5.56)

where we used eqs. 5.48, 5.49 from lemma 5.6 to estimate sin2(𝜃)/𝜆∗ and cos2(𝜃)/(1 − 𝜆∗). We
now need to also estimate the supremum. Since 𝑃(𝜃, 𝜆0) ∼ sin(𝜃) cos(𝜃) vanishes at 𝜃 = 0, 𝜋/2,
we expect that the supremum blows up in these limits, but still can be bounded in terms of sin
and cos:

sup
𝜓 ′

|
|
|

1
𝑃(𝜓 ′, 𝜆)3

|
|
|
≲ 1

sin3(𝜃) cos3(𝜃)
. (5.57)
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To find an actual upper bound we note that 𝜕𝜆𝜓 > 0 and hence that 𝜓(𝑟 , 𝜆) is strictly increasing in
𝜆. Since 𝑃(𝜓 ′, 𝜆) is strictly decreasing in 𝜓 ′, we have that the supremum is attained at the larger
value of the boundary points. Therefore, if 𝜆0 ≥ 𝜆, we have that

sup
𝜓 ′

|
|
|

1
𝑃(𝜓 ′, 𝜆)3

|
|
|
= 1

𝑃(𝜓 (𝑟 , 𝜆0), 𝜆)3
. (5.58)

Furthermore,

𝑃(𝜓(𝑟 , 𝜆0), 𝜆)3 = 𝑎3 (𝜆 − sin2(𝜓 (𝑟 , 𝜆0)))
3/2

= 𝑎3 (𝜆 − 𝜆0 + 𝜆0 − sin2(𝜓 (𝑟 , 𝜆0)))
3/2

= (𝑎2(𝜆 − 𝜆0) + 𝑃(𝜓(𝑟 , 𝜆0), 𝜆0))
3/2

≥ (𝑃(𝜓(𝑟 , 𝜆0), 𝜆0) − 𝑎2|𝜆 − 𝜆0|)
3/2

≥ (𝑎
4 sin2(𝜃) cos2(𝜃)
𝑟2 + 𝑎2 sin2(𝜃)

− 𝑎2�̃�(𝑟)𝜇 sin2(𝜃) cos2(𝜃))
3/2

≥ 𝑎6

(𝑟2 + 𝑎2 sin2(𝜃))3/2
(1 − 𝑟2 + 𝑎2

𝑎2
�̃�(𝑟)𝜇)

3/2
sin3(𝜃) cos3(𝜃).

Hence, we obtain

𝜓(𝑟 ,𝜆0)

∫
𝜓(𝑟 ,𝜆)

|
|
|

𝑑𝜓 ′

𝑃(𝜓 ′, 𝜆)3
|
|
|
≤

�̃�(𝑟)𝑓 (𝜇) (𝑟2 + 𝑎2 sin2(𝜃))
3/2

𝑎6 (1 − 𝑟2 + 𝑎2
𝑎2

�̃�(𝑟)𝜇)
3/2

sin2(𝜃) cos2(𝜃)

, (5.59)

which of course diverges as 𝜃 → 0, 𝜋/2. However, this divergence is not problematic as we want
to bound the integral in terms of |(𝜕𝜆𝐹)(𝜆0, 0)|, which is explicitly given by lemma 4.4, eq. 4.41:

|(𝜕𝜆𝐹)(𝑟 , 𝜃 , 𝜆0, 0)| =
(𝑟2 + 𝑎2 sin2(𝜃))5/2

2𝑎2𝑟2(𝑟2 + 𝑎2) sin2(𝜃) cos2(𝜃)
∼ sin−2(𝜃) cos−2(𝜃), (5.60)

and has the same divergent behaviour in 𝜃. Multiplying and dividing with it gives

𝜓(𝑟 ,𝜆0)

∫
𝜓(𝑟 ,𝜆)

|
|
|

𝑑𝜓 ′

𝑃(𝜓 ′, 𝜆)3
|
|
|
≤

�̃�(𝑟)𝑓 (𝜇) (𝑟2 + 𝑎2 sin2(𝜃))
3/2

𝑎6 (1 − 𝑟2 + 𝑎2
𝑎2

�̃�(𝑟)𝜇)
3/2

2𝑎2𝑟2(𝑟2 + 𝑎2)
(𝑟2 + 𝑎2 sin2(𝜃))5/2

|(𝜕𝜆𝐹)(𝑟 , 𝜃 , 𝜆0, 0)|

=
�̃�(𝑟)𝑓 (𝜇)

𝑎4 (1 − 𝑟2 + 𝑎2
𝑎2

�̃�(𝑟)𝜇)
3/2

2𝑟2(𝑟2 + 𝑎2)
𝑟2 + 𝑎2 sin2(𝜃)

|(𝜕𝜆𝐹)(𝑟 , 𝜃 , 𝜆0, 0)|.

(5.61)

To finish the proof let us rewrite and estimate the term in front of |(𝜕𝜆𝐹)(𝜆0, 0)| (almost) purely in
terms of 𝜇. First we note, using the expression for 𝐶 (lemma 5.2) in terms of 𝑎/𝑟, that

1 − 𝑟2 + 𝑎2

𝑎2
�̃�(𝑟)𝜇 = 1 − �̃�(𝑟)𝜇 − 𝑟2

𝑎2
𝑎4

𝑟4
(1 + 𝑎2

𝑟2
) 𝜇

≥ 1 − 𝜇5(1 + 𝜇2) − 𝜇3(1 + 𝜇2)

= 1 − 𝜇3(1 + 𝜇2)2

(5.62)
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and

�̃�(𝑟) 2𝑟2(𝑟2 + 𝑎2)
𝑎4(𝑟2 + 𝑎2 sin2(𝜃))

≤ 2
𝑟2
�̃�(𝑟) 𝑟

4

𝑎4
(1 + 𝑎2

𝑟2
)

= 2
𝑟2

𝑎4

𝑟4
(1 + 𝑎2

𝑟2
) 𝑟4

𝑎4
(1 + 𝑎2

𝑟2
)

≤ 2
𝑟2
(1 + 𝜇2)2.

(5.63)

Hence, by also multiplying with 𝑎2/2, we obtain

𝑎2
2

𝜓(𝑟 ,𝜆0)

∫
𝜓(𝑟 ,𝜆)

|
|
|

𝑑𝜓 ′

𝑃(𝜓 ′, 𝜆)3
|
|
|

(5.64)

≤ 𝑎2

𝑟2
(1 + 𝜇2)3𝜇

2(1 − (1 + 𝜇2) 𝐶(𝜇))
(1 + 𝜇2)2

(1 − (1 + 𝜇2)2𝜇3)3/2
|(𝜕𝜆𝐹)(𝑟 , 𝜃 , 𝜆0, 0)|

≤
(1 + 𝜇2)5𝜇3

2(1 − (1 + 𝜇2) 𝐶(𝜇))(1 − (1 + 𝜇2)2𝜇3)3/2
|(𝜕𝜆𝐹)(𝑟 , 𝜃 , 𝜆0, 0)|. (5.65)

The factor in front does not diverge because we assumed 𝜇 < 𝜇# < 𝜇∗. �

We have that 𝐵(0) = 0 and that 𝐵(𝜇) is continuous on [0, 𝜇∗). Similarly, 𝐴(0) = 0 and 𝐴(𝜇) is
continuous on [0, 𝜇#). Hence, we can make these constants as small as desired by considering
suitable 𝜇 < 𝜇# < 𝜇∗, which will be important in closing the bootstrap argument. Of course, by
considering arbitrarily small 𝜇, we have to deal with the fact that these results are only valid in the
region where 𝑟 ≥ 𝑀/𝜇, since the mass 𝑀 is interpreted to be a fixed parameter of Kerr spacetime.

The Proof

By using all the lemmas so far we are now able to prove theorem 1:

Proof of theorem 1. Let 𝜇 ∈ [0, 0.17], 𝜃 ∈ (0, 𝜋/2) and 𝑟 ∈ [𝑀/𝜇,∞). First, since 𝜇 < 𝜇∗, we know
that 0 ≤ 𝜆 ≤ 1. In view of the bootstrap principle (prop. 5.1), we need to verify the four properties
(a) to (d) on this domain in order to proof the existence of 𝜆, which crucially relies on the (to be
proven) fact 𝜕𝜆𝐹 ≠ 0. Our hypothesis (the bootstrap assumption, eq. 5.8) ensures this. We want
to show that for suitable 𝜇 this inequality can be made even sharper:

|(𝜕𝜆𝐹)(𝑟 , 𝜃 , 𝜆, 𝜇) − (𝜕𝜆𝐹)(𝑟 , 𝜃 , 𝜆0, 0)| ≤
1
6 |(𝜕𝜆𝐹)(𝑟 , 𝜃 , 𝜆0, 0)|, (5.66)

which is our conclusion. Then the bootstrap principle ensures that our assumed hypothesis is
indeed true. Using the triangle inequality we can split the difference in the following way:

|(𝜕𝜆𝐹)(𝑟 , 𝜃 , 𝜆, 𝜇) − (𝜕𝜆𝐹)(𝑟 , 𝜃 , 𝜆0, 0)|

= |(𝜕𝜆𝐹)(𝑟 , 𝜃 , 𝜆, 𝜇) − (𝜕𝜆𝐹)(𝑟 , 𝜃 , 𝜆, 0) + (𝜕𝜆𝐹)(𝑟 , 𝜃 , 𝜆, 0) − (𝜕𝜆𝐹)(𝑟 , 𝜃 , 𝜆0, 0)|

≤ |(𝜕𝜆𝐹)(𝑟 , 𝜃 , 𝜆, 𝜇) − (𝜕𝜆𝐹)(𝑟 , 𝜃 , 𝜆, 0)|⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
(I)

+ |(𝜕𝜆𝐹)(𝑟 , 𝜃 , 𝜆, 0) − (𝜕𝜆𝐹)(𝑟 , 𝜃 , 𝜆0, 0)|⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
(II)

.
(5.67)
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The main work in estimating (I) and (II) was already done in the previous lemmas. We already
estimated (I) in lemma 5.5. For our purpose here we want to bound (I) in terms of (𝜕𝜆𝐹)(𝜆0, 0) by
inserting 𝜕𝜆𝐹 into the estimate:

(I) ≤
13𝜇3
𝑟 =

13𝜇3
𝑟

|(𝜕𝜆𝐹)(𝑟 , 𝜃 , 𝜆0, 0)|
|(𝜕𝜆𝐹)(𝑟 , 𝜃 , 𝜆0, 0)|

=
13𝜇 2𝑎2𝑟2(𝑟2 + 𝑎2) sin2(𝜃) cos2(𝜃)

𝑟(𝑟2 + 𝑎2 sin2(𝜃))5/2
|(𝜕𝜆𝐹)(𝑟 , 𝜃 , 𝜆0, 0)|

≤ 26
𝜇𝑎2𝑟(𝑟2 + 𝑎2)

𝑟5
|(𝜕𝜆𝐹)(𝑟 , 𝜃 , 𝜆0, 0)|

≤ 26𝜇3(1 + 𝜇2)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝐷(𝜇)

|(𝜕𝜆𝐹)(𝑟 , 𝜃 , 𝜆0, 0)|.

(5.68)

Furthermore, (II) is given by

(II) =
|
|
|
|
|
−𝑎2
2

𝜓(𝑟 ,𝜆0)

∫
𝜓(𝑟 ,𝜆)

𝑑𝜓 ′

𝑃(𝜓 ′, 𝜆)3
−

(𝜕𝜆𝜓)(𝑟 , 𝜆)
𝑃(𝜓 (𝑟 , 𝜆), 𝜆) +

𝑎2
2

𝜓(𝑟 ,𝜆0)

∫
𝜓(𝑟 ,𝜆0)

𝑑𝜓 ′

𝑃(𝜓 ′, 𝜆0)3
+

(𝜕𝜆𝜓)(𝑟 , 𝜆0)
𝑃(𝜓 (𝑟 , 𝜆0), 𝜆0)

|
|
|
|
|

≤ 𝑎2
2

|
|
|
|
|

𝜓(𝑟 ,𝜆0)

∫
𝜓(𝑟 ,𝜆)

𝑑𝜓 ′

𝑃(𝜓 ′, 𝜆)3

|
|
|
|
|⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

(IIa)

+ |||
(𝜕𝜆𝜓)(𝑟 , 𝜆)
𝑃(𝜓 (𝑟 , 𝜆), 𝜆) −

(𝜕𝜆𝜓)(𝑟 , 𝜆0)
𝑃(𝜓 (𝑟 , 𝜆0), 𝜆0)

|||⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
(IIb)

,
(5.69)

where we used the Minkowski expression for 𝜕𝜆𝐹. We already estimated (IIa) in lemma 5.7.
Moreover, we also already estimated (IIb) in lemma 5.6. Hence, as a whole, we obtain that

|(𝜕𝜆𝐹)(𝑟 , 𝜃 , 𝜆, 𝜇) − (𝜕𝜆𝐹)(𝑟 , 𝜃 , 𝜆0, 0)| ≤ (𝐴(𝜇) + 𝐵(𝜇) + 𝐷(𝜇)) |(𝜕𝜆𝐹)(𝑟 , 𝜃 , 𝜆0, 0)|. (5.70)

Since 𝜇 ≤ 0.17 we have that 𝐴(𝜇) + 𝐵(𝜇) + 𝐷(𝜇) ≤ 1/68 and thus

|(𝜕𝜆𝐹)(𝑟 , 𝜃 , 𝜆, 𝜇) − (𝜕𝜆𝐹)(𝑟 , 𝜃 , 𝜆0, 0)| ≤
1
6 |(𝜕𝜆𝐹)(𝑟 , 𝜃 , 𝜆0, 0)|, (5.71)

which means that we have strengthened our initial 𝜀 from 1/3 to 1/6. This is to say that we
showed property (a). Property (b), i.e. that the conclusion implies the hypothesis, is trivially
true because of continuity. Also, (c) is true since limits preserve inequalities. At last, property
(d) is also true because plugging in (𝜆0, 0), i.e. the Minkowski values, for (𝜆, 𝜇) implies that the
bootstrap assumption is trivially fulfilled. �

5.4 Results

With this we have proven that the angular function 𝜆, defined as the solution to the constraint
equation, exists between 0 < 𝜃 < 𝜋/2 and for 𝑟 > 𝑀/0.17. By our work in chapter 3, we know
that the tortoise coordinate 𝑟∗, defined as 𝑟∗(𝑟 , 𝜃) = 𝜌(𝑟 , 𝜃 , 𝜆(𝑟 , 𝜃)) exists on this patch and hence
we can introduce the optical functions 𝑢 = 𝑡 − 𝑟∗ and 𝑣 = 𝑡 + 𝑟∗ for which the level sets are null
hypersurfaces. Adapting 𝑢, 𝑣 as coordinates, the Kerr metric can be expressed in the double null
form derived in chapter 3, eq. 3.41.

8This can be easily verified numerically.
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In Minkowski space we were able to extend this coordinate system for values of 𝜃 ∈ (0, 𝜋) by
adapting the polar angle 𝜃∗ as a coordinate and defining it on [𝜋/2, 𝜋] via

𝜃∗(𝑟 , 𝜃 = 𝜋/2) = 𝜋/2, and 𝜃∗(𝑟 , 𝜃) = 𝜃∗(𝑟 , 𝜋 − 𝜃). (5.72)

There we do know that the metric in spherical coordinates in regular at 𝜃∗ = 𝜋/2.

In order to show that we also can expand the coordinate patch in Kerr, we need to show that the
metric on the two-surfaces of constant 𝑢, 𝑣 is regular at 𝜃 = 𝜋/2 and beyond. Changing from 𝜆 to
𝜃∗, we obtain 𝑑𝜆 = 2 sin(𝜃∗) cos(𝜃∗) 𝑑𝜃∗ and thus

/𝑔 = 𝐿2

𝑅2
𝑑𝜆2 + 𝑅2 sin2(𝜃) 𝑑𝜑2∗ = 4𝐿

2

𝑅2
sin2(𝜃∗) cos2(𝜃∗) 𝑑𝜃2∗ + 𝑅2 sin2(𝜃) 𝑑𝜑2∗. (5.73)

For the determinant we obtain

√det /𝑔 = 2𝐿 sin(𝜃) sin(𝜃∗) cos(𝜃∗) = 2(−𝜕𝜆𝐹)𝑃𝑄𝜇 sin(𝜃) sin(𝜃∗) cos(𝜃∗). (5.74)

From our work in the bootstrap argument we know that

(−𝜕𝜆𝐹)𝑃 sin(𝜃∗) cos(𝜃∗) ∼
sin(𝜃∗) cos(𝜃∗)
sin(𝜃) cos(𝜃) ∼ 1. (5.75)

This implies that 𝐿, and by that also √det /𝑔 is well-defined in the limit of 𝜃 → 𝜋/2. Furthermore,
since we defined 𝜃∗ for 𝜃 ∈ (𝜋/2, 𝜋) via mirroring along 𝜃 = 𝜋/2, the in this way extended
quantities 𝑃, 𝑄, 𝜕𝜆𝐹 are also well-defined there. Hence, we have shown (or rather sketched a proof)
that we in fact can cover Kerr spacetime using double null coordinates in the full range of the
Boyer-Lindquist coordinate 𝜃.
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6 Conclusion and Outlook

In this work, we studied the question of the existence of a foliation of the Kerr spacetime exterior
by two families of null hypersurfaces, known as the double null coordinate system. We started
by locally constructing double null coordinates in general spacetimes. Then, assuming the
global existence of such coordinates in Kerr, we found an expression for the Kerr metric in these
coordinates. The drawback is that the expression is not a closed-form expression in terms of the
new coordinates, but rather in terms of the Boyer-Lindquist coordinates. In Minkowski spacetime,
we found that the Eikonal equation is globally solvable. Thus, in this special case, we can obtain,
not surprisingly, a closed-form expression of the Minkowski metric in double null coordinates.
Furthermore, we found that the boundary conditions imposed by Pretorius and Israel in [5] were
not well-defined. In this work made sense of their definitions and properly defined them.

The goal of this thesis was to show that we can cover the exterior region Kerr spacetime with
double null coordinates, which would thereby justify the expressions derived in chapter 3. The
main idea was to make use of the fact that for large values of the Boyer-Lindquist coordinate 𝑟,
Kerr spacetime asymptotically settles down to Minkowski spacetime, for which we know a global
solution exist. Making use of this and employing the so-called bootstrap method in theorem 1,
we showed that for 𝑟 > 𝑀/0.17 a solution to the Eikonal equation exists and by that also the
aforementioned null hypersurfaces.

By optimizing the bootstrap assumption and the established estimates, the bound on 𝑟 could
be potentially relaxed further. In particular, if we were able to show that our proof also holds
for 𝑟 > 𝑀/0.5, then we would know that for small enough 𝑎 the region is already the complete
exterior. For general 𝑎 we would need to show that the estimates hold even for 𝑟 > 𝑀, for which
all our lemmas break down. Thus, an interesting follow-up question is whether we can extend
the domain up onto the outer event horizon. This question was already studied, albeit in not
much detail, by in [5]. The general idea is to look whether caustics develop along the ingoing
null generators of constant 𝜆. The occurrence of a caustic is indicated by the vanishing of the
induced volume element √det /𝑔 = −𝜕𝜆𝐹 𝑃𝑄 sin(𝜃) on the two-surfaces of constant 𝑢, 𝑣.

Double null coordinates have already been constructed in the Kerr interior region by Dafermos
and Luk in [4]. Thus, another question worth asking is how these two potentially different
families of null hypersurface relate to each other in the region around the outer event horizon.
And whether it is possible to extend their coordinates over the horizon using this method.

In view of the Einstein equations, the 𝐶2-regularity of the metric is important. Hence, it would be
beneficial to know whether this property holds for the metric expressions found.

In the local construction of the double null coordinate system, we assumed the starting point
to be a sphere. By the construction of the null hypersurfaces, we found that the intersections
of the null hypersurfaces, i.e. the surfaces of constant 𝑢, 𝑣 are spheres as well. A priori, in our
coordinate system for Kerr, we do not whether this also holds true. A potential way to show this
is to consider the induced metric /𝑔 (see eq. 5.73) and look at its asymptotic properties as 𝑟 → ∞.
If this metric reduces to the standard metric on 𝕊2, then, by following the null generators inwards,
we could infer that the surfaces are two-spheres. This idea again relies on the claim the the null
generators are free of caustics in order to obtain a diffeomorphism between the surfaces.
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